HW5, HW6, HW7, Extra Credit, Final Exams, and Course Grades are available in 132 Egan

 

U210: Electrical Engineering


Northeastern University
Electrical and Computer Engineering Department

 ECE U210                   Electrical Engineering (4QH)                        Spring Semester

 Instructor:                  Professor Vincent Harris
                                    132 Egan Center
                                    Phone: 617.373.7603 (Office & Voice Mail)
                                    Phone: 617.373.5364 (Lab, try here first)
                                    Fax: 617.373.8970
                                    E-mail:  harris@ece.neu.edu

Class Schedule:         M, W, Th 8:00 -9:05 AM
Room:                        101 Churchhill Hall
Office Hours:             Tuesday and Wednesdays, 10-11:30 am, Rm 132 Egan Center
TA:                             Bill Warger
TA Office Hours:       By appointment

Course Description:

The course introduces the basic concepts related to circuits and circuit elements: current, voltage, and power; resistors, capacitors, and inductors; and circuit analysis using Kirchhoff’s laws, nodal and mesh methods.  We also discuss selected topics that illustrate a variety of applications of electrical engineering, such as AC circuits and electric power, transients in circuits with energy storage, digital signals, logic circuits, and some basic concepts of computer operations, specifically number coding, arithmetic operations, and memory circuits.

 Textbooks:                Introduction to Electrical Engineering by Mulukutla Sarma (Publisher: Oxford University) 2001

 Grading Format:       Homework assignments:           30%
                                    Midterm Exam (TBA)   :           30%
                                    Final Exam (TBA):                    40%


Homework Assignments: #1  #2  #3  #4  #5  #6  #7 
                   Solutions:  Hw.1  Hw.2  Hw.3  Hw.4  Hw.5  Hw.6  Hw.7 
Course Content: Chapter 1  2  3  4  5  6


For Print: Syllabus and Homework Assignments (.pdf file)
                 Homework Solutions (.pdf file)


Messages:

- Wednesday's class (March 10) will be a review of the midterm exam delivered by the TA Bill Warger, he will also return the exams.

- Thursday's class (March 11th) will be canceled. No office hours this week.

- Homework Assignment #5 is assigned and will be due on March 25th.


Homework assignments

 Assignment 1    Read: Ch. 1.1               Problems: 1.1.1, 1.1.2, 1.1.4*, 1.1.7, 1.1.11, 1.1.20
Due: Jan 15th
* particularly challenging and will be awarded with extra credit

Topics include:

Charge and Electric Force
Conductors and Insulators
Current and Magnetic Force
Electric Potential and Voltage
Energy and Power
Sources and Loads
Wave Forms

******************

Assignment 2    Read: Ch. 1.2               Problems:1.25, 1.2.6, 1.2.7, 1.2.8, 1.2.9, 1.2.13(a), 1.2.14, 1.2.18, 1.2.19
Due: Feb 5th

Lumped Circuit Elements
Resistance
Maximum Power Transfer

******************

Assignment 3   Read: Ch. 1.3                  Problems: 1.3.1, 1.3.2, 1.3.5, 1.3.6, 1.3.10
Assigned: Feb. 5th
Due: Feb. 12th (due in one week)

Kirchhoff’s Laws
KCL
KVL

******************

Assignment 4   Read Ch. 2.1, 2.2                  Problems: 2.1.1, 2.1.2, 2.1.3, 2.2.2, 2.2.4, 2.2.9, 2.2.10
Assigned: Feb. 5th
Due: Feb. 19th

Thevenin and Norton Equivalent Circuits
Node Voltage Method
Mesh Current Method

 Note:
Superposition (if time permits)
Wye-Delta transformations (if time permits)

******************

Note: Feb. 23rd and 25th are review classes to prepare for Midterm Exam

************************************************
MIDTERM
Date: Thurs. Feb 26th
************************************************

Assignment 5                                      Problems: 1.2.20, 1.2.21, 1.2.22, 1.2.24, 1.2.26, 1.2.29. 1.3.9*

* Extra credit

Assigned: March 10th
Due: March 25th

Capacitance (page 24-29 text)
Inductance (page 29-36 text)

******************

Assignment 6 HANDOUT      

Assigned: March 25th

Due April 5 (NEW)

