2007 ITRS

Emerging Research Materials [ERM]

December 5, 2007

Michael Garner – Intel
Daniel Herr – SRC
2006 - 2007 ERM Participants

Hiro Akinaga
Bob Allen
Nobuo Aoi
Koyu Asai
Yuji Awano
Daniel-Camille Bensahel
Chuck Black
Thomas Bjornholm
Ageeth Bol
Bill Bottoms
George Bourianoff
Alex Bratkovski
Marie Burnham
William Butler
John Carruthers
Zhihong Chen
U-In Chung
Rinn Cleavelin
Reed Content
Hongjie Dai
Joe DeSimone
Jean Dijon
Terry Francis
Chuck Fraust
Satoshi Fujimura
Michael Garner
Avik Ghosh
Emmanuel Giannelis
Michael Goldstein
Joe Gordon
Jim Hannon
Craig Hawker
Robert Helms
Rudi Hendel
Dan Herr
Susan Holl
Greg Higashi
Harold Hosack
Jim Hutchby
Kohei Ito
James Jewett
Antoine Kahn
Sergie Kalinin
Ted Kamins
Masashi Kawasaki
Steve Knight
Gertjan Koster
Roger Lake
Louis Lome
Allan MacDonald
Francois Martin
Fumihiro Matsukura
Andrew Millis
Bob Miller
Chris Murray
Paul Nealey
We-Xin Ni
Fumiyuki Nihey
Dmitri Nikonov
Yoshio Nishi
Chris Ober
Brian Raley
Ramamoorthy Ramesh
Nachiket Raravikar
Mark Reed
IBM
UCSB
UTD
AMAT
SRC
Spansion
Intel
SRC
SRC
Keio Univ.
Intel
Princeton Univ.
ORNL
HP
Tohoku Univ.
NIST
Stanford Univ.
U.C. Riverside
IDA Cons.
Texas A&M
LETI
Tohoku U
Columbia Univ.
IBM
IBM
U. Wisc.
NDNL
NEC
Intel
Stanford
Cornell Univ.
Freescale
U.C. Berkeley
Intel
Yale Univ.

Curt Richter
Dave Roberts
Frances Ross
Tadashi Sakai
Lars Samuelson
Mitusru Sato
John Henry Scott
Farhang Shadman
Sadasivan Shankar
Atsushi Shiota
Reyes Sierra
Kaushal Singh
Susanne Stemmer
Naoyuki Sugiyama
Shinichi Tagaki
Koki Tamura
Yasuhide Tomioka
Evgeny Tsymbal
Emanuel Tutuc
Ken Uchida
John Unguris
Bert Vermiere
Yasuo Wada
Vijay Wakharkar
Kang Wang
Rainer Waser
Stanley Williams
C.P. Wong
H.S. Philip Wong
Walter Worth
Hiroshi Yamaguchi
Toru Yamaguchi
In Kyeong Yoo
Victor Zhimov

2006 - 2007 ERM Participants

NIST
Air Products
IBM
Toshiba
Lund University
TOK
NIST
U Az.
Intel
JSR Micro
U Az.
AMAT
UCSB
Toray
U of Tokyo
TOK
AIST
U. of Nebraska
IBM
Toshiba
NIST
Env. Metrol. Corp.
Toyo U
Intel
UCLA
Aacken Univ.
HP
GA Tech. Univ.
Stanford University
ISEMATECH
NTT
NTT
Samsung
SRC
Macromolecular Scale Devices are on the ITRS Horizon

Outline

• ERM Goals and Scope
• Emerging Research Device Examples
• Lithography Example
• FEP Example
• Interconnect Example
• Assembly & packaging Example
• Environment Safety & Health
• ERM Metrology & Modeling Needs
• Summary
Emerging Research Materials [ERM]

- New Cross-cutting ERM Chapter
 - Goal: Identify critical ERM technical and timing requirements for ITWG identified applications
 - Align ERM requirements with ITWG needs
 - ERM with potential value to ITWG Gaps
 - Difficult challenges that must be overcome
 - Consolidate materials research requirements for:
 - University and government researchers
 - Chemists, materials scientists, etc.
 - Industry Researchers
 - Semiconductor
 - Chemical, material, and equipment suppliers
ERM Potential ITWG Applications

<table>
<thead>
<tr>
<th>Materials</th>
<th>ERD Memory</th>
<th>ERD Logic</th>
<th>Lithography</th>
<th>FEP</th>
<th>Interconnects</th>
<th>Assembly and Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Dimensional Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macromolecules</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self Assembled Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spin Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complex Metal Oxides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interfaces & Heterointerfaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Potential Applications Identified
ERM for Emerging Research Devices
Examples
Emerging Research Device Applications

Device State*
- 1D Charge State
- Molecular State
- Spin State
- Phase State
- Memory
 - Fuse/anti-fuse, Ferroelectric FET, etc.

Emerging Materials
- (Low Dimensional Materials)
- (Macromolecules)
- (Spin Materials and CMO**)
- (CMO** and Heterointerfaces)

All Devices have critical interface requirements

*Representative Device Applications

CMO = Complex Metal Oxides
1D Charge State

Group IV & III-V Nanowires Grow in 111 Orientation Catalyst determines location (T. Kamins, el. Al., HP)

Atomically smooth Heterostructures (L. Samuelson, Lund Univ.)

