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Abstract—Adaptive filtering is a critical component of modern
Direct Sequence Code Division Multiple Access (DS-CDMA)
systems that operate in a highly dynamic environment. Adaptive
filtering algorithms such as Sample Matrix Inversion (SMI) have
been widely studied for Multiple Access Interference (MAI)
suppression but is infamous for its strenuous matrix operations.
The limited processing time and resources call for Auxiliary
Vector (AV) filtering, a computationally efficient alternative
that has been studied well in literature. Due to the extreme
challenges associated with realization of these techniques on
hardware, most of the work has been limited to simulation based
analysis. Corroborating the simulation results through hardware
implementation is necessary before these filtering techniques
can be adopted by different tactical and commercial radios.
Therefore, the objective of this work is to surpass the hurdles
of implementation and demonstrate the significance of these
adaptive receivers on an actual radio framework. Accordingly,
we analyze the computationally exhaustive SMI against the
mathematically efficient AV to examine the tradeoffs. In our
analysis, the supervised and blind J-divergence rules showed
remarkable performance at good signal strength scenario while
cross-validated minimum output variance rule outperformed at
low signal strength cases. Blind J-divergence rule proved to
be a better choice for DS-CDMA systems with limited data
record and binary phase shift keying modulation (or its variants).
Additionally, we also examine the improvement achieved by
introducing the Hampel preprocessor for both AV and SMI
receivers.

I. INTRODUCTION AND BACKGROUND

Spectral efficiency is an inevitable factor in designing future

wireless communication systems [1]. Supporting more users

(U) in the system for a given spreading code length (G) is

key to increase the system spectral efficiency. The ability of a

Direct Sequence Code Division Multiple Access (DS-CDMA)

system to support more users than the spreading code length

(U > G) to operate simultaneously at acceptable Bit-Error-

Rate (BER) levels is referred to as system overload. Tactical

communication systems adopt DS-CDMA technology for its

narrow band jam resistance capability and low probability of

intercept/low probability of detection support. As the number

of active users in the system increases, the Multiple Access

Interference (MAI) experienced by each user will increase

significantly. This motivates the need for a receiver with good

MAI suppression capability. In these scenarios, static filter

design that does not consider the varying MAI statistics causes

higher BER. Thus, a plethora of adaptive filtering and adaptive

spreading code assignment algorithms has been proposed and

studied in the past several years [2]–[8].

In this paper, we focus on adaptive filtering algorithms and

perform extensive feasibility study using Software Defined

Radios (SDRs). To ensure feasibility, an adaptive receiver must

possess the following attributes: (1) superior MAI suppression

capability, (2) low computational complexity, and (3) the

ability to adapt under short/limited data records (sample size).

One of the commonly used adaptive filtering approach is the

Sample Matrix Inversion (SMI) method [2] where the MAI

is estimated by sample averaging. The sample averaged auto-

correlation estimate of the MAI disturbance matrix is inverted

in this approach to obtain the filter coefficients. This can

be computationally demanding especially as the size of the

matrix grows. Meanwhile, the recursive Auxiliary Vector (AV)

filtering [3] approach was introduced as a computationally

efficient and robust solution which provides superior small

sample support to the system. The data record based AV

filtering criterion [4] serves as a tool to choose the number

of AVs required to estimate the filter coefficients.

The heart of an SMI and AV adaptive filter lies in the

disturbance autocorrelation matrix which constitutes the MAI

as well as the noise distortion to the signal samples. In simu-

lations [9], where the simulated characteristics are known, this

disturbance autocorrelation matrix can be perfectly computed

and the receiver is assumed to have perfect knowledge of

the disturbance matrix. Simulation cuts down the development

time and is an efficient method to validate proposed solution

albeit under several assumptions. Therefore, all previous work

have been limited to simulations and overlook the implications

of realizing the proposed filtering on hardware testbed. In a

realistic scenario, where channel characteristics are unknown

the disturbance autocorrelation matrix has to be estimated

from the received signal samples as in section (II-A). The

challenges involved in the realization of any algorithm on an

actual radio framework would entail bridging the gap between

the assumptions considered during design or simulations and

unknown artifacts (caused by lack of synchronization, hard-

ware limitation, channel conditions among others) that affects

the actual over the air (OTA) signal. Therefore, the major

contributions of this paper can be summarized as follows,

• We implement both SMI and data-record based AV filter-

ing to study the robustness of these algorithms in a MAI

environment. To the best of our knowledge, this is the

first work that implements and validates the SMI and AV
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filtering methods on an actual SDR framework.

