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ABSTRACT

Broadcasting (distributing a message from a source to
all other nodes) is a fundamental requirement of dis-
tributed computing. In this paper we propose determin-
istic, delivery-guaranteed distributed protocols for solv-
ing this problem in wireless networks that have a peer-
to-peer (i.e., non-cellular) organization. Deterministic
and delivery-guaranteed protocols are defined as solutions
which are always executed within an a priori determined
period of time, and such that their success does not de-
pend on, or require, collision detection mechanisms. The
proposed protocols are distributed in the sense that they
can be executed at each node without topology knowl-
edge and, moreover, they do not assume any underly-
ing network architecture. We characterize the broadcast
problem as a combinatorial problem for the solution of
which we propose here a novel, explicit and completely
deterministic method. The derived protocol is proved to
complete the broadcast of a message in time that is poly-
logarithmic in the size n of the network, and we prove
that it is optimal for networks with specific topologies.

Keywords: Broadcast Protocols, Distributed Algo-
rithms, Wireless Networks, Mobile Computing.

1 INTRODUCTION

In this paper we are interested in devising deterministic
and delivery-guaranteed algorithms which can be used for
implementing broadcast primitives in multi-hop wireless
(generally, radio) networks. Informally, broadcast is the
task initiated by one node, called source, that wishes to
send a message m to all the nodes in the network. The
term multi-hop radio network, of which peer-to-peer net-
work is a synonym, refers to a set of geographically dis-
persed nodes which may be stationary or mobile. One
of the basic characteristic of these networks is that sev-
eral nodes may share the same transmission channel.
Thus, selective transmission is impossible: Whenever a
node transmits, all of its neighbors (nodes within hearing
range) will receive the message, and collision of received
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message may occur if some transmissions overlap, pre-
venting correct message reception.

The broadcast problem has already been extensively
studied for wireless peer-to-peer networks. For instance,
in [1] a deterministic and centralized broadcast protocol
is introduced which works in O(D log2 n) rounds.? From
the result proven in [2], such a protocol is optimal for
networks with constant diameter. For networks with
any (i.e., non-constant) diameter a protocol by Gaber
et al. [3] can be applied that works in O(D + log®n)
rounds. This protocol is proven to be optimal for net-
works with D € Q(log® n). Centralized solutions guaran-
tee a bounded delay on the message delivery, but require
that each node in the network knows the entire network
topology. This is a strong condition, which may be diffi-
cult to maintain especially in mobile environments. In [4]
a randomized distributed broadcast protocol which works
in O(D logn+log? n) rounds was given. In 1993 Kushile-
vitz et al. [5] proven that such an algorithm is optimal.
Randomized solutions can, however, be applied only to
non time-dependent applications, i.e., when unbounded
delays can be tolerated during the broadcast process. A
deterministic and distributed solution has been recently.
proposed in 6] for multi-hop networks. In this case, how-
ever, the broadcast protocol assumes the existence of an
underlying multi-cluster architecture (namely, it needs a
hierarchical organization of the nodes), and thus, it is not
directly suitable for networks without a cellular organiza-
tion like peer-to-peer networks.

In this paper we are interested in solutions to the broad-
cast problem which overcome the above mentioned limi-
tations. The protocols we are looking for should therefore
have the following characteristics: they are deterministic,
so that an a priori known bound on the maximum delay
of message transmission can be easily determined. They
are delivery-guaranteed, in that the correct delivery of a
message is always guaranteed within a bounded amount
of time, and they should be completely distributed, i.e.,
we assume that the nodes in the network do not have an a
priori knowledge of the entire network topology and not

! In order to create a uniform way of comparing these protocols
we represent their complexity as the number of rounds required by
the protocol for broadcasting a message m. The parameters used for
expressing such a complexity measure are n, the number of nodes
in the network, and D, the diameter of the network.
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even of their neighbors. The transparency to topology
changes that derives from the previous properties makes
these protocols the required basis for low-level protocols
in all those wireless and mobile situations in which net-
work state and control information has to be efficiently
disseminated among all the nodes of the network without
depending on the network state itself. For instance, they
can be used in the case of highly reconfigurable networks,
and whenever the rate of change of the network topology
does not allow an efficient gathering of topological infor-
mation, such as in solutions that use minimum spanning
trees (see, e.g., [7]).

