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Abstract of the Thesis

System Level Modeling of an AMBA Bus

by
Hans Gunar Schirner
Master of Science in Electrical and Computer Engineering
University of California, Irvine, 2005
Professor Rainer &mer , Chair

The System-On-Chip (SoC) design faces a gap between the produgiabilites and
time to market pressures. The design space, to be explored during théeSig@, grows with the
improvements in the production capabilities and it takes an increasing amotimieafo design a
system that utilizes those capabilities. On the other hand shorter produnidiés are forcing an
aggressive reduction of the time-to-market. Addressing this gap hashmeam of recent research
work. As one approach abstract models have been introduced arsiga lew was devised that
guides the designer in the process from a most abstract model downrthasigable model.

Throughout the design process computation and communication coneerhsaralled
individually. The communication is mostly abstracted away from the desigriechvallows the
design focus to rest on the application specific computation. This separatjoines the provider
of an SoC design tool to supply fast and accurate communication models.

Fast simulation capabilities are required for coping with the immense desiga t@dds
to be explored; these are especially needed during early stages obtpge.denis need has pushed
the development of transaction level models, which are abstract modelxétate dramatically
faster than synthesizable models. The pressure for fast executingsnetiends especially to
the frequently used and reused communication libraries. This thesis dessthid system level
modeling of the Advanced High-performance Bus (AHB) part of the Adeal Microprocessor
Bus Architecture (AMBA). Throughout this work the design of three maglels, at different levels
of abstraction, is described; their simulation speed and accuracy is &dhlda a result guidelines
for the developer are derived that support selecting the most ajgtprodel for a given stage in
the design process.

Xii



Chapter 1

Introduction

1.1 Introduction to SoC Design

1.1.1 Overview

Improvements in manufacturing capabilities allow placing of a complete embegided s
tem on a single chip. With that it becomes possible to design a system as a mitaa@reaunning
on one or more generic processors and specialized hardware, winsltomputation that is too
costly for a generic processor (e.g. in terms of power or time). This désigdom leads ultimately
to highly specialized chips and cost efficient production. However tidyngained freedom in
design places a burden on the SoC designer. The next paragraphgraillce the challenges of

system level design, the specification of systems and the design spimatap.

1.1.2 Challenges

The design of embedded systems in general and an SoC in special wilhbeudder
functional and environmental constraints. Since the designed systeramvilhder a well-specified
operating environment, the strict functional requirements can be colycdetimed. The environ-
ment restrictions on the other hand are more diverse: e.g. minimizing the @ogt;ift, or power
consumption. Due to the flexibility of a SoC design, achieving the set goatsyés/analyzing a
multi-dimensional design space. The degrees of freedom stem fromdbesgrelement types and
characteristics, their allocation, the mapping of functional elements to thegg@ements, their

interconnection with busses and their scheduling.
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Level Number of components

System
Algorithm

RTL

Abstraction
Accuracy

Gate

Transistor

Figure 1.1: Abstraction levels in SoC design (source [12])

Looking at the levels of abstraction of the SoC design gives anothepguige to the
complexity of designing such systems. The process starts with a functiesedigtion on system
level, where only the major function blocks are defined and timing informatioatiget captured.
During the SoC design process, the system description is refined stégptansl additional details
are captured. That process leads to a cycle accurate fully functipstaing description in RTL,
which is the starting point of the production process. As Figure 1.1 shbesmount of captured
information increases by an oder of magnitude with each level of the desigegs. With each
step within the levels of abstraction a multi-dimensional design space has tplbesekin order to
make the necessary decisions.

The goal of SoC design paradigm is to guide the designer through thegsr@nd aid the
decision making. A well-defined flow of design steps makes the procesggeetria. The design

steps and their associated models will be described in the next paragraphs

1.1.3 SoC Specification

Hardware/Software co-design is an integral aspect of the SoC ddsigrquires a lan-
guage that is capable of capturing the requirements of a hardware desigwire allocations to
complex timing requirements, as well as the complexities of current softwamgndeéSome exam-
ples of such languages are SpecC [10], an ANSI-C based langxtagssien and the C++ library
extension SystemC [14].

Those languages allow grouping of functionality to behaviors, which laeroe freely
mapped to processing elements. In order to allow this free mapping the computatido be
separated from the communication. Therefore communication between tagdrshs abstractly

defined as channels. The channel specific implementation (e.g. an AM&décpt) will be filled
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in during later refinement stages. The specification model is free of suderiveptation detalil
(and their respective constraints). The SpecC language further ucgednany concepts from
hardware description languages like VHDL and Verilog. It introduces tmeept of capturing
scheduling information in the language, such as sequential, parallel aglthpgbexecution. The
SpecC language very much supports the goals of specification captutiatiows describing a
fully functional model that incorporates design constraints and has a siamuéavironment for an
integrated validation against a set of test vectors. The next sectiorib@ssthe exploration and

refinement steps to transform the system specification into a manufactdesiolgption.

1.1.4 SoC Design Space Exploration

In conjunction with the SpecC language a design paradigm was introdwbéch for-
malizes the individual refinements steps. With that the designer has guidatimesv to efficiently
handle the immense design space. Figure 1.2 shows an overview of the flesiglt also indi-
cates the integration of the validation flow. The tool suite provided with theGfamuage closely

follows the outlined design flow. The following paragraphs will describehatesign step.

-------------------------------------------------------------------------------------------

Capture Algor.

Compilation Simulation model

[N Validation

Specification model

1
1 [N}
1 [N
1 [N
1 [N}
1 LN
1 [N}
1 LN
1 [N
1 [N}
1 LN
1 [N
1 1
i i
i L Analysis
: 0’ Estimation
1
i Computation design C(igp. ! i
i ¥
1 ] —
! . ¥ Compilation Simulation model
i Architecture model ¥ Vaidaton
1 T L Analysis
1 + ] N A
' -
i Communication design Comm.| ;!
: LI
! i —
' — ¥ Compilation Simulation model
E Communication model : : Vaidaton
i L Analysis
. ! LEINS
________________________________________________ i
> D

Compilation Simulation model

P Hardware | Interface | Software RTOS
P synthesis [ synthesis | synthesis
L] Validation
Analysis

1 1
! ]
1 1
1 1
I 1
1 1
! 1
1 1
1 1
! ]
1 1
1 .
: Implementation model i
1
! 1
1
‘ ' Estimation

Figure 1.2: Design methodology for SoC design (Source [11])
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The SoC design starts with the specification model, which is a purely functicode| -
free of any implementation details. It focuses on capturing the algorithmio/toerend allows a
functional validation of the description. The model is untimed and allows omlgdasal ordering.
Once the specification model is finished, it will serve as a golden model, toarenggmulation
results during the design cycle.

Architecture information is added during the Computation design. During this step
processing elements are inserted into the system and the previously deficédnal behaviors
are mapped to them. A processing element can be a predefined standamheot such as generic
processor core or a DSP, but a custom specific hardware compamermll. Parameters, such as
clock frequency, of the inserted elements can be adjusted to the applica¢ids. lBased on internal
statistics, early estimations about the runtime performance can be made.vEsishg designer the
first feedback about the design decisions. Once the computation defiigighied, the architecture
model that captures the decisions is created. This model is the first timed mbtkgtes only
computing time into account; all communication between the processing elemetiiteeixezero
time.

The next step in the refinement is the Scheduling Refinement (not showis igréph).
This refinement allows the designer to select suitable scheduling mechanigsngrixessing ele-
ments. The scheduling capabilities range from an off-line static schedulhigh allows the most
predictability, to a priority based dynamic scheduling.

The Communication design allows the user to select busses and protocashélearlier
defined abstract communication channels are mapped to physical bodggsicols. Detailed in-
formation about a utilized protocol is added. The resulting Communication nraddetles specific
instructions for the particular bus implementation, like the access logic forméaster or bus slave.

The synthesis step concludes the the design flow. Here the Registefefilamse| (RTL)
code for the hardware will be generated with the prerequisite of RTL caemallocation, their
functional mapping and scheduling. As a result of the hardware synthegide accurate descrip-
tion of each hardware processing element is created. Similar activitiesledesfpr the software
synthesis. Here specific code for the selected RTOS is inserted antddpegific assembly code
is compiled. The result is a cycle accurate model of each softwaregsiogeelement, which can
be simulated using an instruction set simulator and executed on the targessocThe combina-
tion of both synthesis parts is captured in the Implementation model, which geygdeaaccurate

description of the whole system.
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1.2 Problem Definition

As it was described in the previous section the SoC design processaspedin several
steps that formalize coping with the immense design space. Models of pextisfandard compo-
nents, such as basic communication elements, are needed for ease of Basigermore multiple
models at different levels of abstraction are needed for each starmlagbnent, matching the stage
within the design flow. An very abstract model can be used for fast high é&xploration during
early stages of the design, whereas a detailed model that yields mositac&sults is needed for
production validation.

The scope of this work is to model a library communication component as syralbplic
depicted in Figure 1.3. In particular, AMBA was chosen since it reachsokcially after introduc-
ing revision 2.0 of the standard in 1999, a wide acceptance for interchong within a system-on-
chip. With ARM’s strong support for design, development and testing ih@diSright-first-time”
development and the bus AMBA specification became one de facto stafiodand-chip bus [2].
The goal this thesis work is to provide a bus functional model of an AMBS, It is synthe-
sizable, and to model the bus as well at higher level of abstractions that allagh simulation

performance.

W
IP Library

Transction Level Model

D

Arbitrated Transction Level Model

Figure 1.3: Scope of work: modeling of a communication IP (Symbolic Depiction)
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Throughout the work appropriate levels of abstractions should beenHos the abstract
models. The implemented models should be validated against the standard peitt tesunction-
ality and timing accuracy. They should furthermore be compared to eaahimteems of execution
performance and simulation speed. Based on the experimental resultedmguithould be made
on how to choose the right model for a particular goal.

1.3 Thesis Overview

In the remaining part of the thesis, first a general introduction to the AMB# dives
the reader an overview of the specification. The overview is followed éxtiapter on the actual
design. The different models will be introduced. Their design will includayared approach.
Based on the design, accuracy expectations of each model will betascr

In the validation chapter (Chapter 4), the reader will find a functionatiamdg validation
of the implemented models. Those validations will be made according to the saiaifif3].

The Chapter 5 shows measurements of the simulation speed and compa@sitheya
of the individual bus models. It shows what trade offs the designetioiraske for using a particular
model. Finally Chapter 6 concludes the thesis and gives a summary.

1.4 Related Work

System level modeling has become a more important issue over the reces)taea
means to improve the SoC design process. Languages for capturingrbesks have been devel-
oped, such as SpecC [10] or SystemC [14]. Furthermore capturindesighing communication
systems using transaction level models has received research attention.

Sgroi etal. [21] address the SoC communication with a Network on Chip Y Hpgroach.
They propose partitioning of the communication into separate layers that ftiilb®@pen Systems
Interconnection (OSI) structure. Software reuse is promoted with asaeerof abstraction from
the underlying communication framework.

Siegmund and Nller [22] describe an extension to SystemC, and propose modeling of

a/SoC at different levels of abstraction. They describe three diffdegnls of abstraction: the
physical description at RTL level, then a more abstract model that cowéivédual messages, and
a most abstract level that deals with transactions.
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In application of transaction level models [14], the topic of capturing comnatinits
within a/SoC has received attention. In particular the widely used bus saeicifi AMBA was the
goal of modeling support.

Most relevant to this work is ARMs definition of the Cycle Level Interfa€.l) of the
AMBA bus [1]. This specification defines how to implementthe AMBA bus dechure in SystemC
[20]. It has the goal of defining an interfacing standard between Bystdesign models of IP
components. Itis intended to be used for system simulation and transacdiesh\eEification.

In [6] Caldari et al. describe the results of capturing/the AMBA rev. 216 §tandard
in SystemC. The bus system has been modeled at two levels of abstractiba,lirs functional
model on RTL level and second a modellon TLM level. Their TransactiorllUglodel (TLM)
model reached a speedup of 100 over the RTL level model.

Another modeling approach of the AMBA bus architecture is shown in [2Bre a
transaction-based modeling abstraction level was described. While maigttieibus cycle accu-
racy, this approach achieved a 55% speedup over the bus functiodal.mo

CoWare [7] provides with ConvergenSC a commercial AMBA TransactiBona Simu-
lator. It allows for a fast cycle accurate architectural optimization anificaion of an SoC design.
With that it provides a solution for designing system-on-chip products thie¢ mse of AMBA bus
specification and are described in SystemC.



Chapter 2

Introduction to the AMBA Bus

The Advanced Microprocessor Bus Architecture (AMBA) (see [&fimed by ARM is a
widely used open standard for an on-chip bus system. This standard agasadhe component
design, by allowing the combination of interchangeable components|in the&ighdIt promotes
the reuse of intellectual property components, so that at least a pag 8bth design can become
a composition, rather than a complete rewrite every time.

The AMBA standard defines different groups of busses, which aiedily used in a
hierarchical fashion. The Figure 2.1 shows a schematic overview ofcatypicroprocessor design.
The design usually consists of a system bus; either the older version trenéatl System Bus
(ASB), or the more performant Advanced High-performance Bus (AH&I high performance
components are connected to the system bus. Low speed componentseeed to the peripheral
bus, the Advanced Peripheral Bus (APB).

High-performance High-bandwidth
ARM processor on-chip RAM

B | | urr || Timer |
. ) R
High-bandwidth AHB or ASB | APB
External Memory D
Interface G
E ’ Keypad ‘ ’ PIO ‘
DMA bus
master AHB to APB Bridge
or

ASB to APB Bridge

Figure 2.1: AMBA hierarchical bus architecture (Source [3]).
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The system busses ASB and AHB are designed for high performanmgeection of
processors, dedicated hardware and on chip memory. They allow:
e Multiple bus masters
e Pipelined operation
e Burst transfers
The peripheral bus APB on the other hand is designed for low powgrheeals with a
low complexity bus interface. The APB can be connected via a bridge to psténs busses AHB

and ASB. The APB bridge acts as a master on the APB bus and all petiple&iees are slaves.
The bridge appears as a single slave device on the system bus; it hifnedfd3B control signals,

performs retiming and buffering.
Between the two system busses the AHB delivers a higher performancetshaider
counterpart ASB. The AHB features:

e Retry and split transactions
¢ Single clock edge operation
e Non-tristate implementation

e Allows wider data bus configuration (e.g. 64 bits and 128 bits)

Retry and split transactions are introduced to reduce the bus utilization. daatie
used in case the slave does not have the requested data immediately avilatalse of a retry
transaction, the master retries the transaction after and own arbitrary detayhe other hand
in a split transaction the master waits for a signal from the slave that the spkatdon can be
completed.

