Imaging to Enable the Next Generation of Chips

100nm Volume Manufacturing on 300mm wafers
100nm Applications

- Wireless PDAs with Enterprise Databases
- Real-time Language Translators
- 3D HDTV graphical images
- Complex vocal commands to computer
- 3D integrated images
 - Virtual shopping in 3D
 - Integrated composite images GPS/Radar/Weather/
 - 3D Medical composite imaging
- Dynamic event simulations
Performance scales with Process Generation

<table>
<thead>
<tr>
<th>Process Generation</th>
<th>1µm</th>
<th>800nm</th>
<th>600nm</th>
<th>350nm</th>
<th>250nm</th>
<th>180nm</th>
<th>130nm</th>
<th>100nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Future Processors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentium IV Processor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentium III Processor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentium II Processor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentium Processor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intel 486 Processor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Name</td>
<td>Actual</td>
<td>Forecast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Name</td>
<td>P860</td>
<td>P1262</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>2001</td>
<td>2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generation</td>
<td>130</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate Length</td>
<td>70</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Intel
Performance Requires Higher Transistor Density

Transistor Count per Chip

Year

Source: Intel
Evolution of Leading Edge Lithography & Wafer Size

<table>
<thead>
<tr>
<th>Year</th>
<th>i-line</th>
<th>157nm</th>
<th>150mm</th>
<th>200mm</th>
<th>300mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>'86</td>
<td>0.35</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>'88</td>
<td>0.30</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>'90</td>
<td>0.25</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>'92</td>
<td>0.20</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>'94</td>
<td>0.15</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>'96</td>
<td>0.10</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>'98</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>'00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>'02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>'04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>'06</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>'08</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Milestones of Progress in Lens Technology

- **ASML Model #**
 - PAS 2500/40
 - PAS 5500/300
 - TWINSCAN AT:1100

<table>
<thead>
<tr>
<th>Model</th>
<th>Wavelength</th>
<th>g-Line</th>
<th># Pixels (E+6)</th>
<th>Pixel Factor</th>
<th>Price Factor</th>
<th>Weight (kg)</th>
<th>Yr of First Proto</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAS 2500/40</td>
<td>g-Line</td>
<td>40</td>
<td>320</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1975</td>
</tr>
<tr>
<td>PAS 5500/300</td>
<td>I-Line</td>
<td>8</td>
<td>250 - 625</td>
<td>8</td>
<td>10</td>
<td>20</td>
<td>1987</td>
</tr>
<tr>
<td>TWINSAN AT:1100</td>
<td>KrF</td>
<td>10.000 - 25.000</td>
<td>1995</td>
<td>80</td>
<td>250</td>
<td>2001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ArF</td>
<td>80.000</td>
<td>2000</td>
<td>100</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1000</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
High NA ArF System for 100nm Node

CD = \(k_1 \frac{\lambda}{NA} \)

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>NA</th>
<th>CD (nm)</th>
<th>248</th>
<th>248</th>
<th>248</th>
<th>193</th>
<th>193</th>
</tr>
</thead>
<tbody>
<tr>
<td>248</td>
<td>0.63</td>
<td>0.46</td>
<td>0.43</td>
<td>0.45</td>
<td>0.48</td>
<td>0.52</td>
<td>0.58</td>
</tr>
<tr>
<td>248</td>
<td>0.7</td>
<td>0.41</td>
<td>0.42</td>
<td>0.45</td>
<td>0.48</td>
<td>0.49</td>
<td>0.54</td>
</tr>
<tr>
<td>248</td>
<td>0.8</td>
<td>0.38</td>
<td>0.40</td>
<td>0.45</td>
<td>0.48</td>
<td>0.46</td>
<td>0.51</td>
</tr>
<tr>
<td>193</td>
<td>0.63</td>
<td>0.36</td>
<td>0.37</td>
<td>0.42</td>
<td>0.48</td>
<td>0.39</td>
<td>0.47</td>
</tr>
<tr>
<td>193</td>
<td>0.75</td>
<td>0.33</td>
<td>0.34</td>
<td>0.39</td>
<td>0.48</td>
<td>0.36</td>
<td>0.43</td>
</tr>
</tbody>
</table>

QUASAR
ANNULAR
Alt PSM
att. PSM
dipole
Why 300mm?

- 200mm
- 300mm

2.25 More Die per Wafer

Why ArF?

- 130nm node

1.7 More Die per Wafer

100nm node

100nm on 300mm

200mm

200mm

200mm

= 3.8 More Die per Wafer
Challenges for ArF & 300mm

ArF
- Lens Manufacturing with CaF2 Materials
- Mature Resist Processes
- High Power ArF Lasers
- Increase Focus Control

300mm
- Productivity
- Vibration Containment
- Tighter Overlay
- Increase Metrology Accuracy
Leading edge High NA 193nm Lens

- **Zeiss Starlith 1100 Lens:**
 - Variable Numerical Aperture 0.75 to 0.50
 - CaF2 for Critical Lens Elements Only
 - High Transmission Coatings
 - Control of Magnification, Field Curvature, 3rd Order Distortion, Coma and Spherical
 - Optimized Dynamics for Larger Lens Mass

Projection Lens
- High NA
- Low aberrations
ArF Imaging Results

ArF High NA Lens

- Lens Design/ Manufacturing + Set-up
- Laser Design
- Stage Design
- Illuminator Design
- Resists
- Reticles

Exposure Latitude
Depth of Focus
Low Proximity Effects
Low Line-end Shortening
Low Mask Error Factor
Linearity

- Low Aberration Level
- Narrow Bandwidth
- Low Fading (MSD)
- Illumination Uniformity
- Mature Processes
- Binary Chrome Reticles