Recently, in [8] it has been proven that any broad-
cast protocol which satisfies the required properties stated
above needs at least Q(Dlogn) rounds for terminating
successfully. On the other hand, it is easy to obtain a
delivery guaranteed broadcast protocol that is determin-
istic and distributed and which work in O(Dn) rounds.
In other words, an exponential gap exists between the
upper and the lower bound, leaving room to explore new
more efficient protocols. In this paper we show how in
many cases this gap can be bridged. After presenting a
general scheme for distributed broadcast and a simple al-
gorithm that completes the broadcast in O(Dn) rounds
(Section 3), in Section 4 we introduce a family of de-
terministic, delivery-guaranteed and distributed protocols
for broadcast which work in O(D2h logh 1) rounds, where
h, 1 <h <logn, is such that 2" bounds A, the max-
imum degree of a node in the network. These protocols
rely on a new method introduced here (Section 4.1) for
solving deterministically the problem of the correct deliv-
ery of a message on a multi access channel with no need
of topology knowledge, acknowledgments or collision feed-
back mechanisms. For networks with degree bounded by
2Enl e O(E%), they improve the O(Dn) upper
bound. Our characterization permits to prove the tight-
ness of two previously proven lower bounds for the broad-
cast of a message in peer-to-peer networks with specific
topologies. All the protocols presented in this paper do
not assume any underlying network architecture.

2 PRELIMINARIES

We model a peer-to-peer network by an undirected graph
G =(V,E) in which V = {p1,...,Pn} is the set of (radio)
nodes and there is an edge (Pi,p;) € E if and only if p; is
in the hearing range (namely, can hear the transmissions)
of p; and vice versa. In this case we say that p; and p; are
neighbors. Due to mobility, the graph can change in time.
The set of the neighbors of a node p will be indicated
by I'(p) and its cardinality, 5(p) = [T'(p)l, is called the
degree of p. With A = max{§(p):p € V} we indicate the
maximum degree of the network G. The distance d(pi,p;)
between two nodes p; and Pj, 1 £ 1,5 < n, is defined as
the length of the shortest path (minimum number of hops)
between p; and Pj. The maximum distance between any

pair of nodes is called the diameter D of the network.
Given the source s of a message, all the nodes p such
that d(s,p) = £ < D are said to belong to the fth layer
of the network, 0 < ¢ < D. Every node in the network is
assigned a unique ID which we assume denoted 1 through
n.

A deterministic distributed broadcast protocol for peer-
to-peer networks TT is a protocol which is executed at each
node in the network in the following way: a) Time of
execution is considered to be slotted and the time slots,
or rounds, are numbered 0,1,... At round 0 a specific
node s, called the source, transmits a message m; b) In
each round a node acts either as a transmitter or as a
receiver. A node receives a message m in a specific round
if and only if in that round it acts as a receiver and ezactly
one of its neighbors acts as a transmitter. In this case m
is the same message transmitted by the neighbor; ¢) The
action of a node in a specific round is deterministically
determined by its initial input, i.e., its own ID (my_ID),
N, and the degree of the network A; d) The broadcast
is completed at round t if all the nodes have correctly
received the message m at one of the rounds 015 vinits