One major factor for the high performance of the AMBA system busses igipledined
access. For that, each bus access is executed in three separatevgtadesan overlap between

masters. The three phases for the pipelined bus access are:

Arbitration Phase. A master requests a bus access to the arbiter. The arbiter grants the acces
within an arbitrary number of bus cycles (at least one). Multiple masters etgest the bus

at the same time, however only a single master is granted at any given pointin time

Address Phase.The granted master applies the address and control signal to the busddress

and control signals determine the activity for the next phase.

9
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Data Phase.Depending on the control signals from the previous phase (e.g. writidmgeither
the granted master or the selected slave write the data to the data bus.

The AHB standard defines a non-tristate bus interface, which simplifiesetbigrd of
the bus interfaces. It furthermore simplifies simulation of the bus system, girceostly three
or four value logic - necessary for simulating a tristate interface - is natined} On the other
hand, a non-tristate bus interface increases the number of conneatieacto bus interface; read
and write bus have to be handled separately. This however is not a limititay,famce the bus
system is targeted for on-chip connections. It does, however, eeguiinterconnection network, in
which multiplexers select the bus access for each device. Figure 2.3 interconnection

network.

Arbiter

HADDR
HADDR _HWDATA | Slave
#1
Master | HWDATA HRDATA
#1
HRDATA
HADDR
HADDR | | | HwoATA | Slave
#2
Master | HWDATA Address and HRDATA
#2 control mux
HRDATA
HADDR
HADDR HWDATA Slave
#3
Master | HWDATA Write data mux HRDATA
#3
HRDATA Read data mux
HADDR
| HWDATA | Slave
#4
HRDATA

Decoder

Figure 2.2: Interconnection network for the AMBA AHB (Source [3]).

Three separate virtual busses, implemented by multiplexers, compose thennirtion
network. The address / control bus (represented with HADDR) anditite data bus (represented
with HWRITE) are written by each master. A slave writes to the own portion ofghd data bus;
a multiplexer selects the bus portion of the active device and distributes tlogeskedégnals. Since
the AHB performs operation in a pipelined fashion, two separate multiplekersegessary for the

address / control bus and the write data bus; their access happepatiatsestages of the pipeline.

10



Chapter 3

Modeling

As the introduction has motivated, high simulation speeds are necessany éfficient
design space exploration. High simulation speeds allow the designer to exptoe solutions,
thus increasing the chance of arriving at solution that is closer to the optintume. possibility
for a fast exploration is modeling at higher levels of abstraction (i.e. TLM) gradually filling
in details until a detailed synthesizable model is reached. In order to effigctiupport different
levels of abstraction throughout the design process, a matching setted@lon levels for library
component is needed. Due to their frequent use this is especially truesaomponents.

The following sections describe the design of the bus models for the AMBR .AfFirst
a generic layering approach will be introduced, which helps coping witltdngplexity of a bus
simulation. The OSI layering scheme [15] was used as a referencerfeindehose layers. The
sections following that will describe each bus model in detail and show hewatfered approach
is applied.

3.1 Layering

A layered architecture was chosen for the communication system modelingen tor
cope with the complexity of communication, in that it is similar to a general netwodk &taple-
mentation. [11] has introduced the applied layering structure as showrbia 3d. The layering
structure was derived from the ISO OSI reference model [15].

Tablel 3.1 shows an overview of the layer separation, it also indicateswahgarticular
layer is implemented and shows a representative code example for antiomarfeeach layer. The

following list describes each layer in more detail. A full description can beadadn [11, chapter 5].
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CHAPTER 3. MODELING

| Layer | Interface semantics | Functionality [ Impl. | OSI |
’ Application H N/A \ e Computation \ Application \ 7 ‘
.|| PE-to-PE, typed, named messages . S
Presentatior ev1. send(struct nyData) e Data formatting | Application 6
PE-to-PE hronizati
Session to-PE, untyped, named messages e Synchronization 0S kernel 5

evl. send(voi d+, unsigned |en) e Multiplexing
PE-to-PE streams of untyped messages | e Packeting

Transport estrml. send(voi d*, e Flow control OS kernel 4
unsi gned | en) e Error correction
PE-to-PE st f packet .
Network ° streams O packets e Routing OS kernel 3

estrml. send(struct Packet)

Station-to-station logical links . .
e Station typing

Link e | inkl. send(voi d*, L Driver 2b
) e Synchronization
unsi gned | en)
Station-to-station control and data streams
ectrll.receive() e Multiplexing .
Stream _ . _ Driver 2b
edatal. wite(void+, e Addressing V
unsi gned | en)
. h [ -
Media Shared m_edlun_1 byte streams _ « Data slicing
ebus.wite(int addr, voidx+, o HAL 2a
Access . e Arbitration
unsi gned | en)
Unregulated word/frame media transmissipn
Protocol ebus. witeWrd(bit[] addr, e Protocol timing Hardware 2a
bit[] data)
Pins, wires
Physical oA drive(0) e Driving, sampling| Interconnect| 1
eD. sanpl e()

Table 3.1: Communication layers (source [11]).

Application Layer. The application layer implements the computational functionality of the sys-
tem. The layers basic content is defined by the designer during the sgieifiand gradually
implemented during the development process. During the design procesgithepplica-
tion specification is mapped onto individual Processing Elements (PEs). appliation

layer defines the system behavior and describes how the user datedsg®d in the system.

Presentation Layer. The presentation layer provides named channels, over which strucames
be repeatedly transferred. The data structures are converted byesentation layer into
blocks of ordered bytes. Transmissions using the presentation layeliatde. They can be
synchronous or asynchronous.
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CHAPTER 3. MODELING

Session Layer. The session layer is the interface between the software application angéhatO
ing System (OS). It provides synchronous and asynchronougptaraf untyped blocks of
bytes. In case the lower layers do not provide synchronous acogsyronization will be
implemented in this layer and an end-to-end synchronized access is redllzed¢hannels
provided by the session layer are used for identification of individu@lvace entities. The
session layer multiplexes multiple message blocks into an untyped message sittéarines
transmitting stack. Within the receiving stack, the session layer demultiplex@sctmaing

message stream into message blocks.

Transport Layer. The transport layer provides a reliable transmission of untyped streamsdretw
PEs in the system. The channels between the PEs act as pipes that catrgahes of the
layers above. The transmission characteristics are generally asgnakroThe transport
layer implements end-to-end flow control as a part of the operating systée transport

layer implement segmentation and reassembly, to split up the streams into smadetspac

Network Layer. The network layer provides services for establishment of end-to-&iid pwvhich
carry the packet streams from the layers above. It completes the ogesgsitem kernel im-
plementation for high-level end-to-end communication. The layer routegidldil packets
over point-to-point links, separating different end-to-end paths ghirgugh the same sta-
tion. For a particular SoC design this routing could be static, and may evemérdedicated

logical links.

Link Layer. The link layer provides services for the link establishment between twotliiem-
nected stations. It allows the exchange of uninterpreted packets of bygesink layer is the
highest layer for a peripheral driver inside the operating systenekeltrdefines the type of
station (e.g. master / slave) and supports synchronization primitives (lits. esgch logical

link into a separate data and control stream).

Stream Layer. The stream layer implements services for transporting control and datagesss
between stations. It provides merging of multiple separate data/contrahstieser a single
shared medium. It therefore provides addressing by which it sep#nateslividual streams.
The data messages are uninterpreted blocks of bytes. The format afrttiel anessages
is heavily implementation dependent (e.g. interrupt handling, polling). Tspatation
services are generally asynchronous and unreliable. Howeverlitigiliey may depend on

synchronization on higher levels (e.g. flow control).
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Media Access Layer (1). The media access layer provides services for the transmission of a con-
tiguous block of bytes over the selected media. The layer hides the specif@meation
of the transmission medium, it is the lowest layer that provides a medium indepeactess.
The media access layer provides data slicing, for that the incoming datéetra@guest,
called the user transaction, is split into individual bus transactions. Tahetthe bus trans-

actions depends on the medium.

Protocol Layer (2). The protocol layer provides transmission capabilities for individual karsstr
actions - words, shorts, bytes and defined lengths of blocks. Thedsgeperforms arbitra-

tion for each bus transaction.

Physical Layer (3). The physical layer implements a bus cycle access to the physical wires. It
performs sampling and driving of individual bus wires. Separate facilittesprovided for
accessing the data, address and control portion of the bus. The gdHggier also provides
all implementation necessary for the bus connection scheme, i.e. in caseAifiBi¢ghe
interconnection network consisting of multiplexers. Furthermore the pHysiplementation

of arbitration is included.

For the work described in this thesis, parts of the library structure of tistirex mod-
eling environment, SoC Environment (SCE), have been reused. It wesfdhe not necessary to
implement all of the layers above. Instead only the media specific layers iaM@dess Layer,
Protocol Layer and Physical Layer - have been implemented. Additiondlbsitbeen shown, that
the link layer and the stream layer, although technically media dependertteatieal to a previous
existing master slave bus model of the Motorola Master Bus, hence thesg liaye been reused.

The following table lists the layers, that have been specifically implemented dor th
AMBA model. The table makes also a connection between the granularity of singulae databus

and the layering scheme, as an alternative explanation of the layering.

Number | Layer Data Granularity
1 Media Access Layer User Transaction
2 Protocol Layer Bus Transaction
3 Physical Layer Bus Cycle

Table 3.2: Implemented layers and their granularity of data handling

The previous layer description was based on functional concerren #iternative view
of the same layering scheme, the implemented layers can be described bthesimgnularity of

data handling.
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User Transaction (1). A user transaction is a request for transferring a contiguous blocétaftd
or from a particular bus base address. The size of that requesitiaigrb independent of
the bus limitations. The base address of the transfer is arbitrary as welltrelsgactions are
used as an interface to the media access layer. They are then dividethéntw more bus

transactions.

Bus Transaction (2). A bus transaction is bus primitive. It supports transmission of individual
elements such as byte, word or long. A particular bus (like the AHB) may alppast
transporting a collection of those individual elements, which are then éaedfas a burst.
The possible values for the bus transaction size and the requiremente foagh address
depend on the bus implementation (e.g. a bus transaction may not have a3iagte$, or
bursts have to start on a long aligned address). Bus transactionsearasian interface to
the protocol layer. They are then transferred using the physical Vegn one or more bus

cycles.

Bus Cycle (3). The timed access to a synchronous bus is performed with a bus cycldagitgnu
During a bus cycle the values of wires/signals composing a bus may beethahgpically
this access is grouped by functionality, e.g. writing of address lines /aldimes or reading

of the data lines. The physical layer provides a bus cycle access toghe bu

The above defined levels of data granularity can also be analyzed witbcte® time.
Figure 3.1 shows how a user transaction is successively decomposed inttintiee smaller ele-
ments: bus transaction and finally bus cycles. The coarse grain descoptiaiser transaction, as
accepted by the media access layer, is divided into one or more bus transadn individual bus
transaction is transferred by the protocol layer in one or more bus cgulg the facilities of the

physical layer.

User Transaction (1)

Bus Transaction (2)

, Bus Cycle (3)

time

Figure 3.1: Decomposition of a user transaction in time into bus transactiorsiamgcles.
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Following the concepts of system level modeling, each of the describer lags imple-
mented in form of an individual channel. Using the channel concept alioeonvenient handling
of the abstraction levels. As an example the bus functional model reqllicdeaanels (all layers)
for its operation, a more abstract model may reuse a subset of the deffimeaels and implement

only one channel for the abstract simulation.

3.2 Graphical Notation

The graphical notation for the model description follows the definitions usddO].

Figure 3.2 shows the main items that come to use.

Behavior
< Channel > < Adapter

(a) Behavior (b) Channel (c) Adapter
Figure 3.2: Graphical notation for model description.

A behavior (Figure 3.2(a)) contains the computation part of the applicdtibas an own
flow of execution. The system’s functional behavior is captured in arutgby of behaviors.

A channel (Figure 3.2(b)) captures communication facilities. It does aet¢ lan own

flow of execution. The services provided by a channel are desdoipad interface definition. Two
behaviors may communicate through a channel, by mapping a port to andeteffdne channel.

An adapter (Figure 3.2(c)), also called half channel, implements an intetdfdo® mapped
to another channel. The adapter does not have an own flow of execution

3.3 Transaction Level Model - MAC

The Transaction Level Model (TLM) is the most abstract model; it is edqueto yield
the fastest simulation speed. This model implements only the media access layafiorthit is
sometimes referred as the MAC model. User data, regardless of its sizesitrad in one chunk
as one user transaction. The bus access is checked only once fandleuser transaction. The
fact that the user transaction would be split into many bus transactions igdjimoorder to reach
higher simulation speeds. The TLM is not wire accurate. The communicaticerfisrmed on a

more abstract level than pins and wires. The model is not cycle accurateases.
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Figure 3.3 shows the connection schema for two masters and two slave foLKkh
model. The bus is simulated by a single channel implementing the media accesallayasters
and slaves directly connect to it. There is no distinction made between the smamteected to the
bus, hence no priority based access between the masters is obsestedd lconcurrent access to
the bus is avoided by use of a semaphore, hence the order of cargyuresolution relies on the

simulation environment.

testMaster0 testSlave0

...MACLink
LM

testMaster1 testSlave1

Figure 3.3: Transaction Level Model (MAC model) connection scheme

In the model implementation done for this thesis, the user data is transfeliredaus
singlememcpybetween master and slave. The timing is simulated by a simgidor statement
covering the whole user transaction. The calculation of the wait time takesdotoiat the way the
transaction would be split into bus transaction. A high simulation speed istexpege to the fixed
low number of operations per user transaction.

Two variances of this model were defined for evaluation purposesTILkevariance A
(TLM (a)) performs as described, concurrent access is sequeaddliz the use of a semaphore.
The TLM variance B on the other hand does not prohibit concurrergsac As a result two masters
may access the bus at the same simulated time. One of the two variances willdedseélging the

evaluation process.