ASML
ArF Imaging Results
100nm Dense Lines Through Focus

Binary Mask
Pitch = 200nm

NA = 0.75, σ = 0.85/0.55
Annular Illumination

Scanned Exposure Starlith™ 1100

E = 17.5 mJ/cm²
ArF Imaging Results
90nm Dense Lines Through Focus

Binary Mask
Pitch = 180nm

$NA = 0.75$, $\sigma = 0.85/0.55$
Dipole Illumination

Scanned Exposure Starlith™ 1100
ArF Imaging Results
Contact Holes with Binary Mask, 130nm, pitch 260nm

NA = 0.75, $\sigma = 0.85/0.55$
QUASAR Illumination
Scanned Exposure Starlith™ 1100
ArF Imaging Results
130nm Contact Holes

Top-Down 130nm
10nm Bias 53mJ

Cross Section 130nm
10nm Bias 53mJ
20 Watt 4 kHz ArF Laser for High Dose Levels

Increased Illumination Intensity Maintains Productivity for High Dose Levels

<table>
<thead>
<tr>
<th>Dose (mJ/cm^2)</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Watt (2kHz)</td>
<td>93</td>
<td>76</td>
<td>64</td>
<td>55</td>
<td>48</td>
<td>43</td>
</tr>
<tr>
<td>20 Watt (4kHz)</td>
<td>98</td>
<td>98</td>
<td>93</td>
<td>84</td>
<td>76</td>
<td>69</td>
</tr>
</tbody>
</table>

Productivity vs Laser Power

- 10 Watt (2kHz)
- 20 Watt (4kHz)
Measurement Position
Wafer Height Mapping

Level Sensor
Used As a Height Gauge
Experiment:

• Expose Wafer With IC Structures

• Measure Height Map

Accurate leveling data to wafer edge - no “Edge Die”

Resolution: 3 x 0.5 mm

300 mm

340 nm
Better Focus through Pre-Recorded Z-Map

- Optimum Focus & Tilt Setting of Exposure Slit
- Wafer Mapped in Z According to Exposure Field Size
- Z Positioning Optimised for Stage Servo Response
- Z Position Measured & Controlled With Interferometer Precision
TWINSCAN Platform Focusing Approach

- Wafer scanned at metrology position
- 9 spot focus sensor
- 8 axis interferometry for X, Y and Z, \(\theta X\), \(\theta Y\), \(\theta Z\)
- Perfect meander - alternating scan directions improves throughput
Challenges for ArF & 300mm

- **ArF**
 - Lens Manufacturing with CaF2 Materials
 - Mature Resist Processes
 - High Power ArF Lasers
 - Increase Focus Control

- **300mm**
 - Productivity
 - Vibration Containment
 - Tighter Overlay
 - Increase Metrology Accuracy
TWINSCAN™ Dual Wafer Stages

- Balance mass for 70 nm dynamics
- Separate metrology position: Full 3D wafer mapping
- Dual wafer stage: Parallel operation, 320mm Scan Speed

ASML
Dual Stage Elapsed time Improvement

Single Stage Cycle

Total time = 57 sec → 63 WPH

- **Expose**: 45 sec
- **Step**: 15 sec
- **Overhead** (Align + Wafer Swap): 15 sec

ArF Example: 20mJ/cm²

Dual Stage Cycle

Total time = 38.6 sec → 93 WPH

- **Expose**: 30 sec
- **Step**: 15 sec
- **Overhead**: 15 sec

6X more Alignment Data + Full Wafer Height Map

Metrology Position
Dual Stage Benefits for Alignment Metrology

No Throughput Penalty for up to 25 Alignment Marks with Dual Stage

Single Stage
Trade Off Between Alignment Information & Throughput

Number of Alignment Marks

Throughput %

Dual Stage

Single Stage
ArF Productivity -
Intensity, Scan Speed, Dual Stage vs. Field Size

Increased Scan Speed & ArF Intensity

Single Stage System

Conditions:
- Dose: 20 mJ/cm²
- Wafer: 300mm

Graph:
- Throughput (300mm WpH)
- Scanned Fields per Wafer

- 16x32mm: 109 fields
- 18x32mm: 95 scans
- 22x32mm: 73 scans
- 26x32mm: 63 scans
Imaged Pixels per Hour

Quantum jump in pixel transfer rate!

- 20 W ArF Source
- 320mm scan speeds
- Dual stage design
TWINSCAN Platform Roadmap

Legend
- 193nm
- 248nm
- 365nm

1997 - 2005
- **70nm**
- **100nm**
- **130nm**
- **150nm**
- **>250nm (non critical)**

- **NA_max = 0.75** AT:1100 100nm
- **NA_max = 0.70** AT:750 130nm
- **NA_max = 0.65** AT:400 280nm

ITRS Roadmap, 1999 Update
TWINS CAN 1100
Key Specifications

- Variable NA: 0.75 → 0.50
- Resolution: ≤ 100nm
- Field Size: 26mm X 32mm
- Laser: 20Watt 4kHz
- Overlay: < 20nm
- Throughput: > 93 wph
Extends ASML’s TWINSCAN Product Family
with ArF Technology for 100nm on 300mm

TWINSCAN AT:1100
ArF Step & Scan

TWINSCAN AT:400
i-Line Step & Scan

TWINSCAN AT:750
KrF Step & Scan
Worldwide Demand for AT:1100

- Demand from Foundry, Logic and Memory

Shipment ramp commences end of 2001
100nm Volume Manufacturing on 300mm Wafers

- **Productivity for Volume**
 - New 320mm/sec dual stages
 - Highest utilization of optics
 - Parallel align metrology
 - 20W 4kHz Laser

- **100nm imaging**
 - A-A overlay <20nm
 - 0.75 NA ArF Optics
 - Vibration control to 70nm
 - Z-interferometry for focus control