******************

Assignment 7  TBA                  

************************************************
FINAL EXAM
Date: April 15-23 TBA
************************************************


Homework Solutions

Assignment 1: 1.1.1, 1.1.2, 1.1.4*, 1.1.7, 1.1.11, 1.1.20

1.1.1 F=9x109 N or 1.01x106 ton-force

1.1.2 FN=((3)1/2/a2) with F1=F2=F3

1.1.4 location of point charge is (2,2,-1) with Q=(24pe0) C

1.1.7 v(t)=(50+t) C; i=dq/dt = 1 A

1.1.11 F at (3,4,2) = 0.0002(3ax+4ay) N

1.1.20 230 hrs; 5 MJ

************************************************

Assignment 2:1.2.5, 1.2.6, 1.2.7, 1.2.8, 1.2.9, 1.2.13(a), 1.2.14, 1.2.18, 1.2.19

1.2.5 3 Ohms

1.2.6 10 Ohms

1.2.7 2 Ohms

1.2.8 8 Ohms

1.2.9 12.4% increase in power with matching load

1.2.13 (a) VRMSIRMS = VRMS2/R

1.2.14 a) 4.8 kW; b) 1.44 kW; c) 7.2 kW; d) 1.8 kW

1.2.18 Vx=1.5 V

1.2.19 a) -2A; b) -5 A; c) 2 A; d) 1.5 A

************************************************

Assignment 3: 1.3.1, 1.3.2, 1.3.5, 1.3.6, 1.3.10

 1.3.1 VB=2 V; VC=8V; VG=14V; IA=-1A; ID=-1 A; IE=2A; IF=2 A; IH=1A; Power delivered to each element: A=6 W (sink); B=4 W (sink); C=-8W (source); D=8W (sink); E=8 W(sink); F=20 W (sink); G=-42 W(source); H=4W (sink); conservation of power is satisfied.

1.3.2 V=2V

1.3.5 V1=35V; V2=-15V; PV1=175 W; PV2=75 W; PR=250W; power absorbed by resistors equal power provid3ed by sources therefore conservation of power is satisfied.

1.3.6 a) V=914.3 V; b) I1=45.7 A; I2=22.86 A; I3=11.43 A; c) PA=27.4 kW; PB=45.7 kW; PR=73.1kW; power absorbed by resisters equals power provided by sources therefore conservation of power is satisfied.

1.3.10 Vout=-5V; I=0.5mA; P=1.25mW

************************************************

Assignment 4: 2.1.1, 2.1.2, 2.1.3, 2.2.2, 2.2.4, 2.2.9, 2.2.10

2.1.1 a) Rth=6 Ohms,Vth=1 V b) R=6Ohms c) P=1/24 Watts

2.1.2 Vth=8 V, Rth=4 Ohms, IN=2 A

2.1.3 Vth=72 V, Rth=4 Ohms, IN=18 A

2.2.2 I=1 Amp

2.2.4 Nodal analysis leads to VC=54 V (the voltage across the 12 Ohm R); Using mesh analysis I2=4.5 A where V=12I2 = 54 V

2.2.9 Nodal analysis leads to VA=12 V, VB=-6V where VB=V=-6 V; using mesh analysis I loop (=IL)= 3 A, VB=2IL-4I1=-6V

************************************************

Assignment 5:  1.2.20, 1.2.21, 1.2.22, 1.2.24, 1.2.26, 1.2.29. 1.3.9*

1.2.20 sketch v(t) and w(t)

1.2.21 sketch i(t) and w(t)

1.2.22 v(t)=+/-8.154 V; i(t)=+/-16.308 uA

1.2.24 a) 3 uF; b) 10 pF; c) 1.25 uF

1.2.26 sketch v(t) and w(t)

1.2.29 a) L=3uH; b) 10 pH; c) 1.25 uH

1.3.9 a) i(t)=-20e^(-t) A; b) v(t)30e^(-t) V

************************************************

Assignment 6: ASSIGNMENT HANDOUT #1

CORRECTIONS

12.18 C=0.04 uF

12.20 R=20 Ohms

12.23 Vs=100/30 oV

SOLUTIONS

12.3 a) 15.1/-82.4o kOhms b) 2/0o kOhms c) 15.1/_82.4o kOhms

12.6 w=0.596 Mrad/s

12.18  i=36.1sin(4000t+11.9 deg) mA, vR=130 sin(4000t+11.9deg) V

vL=173sin(4000t+102deg), vC=225sin(4000t-78.1deg)