3.4 Arbitrated Transaction Level Model - Protocol

The Arbitrated Transaction Level Model (ATLM) simulates the bus acte#ise granu-
larity of bus transactions, at the level of the protocol IHydt is the first to perform arbitration,
which is done as well at the level of bus transactions. To compose the AThdvmedium access
layer implementation is reused from the later described bus functional mdaelm&dium access
layer slices a user transaction into individual bus transactions, whidhemeransferred using the
protocol layer implementation for this model.

loutside of this work the Arbitrated Transaction Level Model may also fexned to as the protocol model. It may
be even understood as a Transaction Level Model since the TLM samlg a broad definition.
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Figure 3.4 shows the symbolic bus scheme. A hardware abstraction layeatedaround
each application behavior. The channel for the media access layer irdimiteethe hardware ab-
straction layer and the application behavior is connected to this channebuBhs simulated by
the channel implementing the protocol layer. The slaves are directly cuhiecthis channel. The
masters on the other hand are connected through individual half degivesterProtocolTLM),
which are required for defining the master’s identity. The identity is necg$fsaaccurately sim-
ulating arbitration. The scheme ’identity through connectivity’ was chosemiodeling of the
master’s identity, since it closely resembles the physical implementation, wieneas$ter’s iden-

tity is defined by its connection to the arbiter.

testMaster0_HAL L|_—| testSlaveO_HAL

...Master ...Master ...Slave
testMaster0 [4< MACLink 4( Protocol TLM MACLink >*:| testSlave0

...Protocol
TLM

———— testMaster1_HAL LI_J testSlave!l_HAL ———

...Master ...Master ...Slave
testMastert [4< MACLink 4( Protocol TLM MACLink >*:| testSlavet

Figure 3.4: Arbitrated Transaction Level Model (protocol model) cotinescheme.

Since the ATLM implements the protocol layer as the lowest layer, it has tade@r-
bitration capabilities. With the previously described identity of each masteanate arbitration
can be provided. The AHB definition does not require a specific arbitratheme, so a priority
based arbitration was implemented. In this model arbitration is performed onahalarity of a
bus transaction. The arbitration scheme was implemented without an additorekicswitch (in
addition to the executing masters), in order to ensure fast execution. speed

Thel ATLM with its arbitration per bus transaction is expected to be accuraadlnn
case of locked transfers. In such transfers, a granted master mae mveempted during bus
transaction, not even by a higher priority master. Hence all arbitratioisidecare done on a
bus transaction boundary. However for unlocked transfers anunacg is expected, here the bus
owner ship may change even within a bus transaction (i.e. when a burshofaiority master gets
preempted by a high priority master).

As with the TLM, two variances have been created for the ATLM. The waga differ in

the accuracy of the arbitration. The first variant of the ATLM, the ATL#), (follows the concept

of a delta cycle as it is used in hardware simulators. During a simulation two mastgrattempt
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an bus access at the same simulated time. However due to the serialized exafdimgosimulation
code, one master's code will be executed earlier. In order to handleitiigien the ATLM (a)
does first collect all bus requests during one delta cycle and then makdedlsion based on the
collected requests. The ATLM (b), on the other hand, does not collediub requests for a delta
cycle; it makes the decision immediately at the arrival of the first requesta Pssult, in case
that two masters request the bus within the same delta cycle, the master withligveesacuted
simulation code will gain bus access regardless of the priority.

A lower execution speed over the TLM is expected for both variance®gkThM. Each
individual bus transaction is modeled in terms of timing and arbitration individuéiyerms of
execution speed, the ATLM is expected to outperform the bus functiondéinehich covers the

bus in all detail.

3.5 Bus Functional Model - Physical

The bus functional model is a synthesizable model bus model that covérsialy and
functional properties of the bus definition. Communication is performed at Ve & pins and

wires. It is a wire accurate and cycle accurate model of the bus.

testMaster0_PE testSlave0_PE \

HADDR/HCNTL

Master [ HRDATAHRESP

testMaster0_HAL 0_HAL

testMaster0

I..-MasterMacLink

HADDR/HCNTL

.Slave ...Slave

...Master Master
MACLink

MACLink Protocol

TrRoATARRES?| S1ave Protocol

HREQ, HLOCK
Master [ HGRANT
Arbiter

o _/

AMBA AHB Bus

testMaster1_PE festSlavel_PE I

HADDR/HCNTL

Master | HRDATAHRESP

1_HAL

testMaster1_HAL
testMaster1

HADDR/HCNTL

.Slave ...Slave

...Master Master
MACLink

MACLink Protocol

HRDATAHRESP |~ Slave Protocol

I...MasterMacLink

HREQ, HLOCK

...Master
Arbiter

o _/

Figure 3.5: Bus functional model connection scheme.

Figure 3.5 shows how the application behaviors are wrapped for thebatsdnal access.
As described for the ATLM, each application behavior is first wrappetiérhardware abstraction
layer that inlines a half channel implementing the Media Access Control (M&@). For the bus
functional model each bus element is further wrapped into a procedsimgiet. The processing
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element inlines a channel instance that implements the protocol layer, wiee®B channel is
connected to. Additionally a channel implementing the physical access is infseal result each

processing element is connected via wires to the actual bus.

AMBA AHB Bus

HADDR/HCTL MUX
HADDR/HCTLx0 HADDR/HCTL
HADDR/HCTLx1
HADDR/HCTLx2 HADDR/HCTL_SEL
HADDR/HCTLx3

4 B L 3L R

WDATA MUX
HWDATAXO
HWDATAX1
HWDATAX2

HWDATA|

HWDATA_SEL

Arbiter
HREQ/HLOCKx0
HGRANTX0
HREQ/HLOCKx1
HGRANTX1
HREQ/HLOCKx2
HGRANTX2
HREQ/HLOCKx3
HGRANTX2
HREADY

HMASTLOCKN

HMASTERN

HDATA_SELN

HCLK
HWDATAX3

4 L L3 B

Decoder
HADDR/HCNTL
HREADY
HCLK

HRESP/HREADY MUX
HSELxON
RESP/HREADY HRESP/HREADYx0)
HSELx1H
HRESP/HREADYx1 HSELX2N
X
RESP/HREADY_SEL HRESP/HREADYx2

HSELX3H
HRESP/HREADYx3|

ClockGen
HCLK

Figure 3.6: Content of the bus functional channel.

HRDATA_SELN

For ease of understanding, the bus in Figure 3.5 is graphed as a thelomeever the
bus consists of many individual elements as the Figure 3.6 shows. SincéiBidinition defines
the bus access without tristate outputs, a set of multiplexers is required ¢b addzess, data and
control signals from the active bus components. Additionally the bus furatilmplementation
contains a clock generator, an arbiter and an address decodee Rifsadack to Figure 2.2 for an
overview of the AHB interconnection scheme.

As it can be seen by the inlined channels, the bus functional model useéssalibed
layers. Actual wires are used for the connection of the bus elementsuBheires are driven and
sampled according to the AMBA specification with the rising edge of the bu&.clbiee physical
layer provides the access to the bus on a bus cycle basis. The seifvibesphysical layer are
used by the protocol layer, which implements arbitration and data trandferarbitration is done
for each bus transaction, and for unlocked burst the bus grant staggfied additionally on each
bus cycle. As in the ATLM the protocol model is invoked by the MAC layerijchislices the user
transaction into bus transactions. Figure 3.7 and Figure 3.8 show ariewefithe implemented

channels for the master and slave side respectively.
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HADDR

HWDATA

. MasterM busMast or busMast I...Master busMast HRDATA

- — HCNTL
Link i otocol — —

MACLink \ Protocol \ RESe

IAmbaAHBbusMaster
MACLink
masterWrite(ADDR,
pData, len)
masterRead(...)

Mast

...bt
MACMem

IAmbaAHBbusMaster
MACMem
masterMemWrite(ADDR

pData, len)
masterMemRead(...)

|IAmbaAHBbusMaster
Protocol
{Read|Write}Byte
{Read|Write}Word
{Read|Write}Long

IAmbaAHBMaster
AddresCycle
AddressWrite
DataWriteCycle
DataReadCycle

/ HREQ
HLOCK
| semaph K ..busMaster [HGRANT

ore

|_semaphore
aquire
attempt
release

Figure 3.7: Channels for master bus functional model.

HADDR
HRDAT
HWDA'
HCNTL
HRESP

I..busSlave
...busSlave

LLIT

IAmbaAHBbusSlave
ListenCntl
ListenCntICycle

DataWriteCycle
DataReadCycle
TwoCycleResp(<errors>)

...busSlave I_busSlaveProtocol | ...busSlave |.SlaveMACLink
Protocol MACLink

IAmbaAHBbusSlaveProtocol |AmbaAHBbusSlave

ListenCntICycle MACLink

{Read|Write}Byte slaveWrite(ADDR,

{Read|Write}Word pData, len)

{Read|Write}Long slaveRead(...)

{Read|Write}Burst

TwoCycleResp

...busSlave
MACMem

|...SlaveMACMem

|AmbaAHBbusSlave
MACMem

serve(ADDR, pData,

len)

Figure 3.8: Channels for slave bus functional model.
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3.6 Modes of Access

The utilized design environment SCE defines two distinct ways of accelssmglaves,
namely the memory style access and the rendezvous style access (alsmd riefeas link style
access). Both styles are depicted in Figure 3.9.

( Memo
ry Bus
\_

CPU 1 CPU 2 CPU 1 HW PE

(a) Memory Style (b) Randevouz Style
Figure 3.9: Modes of access

In a memory style access (Figure 3.9(a)), the slaves accessible memogosedxto
the bus over an address range. A master may access the providessadage at any point in
time. This access style is applicable for memory and for memory mapped 10.tyl®taccess
allows burst accesses for improved performance. The abstract matakgure 3.9(a) indicates the
memory as a half channel, which was made to show that the memory has no waf @recution.

The rendezvous type access (Figure 3.9(b)), simulates a messaiye jiassface. The
slave only exposes a single address to the bus for each rendezveusctgss. The content of a
user transaction is written one-by-one to the same base address. Withmthdbax is simulated
on the slave side. This is especially useful if the address space is limited tkenmessage length
does does not influence the required address space. In a rendeatyle access a slave waits for an
access on a particular address and further reacts to the request.afipplievel synchronization is
needed for this model, since the access patterns have to be known onvthsidéa The depiction
of the rendezvous style access (Figure 3.9(b)), presents the slW@®H)J as an own PE, thus it is
shown to have an own flow of execution.

Since the rendezvous type access simulates a message passing irdérfamnes within
a message are written to the same address. Due to this addressing pattricdounot be used,
since the AHB specification requires to increase the address for eathvibein a burst. Hence
a user transaction in the rendezvous style access is transferred oninawidual non sequential
transfers.

In order to support both styles of access, two channel implementations/bfAR layer
are provided. One channel per access type, the simulation environer@rages code, that instan-

tiates both channels and uses the appropriate channel for a particotdetra

22



Chapter 4

Validation

The previous chapters have presented the design and implementation &éABfe/AHB
bus. In this chapter covers the validation results. Three aspects willdeeilsled in more detail.
First, the functional validation is described in Section 4.1. Those tests ains¢ot dse correct
functionality ignoring timing constraints. Following that, Section|4.2 describevahdation of
the timing accuracy of the bus functional model. Finally, Section 4.3 will deal thightiming

correctness of the abstract models, the ATLM and TLM. Throughouttiapter no differentiation

is made between the two variations of each of the abstract models. Thusthesigeneric model

name refers to both variations.

4.1 Functional Validation

In an early part of the validation, the functional correctness of eaclBAMHB bus
model is validated. Following a bottom up approach, a first set of tests willsfon individual bus
transactions. Later more complex access patterns and corner cagesfae with the randomized
tests utilizing the memory style MAC layer and the rendezvous style MAC layer.

4.1.1 Validation of Individual Bus Transfers — Fundamental Tests

The goal of the fundamental tests validating individual bus transfers issiore correct
functionality of the bus primitives. The test provides the foundation for tivesttuction of more
complex tests. The following sequence of test was performed using the metyter MAC layer

of each implemented model:
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¢ Single Master Single Slave validates that each basic bus transaction yietis e results.
It validated read and write functionality for Byte, Word (16Bit), Long, fidength burst (for
4, 8, and 16 beats).

¢ Single Master Dual Slave validates the connectivity and selection of multiplesstaldressed

by a single master.

e Dual Master Single Slave introduces testing of the arbitration and validateththlus is

accessed exclusively by a single master as a result of arbitration.

e Dual Master Dual Slave validates the functional independent access bushfor two mas-

ter/slave pairs.

Figure 4.1 shows the logical connection scheme for each of the testggrdumange of
predefined data was transferred to/from a set of predefined addries each individual test within
a test group. A test was concluded successful if all data arrivedatty;, in the predefined order, at
the predefined addresses. Additionallsertstatements have been manually introduced at critical
places into the channel implementations, to detect invalid states within a charireetedults of
the validation are shown in Table 4.1. All tests for all test groups haveessfidly passed for each
implemented model. Hence a correct functional behavior is expected &omneodel.

Test Master 0 Test Slave 0
—

Test Master 1 : : Test Slave 1
—

(a) Single master single slavéb) Single master dual slavéc) Dual master dual slavéd) Dual master dual slave

Test Slave 0 Test Master 0 Test Slave 0

Test Slave 1 Test Master 1 Test Slave 1

parallel interleaved
Figure 4.1: Logical connection for individual bus transfer validation.

Bus Arbitrated | Transaction
Functional | Transaction Level
Logical Connection under Test Model Level Model Model
Single master single slave, Fig 4.1(a) passed passed passed
Single master multi slave, Fig 4.1(l) passed passed passed
Multi master multi slave (parallel), Fig 4.1(¢) passed passed passed
Multi master multi slave (interleaved), Fig 4.1(d) passed passed passed

Table 4.1: Results of individual bus transfer validation
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4.1.2 Validation of the Memory Interface

After having successfully validated individual bus transactions, nawptex access pat-
terns consisting of multiple bus transactions will be validated. This validation nagelom access
patterns, which statistically cover all access scenarios in accessingtipeents if executed long
enough. The focus for this validation is the random interaction between twtersahat access the
same bus.

Two masters and two slaves are implemented for this test. The access isneeHasing
the random access type. The memory exposed by the slaves pressmatesepidress regions for
writing and reading. The following parameters are randomized for eagseaction: read/write, the
size of the transaction, the offset within the memory and the delay betweeadtaims. The random
selection algorithm ensures that each byte of the slave’s memory is at@ess®ly once during
the test. Throughout the test the base address and the length of thensaction, to be transfered,
will vary. The way the MAC layer breaks down a user transaction into omease bus transactions
depends on exactly these two parameters. As a result the sequence tedrisactions per user
transaction will vary throughout the test. This diversity is a good test ®stiting functionality
of the MAC layer. The delay between the operations results in a randoessapattern between
the masters. This will test the arbitration implementation and validate the exclusigesato the
bus in scenarios like concurrent bus request, back to back transmiasidmandover between a
high priority master and a low priority master. The correctness of eachirassaction is validated
directly after executing the user transaction; the master and slave memaris arempared for
equality. Furthermore, after completing all user transactions, the completersnarea of master
and slave are compared for equality as well.