• Next, to establish the significance of employing a Ham-

pel preprocessor in an impulsive noise environment, we

realize the AV and SMI based Hampel adaptive receive

chains [8] on the SDR testbed.

• All these techniques are rigorously evaluated OTA using

SDRs to compare the performance of SMI, AV with and

without Hampel preprocessing. This study using actual

hardware aims to validate the performance in realistic

scenarios which will enable rapid transitioning of these

techniques to commercial hardware.

The rest of the paper is organized as follows. In II, we will

elaborate on the Minimum-Variance-Distortionless-Response

(MVDR) class of filters. The experimental framework, setup

and results will be explained in III. Finally, we conclude this

paper by summarizing the findings in IV.

II. MVDR FILTERS

Consider a DS-CDMA system containing U users with

spreading gain or spreading signatures of length, G . The

received signal vector y ∈ C
G is given by

y =
U

∑
u=1

√
Auiusu +n (1)

where su, u = 1,2, ...,U is the G-dimensional user signature,

Eu is the received signal energy, iu ∈ {−1,+1} is the informa-

tion bit of the u-th user and n is the additive white Gaussian

noise. If user-1 is the UOI, the signals from the remaining

users act as MAI.

MVDR filter computes a linear filter that minimizes the

noise variance at its output by maintaining a unity response,

i.e., distortionless in the target or look direction of interest.

The work in [10] demonstrated the extra interference (caused

by synchronization errors) suppression property of MVDR

filtering. If the complex input vector to the filter is y and

F ∈ C
G refers to the G-tap filter coefficients, then the filter

output variance is FHDF, where D = E{yyH} ∈C
G×G , is the

input auto-correlation matrix ( E{.} denotes statistical expec-

tation operation and yH is the conjugate transpose, Hermitian

transposition, of y ). The constraint vector (look direction

of interest), v can be obtained by performing the statistical

cross-correlation between the desired output (pilot/training

sequence), t, and received input vector r, that is given by,

v = E{yt∗}. For a given constraint vector v and perfectly

known input autocorrelation matrix D, the ideal MVDR filter

solution is given by FMV DR = (D−1v)/(vHD−1v) where D−1

denotes the inverse of D.

A. SMI MVDR Filters

In a realistic radio environment, D is unknown and is

therefore estimated from snapshots of received input vector y.

The snapshots are collectively termed as data record and so a

data record of P points can be represented by [y1,y2, · · · ,yP, ].
From a data record of P points, D is sample average estimated

as D̂(P) = (1/P)∑P
p=1 ypyH

p . The filter obtained by using the

sample-averaged estimate D̂(P) is known as the SMI MVDR

filter and is given by FSMI =(D̂(P)−1
v)/(vHD̂(P)−1

v) where,

FSMI ∈ C
G is the SMI filter coefficients. In actual imple-

mentation, the G-tap coefficients returned by FSMI form the

taps of the finite impulse response (FIR) filter. The bit de-

tection can be represented by the mathematical expression

î(l)u = sgn{ℜ
(
FH

SMIyi

)
} where î(l)u denotes the l-th bit of

u-th user and sgn{·} is the sign mathematical operation which

will return a ±1 for a scalar value greater than or less than 0

respectively. ℜ(x) returns the real part of the complex number

x. The sample average estimate D̂(P) is a complex matrix of

size G ×G which implies as G increases, the matrix size will

grow with which comes in the disadvantage tailored to matrix

inversion operation. The matrix inversion has a complexity of

O
(
n3
)

,i.e., the run time may grow cubic, making them less

favorable for practical communication systems.