12.20 I=3.71/_16.6deg A, VR=74/_ 16.6 deg V, VZ=149/_36.6 deg V

12.23 VR=100/_30deg V, VL=5000/_120deg V, VC=5000/_-60deg V

12.30 Y=5.73/_-29.2deg mS

 

Assignment 7: ASSIGNMENT HANDOUT #2

SOLUTIONS

13.3  V=12.3/-19.3 deg V; ZT=3.07/15.7deg

13.7  I1 = 1.28/85.5 deg A (I get an angle of -94.6 deg 85.5 might be wrong); I2 = -3/-13 deg A 

13.12 Set up the simultaneous equations and do not solve.

FYI: I1= 2.07/-26.6 deg A; I2=1.38/7.36 deg A; I3=1.55/-146 deg A

13.16  Set up simultaneous equations, convert everything to polar form and try to solve 2 x 2 matrix equations.

V1=5.13/47.3 deg V and V2=8.18/15.7 deg V

13.19  Set up the simultaneous equations and do not solve.

FYI: V1= 2.07/-26.6 deg V; V2=1.38/7.36 deg V; V3=1.55/-146 deg V

 


Course Content

 

CHAPTER 1 Circuit Concepts

Electrical Quantities
            Charge and Electric Force
            Conductors and Insulators
            Current and Magnetic Force
            Electric Potential and Voltage
            Energy and Power
            Sources and Loads
            Wave Forms

Lumped Circuit Elements
            Resistance
            Maximum Power Transfer
            Capacitance
            Inductance
            Transformers (maybe later in the semester)

Kirchhoff’s Laws
            KCL
            KVL

 

CHAPTER 2 Circuit Analysis Techniques

Thevenin and Norton Equivalent Circuits

Node-voltage and mesh-current analysis
            Node Voltage Method
            Mesh Current Method
            Controlled Sources
            Superposition
            Wye-Delta Transformations

 

***************** MIDTERM *****************

 

CHAPTER 1 Capacitors and Inductors

CHAPTER 10 (Handout) Sinusoidal Voltage and Currents

Sine and Cosine Waves

Phase Relations

Average Value

Resistor Sinusoidal Response

Effective or RMS Values

Inductor Sinusoidal Response

Capacitor Sinusoidal Response

 

CHAPTER 11 (Handout) Phasors and Complex Algebra

Imaginary Numbers

Complex Numbers

Polar Form

Phasors

CHAPTER 12 (Handout) Basic AC Circuit Analysis

Phasor-Domain Circuit Elements

AC Series Circuit Analysis

Impedance

Voltage Division

AC Parallel Circuit Analysis

Admittance

Current Division

CHAPTER 13 (Handout) Mesh and Nodal Analyses of AC Circuits

Source transformations

Mesh Analysis

Nodal Analysis

CHAPTER 14 (Handout) Thevenin & Norton Theorems

 

******************* FINAL EXAM *******************

Final exam will be held Thursday April 15th at 1 pm in 135 Shillman

STUDY GUIDE

Comment:  The below listed problems are a guide to help you study for the final exam. They are not intended to limit your preparation. The exam

problems will in fact be different from these problems but the concepts you learn in studying these problems will certainly help you in the exam.

 

Capacitors & Inductors

Know the basics of capacitors and inductors from Ch 1 of the textbook (Sarma). Be familiar with the problems assigned in HW 5.

Sinusoidal Voltage and Current

Ch 10: 10.1-10.3; 10.8, 10.10, 10.12, 10.14, 10.19, 10.24-10.28; 10.34-10.46

Basic AC Circuits, impedance, and admittance

Ch 12: 12.1-12.18; 12.20-12.26; 12.28-12.33; 12.36-12.37; 12.44-12.45

Source transformations, Mesh and Nodal Analyses

Ch 13: 13.1-13.4; 13.6-13.8; 13.10, 13.12; 13.16-13.19; 13.22

Thevenin and Norton Theorems

Ch 14: 14.1, 14.3, 14.6, 14.7, 14.8