In comparison to the earlier fundamental tests, not all of its configuratiadstd be
retested. The utilized connection schemes are displayed in Figure 4.2.skocessful validation
of a single connection scheme and bus model, two masters have to trar@f@yi@s each, using
a random set of user transactions of up to 100 bytes each. The tdstfufdl the criteria in the
previous paragraph and sustain the results for 1000 test repetitions.akVakierage user trans-
action size of 50 bytes, each bus model and connection scheme was daliddtenore than 2.5
million user transactions. Table 4.2 indicates the results of this test scematishaws that the test

execution was successful for all configurations and all bus models.
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( B
Test Master 0 Test Master 0 Test Slave 0 Test Master 0 Test Slave 0
R Y
4—‘ N >
Test Slave 0
J N L J
N
3 ) s a
Test Master 1 Test Master 1 Test Slave 1 Test Master 1 Test Slave 1
N >
Y
. J

(a) Dual master single slave (b) Dual master dual slave parallel (c) Dual master dual slave interleaved
Figure 4.2: User level logical connection for memory and rendezvouwsdgpess validation.

Bus Arbitrated | Transaction
Functional | Transaction Level
Logical Connection under Test Model Level Model Model
Multi master single slave, Fig. 4.2(g) passed passed passed
Multi master multi slave (parallel), Fig. 4.2() passed passed passed
Multi master multi slave (interleaved), Fig. 4.2(¢) passed passed passed

Table 4.2: Results of validation for memory access

4.1.3 Validation of the Rendezvous Interface

In addition to the randomized test using the memory access/style MAC layeerthe r
dezvous style MAC layer has to be verified as well. The two implementations ififfiee way they
slice the data. Here again random accesses have been utilized, vagyiiojjaving parameters:
read/write, size, offset, delay between accesses. In difference todhious validation, only the
independent access of two master slave pairs was tested (Fig. 4.2(l)ptfer two connection
schemes (Multi Master Single Slave and Multi Master Multi Slave (interlegawedje not tested,
since they are not applicable in the used simulation environment.

For the rendezvous style access, the simulation environment makes theptesauy that
each access is predictable. As a result of the assumption, the slaveasottelde implemented so
that a particular user transaction is expected. Now, if two masters simul&lpeequest access to
different portions of the slave’s memory, the slave has to predict whiehttemsaction is executed
first. Since this depends on the arbitration, it is declared undecidablesfavea In such situations,
the memory style access should be used, hence the configurations applidble for this test.

Limiting the validated configurations does not limit the generality. The two actgEs
for the MAC layer differ in how a user transaction is sliced into bus transastidhis feature can
be validated in any connection scheme. On the other hand the connectamnesctiffer in the way
they create contention. The contention however is handled by the lowes Jayisich already have

been successfully tested during earlier tests.
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Table 4.3 summarizes the performed functional validations with the same satrée
tion schemes as before (Figure 4.2). The same execution criteria as foethery interface vali-
dation were used here. Thus more than 2.5 million user transactions had am&fetred correctly
for a successful validation of one bus model and connection scheneetalble shows successful

test execution for the tested configuration for the three abstraction Iéedgunctional, arbitrated

transaction level modeling and transaction level modeling.

Bus Arbitrated | Transaction
Functional | Transaction Level
Logical Connection under Test Model Level Model Model
Multi master single slave, Fig. 4.2(a)  N/A N/A N/A
Multi master multi slave (parallel), Fig. 4.2(l) passed passed passed
Multi master multi slave (interleaved), Fig. 4.2(¢) N/A N/A N/A

Table 4.3: Results of functional verification of rendezvous access

4.2 Timing Validation of the Bus Functional Model

Considering the results of the previous section, a correct functiohahvime of all imple-
mented models can be expected. Additionally important is a timing validation, whidé wéh the
correct behavior of each signal in the temporal sense. This is particitgrortant for the synthe-
sizable bus functional model, as a prerequisite for interoperability with atketectual property
components.

A validation of the timing behavior requires an independent referencee Siphysical
implementation of the modeled bus structure was not available in the lab at thepweiiting, the
timing behavior of the model was compared against the specifications. twifg sections will
show the comparison of the implemented bus functional model against traosfearios selected
from two sources: the AMBA specification [3] and the AMBA AHB Cycle ledunterface [1],
which is an interpretation of the AMBA specification.

The selected scenarios have been be recreated with the implementedatiagnaimodel,
which in this setup simulates a bus with 50MHz bus clock. Additional probes been inserted
into the test bench for tracing of all important bus wires. The traces aptaglesd as waveforms,

which have been generated usitgwave(see [5]).
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4.2.1 Basic Pipelined Bus Access

As described in Chapter 2, the AHB allows a pipelined access to the busathestages
of the pipelined bus access are validated in the first pair of waveforms.

Figure 4.3 shows the reference waveform and Figure 4.4 displaysdhiksref the actual
implementation. As a general note, the specification [3] requires signalsvalibeat the rising
edge of HCLK, at this point the signals are sampled from participating buseels (which are all
implemented as sequential logic, see [4, question #4120]). The implemented doed not cover
subcycle events, therefore each signal is applied immediately after the ¢lsitigedge. Hence
there will be an acceptable subcycle difference between the refemaddbe implemented model.

T1 T2 T3 T4 T5 T6
HCLK | | | | |
HBUSREQx | // 5
HGRANTX ss []
HMASTER[3:0] ié )O( #1
HADDR[31:0] % )O( A )O( A+d )OC
HWDATA([31:0] éé X:XData @A )OC

Figure 4.3: Reference sequence from [3] showing pipelined behavior

I I n"e 86593300 ps 86627900 ps 86662400 ps

base/ HCLK S 1 s S ) )
ar bi t er / HBUSREQx 1 T | [
ar bi t er / HGRANTx 1 | 1
arbi ter/ HVASTER] 0: 3] $1[$0 [$1 [$0
base/ HADDR] 0: 31] $+ [$0CBO40EQ [$4CB040EQ [$0CE
base/ HWDATA[ 0: 31] $471108E0 [$47110817 [$471108E0

Figure 4.4: Waveform of implemented bus model, showing pipelined behavior

The following three points within the displayed transfer are of interest éoiding the
timing correctness of the implementation:

1. In bus cycle T1, the master requests bus access. Within an arbitrabenof bus cycles (at
least one) the arbiter grants access to the bus. In the particular devameform, the arbiter
grants the access in T3. In the waveform of the implemented model, the bugiested in
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the first clock cycle and granted in the second. Again, granting the buwaitingle cycle is
valid, an example of a one-cycle-grant can be found in the refereagefarm in Figure 4.7.

2. In the bus cycle after granting the @ume granted master applies the address and control
signals to the bus. This happens in the reference in T4 and in the actual inmpéeime in the

third bus cycle, which is in both cases the cycle after the bus grant.

3. The data is written in the bus cycle after applying address and contastriafion. The
reference waveform shows this in T5, the actual implementation shows it fouhth cycle.
In both cases it happens in the cycle directly following the address antbteignals. As it
will be seen in later waveforms, the pipelined access allows concurrerglyiag the data
for one cycle and the address and control lines for the next cycle.

4.2.2 Error Response

The previous subsection has shown that the basic pipeline stages argeobby the
implemented model. This behavior was shown under the assumption that thedslage always
signals to proceed with the current transfer. In this subsection this tesinill be removed.

Thel AHB standard defines that a slave has to reply back to the mastecfobesopera-
tion. This reply indicates the success of the bus operation and is donegnbes cycle. Multiple
slaves may be selected in different phases of the transfer due to the @ibatiness nature of the
AHB. However, only the selected slave that is in the data phase asserépthénformation. The
reply information is provided by the following two signals:

HREADY is used by the slave to extend the the data portion of an/AHB transfer. Meeisterts
a wait state in the bus access by asserting LOW to HREADY. A transfer ibdithisegardless
of the success once HREADY is HIGH.

HRESP is asserted by the slave and indicates the status of the current transésibl® values
are OKAY, ERROR, SPLIT and RETRY. OKAY indicates a successfuhgletion of the bus
operation. The latter three result codes indicate additional handling foopleisation and
they require a two-cycle response. With a two-cycle response the pipélthe bus access
is flushed.

1A simplifying assumption is made for this subsection: the currently seletzeel signals to proceed with the transfer,
which is done by asserting HRESP == OKAY, and HREADY == HIGH.
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Figure 4.5 shows how a slave indicates a failed transfer. By setting HRBADXv, the
slave inserts one additional wait state to make the decision about the trarsfdollowing timing
points are of interest in order to validate implemented model as shown in Fidure 4

1. In the bus cycle following the address phase, the slave asserts HREBADDW and inserts
a wait state. This happens in the second cycle in the reference and in theyttlie of the

implementation waveform.

2. The slave has made the decision of failing the bus transfer in the thirdafyitie reference
waveform. At that point it starts the first cycle of the two-cycle erropogse. The slave
applies the value of ERROR to HRESP. This happens in both waveforms ipdleeadter the
first wait state.

3. In the second cycle of the two-cycle error response the slave stilbaffRROR to HRESP.
In order to finish the bus transaction HREADY is set to HIGH. This behaaarbe observed

in both waveforms in the second cycle after the first wait state.

L

HCLK

HADDR([31:0]

Control Control

2 D

Data
(A)

A [/
OKAY ><:>< ERROR| X X ERROR
OC__ XX

Figure 4.5: Reference sequence from [3] showing an error regpon

SReNe

HWDATA[31:0]

HREADY

/
/

HRESP[31:0]

SRARAR |

S
=0

HRDATA[31:0]

11 me | 45732 ps 91464 ps

base/ HCLK 1 | 1 | 1 | 1 |

base/ HADDR] 0: 31] $00000000 [SOCAFFEEO [$000(
mast er / HTRANS[ 0: 1] 980 [9d 0 [9©0

base/ HWDATA[ 0: 31] $00000000 [$47110815

sl ave/ HREADY 1 [

sl ave/ HRESP[ 0: 1] %0 [O1

Figure 4.6: Waveform of implemented bus model, showing error response
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4.2.3 Unlocked Burst Handover

The previous timing validations were concerned with a single master. Thargzeim
the following subsections will deal with the handover between two masterseasathe bus. This
subsections scenario describes the handover between unlockedrdmsgers of two masters. In
an unlocked transfer the granted master may lose bus grant during tefetraia higher priory
master requested the bus.

In the scenario presented here, a high priority master performs a unlbokstdduring
which a low priority master requests the bus. Therefore the high priority nfagthes the ongoing
burst and the low priority master reaches the bus grant after that. Thisfygus handover is most
efficient, because it allows a single-cycle master change and the bug d&® 86 utilized. In the
presented scenario, however, the slave addressed in the ongost@btire high priority master
inserts two wait cycles in the last burst cycle, which slows down the transfe

T T2 T3 T4 T5 T6 T7 T8 T9 T10 T

CLK S N T O T SO O B I
HBUSREQ_M1 [ T

HBUSREQ M2 v
HGRANT_M1 ¥ A
HGRANT M2 [
HMASTER[3:0] )¢ 0~

HTRANS[1:0] Y\ XX O(vonsea Y sea (T s T s X NONSEQ sz

HADDR[31:0] Y X\ 0 0= 0= 0O~ XX Bt =
HREADY \A—ﬂ_
HWDATA :X:X Y )O( )O( pataat)  \ )\ pataaz) Y\ Y pataaz) X Data(A4) X:X Data(B1)
ezl JO__comaiforburst INCR4 XX INCR

HSIZE[2:0]
HPROT[3:0]

Figure 4.7: Reference sequence from [1] showing unlocked barstdver

” n’e 105450 ps 158175 ps 210900 ps 263625 ps

base/ HOLK | | | | | | | | | | | | | | | | | J L
arbi t er/ HBUSREQx0 1

arbi t er/ HBUSREQx1

arbi t er/ HERANTX0 1

arbi t er/ HGRANTx1 [

arbi ter/ HWASTER 0: 3] S0 [SF [50 51

base/ HADDR{ 0: 31] SOCAFFEEO | [$00000000  [$40000000  [$40000004  [$4000000: [$4000000C _ [$00000000 [$00000004
base/ HWDATA[ 0: 31] $47110815 [$00000000 __ [$000000DL __]$000000D2 __ [$000000D3 __ [$000000D4 [$000000DL
sl ave/ HREADY 1 —
mast er/ HTRANS[ 0: 1] 900 [980 [T [980 [T

mast er / HBURST] 0: 2] %000 [1T

Figure 4.8: Waveform of implemented bus model, unlocked burst handover
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The timing correctness of the waveform from the implemented model as shokig-in
ure 4.8 with respect to the reference waveform in Figure 4.7 can b&ethby the following aspects:

1. After getting the bus granted (cycle T2 in the reference) the high priovéster lowers the
request line HREQ. The specification leaves it open, when exactly HRB@eased. The ref-
erence waveform shows that the granted master lowers HREQ directlygaftiang granted.
In the implemented model however this happens one cycle later. This wasodemsure that
the arbiter has sampled the control signals before lowering HREQ. Afigrlsay the control
signals the arbiter can predict the length of the current transfer.

2. The specification (see [3, section 3.6]) requires that in the firstalamytcle of a burst transfer
HTRANS is set the NONSEQ, which can be seen in both waveforms (T3 akefeeence
waveform, third cycle of the implemented model).

3. The arbiter lowers the HGRANT signal of the granted master in the lastotaycle of a
burst, at the same time it may grant the bus to another master. The previcusigdymaster
still owns both the data and the address/control bus for the current @radethe data bus
only for the next cycle. The change in HGRANT lines appears in both fgaws in the sixth

cycle.

4. In the cycle following the change in the HGRANT signals the selected mastgdested.
This can be seen by the HMASTERNhich indicates the master owning the address/control
bus. This change happens in both waveforms in cycle 7. At the same timevihgraxeted
master asserts the address/control lines for the new access. It hasdebtéhat there is no
idle cycle between the end of the old burst and the beginning of the nety thebus is 100%
utilized in this case. Also this fact can be seen both in the reference andiiptenentation
waveform.

5. As described earlier, the selected slave can insert wait states byrigwex HREADY signal.
In this particular scenario the slave inserts two wait states in the last dataodytble burst
transfer. As aresult, the address and control signals that have @grsapplied have to remain
on the bus. Also the data on the write data bus has to remain constant in @alsasoirite.
In this case the master, which just got the bus grant, has to keep the apjdiedscontrol
signals on the bus. The previous granted master has to keep the appliedhta the data
write bus (HWDATA). In both waveforms the wait states take place in the sytlkend 8.