Thus, the broadcast proceeds according to a schedule
L= il T des according to a list of transmis-
sions (transmission sets) which specifies for each round
i the set of nodes which act as (potential) transmitters,
1 <1< t. During the broadcast process, the nodes that
in a given round have received a message m are said to
be covered by the broadcast. The nodes that have not
received m are said to be uncovered. Given a node p,
Ie(p) (Tu(p)) will indicate its (un)covered neighborhood.
Finally, a set H of covered nodes is said to be a conflict-
ing set if Npenlu(p) # 0. In other words, if at least two
nodes that have received the message have an uncovered
neighbor in common, then they form a conflicting set.
In a mobile system, conflicting sets are “dynamic” in the
sense that their cardinality and the identity of their nodes
can depend on the mobility of the nodes. In the case of
peer-to-peer networks with mobile nodes, we assume that
at least one covered node remains in the hearing range
of any neighboring uncovered node, i.e., we require that
any node has the possibility to receive the message. (This
does not imply that the network has to be static during
the entire broadcast process, but it means that in order
for each node to receive the message, the network has
always to be connected.)

3 A BROADCAST SCHEME

The problem of distributed broadcast as stated in the pre-
vious section is that of scheduling, in a deterministic way,
the transmissions of the covered nodes in order to guar-
antee the correct delivery of the message independently of
the possibility of collisions and without the need of a colli-
sion detection mechanism. In order to solve this problem,
here we assume that the time axis is divided into units
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called (transmission) frames. Each frame is, in turn, di-
vided into rounds, numbered 1 through T, where T > 0

is the frame length. We assume that the nodes are syn-

chronized on a frame base (namely, we assume that each
node has a counter which is set to 1 at the beginning of
each frame and that is incremented by 1 with each sub-
sequent round) and that the round length is the same for
each node.? Each node that either generated or received a
message m is allowed to transmit it only in certain rounds
in a frame that it calculates by means of the following:
PROCEDURE Round_Numbers(n,A);

begin
Transm:=Get_The_Rounds (1, A)
end;
The set Transm C {1,...,T} will contain the round num-

bers in which the node is allowed to transmit the mes-
sage. By specifying the function Get.The_Rounds we can
get different broadcast protocols.

As soon as a node either has a message m ready for
transmission or receives m, it waits for the beginning of
a new frame. At that time, it will start to check when
it can transmit m. Specifically, the node will test if the
current value of the counter belongs to Transm, and when
this is the case the node sends m.

A simple inductive argument allows us to prove that
the described scheme achieves the broadcast of m in a
layer by layer fashion. Thus, the broadcast is completed
in t € O(D7T) rounds as soon as we can find a suitable
function Get.The_Rounds which allows us to prove that
m is correctly forwarded from a given layer to the subse-
quent one in the T rounds of a frame. What we need is
a (deterministic) method to distribute the nodes to the
transmission sets in a frame in such a way that it is al-
ways guaranteed that at least one set will contain only one
node from any conflicting set H C V (i.e., in the round
corresponding to that transmission set, no collision will
occur). More than that, we want such a method to gen-
erate a schedule that is independent of the local current
conditions of the network, i.e., such that each node has
no need to know its current neighbors to have the guar-
antee of the correct delivery of the message (complete
distributivity). Once given the function Get.The_Rounds
as just described, we obtain for the broadcast the follow-
ing desirable properties: 1. Scalability: Anytime we want
to add a new node to the network, each newly inserted
node can issue a broadcast message requesting to update
the Transm set of each node according to the new value
of n. Each node, then, has only to execute the above
procedure Round_Numbers. 2. Parallel broadcast: More
than one message issued by different source nodes can be
traversing the network. Indeed, the complete distributiv-
ity of the method used to generate the broadcast sched-
ule, guarantees the correct reception of a message sent
by any neighbor of a given node. These neighbors, of
course, may have to send different messages. 3. Mobility :

2 The synchronization of the nodes can be achieved, for instance,
by using GPS—Global Positioning System [9].

Being the schedule independent of the current neighbor-
hood of a node, the topology of the network may change
without affecting the broadcast process. Moreover, every
node which has moved from an uncovered neighborhood
to a covered one during the broadcast, must at some time
be the neighbor of a node which has already received the
broadcasted message m, and will receive m from it using
a failsafe recovery procedure such as in [10].