The authors of [3] showed that a sample covariance

matrix is positive definite and hence invertible with probability

1 only if data record size from which it is estimated is

larger than the dimensionality of the matrix, i.e., P > G . P

has to be adequately large (multiple times G ) for SMI to

perform reasonably well. Thus, in a swiftly varying radio

environment, SMI filter would render impractical leaving way

for a computationally efficient filter estimation which will

exhibit substantial performance improvement under short data

record. This served as the underlying motivation behind the

formulation of AV filters which was introduced and extensively

studied in [4]. In our study, we consider a data record size

P = G as a short data record.

B. AV Filters

AV filter estimation algorithm is a recursive procedure that

generates a sequence of vectors (linear AV filters) which

converges to the MVDR solution. The algorithmic formulation

and convergence was studied in [3] where it was shown that

the sequence of AVs {gd}, d = 1,2, · · · , converges to the

0 vector and hence Fd → FMV DR. The AV filter sequence is

generated as shown in Algorithm 1. This iterative procedure

Algorithm 1 Recursive AV filter algorithm

F0 := v
‖v‖2

for d = 1,2, ...do do

gd :=
(

I− vvH

‖v‖2

)
D̂(P)Fd−1

if gd := 0 then

EXIT

end if

µd :=
gH

d D̂(P)Fd−1

gH
d

D̂(P)gd

Fd := Fd−1 −µdgd

end for

is a greedy and mathematically simpler technique which in-

volves no explicit matrix inversion, diagonalization and Eigen

decomposition. The algorithm intakes sample averaged auto-

correlation matrix D̂(P) and v to recursively generate filter

sequences. The recursive procedure aims at minimizing the

variance/energy (E{|FH
d y|2}) at the output of the filter while

retaining the UOI by imposing the constraint FHv = 1. Mini-

mization of the corresponding filter output variance attenuates
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the interference and noise thus resulting in a maximum SINR

solution [7]. Each AV gd accounts for the interference and

noise in the system. The formal derivation of the scalar µd that

minimizes the filter output energy was presented in [3]. This

would curb all signal components that are not in the direction

of interest. The authors of [4] proposed three data driven

search criterion to select the most successful AV filter from the

sequence for a finite P, namely; (i) Cross-validated minimum

output variance (CV-MOV) rule, (ii) Supervised Output J-

divergence rule, and (iii) Blind Output J-divergence rule. In

the following subsections, we will have a closer look at each

of these rules.

1) CV-MOV Filters: The CV-MOV rule minimizes the

cross-validated sample average variance at the AV filter out-

put and applies to general filter estimation problems. Cross-

validation is a widely used statistical validation technique

[11], of which the particular case that is used in [4] is the

”Leave one out” method. The CV-MOV rule can be summa-

rized by, d̂cv = argmind

{
∑P

k=1 FH
d(P\k)ykyH

k Fd(P\k)

}
where, d̂cv

is the number of AVs that minimizes the cross-validated output

variance, subscript (P\k) denotes the AV filter estimator that

is evaluated from the P-point data record after removing the

k-th snapshot. Let us shed more light into estimating Fd(P\k).

Removing the k-th sample from the P-point data record would

change the input autocorrelation matrix and constraint vector

to

D̂(P\ k) = (1/P)
P

∑
p=1
p6=k

ypyH
p and v̂(P\ k) = (1/P)

P

∑
p=1
p6=k

ypt∗p (2)

where D̂(P\ k) and v̂(P\ k) are the leave-k out input auto-

correlation matrix and constraint vector respectively which

when applied to the recursive AV algorithm will give the

corresponding Fd(P\k). Thus, for a given finite P-point data

record, CV-MOV filter computes the filter estimator F̂
d̂cv

.