2The signal HASTER is driven by the arbiter and used by the selectedfsiaaesplit transfer, see [3, section 3.12].
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6. In the cycle after HREADY is set to high, the pipelined bus access isnedu As one
indication the just granted lower priority master applies the second addrémsjost started
burst. This appears in cycle 10 in both waveforms.

4.2.4 Locked Burst Handover

This scenario shows a locked burst handover. In a locked burst, @mmay not be
preempted during the transfer, even if a higher priority master requedtsishd_ocked bursts are
not as efficient as unlocked bursts, because one additional cyclerid fgr the handover between
masters. This additional cycle stems from the fact that the standard edoispply HLOCK,
the indication for a locked transfer, until the address phase of the lasféra Figure 4.9 shows
the reference waveform; the waveform of the implemented model is showiyimef4.10. For

determining the correctness of the timing the following points should be evaluated

1. For a locked transfer the standard [3, section 3.11.5] requires tdtRIEQ and HLOCK
are asserted until the last address/control cycle of the burst. In batifevens this change

appears in the sixth cycle.

2. Since the arbiter samples the incoming signals on the rising edge of HCLKe# takil the
next cycle to update the grant lines, which happens in cycle 7. As a rdsulb|d granted
master remains granted for one more bus cycle, although it has finishegrgtérbnsfer and
has not requested the bus. Therefore the still granted master has tddrtti@ano actual
transfer is performed in this bus cycle by setting HTRANS to IDLE. Both vi@aves show

this behavior in cycle 7.

3. As a particularity to this scenario the old selected slave inserts two additi@iitastates in
the last cycle of the burst (cycle 7 and 8). The has the effect that thgratded master has
to keep applying the data up to cycle 9.

4. Because of the wait states, the ownership of the bus does not cfesegethough the grant
lines have changed in cycle 7) until the slave indicates it is done with thentinue operation
in the data phase. Hence HMASTER and the address/control lines anpdeied until the
cycle after HREADY is raised. In both waveforms the slave sets HREADYgh im cycle
9 and the newly granted master gets the bus in cycle 10. Both waveformstisdonw cycle
10 the arbiter updates HMASTER, and the newly granted master appliesdressitontrol

lines.

33



CHAPTER 4. VALIDATION

T T2 LK] T4 5 T6 7 T8 To Ti0 T11
e[ L LT L
HBUSREQ_M1 [/ T
HBUSREQ_M2 [
HLOCK M1 [T T
HGRANT_M1 [J T
HGRANT_M2 i
HMASTER[3:0] 0= 0=
HTRANS[1:0] Y} X JO(onsea Y)Y sea Y sea N s X bLE Y onsea
HADDR(31:0] ) X N 0= 0= 0~ X XX W 0=
HREADY | /
HWDATA :X:X X XX X:X Data(A1) )O( Data(A2) X:X Data(As) )| Data(A4) X:X
g XX contral forburst INCR XX 8|

HSIZE[2:0]
HPROT[3:0]

Figure 4.9: Reference sequence, source [1], locked burst iando

211600 ps 254 ns 296300 ps 338600 ps
arbiter/HBUSREQ«0 | |
arbi ter/ HBUSREQkL
arbi t er/ HLOCKx0 i 1
arbi ter/ HGRANTX0 i |
arbi t er/ HGRANTx1 |
arbiter/ HVASTER 0: 3] $F [$0 [$1
nester/ HTRANS[0:1] %00 [0 [d1 [0 [0
base/ HADDR] 0: 31] $00000000 [$40000000 [$40000004 [$4000000 [$4000000C [$00000000
sl avel HREADY 1 —
base/ HWDATA] 0: 31] $00000000 [$000000D1 [$00000002 [$00000003 [$000000D4
master/ HBURST[ 0:2] %00 [W1T

Figure 4.10: Waveform of implemented bus model, locked burst handover

4.2.5 Locked Burst Handover with Master Busy

Following the specification [3, section 3.5] a master can, similar to a slavef inagr
states into a transfer. For doing so it inserts an HTRAN == BUSY cycle in thélmif a burst.
This indicates that the master currently cannot perform the part of thedmsation. The slave has
to respond with single cycle OKAY and otherwise ignore the transfer. Trstanhas to keep the
address/control lines constant during the BUSY cycle.

The master in the scenario shown in the reference waveform Figure 4drisim BUSY
cycle in the second address/control cycle of a locked 4 beat burstcgsiso again in the last ad-
dress/control cycle of the same burst. The correctness of the implemended (see the waveform

Figure 4.12) can be assessed using the following points:

1. In both waveforms the granted master inserts a BUSY cycle in the bus4yéle a result
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the master keeps the address/control lines constant over cycle 4 amde5thiit the content
of the data bus in cycle 5 is not defined.

2. In cycle 7 the master decides not to use the last cycle of the burst. lieapprRANS
== BUSY and lowers HREQUEST. As a result, the arbiter changes but graycle 8,

which becomes effective in cycle 9. As in previous locked bursts the aldtgd master sets

HTRAN

== |DLE during the, now ignored, data phase of the last bydedcycle 8). The

new granted master owns the address/control bus in'tieu8 cycle. This behavior can be

seen in both waveforms.

T T2

T3 T4 5 T6 T7 T8 T9 T10

CLK _ﬂ I_ﬂ I_ﬂ I_ﬂ I_ﬂ I_ﬂ I—

HBUSREQ_M1 _U T\
HBUSREQ_M2 []
HGRANT_M1 _U \)
HGRANT_M2 g
HLOCK_M1 [] 1] T\
HMASTER[3:0] 0= =
HTRANS[1:0] Y\ X JO(~onsea Y usv Y)Y sea NN sea Y\ musy ()N _me  {)(wowsea
HADDR[31:0] Y} X 0> XX P = = N
HREADY
rwoata J XX XX Yoz XX ) otaina) Y otana XY XX
) !

HSIZE[2:0]
HPROT(3:0]

Figure 4.11: Reference sequence from [1] shows a locked bursttétimaster inserting a busy

cycle.
I I n‘e 71400 ps 142900 ps
base/ HCLK | | J ] | ] | ] | ] | ] | ] | J L
ar bi t er / HBUSREQxO | 1
ar bi t er/ HBUSREQx 1 |
ar bi t er / HGRANTX0 1
ar bi t er / HGRANTx 1 [
ar bi t er / HLOCKx0 | 1
arbi t er/ HVASTER[ 0: 3] [$F [$0 51
mast er / HTRANS][ 0: 1] %00 [9d0 [901 [9d1 [9%01 [900 [9d0
base/ HADDR] 0: 31] '$00000000 [$400000+ [$40000004 [$400000+ [$4000000C [$00000000
sl ave/ HREADY
base/ HADATA[ 0: 31] $00000000 [$000000D1 [$000000+ [$000000+ [$000000D4
mast er / HBURST] 0: 2] 9900 %011

[9®00

Figure 4.12: Waveform of implemented bus model, showing locked tran#febwsy master.
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4.2.6 Retry

In the following presented scenario, the slave indicates that it is not ablentplete
the current requested transaction. For that the slave replies with ansespode of RETRY. This
indicates to the master to abort the transaction and retry at a later time. The timetitte the
master may retry the operation is not specified. In the presented scerarster attempts the
retry immediately after the aborted bus transaction. In general the RETR¥laas the SPLIT
operation allow the slave to finish the operation even though the slave is leotoabupply the
requested data. With that, excessive wait cycles can be avoided andstlie dvailable for other
transactions.

Figure[ 4.13 shows the reference waveform and Figure 4.14 displaysghbs for the
implemented model. The following points are of interest for comparing bothfoave?;

1. In bus cycle 6, while the master applies the data for the second butsthizeslave inserts a
wait state. In the following two cycles (7 and 8) the slave sets HRESP to RESIgRMling
that the transfer cannot be completed right now and that the master h&yto re

2. As aresult of the RETRY response in bus cycle 7, the arbiter remogdmithgrant from the
first master and grants the bus to the second master in bus cycle 8.

3. The first master reacts to the retry response and re-requests thecpale 9. Meanwhile the
second master performs a non-sequential single beat transfer.

4. During the data phase of the second master’s individual transfawiapplies HTRANS ==
IDLE), the arbiter changes the bus grant back to the first master in loles 1.

5. The first master starts a retry of the previously aborted operation inylmles 11. Note that
in the reference waveform, the retried transfer is performed in a buhiie Wis done with

individual transfers in the implemented model.

SNote that both waveforms differ in the first three bus cycles. The eafar waveform shows that the previously
selected slave inserts a wait state in the last transfer. As a result the basship for the first master is delayed by one
cycle. Since the delayed bus handover was already tested in Secti®te2additional wait state was not inserted for a
simpler test bench implementation.
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T

T2 T3 T4 5 T6 7 T8 T9 T10 Ti1 T12 T13 T14

HBUSREQ M1 [7 0 [ N
HBUSREQ M2 [] T\
HGRANT M1 _U “__ _U
HGRANT_M2 g 1
HMASTER[3:0] ) § N = )
HTRANS[1:0] Y\ )0 J(onsea Y)Y sea f)_seo O oe () (ronsea Y ore () vonsea XY _sea J{_s=
Haporgsto) ) ) 0 S ) O § O 0 ) ) S § G | SR | R | G
HREADY | N v
HRESP ORAY W RETRY 0 oY
HWDATA Y\ 1 W XX ) O XX X ) oaem Y ) oaere Y)Y o
e YO conelorbursincre WX smae X ) wen

HSIZE[2:0]
HPROT[3:0]

Figure 4.13:

|| e

base/ HCLK

ar hi t er/ HBUSREQx0
arbi t er/ HBUSREQx1
arbi t er/ HGRANTX0
arhi t er/ HGRANTx1
arbi t er/ HVASTER] 0: 3]
mast er/ HTRANS[ 0: 1]
base/ HADDR{ 0: 31]
sl ave/ HREADY

sl ave/ HRESP[ 0: 1]
base/ HWDATA[ 0: 31]
mast er/ HBURST] 0: 2]

Reference sequence from [1] showing an abortetiduggo the slave sending a retry

784100 ps 849400 ps 914700 ps 980100 ps
e e e et et r
1 1 R S
I 1
-] s I S S,

1
SF I50 31 [30 I3
%0 [0 A1 [%0 %0 [%0 %0
$00000000 [$40000000 [$40000004 [$4000000 1$00000000 [$40000004 $
I — |
700 [740 [%0
$00000000 1$000000D1 {$000000D2 [$000000DL $00000002

7000 011 [7000

Figure 4.14: Waveform of implemented bus model, showing handling of aspésation. Note that

in this model the recovery from a retry happens with individual transfessead of an undefined

length burst.

4.2.7 Preemption of an Unlocked Burst

The scenario presented in this subsection shows a preempted unlockedlow pri-

ority master

performs an unlocked burst. While this burst is in progresshethjgiority master

requests the bus, and consequently the lower priority master loses theamis gfter the high

priority master has finished its own transfer, the bus grant changesbhddke low priority master

may resume the interrupted transfer.

Figure 4.15 shows the reference waveform, the measured wavefdire ohplemented

model is shown in Figure 4.16. In the implemented model master 0 is the higher praster, and

master 1 is the lower priority master. The reference waveform M2 is the lighypmaster and
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M1 has lower priority. As a difference from the previously shown weausfs of the implemented
model, the request and grant lines are swapped between the two mastetshaheareference

waveform. The following points are of interest for comparing the wave$or

1. Inbus cycle 2 the low priority master gets the bus granted and subskygiarts an unlocked

burst transfer. While the burst is in progress the high priority masteestgthe bus as well.

2. The arbiter observes the request of the higher priority master andetishe bus grant from
the low priority master to the high priority master in bus cycle 5 (the third beat aflueked
burst).

3. The now granted high priority master starts its transfer in bus cycle 6.e/dame time the
low priority master requests again the bus in order to complete the interrupteteialr hese

two facts can be seen in both waveforms.

However the two waveforms disagree in cycle 6 for the HGRANT lines: whiad¢fierence

waveform shows a change of bus grant from the high priority master téotheriority

master in this cycle, the same change is delayed by one cycle in the implementdd mode

It is the author’s understanding that the bus grant change is a redalvefing the request
line of the high priority master, which happens at the very same time in the cyciéh
immediate change (without a rising HCLK) would require combinatorial logic irattbéer.
This however is not allowed according to ARM’s FAQ [4, question #4120]

Following the argumentation presented in the FAQ the implemented model showsttie g
change one cycle later, after the arbiter has sampled the input lines at theedgieof HCLK.
Although this difference exists between the two waveforms it has no beanirnige further
timing, since the slave of the preempted burst inserts a wait state in the lagalseatycle
6). This extends the transfer of the high priority master by one cycle anksritas difference

in bus grant state between the two waveforms.

4. In bus cycle 8 the low priority master owns again the address bus andesshe interrupted
burst. The remaining last beat is performed as an individual transfeligtigsis visible during

the bus cycle 9.
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m T2 T3 T4 5 6 ™ 8 T9 T10
e| L T - 5 - 5 I ! [T 1

HBUSREQ_M1 [/ 1\ [] I

HBUSREQ_M2 [ A
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Figure 4.15: Reference sequence [1] showing loss of bus graingdourst
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base/ HCLK

arbi t er/ HBUSREQx1
arbi t er/ HBUSREQxO
ar bi t er/ HGRANTx 1
ar bi t er/ HGRANTX0

arbi ter/ HVASTER 0: 3] $F

mast er / HTRANS[ 0: 1]
base/ HADDR] 0: 31]
sl ave/ HRESP[ 0: 1]
sl ave/ HREADY

base/ HADATA[ 0: 31]
mast er / HBURST[ 0: 2]

Figure 4.16: Waveform of implemented bus model, showing loss of the basswhile in a burst.
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NOTE master 0 and master 1 are exchanged to match the reference wavefor
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4.3 Timing Validation of the Transaction Level Models

The previous section has evaluated the timing accuracy of the bus furlathmoke!.
Hence this model can now be used as a reference model for compariabdtiact models (the
Transaction Level Model and the Arbitrated Transaction). This sectiirevaluate the timing
accuracy of the abstract models in comparison to the bus functional model.