One of the simplest possible broadcast algorithm that
meets the previous requirements/properties is obtained
using the following:

FUNCTION Get-The_Rounds (m,A);

begin

output my_ID

end;

Each node is allowed to transmit just once in a frame:
when the counter value equals its own ID. This simple
method generates a layer to layer schedule for which T =
n. Due to the uniqueness of the nodes IDs, it is clear
that at most one node will transmit in a round, so that
no collision can ever occur. Each time anew node is added
to (or removed from) the network, all that the other nodes
need to know is the new value of n, in order to modify
the frame length value. Such a broadcast protocol TT has
a schedule Ly = (T4, ..., Ty) such that each Tj, 1 <j < t,
is a singleton and t € O(Dn).

In the following section we propose a determinis-
tic distributed broadcast algorithm which maintains the
delivery-guaranteed property. This algorithm completes
the broadcast in polylogarithmic time, and in sparse net-
works (i.e., in networks with a “small” or with a constant
maximum degree A) it has to be preferred to the linear
protocol just described.

4 POLYLOGARITHMIC
BROADCAST

As noticed in Section 3, the problem of the correct for-
warding of a message between any two consecutive layers
of a wireless network is that of distributing the nodes to
the transmission sets in a frame in such a way that in
at least a transmission set there are no two nodes from
the same conflicting set. Here we present a novel method
(division method) that, given a non empty set of inte-
gers P (the nodes’ IDs), distributes the elements of any
non empty R C P (a conflicting set) in a family & of
T subsets of P (the layer to layer schedule; each set cor-
responds to a different round) in such a way that the
delivery-guaranteed property required for the broadcast
is always obtained. Put differently, so that there exists
at least a (transmission) set F € . such that [FNR| =1
(in the round corresponding to F only one node from R
transmits—in that round the delivery is guaranteed). The
method is completely deterministic and constructive and
it can be executed at each mode p in order to get the
numbers of the rounds in which p is allowed to transmit.
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Each node needs only to know global information, such
as n and A.

In the remaining part of this section we first describe
the division method, then we present a family of broad-
cast algorithms based on the method and prove their cor-
rectness. For the sake of simplicity, from now on we con-
sider n and |P| powers of 2. We also assume here that only
one message m is traversing the network. All logarithms
are to be considered to be base 2.

4.1 THE DIVISION METHOD

Consider a non empty set of integers P. In this section we
describe a general method for deriving from P a family of
subsets of P that hits any non empty R C P, i.e., a family
& C 2P such that there exists at least a set F € & for
which [FNR| = 1. In the following, with the operator —s
we will partition a set of integers I into two subsets I;
and I; with the same cardinality.

The method is based on the following procedure that
given a set of integers P, IP| > 2, divides P into 2log|P|
distinct sets.

PROCEDURE Divide (1);

begin

I— ol,el;

Tli=ol:

T2i=el:

fori:=2 to log|l] do
begin
T2#-1 = T2 .
for j:=1to 21-2 do

begin

0}_] R °i2j—1>eiz;'—15

e;z-l 1—-) o}z-, €355 - .

B =pa iy 0351 Uo3;;

T2 .=T2iy eizj_1 U ef;_,-

end

end
end;

The functioning of the Divide procedure is explained in
the following example.
ExaMPLE 1. Consider P = {1,...,16). The following is the
output of the Divide procedure called on P. Starting from

P ={1,2,3,4,5,6,7,§,9,10,11,12,13,14,15,16,}

1 1
1 b

o

we will have:

T'={1,2,34,56,7,8 T2={9,10 11,12,13,14,15,16}
0% e‘17-

) )
2 2
92 €2

T ={,2.34,210,11,12) T*={5,6,7,8,13,14,15.1¢
N M N
o3 e3 o3 e3 o3 e3 o3 e3
1 1 2 2 3 3 2 4
TP ={1, 2 9 500 , 13, 14
K/\/\S/’\if\/\oz\i/‘\/}
0% e‘]‘ o? ed o3 e‘_.:’ o} el