2) Supervised Output J-divergence Filters: The supervised

and blind output J-divergence rules are tailored specifically for

binary hypothesis testing (binary phase shift keying (BPSK)

type detection) problems. J-divergence a.k.a symmetrized

Kullback-Leibler divergence is the measure of dissimilarity

between two probability distributions. BPSK detection can

be viewed as a binary hypothesis testing problem where the

detector has to decide between ±1. For any binary hypothesis

testing problem, the probability of error of the optimum

Bayesian detector is lower bounded by a monotonically de-

creasing function of the J-divergence between the two condi-

tional distributions ( ρ0 and ρ1 under hypothesis H0 and H1)

[4]. Thus, minimizing the error probability problem translates

into an equivalent maximizing J-divergence (J(d)) problem.

Supervised Output J-divergence assumes the availability

of a training sequence to compute dissimilarity between the

AV filter output conditional distributions which is measured

as Jtrain (d) =
(
4γ̂2 (d)

)
/
(

δ̂2 (d)
)

where, γ̂(d) and δ̂2 (d) are

the minimum variance unbiased estimator of the conditional

mean and variance under either hypothesis and are estimated

as follows: γ̂(d) = (1/P)∑P
p=1 i(p)ℜ

(
FH

d yp

)
and δ̂2 (d) =

(1/P)∑P
p=1

[
i(p)ℜ

(
FH

d yp

)
− γ̂(d)

]2
where, {i(p)}P

p=1 is the

training sequence. Now the supervised output J-divergence

rule of maximizing J-divergence or minimizing error probabil-

ity of optimum Bayesian detector follows in a straightforward

manner such that d̂train = argmaxd Jtrain (d) where, d̂train is the

number of AVs required to generate filter estimator F̂
d̂train

.

3) Blind Output J-divergence Filters: The blind or unsu-

pervised output J-divergence rule does not require a training

sequence in the computation of J-divergence. Having looked

at II-B2, the supervised implementation can be easily modified

to derive its blind counterpart by substituting the training

sequence {i(p)}P
p=1 with detected bits to arrive at the effective

divergence measure,

Jblind (d) =
4
[

1
P ∑P

p=1 |ℜ
(
FH

d yp

)
|
]2

1
P ∑P

p=1 |ℜ
(
FH

d yp

)
|2 −

[
1
P ∑P

p=1 |ℜ
(
FH

d yp

)
|
]2

(3)

[4, Proposition. 2] states when the filter output SINR is

substantially higher than 0 dB, the blind output J-divergence

Jblind (d) nearly equals the J-divergence between the AV fil-

ter output conditional distributions (ρ0 and ρ1). As studied

in [12], the other widely used divergence measures in the

design of experiments are, Bhattacharya distance B (ρ0,ρ1)
and Kullback-Leibler distance (KLD) K (ρ0,ρ1). Similar to J-

divergence expression in [4, Equation. 10], the corresponding

Bhattacharya and KLD distance measures can be written

as B (d) = γ2(d)
2δ2(d)

and K (d) = 2γ2(d)
δ2(d)

. Therefore, another set

of equivalent divergence rules hence follows which aims to

maximize the Bhattacharya distance and KLD respectively.

Since all the divergence measures in its entirety differs only by

a scaling factor, the final returned filter parameter of interest

d̂ will be the same: d̂ = argmaxd Jtrain (d) = argmaxd B (d) =
argmaxd K (d).

C. Hampel Preprocessor

Hampel 

Preprocessor� ∙ ; ∙ AV filter� Bit detection

� � � ; ∙ ��� � ; ∙ Ƹi0
Fig. 1: Hampel-AV adaptive receiver.