The more abstract models do not capture all properties of the modeleddhitecture.
Therefore they do not have the same accuracy in all situations. It isveoygessible to define a
set of restrictions, so that the properties, which are not implemented in shaettmodels, are not
exercised. When these restrictions apply, all models have to agree oxatttesame timing. For
this modeling of the AHB the restrictions are:

e Usage of only a single master and a single slave. As described in the désigierceach
model handles the handover between masters at different level aaagcBy eliminating
such handovers the differences will not be perceivable.

e Utilization of locked burst transfer only; the more abstract models have ingglemented
making this assumption.

e A transfer initiating master should not be the default master, hence it haguestethe bus
for each access. Again the abstract models use this assumption for the tietagise they
cannot distinguish between accessing from the default master and fromdefault master.
The arbitration is not modeled this detail.

For comparing the models, some example transfers have to be definedvetaien
the flexibility of the AHB bus, it is not practical to exhaustively test all pokssitansfers. Therefore
some representative examples with an increasing complexity have beemnchdwe transfers are
defined at a level of a user transaction. Such a transaction is brokentothe MAC layer into
smaller bus transactions depending on the user transaction size and tlzeldtass. The later is
important since the AHB standard makes the restriction, that all bursts hheerord aligned. As
an example the MAC layer has to transfer first an alignment byte, if the wsesfér starts at an odd
address.

Table 4.4 lists the selected transfers, with the transfer size, the basesdfiset to the
word boundary and an enumeration of the resulting bus transactions.séllttansactions were

performed with each implemented model and the number of cycles to completméaatual user

40



CHAPTER 4. VALIDATION

transaction (which may be composed of multiple bus transactions) was netasuaedition to the
measurements, the number of cycles for each transfer has also beeallynealgulated based on
the standard [3]. The results can be found in Table 4.5.

Offset to
Testcase|| Size | Word Alignment | Resulting Bus Transactions
1 4 0 long
2 16 0 4 beat burst
3 17 3 alignment byte, 4 beat burst
4 50 0 8 beat burst, 4 beat burst, short
5 107 2 alignment short, 16 beat burst,|8
beat burst, 4 beat burst, byte

Table 4.4: Testcase definition for individual bus transfer timing validation.

Arbitrated
AMBA Bus Functional Transaction Transaction
Testcase Spec. Model Level Model Level Model
[specified cycles] [measured cycles] [measured cycles] [measured cycles|
1 4 4 4 4
2 7 7 7 7
3 11 11 11 11
4 22 22 22 22
5 46 46 46 46

Table 4.5: Results of individual bus transfer timing validation in number otlakes.

As the Table 4.5 indicates all models take the exact same number of bus oyobexh
of the test transfers. They also agree with the interpretation of the stariaice the accuracy of
the bus functional model has been shown already (see Section 4.2),keazoncluded that TLM
and ATLM are 100% accurate for the given conditions.
An automated test has been implemented to extend the validation above to more user
transactions. During this test, a random set of user transactions, ganysize and base address,
is transferred and the transfer time for each individual user transaistioompared among the
models. After transferring 100000 user transactions per bus model, shisate confirmed as well
the timing equivalence of all models. Although the models are timing equivalerihéogiven
set of restrictions, their accuracy differs if these restrictions are takety. Section 5 contains a

discussion of the accuracy results of the different models in such a case
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4.4 Validation Summary

In summary, all the functional and timing validations were successful. All imphtade
models have passed the functional validation. The timing accuracy of tHertet®nal model has
been successfully shown with the use of example transfers from the Ast@#dard. Furthermore,

the timing accuracy of the abstracted models was successfully validateddsiriated setup.

42



Chapter 5

Model Analysis

The previous chapter has asserted that the implemented models are fulyctionmact
and that the bus functional model is implemented according to the AMBA sp&@ific It was
further shown that the more abstract models, the TLM and the ATLM yieldecotiming under
certain restrictions. With those results in mind, this chapter will explore how the ingolieed mod-
els affect the designer when modeling a system. For that two main aspects @ibimined. First
simulation performance will be evaluated, since the main premise of developstigaet models
was to speed up simulation. This will show the benefit of each model. Sedbrdiccuracy of the
more abstract models will be examined in a generic environment (outside ddtnstions posed
in Section 4.3), which will explore the drawbacks for using the faster mo@embining both, the
designer will be able to decide for the applicable trade-off between simulspiead and accuracy
for a particular design stage.

5.1 Performance Analysis

The main goal of simulating with higher levels of abstraction is to increase the siamula
speed. This section will give quantitative results about the performamtassert whether this goal
was achieved in this implementation.

5.1.1 Test Setup

A test was devised, in order to measure the performance of each modeéicimavsingle
master is connected through the simulated bus to a single slave. No other roastaves are con-

nected to the bus. A user transaction of a certain size is performed réigemtonstant number of

43



CHAPTER 5. MODEL ANALYSIS

times without any delay in between, with that the simulation speed is limited only by thé&asiomu
environment. The simulation time for executing all repetitions of the user transacas measured
(simulation time can also be named as real time or wall clock time). The measured timié fo
repetitions was then divided by the number of repetitions, to yield the avexageition time for a
single user transaction. This process was repeated with a varying sigerafransactions, to gain
insight to the scalability of the implementation.

All tests have been performed on a Pentium 4, 2.8 GHz with HyperThreaduhgy Red-
Hat Enterprise 2 with the kernel version 2.4.21-20.ELsmp. The simulationoemegnt was SCC

version 2.2.0 (using QuickThreads).

5.1.2 Simulation Time

The performance measurements in terms of simulation time are shown in [FiguTég.1.
y-axis denotes the execution time for an individual user transaction, théasiomtime. The x-axis
denotes the size of a user transaction in bytes. The start addressudeemttansactions remains
constant on a word boundary, which avoids performance penaltie® dlignment transfers.

As described in the design section, the two abstract models have beentspiiarvaria-
tions each. The two ATLM variations differ in the way they handle the arbimnathd LM (b) makes
the arbitration decision immediately when a bus request arrives, wheeaS i (a) delays the
decision for one delta cycle. As a result the second variation handleaseenhere two masters
request the bus at the very same simulated time and grants the bus to the higfitgrpaster. In
contrary the variation (b) makes the grant decision immediately, hence thedrasted the master
with the earlier executed simulation code.

The both variations of the most abstract model, the Transaction Level IMdiffer as
well in the way arbitration is handled. The TLM (b) does not restrict thedmegss. As a result two
masters can access the bus concurrently at the same time. Hence eaclpentstas as if it were
the only master on the bus. The TLM (a) does limit concurrent accessranthtes arbitration on
the level of a user transaction. Once a master got the bus granted, it segnairied until the user
transaction finishes regardless of other masters’ requests to the same bus

As Figure 5.1 indicates there is no significant difference between theivadaf the two
abstract models (ATLM and TLM). There is a significant difference leetwthe major models;
they are two orders of magnitude apart.

As expected, the most accurate model, the bus functional model, is the sioweau-
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Figure 5.1: Execution time for completing a user transaction of varying size.

lation speed. It requires 34ms for transferring 1000bytes. The Arbitriransaction Level Model
model is faster. Here the 1000 byte transfer takes 0.48ms. The Tramshetiel Model model
executes fastest, with mere 0.0025ms. It is noticeable that the simulation time Tdrivheoes not
increase much with an increase in size. The simulation code is almost indepehtie transaction
size, only a singlenemcpys used for the data transfer and the performance afthiec pydoes not
change much in the measured range. The performance graphs/forltMeaiid the bus functional
model are sawtooth shaped. A user transaction in this models is sliced into dsnalteainsactions.
However, the number of bus transactions does not increase linearly withstr transaction size,
since fixed length bursts are used. To give an example: a user transaicBiovords requires 3 in-
dividual bus transactions, a 4-word user transaction on the otherdaanioke transferred in a single

burst of 4 beats, resulting in a single bus transaction.

5.1.3 Simulated Bandwidth

For a better understanding, the same measurements have been graphedrigure 5.2.
Here the performance is expressed in simulated transfer bandwigih /o0 ), In terms
of simulation performance the TLM reaches the highest bandwidth: 3828/&3c, followed by the
ATLM with 2MBytes/sec. The bus functional model only reaches a bantivait0.028 MBytes/sec.

The significant difference between the simulation models can be explainetheithe-

spective simulation detail. The TLM model handles data transfers on theoleaeiser transaction.
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Figure 5.2: Simulation performance expressed as simulated transferidémdw

Only C primitives are used for this communication. The ATLM model on the othedhloes break
a user transaction into many bus transactions, thus the effort is multiplietheRuiore the ATLM
model uses the standard implementation of the MAC layer, hence it has teddhéee interface
between the MAC and the protocol layer. Since this interface uses alb@aagtors, the simulation
requires more effort. The bus functional model is by far the sloweste sirgimulates the transfer
on a bus cycle level. Since this model is a synthesizable model all wires ofHBeate modeled
and additional bus elements such as the multiplexers are covered as wélh@gter 2).

In summary, the expected performance gains where actually achieved.ed¢ithmore
abstract model the simulation speed increases by two orders of magnitwdigngl from the per-
formance results, no selection can be neither made for a variation (of thiel Ab a for variation
of the/ TLM. The accuracy analysis that will be done in the next sectionadext for a decision

between the variations.

5.2 Accuracy Analysis

In the previous section, the gain of speedup by using models at highemleabttrac-
tion was quantified. The drawbacks of abstract modeling in terms of agclinaitations will be
evaluated in this section. Unlike the performance measurements beforeaiitlitoldefine a single
expressive number that allows comparing the accuracy of the differedels. The actual accuracy
depends too much on the environment and the actual application propditiesefore, a generic
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test setup and procedure was defined that covers a range of applaicifics, so that the designer
can derive the expected accuracy for a particular setup. The ratixirsdescribes the test setup and

test methodology, followed by the presentation of the results.

5.2.1 Test Setup

For the test setup a generic scheme, with two masters and two slaves cdroettte
same bus, was used. Each master accesses one slave ex@usﬂ?’vgiye@3 shows the logical

connection scheme for the test setup.

Test Master 0 Test Slave 0
Test Master 1 Test Slave 1

Figure 5.3: Logical connection scheme for accuracy tests

During the test, each master transfers a predefined set of user transathe user trans-
actions vary in the base address, length of the transaction and in the deiseh two transactions.
The delay between transactions simulates local computation time. During thedestien, the
start time and the duration (each in simulated time) of each individual useattéosis recorded
for further analysis. The test is repeated once for each implemented hied. iince the same set
of user transactions is transferred by each of the models, their resuttsmparable.

It is expected that the accuracy changes significantly with the amounnotioent bus
access between two masters. As an example, all transfers may be exeitited any concurrent
bus access between the masters. That means, there is no overlap l@tyeen user transactions.
In such a case the timing for each master is as if it were the only master cahnedtee bus.
Therefore the logical connection is as if each master had its own bus ardjuihv@lence of the
models, as asserted in Section 4.3 applies; then all models perform with 1@0¥aey. However,
with an increasing amount of overlap between the user transactions, thersnai influence each
other more in the bus access and the timing accuracy will differ with each model.

The amount of bus utilization, and subsequently the expected amount sfetramerlap,
depend on the type of application. A communication-bound application will haighebus utiliza-
tion, a computation-bound application, on the other hand, results in a lowtitimation. In order
to cover the range between those two extremes, the previously descitetidee been repeated

1other configurations have been measured as well, but their results ddchadditional insight. Hence, their presen-
tation is omitted.
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with a step-by-step increasing amount of overlap between transactioms ofasters. By adjusting
the average delay time between two user transactions of the same mastes, tkikzation of each
master was varied. As a result the overlap between the transfers of thmasters differs too.
This overlap was measured during the experiment using the bus funatiadgl. The overlap (in
percent) has been defined as:

number of bus cycles with two active user transactions
number of bus cycles with at least one active user transaction

overlap= 100x (5.2)
A user transaction is seen as active during the time the application is blockegtiex) a
user transaction. Note that this definition is independent of the stage withpipglened bus access.
In the following subsections, the achieved accuracy of the implemented niodkelsked
transfers and unlocked transfers will be shown. The first subsewtibalso introduce the analysis
methods when they are first used. The results for each master will beydid@aparately; due to
their difference in priority, the accuracy results may vary. As one effethe prioritized bus grant,
especially with higher amounts of overlap, the higher priority master may firdabkferring the test
sequence earlier than the lower priority master. After that point, the lowifyrimaster operates
undisturbed on the bus, which will affect the accuracy measuremerdsdénto exclude this effect,
only those measurements are taken into account, when both masters hgeefmighed their test

sequence, hence a chance of a concurrent access exists.

5.2.2 Accuracy of Locked Transfers

As previously described in the test setup, a test run yields an executiordref each
individual user transaction. This subsection will describe how this dataailyzed for the locked
transfers. As a reminder, a burst in a locked transfer cannot beupted, not even by a higher
priority master.

The transfer duration of an individual user transaction is an importardumeor predict-
ing the application latency due to bus access. Therefore, in a first steg¢cthracy of the models
has been evaluated with respect to the transfer duration. For this puthepercentage inaccuracy
of an individual user transaction is defined as:

durationys : transfer duration in bus functional model
durationest : transfer duration in model under test
. durationest— duratio
inaccuracy = 100*} Mest - rbf‘ (5.2)
durationy¢
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Given this inaccuracy definition, a timing accurate model exhibits 0% inacguitavas avoided to
directly express the accuracy in percent, since a particular model mayanawnaccuracy of more
than 100% (i.e. the model under test predicts more than twice the simulated timef), wduld
incorrecly lead to a negative accuracy. The average inaccuracyabhueser transactions of a test
sequence is displayed in the first set of graphs. Figure 5.4 shows ehaggavinaccuracy of each

model over an increasing amount of transfer overlap.

50 T —T T T T 50

) . . — . ! ) ) . - . . )
0 10 20 30 40 50 0 10 20 30 40 50
Overlap Between Transmissions of Two Masters in Percent Overlap Between Transmissions of Two Masters in Percent

(a) High priority master (b) Low priority master
Figure 5.4: Locked transfer accuracy based on duration

As Figure! 5.4 indicates, the ATLM (a), which collects bus requests fordmte cy-
cle before making a decision, exhibits no inaccuracy over the whole raingealuated overlap.
Since all transfers are executed locked, the arbitration decisions iaeeeglen in the bus functional
model only at the bus transactions boundary. With this limitation the bus funttitodel and the
ATLM (a) do the arbitration decision at the same time points and yield the same sichtilhaieg.

The ATLMI (b) yields more imprecise results. It may mispredict the arbitration én th
situation when two masters access the bus at the exact same simulation time. elimastdr, with
the earlier executed simulation code, will gain bus access, even though itertag lower priority
master. For both the high priority and low priority master the inaccuracy righsan increase of
overlap; it plateaus at 40%. Due to the higher bus utilization, fewer simultsiaiduitration requests
happen. With the shorter delays between the transactions, it becomes lielyebus is occupied
by the other master when requesting the bus.