T = 407 1 16}
Lot .8.00.72,75,.16)
o5 8 L el ot ed g o

17 =1{1,8,5,7,9,11, 13, 15] T%=1{2,4,6,8,10,12,14, 16).
It is easy to verify that for each i, 1 <1 < logl|P|, (a)
TZi—] n TZi 2 @7 TZ-L—] U,TZ’L — P, (b) ,TZi—ll - ,TZi' £
[P|/2. This implies that after h, T < h < log|P|, calls of
the Divide procedure every time on a set of its output, the
last output will be sets with cardinality %. Furthermore,
(c):forieach j, 1 £ § < 21-1 45 o}l = [P|/2t (= le]).
Another useful property of the Divide procedure is stated
in the following lemma.

Lemma 1 Given a subset R of a set of integers P, |R| >
2, there always ezists an i, 1 <1 < log|P|, such that
R is partitioned by the procedure call Divide(P) into two
non empty subsets Ry and Ry such that Ry C T2 gpg
Ry C TZ,
Proof We show that as far as R C T2i~! @
log |P| — 1, then there exists a j, 1 <j <27 such that
R C 0o} (e}) and that as soon as this is o longer true we
have the thesis. We proceed by induction on the number i
of subsequent partitions of the set P. Let R C o] =T (the
case R C el =T2is symmetric. The case in which (Ry =)
RNT' #0 # RNTX=R,) is obvious). The base case of
induction (i = 1) is then trivial. Now, suppose that for a j.
1<j <273 wehave R C 0{™" (the case with R C eillis
analogous). We know that in the next iteration of the main
loop in the Divide procedure we will have:
051—] =0 €21,

and we have the following two cases: either R C 0351 (e5;_1),
or R is partitioned into two non empty subsets Ry and R, such
that Ry C 03_; and R, C e;_, which implies the thesis
(R1 € T#~" and R, C T3,

Notice that the second case always occurs when

0712 R 2 (10}~"1/2) = [0}, _,]

(see (c), above), whence the thesis into log |P| steps. B
Consider now the following function (where ¢ > 1 is
an integer variable that takes values < [I] and h ¢
{0,: ... logc}):
FUNCTION Smash (1);
begin
if Il = 5%
then output I
else
begin
Divide (1);
for j:=1 to 2log|ll do Smash (T))
end
end;
EXAMPLE 2. Consider P = {1,...,16} and ¢ = |P| =

16. Then, when h = 0, the function call Smash (P) re-
turns P as output. When h = 1 the same call will out-
put the 8 sets as in Example 1. When h — 2, we ob-
tain the 48 sets output by the Divide procedure succes-
sively called on the sets T',...,T® For example, Divide (i)
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gives the 6 sets T' = {1,2,3,4},T? = {5,6,7,8,, T =
(1,2,5,6},T* = {3,4,7,8},T° = {1,3,5,7), T¢ = {2.,4,6,8);
Divide(T?) gives the 6 sets T' = {1,2,3,4},T? =
19101012}, T2 =" 11,2 9105 T4 =" {3,4,11,12}, 75, =
{1,3,9,11},T¢ ={2,4,10,12}, and Divide (T*) gives the 6 sets
T' = {5,6,7,8, T2 = {13,14,15,16}, T? = {5,6,13,14)}, T* =
{7,8,15,16},T°> ={5,7,13,15} and T = {6, 8, 14, 16}. °

It is easy to verify (see also (b) above) that, in gen-
eral, for a set of integers P and ¢ = [P|, the function

call Smash (P) outputs T = Zhﬂg‘;o’ log %’;—' sets, each one

with cardinality I—Z-}:;], 0 < h <log|P|.® Furthermore, when

c = |P|, the depth of the recursion is h. It is worth notic-
ing that h also indicates the number of subsequent ap-
plications of the Divide procedure to subsequently halved
sets.