Nanotube Challenges
• Control of Location & Orientation
• Control of Bandgap
• Contact Resistance

Graphene & Graphitic Carbon

Advantage: Patternable
Challenge: Deposition, Edge Passivation

Quantum Dot

Source Intel

Carrier doping & control is challenging for low dimensional materials
Molecular State

High contact energy barriers may be masking potential molecular switching!!

- Need more research on contact formation
- Novel lower potential barrier contacts…
Room temperature ferromagnetic semiconductors (T_{curie})

- Reports of high Curie temperature FM semiconductors
 - GeMn Nanocolumns >400K
 - SiMn >400K
 - (InMn)P ~300K
 - Need verification & more study

Spin State

Maximum Curie Temperature

- Doped Oxides
- (III.Mn)V

Carrier mediated exchange
Complex Metal Oxides

- Complex Metal Oxides
 - MgO, Pb(Zr$_{1-x}$Ti$_x$)O$_3$, La$_{1-x}$Sr$_x$MnO$_3$, BiFeO$_3$
- Memory
 - FeFET (Ferroelectric polarization)
 - Fuse-antifuse (Resistance change, etc.)
- Logic
 - Spin Tunnel Barriers
 - Novel Logic Heterostructures (Coupling charge to magnetic properties & alignment)
- Challenges
 - Control of Vacancies
 - Contact stability
 - Hydrogen degradation
 - Electric field & environmental stability
 - Control of stress & crystal structure
Strongly Correlated Electron State

- Materials exhibit complex phase relationships
 - Structure, Strain, Spin, Charge, Orbital Ordering
- Goal: Determine whether complex phases and coupled dynamic and static properties have any potential to enable alternate state logic devices
 - Example: Mott transition or other coupled states

Can these materials enable new device functions?
Novel Properties at Hetero-interfaces

SrTiO3-LaAlO3

Hetero-interfaces may enable novel coupling of properties!!

J. Mannhart et. al. 2006
Augsburg Univ.
ERM for Lithography
Examples
Emerging Lithography Applications

- **Resist: Unique Properties**
 - Immersion: Low leaching and low surface energy
 - EUV: Low outgassing, high speed and flare tolerant

- **Imprint Materials**
 - Low viscosity
 - Easy release

- **Directed Self-Assembly**
 - Resolution, LER, density, defects, required shapes, throughput, registration and alignment

Macromolecular Architectures

- Molecular Glasses and PAGS, Ober, Cornell
- Polymer Design, R. Allen, IBM

Sublithographic resolution and registration, Ross, MIT
Design Pattern Requirements for Directed Self-Assembly
ERM for Front End Processing Example
Emerging FEP Applications

- **Deterministic Doping**
 - Conductance variability reduced from 63% to 13% by controlling dopant numbers and roughly ordered arrays;
 - Conductance due to implant positional variability within circular implant regions of the ordered array ~13%.

- **Selective Processes/Cleans**
 - Macromolecules
 - Self-assembling materials and processes
ERM for Interconnects
Examples
Emerging Interconnect Applications

- **Vias**
 - Multi-wall CNT
 - Higher density
 - Contact Resistance
 - Adhesion

- **Interconnects**
 - Metallic
 - Alignment
 - Contact Resistance

- **Dielectrics**
 - Novel Polymer ILDs

ERMs Must Have Lower Resistivity

- Y. Awano, Fujitsu

Quartz Crystal Step Alignment

- H. Dai, Stanford Univ.

Ref. 2005 ITRS, INT TWG, p. 22
ERM for Assembly & Packaging Examples
Emerging Packaging Applications

- Thermal Nanotubes
- High Density Power Delivery Capacitors
 - Dielectrics: High K
 - Self Assembly
 - Interconnects: Nanotubes or Nanowires

Package Thermo-Mechanical
- Substrate: Nanoparticles, Macromolecules
- Adhesives: Macromolecules, Nanoparticles
- Chip Interconnect: Nanoparticles

4 Die Stack
4 Die Stack with Large Overhang
Environment, Safety, and Health

- Metrology needed to detect the presence of nanoparticles
- Research needed on potential undesirable bio-interactions of nanoparticles
- Need Hierarchical Risk/Hazard assessment protocol
 - Research, Development, Commercialization

➢ Leverage Existing Research and Standards Activities
Emerging Metrology and Modeling Needs

- **Metrology**
 - Chemical and structural imaging and dimensional accuracy at the nm scale
 - Low dimensional material properties (Mapping)
 - Nano-interface characterization (carbon)
 - Simultaneous spin and electrical properties
 - nm scale characterization of vacancies and defects

- **Modeling Materials and Interfaces**
 - Low dimensional material synthesis & properties
 - Spin material properties
 - Strongly correlated electron material properties
 - Long range and dynamic
 - Integrated models and metrology (de-convolution of nm scale metrology signals)

- **Metrology and modeling must be able characterize and predict performance and reliability**
Summary

- ERM identifies materials with desirable properties that may enable potential solutions for ITWG applications

- Significant challenges must be addressed for these materials to be viable for transfer to the ITWGs

Future:
- Refine and update ERM requirements
- Assess ERM progress toward meeting identified application requirements
- Identify new ITWG application opportunities for ERM
- Identify new families of Emerging Research Materials