It is interesting to note, that the ATLM (b) performs also worse than the ThM The
latter yields a timing as if the bus were used exclusively by each master, thwayisgoredicts the
optimal transfer time. As expected, its results get linearly worse with an seiaaverlap, since

the individual transfers will increasingly take longer than the optimum.
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The TLM I (a) shows the highest inaccuracies. Its arbitration decisiomade on the
level of user transactions, whereas the real decisions are way mergréimed. Furthermore, the
bus access decision in this model is independent of the master’s priorgyindbcuracy produced
by this model increases linearly with the amount of overlap and tops with 35%4atoverlap.

Summarizing the first measurements, all models show only little difference imaagcu
between the high and low priority master. Between the two variations of the AthéAersion with
delta cycle delay is preferable, since it reaches optimal results. Betwedwdhvariation of the
TLM model, surprisingly the version without any arbitration yields betterltesiThe expectation
was that the lack of arbitration would yield worse results.

Additionally to the average inaccuracy (computed from the absolute irsdes), the
deviations of the inaccuracies are displayed. The standard deviatioateglan inaccuracy range,
so that 68% of the individual transfers exhibit an inaccuracy within timigeaAs one example from
the measurements, 68% of the user transactions have an inaccuraéy of Bss, when transferred
using the ATLM (b) with an overlap of 40%.

Standard Deviation

ob—u 4 . L — . ! e ol— 4 . . . . 4
0 10 20 30 40 50 0 10 20 30 10 50
Overlap Between Transmissions of Two Masters in Percent Overlap Between Transmissions of Two Masters in Percent

(a) High priority master (b) Low priority master
Figure 5.5: Locked transfer deviation based on duration

Figure 5.5 shows the graphs of the standard deviation based analysis. téngraphs
stem from the same set of measurements, the same conclusions as shesvhatdorue. The bus
functional model and the ATLM (a) deliver 100% accurate results. Tl Tb) is more accurate
than the ATLM (b), since the latter may mispredict the bus grant, whereastimef assumes an
always avaiable bus. As with the previous results, the TLM (a) shows tis¢ imaccurate results,
due to the coarse granularity of arbtiration decision.

The accuracy analysis based on the transfer duration is the measuediict tire appli-

cation latency due to bus traffic. Additionally, the overall timing (e.g. whersdbe application
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finish?) may be of interest for design decisions. For this, the cumulatimeféatime, that is the
sum of the user transactions durations, was evaluated. The cumulatistetrame is preferred over
the actual finish time, since the latter includes the constant computation time betamsarctions
(simulated by a delay), which is independent of the utilized bus model.

Figure 5.6 shows the results of the accuracy based on the cumulativietrame. Here
the differences between the two variations of the ATLM are significantly snthb@ in the duration
based analysis. The mispredictions made in the ATLM (b) model seem tol cantewer time. The
remaining inaccuracies between the two variations are within 2% and aresimdiemt of the amount
of overlap.

50 T T T T T 50
us Functional M

g g | o — e —————9 |
0 10 20 30 40 50 0 10 20 30 40 50
Overlap Between Transmissions of Two Masters in Percent Overlap Between Transmissions of Two Masters in Percent

(a) High priority master (b) Low priority master
Figure 5.6: Locked transfer accuracy based on cumulative transfer time

It is noticeable that the inaccuracies of the two TLM variations have redénscompari-
son to the duration based evaluation. Now the TLM (b) exhibits the highestunacies, since this
model assumes an always available bus. With that, the predictions are alwas o optimistic,
hence the error accumulates over many transactions and creates asiimgifference in applica-
tion timing. The TLM (a) does perform better in that respect, even thougioduyzes larger error
on an individual user transaction level, the mispredictions fall on both §ideshort and too long)
so that they average out. The TLM (a) predicts more correctly the timing tieafLtM (b).

In summary, the models with more detail perform better than the more abstraetanod
if the main focus rests on the cumulative transfer time. Between the variationg @M models,
the version with arbitration is selected, because it predicts more accuraedyehall application
timing. Among the ATLM variations, the version with the delta cycle delay - ATLMigachosen,
since it reaches 100% accuracy. It has to be noted that for lockeddranhe bus functional model

does not have an accuracy advantage. Due to the locked transfarbitn&tion decision is done at
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the same level of granularity for the ATLM and the busfunctional model.

5.2.3 Accuracy of Unlocked Transfers

The analysis of the locked transfers may suggest questioning the adidedof the bus
functional model. This will be revisited in this section, where the unlockedteas are evaluated.
In case of an unlocked transfer an arbitration decision is done on edistidimal bus cycle. A
transaction initiated by a low priority master may be preempted by a higher priorgiem&ince
only the bus functional model deals with arbitration on each bus cycle, ipsated to be the only
accurate model.

Figurel 5.7 shows the graphs for the accuracy evaluation based onrbéetreuration.
Here unlike for the locked transfers the graphs between the high andahw@ilrity master differ
now. With the preemption possibility of the unlocked transfers, there arehigtances that the
low priority master has to yield access for the high priority master.

50 - T T T T T 50
Sus “tiona

L
50 0 10 20 30 40 50
Overlap Between Transmissions of Two Masters in Percent

(a) High Priority Master (b) Low Priority Master
Figure 5.7: Unlocked transfer accuracy based on duration

The differences previously observed between the two variations ofth&Anodel are
no longer significant for the unlocked transfers. Both ATLM models akbignificant inaccuracies
over the bus functional model, caused by the lower granularity of the atibitr decision. The
ATLM Imodel decides per bus transaction, whereas the bus functionalmedsits the arbitration
on each bus cycle.

The results for the two TLM variations differ even more dramatically betweemtsters.
For the high priority master the TLM (b) reaches almost 100% accrua@inAthis model assumes

an alway available bus. This is actually close to reality for the high priority masitece it may
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preempt a tranfer of the low priority master. On the other hand, the oppogiigeifor the low
priority master. The predicion of the TLM (b) are always too optimistic. With amease of the
transfer overlap, the prediction becomes linearly less.

Thel TLM (a) performs most inaccurately for both the high and the low prioniaster.
The inaccuracy increases linearly for the high priority master, with theaseref transfer overlap.
Since the TLM (a) performs the arbitration decision only once for eachtteesaction, the error
increases with the transfer overlap. For the low priority master it is interestimpte that the
inaccuracy does not increase linearly, but it rather tails off.

As done before the duration based accuracy data is displayed againtlwsistandard
deviation, see Figure 5.8. The graphs do confirm what has beenyalteadribed for the previous

set.

Standard Deviation
Standard Deviation

L
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(a) High Priority Master (b) Low Priority Master
Figure 5.8: Unlocked transfer deviation based on duration

The graphs for the cumulative transfer time are shown in Figure 5.9. Buéisdor the
high priority master are similar to what has been observed during the dubatsad analysis. For
the low priority master, only the variations of the ATLM model perform complaraHowever the
TLM models behave opposite to what has been seen in the duration baseaicgevaluation. Now
the/ TLM (b) shows the highest inaccuracies. Its constantly overoptimistidigirons accumulate
and result in almost 50% inaccuracy at 50% overlap. The TLM (a) peddetter than the TLM
(b). Although it exhibits a high error amout for the duration based analygsrrors on the individ-
ual transfers average out, yielding a lower inaccuracy for the cumelatwnsfer time. In general
comparing back to the locked transfers, all abstract models exibit higaecuracies simulating
unlocked transfers.
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Figure 5.9: Unlocked transfer accuracy based on cumulative tratirster

Considering the accuracy of unlocked transfers, there is no clearechetween the vari-
ations of the TLM model. The differences between the accuracy for thegrigrity and the low
priority master are too significant. However, since the accuracy of TUMs(anore predictable,
preference is given to this model. Both variations of the ATLM model perfeeny similarly. In
general, for unlocked transfers a designer should use at leasiasioraof the ATLM in order to
gain predictable results. However it becomes clear that only the bus foabtmdel yields accurate
results.

5.3 Analysis Summary

The performance analysis of the different models did show a speed o afrders of
magnitude with each additional abstraction level (i.e. among the major modelgyefdte, the
goal of drastically speeding up simulation, by means of abstract models gbasftifilled. The
performance analysis alone does not yield a decision for choosing athengariations of the

ATLM and TLM; no significant performance difference was measuetd/ben each variation pair.
Combining the accuracy analysis of both the locked and the unlockeddramsbvides
a better ground for making a decision in this aspect. Between the TLM vasatibe TLM (a)
is selected. It performed more accurately in the cumulative tests for theddcesfers, and was
more consistent in its predictions for the unlocked transfers. The ATUNk(ehosen among the
ATLM \variations, since it was accurate in the locked transfer tests andvaoidtions performed

similarly for the unlocked transfers.
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In general the accuracy analysis has shown that the advantageeofdiasulation speeds
has to be weighted against the loss in simulation accuracy. The more abstdels did deliver
overall more inaccurate results. However, the results are stronglglatad with the application
characteristics. The guidelines of model use, extracted from this doorelare described in the

next chapter.
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Chapter 6

Summary and Conclusions

This thesis has reported on the modeling of the AMBA AHB bus architectutee€erl
major models have been implemented: the bus functional mode, arbitratedtimm$avel model
(ATLM) and the transaction level model (TLM). Additionally, two variatiores/k been created for
each of the ATLM and the TLM. The correctness of each model in termargadtionality and in
terms of timing has been validated. The AMBA models have been integrated wiSCEalesign
environment.

The usability of the models has been evaluated. With respect to the simulatfon per
mance, a speedup of two orders of magnitudes was measured with elraebtabsstep. A detailed
analysis of the simulation accuracy of each model has been done. Asliaafethe analysis the
TLM (a) — which models concurrency — and the ATLM (a) — which implementsdeséa cycle
delay for arbitration requests — have been chosen for continued asedB®n the analysis results,
the summary as shown in Table 6.1 can be made for the user of the implementdd.mode

Environment Condition Applicable Model
single master bus

TLM
no overlap between masters bus access
only locked transfers ATLM

unlocked transfers and low overlap
unlocked transfers and high overlap bus functional

Table 6.1: Conclusion summary

For computation bound applications, or when almost no overlap betweeatteoons of
two masters on the same bus is expected, all models have almost accurtte hedhis case the

most abstract model — the TLM — delivers acceptable results the fastest.
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In a system, where only locked transfers are used, already the ATLMIrgisves accurate
results, hence in such a case a simulation with the bus functional model iset®dchfor accuracy
reasons. Also the TLM model delivers usable results. It peaks with @y ibaccuracy at 50%
tansfer overlap.

Should the system use unlocked transfers, the importance of the busfahenodel
comes into play. It is the only one that delivers accurate results. The Afiolliel may be used for
estimation, in case the transmissions between masters do not overlap too Bcimg2curacy at
25% overlap). The TLM model should be avoided since it gives incomsistsults between a high
and a low priority master.

In future work, the AHB model will be extended to support more complextaunsactions
like split transfers, which will expand the usability of the model. For a furieeformance increase,
multi-threaded master / slave bus interfaces will be included in the model. Thisleill the
modeling environment to take full advantage of the pipelined access even tithaccesses of the
same master. Furthermore, itis planned to model the peripheral bus ABB édficient connection
to peripheral devices.
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Appendix A

Header Files

This chapter will give an overview of the implemented software structurgeheral the
following file separation was used for the AMBA model:

i_ambaAHBbus.sh contains interface definitions which are used by all models. These irgsrfac
cover the MAC layer only.

ambaAHBbusMaster.sc defines the interfaces for the protocol layer and the physical layénéor
master side. It also contains the bus functional implementation of all layethdanaster
side.

ambaAHBbusSlave.scis symmetric to the previous file. It contains all the interface definitions
for the slave side of the protocol and physical layer. The file also canthm slaves bus

functional implementation.

ambaAHBbusTLM.sc contains the implementations of the abstract models for master and slave
side. In particular it contains both variances of the ATLM and both vadamt the TLM.
The file contains as well the arbitration implementation for the abstract models.

ambaAHBarbiter.sc implements the arbitration for the bus functional model. The main cvs branch
contains the arbiter for locked transfers, the branstockedTrans fersnplements arbitra-
tion for unlocked transfers.

ambaAHBMuxes.sc implements additional logic necessary for the bus functional model of the
AHB; these are in particular the multiplexers (read bus, write bus, addressontrol bus)

and the address decoder.
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The following sections will show the interface definitions of the implemented models

The channel declarations are listed as well, which allows insight into howiffieeetht layers (im-
plemented in channels) are composed to a bus model.

A.1 i_ambaAHBbus.sh: MAC Layer Interface Definitions for Master
and Slave

%

interfaces visible to the upper layers— x/

[« all MAC layer interface definitions.

two access types memory and link

twice once for the master side and once for the slave side
*/

interface |IAmbaAHBbusMasterMACLink
{

void masterWrite gnsigned long addr, const void« data, unsigned long len);
void masterReadynsigned long addr, void« data, unsigned long len);

IE

interface |IAmbaAHBbusMasterMACMem

{

void masterMemWritegnsigned long addr, const void« data, unsigned long len);
void masterMemRead(nsigned long addr, void*x data, unsigned long len);

h

interface |1AmbaAHBbusSlaveMACLink

{
void slaveWrite unsigned long addr, const void« data, unsigned long len);
void slaveReadgnsigned long addr, void* data, unsigned long len);

1
interface |IAmbaAHBbusSlaveMACMem

{
void serve (unsigned long addr, void+x data, unsigned long len);

b

A.2 ambaAHBbusMaster.sc: Bus Functional Interfaces and Channel
Definition for Master

[ Physical layer, bus protocol handling—— x/
/1 regular bus primitives
interface IAmbaAHBbusMaster
{
/x GS Access methods for the Address Cysle
/x Writes out address and control signals, waits for
completion of previous Slave.
NOTE: Has to be called at beginning of clock cycle:/
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void AddressCycle (

tAHBAddr addr
tAHBWrite write ,
tAHBSIze size
tAHBProt prot,
tAHBBurst burst,
tAHBTrans trans

);

/+ writes out the address and control signals, without waitifigr timing
NOTE: Has to be called after rising edgex/
void AddressWrite (

tAHBAddr  addr,
tAHBWrite write ,
tAHBSIze size
tAHBProt prot,
tAHBBurst burst,
tAHBTrans trans

);

/x write the given data on the bus and wait until slave
has accepted the data,

RETURNS: Status code from slawd

tAHBResp DataWriteCycle (tAHBData data);

/x write the given data on the bus and wait until slave
has accepted the data,

RETURNS: Status code from slawd

tAHBResp DataReadCycle (tAHBDatadata);

I

I+ physical layer for master sidex/
channel AmbaAHBbusMaster (

in

in

out
out
out
out
out
out
out

in

in
in

signal
signal
signal
signal
signal
signal
signal
signal
signal

signal

signal
signal

bit[1] HCLK, /1 from external clk, all on rising edge
bit[1] HRESETn, // low active reset signal for bus component
bit[31:0] HADDR, /1 32 bit system address bus

bit[1:0] HTRANS, // transfer type (IDLE, ...)

bit[1] HWRITE, // write on high
bit[2:0] HSIZE, /] size of transfer
bit[2:0] HBURST, // burst mode selection
bit[3:0] HPROT, // protection bits
bit [HDATA BUSHIGHBIT:0]
HWDATA,  // write data bus (master> slave)
bit [HDATA BUSHIGHBIT: 0]
HRDATA, // read data bus (slave> master)
bit[1] HREADY, // slave indicates operation complete
bit[1:0] HRESP // slave indicates return code for op.