The authors of [8] proposed utilizing a Hampel preprocessor

prior to AV filtering of the received inphase-quadrature (IQ)

samples for scenarios involving impulsive noise in addition

to the MAI. The proposed receiver structure (Fig. 1) with

Hampel preprocessor prior to AV filter will jointly sup-

press the effect of noise and MAI from the received sam-

ples. Each element of the received vector is mapped such

as H(y;ν1,ν2,ν3) =
[
H (y1;ν1,ν2,ν3) · · ·H

(
yG ;ν1,ν2,ν3

)]

where the H (.;ν1,ν2,ν3) transformation is given by,

H (y;ν1,ν2,ν3)

=





y if |y|< ν1,0 < ν1

ν1
y
|y| if ν1 ≤ |y| ≤ ν2,0 < ν1 ≤ ν2

ν3−|y|
ν3−ν2

ν1
y
|y| if ν2 ≤ |y|< ν3,0 < ν1 ≤ ν2 ≤ ν3

0 otherwise

(4)
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The Hampel processed IQ samples are fed into the AV filter

which will perform the AV filtering algorithm as discussed in

Algorithm 1. Replacing the AV filter with SMI filter would

yield the Hampel-SMI receiver which will be used in our

experimental comparisons.

III. EXPERIMENTAL EVALUATION

~13 ft.

Fig. 2: Indoor SDR Testbed.

The experimental testbed comprised of two USRP-N210s

(SBX daughterboard, USRP Hardware Driver (UHD) version

3.8.2); a U-user transmitter (TX) and a UOI receiver (RX)

separated by ≈ 13 f t. as depicted in Fig. 2 in an indoor

laboratory environment. The TX and RX are controlled by a

Linux PC. The system is primarily implemented using C++

and Python utilizing the GNU Radio development toolbox

(version 3.7.5). The system operates at 925 MHz and uses

VERT900 antennas. The frame structure of our system con-

sists of a preamble followed by payload. The preamble is a

127-bit Gold sequence and is used to achieve frame/packet

synchronization. In our implementation, the preamble serves a

second purpose by acting as the training sequence, {i(p)}127
p=1.

This training sequence is used to estimate v and Jtrain (d). In

our implementation, the disturbance matrix D̂(P) is estimated

from the spread and received portion of training sequence.

Thus, the maximum value of P is 127. The payload size is

set to 220 bytes and sending 30 packets per transmission.

Each data point on the BER curve is an average over 30

independent repetitions (each repetition involves a transmit-

receive session).

Transmitter Setup: The U-user DS-CDMA transmitter is

emulated such that a single USRP-N210 will transmit the

multiplexed signal from all U users. The data bits of each user

is differential BPSK modulated and spread with the desired

spreading signature (su). The spreading is achieved using an

interpolating FIR filter whose taps form the spreading signa-

ture bits. The signal stream from each user branch is added to

obtain the multiplexed U-user stream. The multiplexed signal

is root raised cosine (RRC) filtered to obtain the pulse shaping

and is finally transmitted OTA.

Parallel Adaptive Receiver Setup: Our receiver has two

parallel filtering branches which can process the synchronized

IQ samples with two filters of choice. This is done to serve as

a direct comparison between two types of filtering techniques.

We encourage the readers to refer [13] to learn about our

transmitter design and synchronization technique. The filtered

and detected bits are maintained in two isolated queues, the

bit errors corresponding to each queue will be used to assess

a filter with respect to the other.

Discussion of results: Figure 3 evaluates performance of

UOI as the system is loaded by increasing the total number

of users U from 10 to 16 and G = 31. This is denoted by the

user loading factor U/G along the x-axis. The USRP TX and

RX gains are set at 0 dB and 24 dB respectively. The super-

vised and blind J-divergence filter rules demonstrate similar

performance and outperforms CV-MOV, fixed-AV (AV filter

that uses a fixed number of AVs) and SMI filters for increasing

U/G . CV-MOV rule outperforms both fixed-AV and SMI.