We show now that given a non empty set of integers P
and ¢ = [P, for each h, 0 < h < log|P|, the function call
Smash (P) returns a family of subsets of P that hits any
non empty set R C P such that |R| < 2+,

Theorem 1 Given a non empty set of integers P and
the integer ¢ = |P|, for each h, 0 < h < log|P|, the Smash
function called on P returns a family & C 2P such that
for any non empty set R C P, |R| < 21 Z hits R.

Proof Easily obtained by induction on h, the depth of the
recursive calls of the Smash function on subsequently halved
sets. °

4.2 THE PROTOCOL

The Get-The_Rounds function used by each node (by
means of the Round Numbers procedure, see Section 3)
uses a slightly modified version of the Smash function de-
scribed in the previous section. Instead of returning a
set, the following Find_Rounds procedure divides the set
P ={1,...,n} of nodes’ IDs into T = 2"‘]'1;‘___‘01 log 3+ sets,
1 < h < logn, and checks if the ID of the node that exe-
cutes the Round_Numbers procedure (my_ID) belongs to
the resulting sets.
FUNCTION Get-The_Rounds(n,A);

begin
C:=n;
h = [log A;
0:=2M1"" log &
Temp := 0;

Find_Rounds ({1,...,n},0,0);
output Temp

end;
where
PROCEDURE Find_Rounds (I,x,y);
begin
if ]I = &%

Zh
then if my ID € I then
Temp := Temp U{o(x — 1) +y}
else begin

3 When h = 0 we stipulate that TI;:J log lZ—Pi—l =.

Divide (1);
ifx=0
then for j :=1 to 2logll|
do Find_Rounds(T3,j,1)
else for j ;=1 to 2log]l|
do Find_Rounds (T7,x,3)
end
end;

ExXAMPLE 3. Suppose that node p such that myID= 2
runs the procedure Round_Numbers(16). Then, when h = 1,
the previous Get_The_Rounds function will output the set
{1,3,5,8}, ie., during a frame of length T = 8, node p
is allowed to transmit the message in rounds 1,2,3 and
8. Indeed, if we consider n = 16, the transmission sets
Ti,...,Ts of a frame are the 8 sets output by the Divide
procedure called on {1,...,16}. More precisely: T; = T%,
1 < i £ 8 (Example 1). When h = 2, we have Transm
={1,3,6,7,9,12,13,15,18,43,45,47}, i.e., during a frame of
length T = 48, node p is allowed to transmit the message in
rounds 1,3,6,7,9,12,13,15,18,43,45 and 47. The transmis-
sion sets Ty, ..., Tag of the frame are the 48 sets output by the
Divide procedure called on the sets T,..., Ts (Example 2). o
Now we prove that the Get_The_Rounds function de-
scribed in this section allows a delivery-guaranteed for-
warding of a message m between any two consecutive
layers.

Proposition 1 Consider a wireless network with maz-
imum degree A = 2" — 1,1 < h < logn, in which
each node p ezecutes the Round_Numbers procedure with
the previous Get_The_Rounds function. Then, in a frame
of length T = 2“”;‘;01 log 7%, the message m is correctly
forwarded between any two consecutive layers.

Proof The proof that any conflicting set R C P is distributed
among the transmission sets of a frame in such a way that
no collision occurs in at least one round relies on Theorem 1,
noticing that the two integer parameters x and y used by
the Find_Rounds procedure do not interfere with the division
method: they just deal with the problem of the correct at-
tribution of the rounds to the node p. As for this last prob-
lem, we note that as soon as the Get_The_Rounds function
calls the Find_Rounds procedure with the actual pé.rameters
P={1,...,n}, x =0 and y = 0, the else branch of the out-
ermost if is executed (c = n and for each h, 1 < h < logn,
N # 5%). Then, being x = 0, the then branch of the in-
nermost if is executed (this is the unique time in the whole
recursive execution of the procedure) and the Find_Rounds
procedure is recursively called on the 2logn sets returned by
the Divide({1,...,m}) call. If h = 1, each one of the 2logn
calls of the Find-Rounds procedure (Find_Rounds(T'j,1),
1 <j < 2logn) executes the then branch of the outermost
if and if the membership condition is satisfied, the set Temp
(it will be the set Transm of the node p) is updated with a
round number. More precisely, in this case the round number
iso(x—=1)4+y =x—141=x, and beingx =j, 1 <j < 2logn,
each one of the 2log n rounds is correctly assigned.? If h > 1,