) implements IAmbaAHBbusMaster

{
s
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/% Protocol Layer, includes arbitration—— x/
66 interface IAmbaAHBbusMasterProtocol
{
/x convention, all functions have to be called on a rising cloelige,
this has to be guaranteed by the calling mac layef

71 bit[7:0] ReadBytepit[31:0] addr);
bit [15:0] ReadWordpit [31:1] addr);
bit [31:0] ReadLongbit[31:2] addr);
/I multi burst size 4, 8, 16 longs
tAHBResp ReadBurstifit [31:2] addr, tAHBData data[],unsigned char size);
76
void WriteByte(bit[31:0] addr, bit[7:0] val);
void WriteWord(bit [31:1] addr, bit[15:0] val);
void WriteLong(bit[31:2] addr, bit[31:0] val);
/I multi burst size 4, 8, 16 longs
81 tAHBResp WriteBurstpit [31:2] addr, tAHBData data[],unsigned char size);
/1 NOTE not implemented undefined bursts, burst for wordsbytes

s

/x protocol layer master sidex/
86 channel AmbaAHBbusMasterProtocol (IAmbaAHBbusMaster bus,
i_semaphore access)
implements IAmbaAHBbusMasterProtocol

—~

91

/% Media access layer, links—— x/
[+ This is a simplified version of the memory access,
— no address increase
96 — no bursts
— no alignment for addresses, off aligned access
gives bus error simulated by core dump

Compatible with AmbaAHBbusSlaveMacLinkNoAdddrinc
101 =/

channel AmbaAHBbusMasterMACLinkNoAddrinc (IAmbaAHBbusMastex®ocol mac)
implements |AmbaAHBbusMasterMACLink

{

106 };

A.3 ambaAHBbusSlave.sc: Bus Functional Interfaces and Channel
Definition for Slave

/%

Physical layer, bus protocol handling—— x*/

3 interface |IAmbaAHBbusSlave

{

/% listen to specified set of control signals without waitingrfclock =/
tAHBSize ListenCntl(tAHBAddr«addr,
8 tAHBAddr addrMask,
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s

tAHBBurst xburst /] burst mode

tAHBBurst burstMask,
tAHBProt xprot,

// protection type

tAHBProt protMask, // ~ mask
/! write mode ?

tAHBW rite *Write ,

tAHBWrite writeMask );

/x listen to specified set of control signals with waiting fodock x/
tAHBSIize ListenCntlCycle (tAHBAddr«addr,

tAHBAddr addrMask,
tAHBBurst =burst ,
tAHBBurst burstMask
tAHBProt xprot,
tAHBProt protMask,
tAHBWTrite *Write ,
tAHBWrite writeMask

11

)

/1

burst mode

protection type

[/l =~ mask

E

/l write mode ?

/x write data to bus (master read), and consume a cyale
void WriteCycle (tAHBData val);

/x read data from bus (masters write) and concume a cyele
tAHBData ReadCycleyoid);

/x signal an error or other condition to master, called
instead of WriteCycle or ReadCycle/
void TwoCycleRespbit[1:0] resp);

channel AmbaAHBbusSlave (

in
in
in
in
in
in
in
in
in

out
in

out

)

signal
signal
signal
signal
signal
signal
signal
signal
signal

signal
signal

signal
signal

bit[1] HCLK, Il from external clk, all on rising edge
bit[1] HRESETnh, // low active reset signal for bus component
bit[31:0] HADDR, // 32 bit system address bus

bit[1:0] HIRANS, // transfer type (IDLE, ...)
bit[1] HWRITE, // write on high

bit[2:0] HSIZE, /! size of transfer
bit[2:0] HBURST, // burst mode selection
bit[3:0] HPROT, [/ protection bits

bit [HDATA BUSHIGHBIT:0]

HWDATA,  // write data bus (master> slave)

bit[HDATA BUSHIGHBIT:0]

HRDATA, // read data bus (slave>> master)
bit[1] HSELXx, // select signal for slave
bit[1] HREADY, // slave indicates operation complete
bit[1:0] HRESP // slave indicates return code for op.

implements IAmbaAHBbusSlave
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/% */

Protocol layer, arbitration

interface 1AmbaAHBbusSlaveProtocof

68 /« listen to specified set of control signals with waiting fodock =/
tAHBSize ListenCntlCycle (tAHBAddrxaddr,
tAHBAddr addrMask,
tAHBBurst xburst, /! burst mode
tAHBBurst burstMask,
73 tAHBProt xprot, // protection type
tAHBProt protMask, // ~ mask
tAHBWrite xWrite ,
tAHBWrite writeMask); /I write mode ?

78 /x bus data cycle operations, each one consumes a cycié

bit[7:0] ReadBytepit[1:0] addr);

bit [15:0] ReadWordpit[1:1] addr);

bit [31:0] ReadLongyoid);

void ReadBurst(tAHBData data[] unsigned char numBeats);
83

void WriteByte (bit[7:0] val);

void WriteWord (bit [15:0] val);

void WriteLong(bit[31:0] val);

void WriteBurst(tAHBData data[],unsigned char numBeats);
88

/% signal an error or other condition to mastek/

void TwoCycleRespbit[1:0] resp);

93
/[x ——— MAC layer, segmentation, reassmbly——— %/

[« MAC layer slave, randezvouz access (link accesg)

98 /+ Reduced version of MACLink with the following simplifyingsamptions
— no address increase during transmission
— no bursts
— no alignment transfers, off alignment access results in
bus access violations/

103 channel AmbaAHBbusSlaveMACLInk(IAmbaAHBbusSlaveProtocol poatol)

implements IAmbaAHBbusSlaveMACLink

{
1

108 /+x MAC layer, slave, memory access/

channel AmbaAHBbusSlaveMACMem(1AmbaAHBbusSlaveProtocol protd)
implements I1AmbaAHBbusSlaveMACMem
{

}
A.4 ambaAHBbusTLM.sc: Interfaces and Channel Definitions for Ab-
stract Models

/+ Transaction Level Modelling
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on level of MAC.link,
Can be used instead of AmbaAHBbusMasterMACLink

Allows access of multiple multiple masters and multiple wwa at the
same time.
*/
channel AmbaAHBbusMasterMACLINKTLM {oid)
implements |AmbaAHBbusMasterMACLIink,

IAmbaAHBbusMasterMACMem,
|IAmbaAHBbusSlaveMACLIink,
IAmbaAHBbusSlaveMACMem

{

}

/x Transaction Level Modelling
on level of MAC.link,
Can be used instead of AmbaAHBbusMasterMACLink

Allows access of multiple multiple masters and multiple vda at the
same time.

ATTENTION without arbitration !x/
channel AmbaAHBbusMasterMACLINKTLMNoArbit{oid)
implements IAmbaAHBbusMasterMACLink,

IAmbaAHBbusMasterMACMem,
|IAmbaAHBbusSlaveMACLink,,
IAmbaAHBbusSlaveMACMem

{

}

/+ give each master an identity for arbitration/
channel AmbaAHBbusMasterProtocol TLM (
unsigned int masterNr, // identity of the master
/' tim model containing the bus and the arbitration modegin
IAmbaAHBbusProtocolTLMArbitration busAndArb
)
implements IAmbaAHBbusMasterProtocol
{
}

[« protocol layer implementation master and slave for ATkW
channel AmbaAHBbusProtocolTLM ()
implements IAmbaAHBbusSlaveProtocol,
IAmbaAHBbusProtocol TLMArbitration

{
}

/x same as above but no delta cycle collection of requests
channel AmbaAHBbusProtocolTLMNoDelta ()
implements IAmbaAHBbusSlaveProtocol,
IAmbaAHBbusProtocolTLMArbitration
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Appendix B

Testing Environment

B.1 Source Code Structure

In addition to the previously described files, which contain the AMBA modetstaf
files is required for the testing environment. For ease of debugging artcbttmg, it was decided
that each test group is captured in an own executable. Since for eagndep up to 5 different
models had to be validated, a large number of test executables is creategadumpilation process.

In order to minimize code duplication, as a means of reducing the maintendode ef
in the ongoing project, a single test bench fisstbencltsc was developed. This test bench file
conditionally includes a particular test group and a particular bus model. édissary components
are instantiated and connected in the test bench. This includes the test pednsteiors and the
test slave behaviors, which are connected to selected bus model (see| Bid). Additionally
supporting elements are handled, e.g. in the bus functional model: multiplexbiter, clock
driver, and address decoder. Since the test bench file contains mltywiformation, having a

single version for all test cases significantly simplified changes duringevea@pment time.

N
testMaster 0 testSlave 0

7?

testMaster 1 testSlave 1

Figure B.1: Generic connection scheme
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For each group of tests a separate master and slave behavior were intpniReRCOM-
piler directives were used to conditionally include the selected master arlcslde. For ease of

identification the naming convention below was followed:

testMaster_testName.sh contains common definitions used for both the behavior running in the

master and the behavior running in the slave.
testMaster_testName.sc implements the behavior for the master side of the bus access.
testSlavetestName.sc implements the behavior for the slave side of the bus access.

The test behaviors use an interface to the according MAC layer (either memoen-
dezvous style) as an input. They are connected by the test benchhitihmulgus model under test.
The the partestNamaen the file name above is replaced by the short name as defined in Table B.1
of the according test. The set of files that have to be included for a gartiest setup are selected
using preprocessor directives within the test bench. Table B.1 lists thagestwith their short

names and the macro definitions for test selection.

| Test Name | Section| Short Name | Macro Definition |
Individual Transfers 4.1.1 indiv TEST.INDIV
Random Access using Memory Style |[4.1.2 randMem TEST.RAND
Access
Random Access using Rendezvous 4.1.3 randMsg TEST.RAND_MSG
Style Access
Timing Validation for Bus Functional 4.2 print TESTPRINT
Model
TLM Timing Validation versus Bus 4.3 timTiming TEST.TLM _TIMING
Functional Model
Explicit Timing Measurements for 4.3 memTiming | TEST.MEM _TIMING
Example Transfers
Transfer Performance for Memory Stylés.1 perfMem TEST.PEREMEM
Access
Transfer Performance for RendezvguS.1 perfRand TEST_PERERAND
Style Access
Timing Accuracy of TLM Models 5.2 perfTiming | TEST.PERETIMING

Table B.1: List of implemented tests, with the section where the results are shsGasshort name
that is used for test file naming, and the define statement used in the telsfbetie test selection.
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B.2 Test Executables

As indicated earlier, the test bench will not only select a test group to &euted, but
also a model for the actual transmission. As for the testcases the accorddd (or the stack of

channels) is selected with the precompiler directives as shown in[Table B.2.

| Model Name | Section| Short Name | Macro Definition
Transaction Level Model (A) 3.3 tim USE CHANNEL_TLM
Transaction Level Model (B) 3.3 timb USE CHANNEL_TLM B
Arbitrated Transaction Level Model (A)3.4 prot USE. CHANNEL_PROT
Arbitrated Transaction Level Model (B))|3.4 protb USE CHANNEL_PROTB
Bus Functional Model 3.5 bf USE. CHANNEL _BF

Table B.2: List of implemented bus models, with a reference to the chapteiirergléhe design,
a short name for file naming convention, and the macro name for the chealaetion in the test
bench.

With the short names defined for the test group and the bus model, the natine of
executables can be constructed. All test executables obey the followiming convention:
test channelName_testName. Where thechannelNamés replaced with the short name of the bus
model (3¢ column of Tablé B.2) and thiestNames replaced with the short name of the test group
(39 column of Table B.1). As an example the executable for testing individuadfeenwith the
bus functional model is named: tdst indiv.

With the large amount of test executables an automatic test execution beceressary.
As described in the results section, the test execution is categorized irgqtmts. The functional
tests have a build in failure detection and terminate with an error. The timing validafithe
abstract models with respect to the bus functional model includes andet@etion. A makefile
rule can be used to iterate through all bus models and the tests in these twarieatagd the test
will stop on the first detected error:

make test

A large number of test executions is required for the performance testsethis has been
automated with wrapping shell scripts. Measuring of the execution perfurena the memory and
rendezvous style access over all implemented channels can initiated wittidokérfg commands:
run_perfMem
run_perf Rand
Octave [9], a Matlab-like numerical evaluation environment, is used fonzatioally graphing the

results of the performance tests. Two scrigisr(trans ferTimem andgentrans ferTimeRangan)

70



APPENDIX B. TESTING ENVIRONMENT

generate graphs for the performance in terms of execution speads{erTimesps and
transferTimeRan@&ps see Figure 5/1) and transfer bandwidthags ferBandwidtteps and
trans ferBandwidthRandps see Figure 5.2).

The measurements for the timing accuracy of the implemented models have lapper

into:

run_perfTi m ng

Again the results are automatically graphed by Octave scrigexperfTiminggenerates the
graphic files as listed in table Table B.3. In addition to the files in the table, whielspacific
to the first master, a same set of files is created for the second masternaimeis can be distin-

guished by anM1 instead of MO in the end of the file name.

| File Name | Description \
accurayduration2M2SP.MO0.eps accuracy based on transfer duration (Fig. 5.4)
accuracyfinish.2M2SP.MO0.eps accuracy based on finish time of each transfer

accuracycomulative2M2SP.MO0.eps | accuracy based on cumulative transfer time (Fig. 5.6)
deviationduration2M2SP.MO.eps | deviation based on transfer duration (Fig. 5.5)
deviationfinish.2M2SP.M0.eps deviation based on finish time of each transfer
deviationcomulative2M2SP.MO0.eps | deviation based on cumulative transfer time

Table B.3: Generated graphics for timing accuracy
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