Figure 4 plots the BER performance of a UOI for varying

USRP TX gain. The system uses a Gold spreading sequence

matrix of G = 31 and 9 users in the system. At lower TX

gains, CV-MOV outperforms both supervised and blind filter

rules, and vice-versa at higher TX gains. This corroborates

the Proposition 2 in [4] that for low filter output SINR values,

the J-divergence approximation is less accurate. All three filter

rules are superior to both fixed-AV and SMI filters validating

the benefit of choosing the appropriate number of AVs. Next,

we evaluate the BER performance of a UOI versus data record

size P which is varied from lowest setting (P = G = 31)

to 124 in steps of 31. The fixed-AV in our testing uses 20

AVs to estimate filter coefficients. In Fig. 5, for a short data

record (P = 31), supervised and blind filter rules are superior

to CV-MOV, fixed-AV and SMI but as P increases CV-MOV

perform slightly better than supervised filter rule. Blind filter

rule outperforms all the filters for varying P. The CV-MOV

based AV filter outperforms the fixed-AV and SMI filters.

To evaluate the robustness of Hampel based receiver against

impulsive noise, we inject impulsive noise following Gaussian

noise mixture model as in [8] to the received IQ samples. In

[8], authors do not compare the Hampel-AV’s performance

against plain-AV (AV receiver without the Hampel prepro-

cessor). Identifying and validating the performance improve-

ment if any in an impulsive noise scenario, is paramount to

motivate the need for a Hampel preprocessor in the system.

Thus, we implement and compare the performances of plain-

SMI, Hampel-SMI, plain-AV and Hampel-AV receivers in the

presence of impulsive noise. In Figs. 6, 7 and 8, we denote

AV receiver utilizing 2 AVs as plain-2 AV and Hampel based

AV receiver which requires 2 AVs as Hampel-2 AV. Here

again, the DS-CDMA system is constituted by Gold spreading

sequence matrix of G = 31 and 9 users in the system where

1 user is considered the UOI. The USRP RX gain was fixed

at 8 dB and the TX gain was varied from 0 dB to 20 dB in

steps of 4 dB for the Fig. 6 and Fig. 7. Figure 6 evaluates

the performance under short data record (P = G = 31). The

small P setting caused severe data starvation in plain-SMI

and Hampel-SMI although the BER curve of Hampel-SMI

is slightly better than plain-SMI in the low TX gain region.

Evidently, Hampel-2 AV is performing better than plain-2 AV

implying the impulsive noise suppression capability of the

Hampel preprocessor. Now, we repeat the experiments for a

larger P and plot the performance in Fig.7. Notably, the larger

P have mitigated the data starvation issue of plain-SMI and

Hampel SMI. The higher P has also improved the performance

of plain-2 AV filter in contrast to its performance under small
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P. Figure 8 evaluates the performance under varying P. The

USRP TX and RX gains are set to 16 dB and 8 dB respectively.

In Fig. 8 Hampel-2 AV performs better than plain-2 AV for

small values of P but as P increases, they show comparable

performance (as is the case with Hampel-SMI and plain-SMI).

In all the three cases, Hampel-AV exhibited superior BER

performance in contrast to Hampel-SMI.

IV. CONCLUSIONS

In this paper, we have drawn a comparative experimental

study of data record based AV, fixed-AV and SMI filters with

and without Hampel preprocessing on a USRP-N210 testbed.

The BER performance of UOI in three different test scenarios

were studied. Both J-divergence filters performed remarkably

well at varying U/G . At high TX gain scenario, both J-

divergence based AV filters exhibited superior performance

which validated [4, Proposition. 2]. CV-MOV and supervised

J-divergence filters performed equally well in the varying data

record case with blind J-divergence filter being the best of

all. Thus, blind J-divergence filter can provide exceptional

BER performance for DS-CDMA systems (formulated as a

binary hypothesis based detection) at a good signal-to-noise

ratio (i.e. high TX gain) and limited data record (i.e., 31 < P

< 124) scenario. The non-requirement of a training sequence

for blind J-divergence rule makes it an even better choice. The

evaluation of Hampel based AV receiver exhibited better BER

in impulsive noise scenario as compared to the one without

Hampel preprocessor. Additionally, we demonstrated the data

starvation caused by short data record in SMI and Hampel-

SMI receivers and how it was corrected by large data record.
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