4 Notice that, when h = 1, we have o = 1 provided that we
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then each one of the 2logn calls of the Find_Rounds proce-
dure executes again the else branch of the outermost if, but
this time the condition of the innermost if is no longer verified
(x=13,1<j<2log 1) and the successive recursive calls of the
Find_Rounds procedure are of the form Find_Rounds (T7,x, j),
1<j<2log|lland 1< x < 2logn. After h—1 such recursive
calls, the Find_Rounds procedure finally executes the then
branch of the outermost if, and if the membership condition
is verified the set Temp is updated. As noticed in Section 4.1,
each one of the initial set output by the first call of the Divide
procedure is in turn divided into o = 241t og 7 trans-
mission sets whose round number is o(x—1 )y, 1 <x < 2logn
and 1 <y < 2log sr=T. The total number of rounds needed
is thus T = o02logn = 2"T7" log . .
According to the general scheme of Section 3, this section
is summed up by the following:

Theorem 2 The algorithm obtained using the previous
Get_The_Rounds function completes the broadcast in t €
Oo(D2" loghn) rounds in wireless networks with mazi-
mum degree A =2"*1 — 1,1 < h <logn.

Due to the general lower bound on deterministic dis-
tributed broadcast protocol in (mobile) wireless networks
proven in [8], when h = 1 (namely, for wireless networks
with maximum degree A = 3) the bound proven in The-
orem 2 is tight. Furthermore, due to the lower bound
on the broadcast of a message in wireless networks with
constant diameter presented in [2], when h =2 (namely,
for wireless networks with maximum degree A = 7) and
D is a constant, the presented algorithm is optimal.
When h =logn —1, i.e., in wireless networks with the
maximum possible degree, the above presented algorithm
completes the broadcast in O(Dnlog'®¢™n) rounds, so
that the O(Dn) algorithm presented in Section 3 is
to be preferred. In general, in wireless networks with
A = 2" — 1 the above family is to be used when
h € O(ﬁﬁ);—n). Indeed, for each integer h, 0 < h <
Tglh%g%ﬁ’ is (2logn)r < n: starting from (2logn)* < n
we have log(2logn)™ < logn, h(log2logn) < logn,
h(loglogn +log2) < logn, h(loglogn + 1) < logn, and

thus h < m%ﬁi%ﬁ- Therefore, being (2logn)* > 1 =

2T log 2,0 < h < logn (the proof is easily obtained

by induction on h), for wireless networks with maximum
log n

degree A = 2lmeen=T)+1 _ 1 the broadcast algorithms

presented in this section is faster than the O(Dn) one.

5 CONCLUSIONS

In this paper we have presented two different algorithms
for the deterministic, delivery-guaranteed and distributed
broadcast of a message in peer-to-peer networks. The first
one is a simple algorithm that completes the broadcast in
O(Dn) rounds. The second algorithm is in fact a family

define IT;:]] log 3% =1 (see also Note 3).

of protocols which work in O(D2" log"n) rounds, where
h, 1 < h <logn, is such that 2" bounds A, the max-
imum degree of (a node in) the network. When A = 3
we obtained an upper bound that matches the general
lower bound presented in [8]. Moreover, due to the result
in [2] on constant diameter networks, when A = 7 and
the diameter of the network is a constant, our algorithm
is optimal. Obtaining these results became possible by
characterizing the broadcast problem as a combinatorial
problem for the solution of which we proposed a novel, ex-
plicit and completely deterministic method. For networks
with degree bounded by 2™*1, h € O(%E2), the cor-
responding algorithms improve the O Dn) upper bound.
Moreover, our solution does not assume any underlying
network architecture thus being suitable for pure ad hoc
networks.
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