Workload Analysis for Network Processor Design

Ramaswamy Ramaswamy, Ning Weng, Tilman Wolf
University of Massachusetts Amherst

Network Processing

- Computer Networks are becoming more versatile
 - Not just “store-and-forward”
 - More functionality performed “inside” network
- Network Address Translation (NAT)
- Firewalls
- TCP/IP offloading
- Virtual Private Network (VPN)
- Routers are equipped with port processors
 - “Network processors” (NPs)
- NPs are system-on-a-chip multiprocessors
 - Different from workstation/server processors
 - Simple, highly parallel workload
- System-level architecture of NPs is area of current research

Network Processors

- Router architecture
 - Ports connected through switching fabric
 - Processing is done on port
- Network Processors
 - Optimized for simple, I/O intensive tasks
 - Employ co-processors for address lookup, checksums
- What is best system architecture for NPs?
 - Processing resources, interconnects, memory hierarchy
 - Depends on workload
- Our approach:
 - Workload analysis to understand application requirements
 - Analytic performance modeling to find optimal architecture

Outline

- Introduction
- Workload simulation
 - PacketBench tool
- Workload Analysis
 - Annotated DAG generation
 - Instruction clustering
- Task mapping for heterogeneous NP designs
- Current research problems
- Summary
NP Workloads

- Useful to understand workload characteristics
 - Develop better network systems
 - Develop applications that benefit from network processing
 - Allocation of processing tasks to NP
- Network processing workload is unique
 - Different from workstation behavior
 - E.g., simplicity, high I/O
 - Dominated by small tasks
- Need to characterize processing behavior
 - Simulation
 - Need to simulate realistic packet processing environments
 - Separate application characteristics from framework

PacketBench

- PacketBench framework
 - Packet management
 - Simple API to application
- Simulation on SimpleScalar
 - ARM RISC processor typical for NP processing engines
- Selective accounting considers only network processing application instructions
- Simulates processing or real packets with real applications
- Results:
 - Various application metrics (processing cost per packet, cache misses)
 - Run-time instruction trace

Workload Analysis

- Run-time instruction trace analysis
 - Better than static analysis (considers all dependencies)
 - Representative because of uniformity in packet processing
- Instructions and dependencies for directed graph
- Use clustering algorithm to group instructions
 - “Minimum Local Ratio-Cut”
- Resulting DAG is architecture-independent representation of application
 - Used for further analysis and mapping to processing resources

Example Annotated DAGs

Flow classification:

- ADAG size depends on termination criteria of clustering algorithm

IPv4 lookup:
Identification of Co-Processing

- NPs use co-processors for special tasks
 - Frequently used
 - Suitable for dedicated logic
- Application analysis can identify potential co-processing task
 - High reuse of same code (loops)

Task Mapping

- Mapping from ADAG to architecture yields schedule
 - Execution time of ADAG node depends on hardware resource
- Optimization criteria
 - Low delay or high throughput
 - Heuristics for approximation of NP complete problem

Current Research Questions

- Given application analysis and mapping algorithm, what is the optimal system architecture for an NP?
 - How do different applications impact architecture (e.g., parallel processors vs. pipelining)?
 - How does the optimal architecture depend on constraints (e.g., chip size, power consumption)?
- What programming abstractions are suitable for heterogeneous processing environments?
 - Programmers should be able to exploit
- How to model processing time for packets?
 - Processing causes considerable packet delays for complex applications
 - Needs to be considerable in network simulations

Summary

- Network processing is becoming increasingly important
- Workloads for NPs are very different from workstations/servers
 - Simple and highly parallel
- NP workload analysis
 - Annotated DAG
 - Instruction clustering
- DAG mapping to heterogeneous NP architectures
- Useful to address system-level NP design questions