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Abstract—Cloud computing nowadays becomes quite popular
among a community of cloud users by offering a variety of
resources. However, burstiness in user demands often dramat-
ically degrades the application performance. In order to satisfy
peak user demands and meet Service Level Agreement (SLA),
efficient resource allocation schemes are highly demanded in
the cloud. However, we find that conventional load balancers
unfortunately neglect cases of bursty arrivals and thus experience
significant performance degradation. Motivated by this problem,
we propose new burstiness-aware algorithms to balance bursty
workloads across all computing sites, and thus to improve overall
system performance. We present a smart load balancer, which
leverages the knowledge of burstiness to predict the changes in
user demands and on-the-fly shifts between the schemes that are
“greedy” (i.e., always select the best site) and “random” (i.e.,
randomly select one) based on the predicted information. Both
simulation and real experimental results show that this new load
balancer can adapt quickly to the changes in user demands and
thus improve performance by making a smart site selection for
cloud users under both bursty and non-bursty workloads.

I. INTRODUCTION

Cloud computing nowadays becomes quite popular among

a community of cloud users by offering a variety of re-

sources. Cloud computing platforms, such as those provided

by Microsoft, Amazon, Google, IBM, and Hewlett-Packard,

let developers deploy applications across computers hosted

by a central organization. These applications can access a

large network of computing resources that are deployed and

managed by a cloud computing provider. Developers obtain the

advantages of a managed computing platform, without having

to commit resources to design, build and maintain the network.

Yet, an important problem that must be addressed effectively

in the cloud is how to manage QoS and maintain SLA for

cloud users that share cloud resources.

In cloud platforms, resource allocation (or load balancing)

takes place at two levels. First, when an application is uploaded

to the cloud, the load balancer assigns the requested instances

to physical computers, attempting to balance the computational

load of multiple applications across physical computers. Sec-

ond, when an application receives multiple incoming requests,

these requests should be each assigned to a specific application

instance to balance the computational load across a set of

instances of the same application. For example, Amazon EC2

uses elastic load balancing (ELB) to control how incoming

requests are handled. Application designers can direct requests

to instances in specific availability zones, to specific instances,

or to instances demonstrating the shortest response times.

Bursty workloads are often found in multi-tier architectures,

large storage systems, and grid services [1], [2], [3]. Internet

flash-crowds and traffic surges are familiar examples of bursty

traffic, where bursts of requests are aggressively clustered

together during short periods and thus create spikes with

extremely high arrival rate. We argue that the presence of

burstiness can cause load unbalancing in clouds and con-

sequently degrade the overall system performance. In cloud

systems, many applications are no longer single-program-

single-execution applications. These applications involve a

large number of concurrent and dependent jobs, which can

be executed either in parallel or sequentially. Simultaneously

launching jobs from different applications during a short

time period can immediately cause a significant arrival peak,

which further aggravates resource competitions and load un-

balancing among computing sites. Also, as the number of

these applications significantly increases in recent years, the

present of Internet flash-crowds and traffic surges becomes

more frequent. As a result, how to counteract burstiness

and maintain high quality of service and system availability

becomes imminently important but challenging as well in

clouds. However, conventional methods unfortunately neglect

cases of bursty arrivals and cannot capture the impacts of

burstiness on system performance.

Motivated by this problem, we propose a new load balanc-

ing algorithm, called ARA, for adaptive resource allocation

in cloud systems, which attempts to counteract the effect

of burstiness and improve overall system performance and

availability. The main contributions of this paper are (1) to

present an on-off prediction approach which accurately fore-

casts changes in user demands by leveraging the knowledge

of burstiness in workloads; and (2) to develop a smart load

balancer, which on-the-fly shifts between the schemes that are

“greedy” (i.e., always select the best site) and “random” (i.e.,

randomly select one among all sites) based on the predicted

information.

Our simulation results show that ARA reduces the response

times by optimizing the dispatch of loads across computing

sites and adapts quickly to the changes in user demands by

making a smart site selection for cloud users under both bursty

and non-bursty workloads. Sensitivity analysis with respect to

various system parameters validates that ARA is effective and

robust in many different environments. The real experiments

conducted in Amazons EC2 further reveal the effectiveness of

our ARA in a real cloud environment.
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We expect that our new burstiness-aware load balancing

allows cloud users to experience higher quality of service (e.g.,

shorter response times) without purchasing additional comput-

ing resources. We also expect that our new burstiness-aware

load balancing enables cloud computing systems to make

better use of their infrastructure without over-provisioning

during bursty periods yet keep the simplicity in resource man-

agement, allowing applications to consume fewer resources

and gaining maximum economic profit. The remainder of the

paper presents our results in detail.

II. MOTIVATION

In this section, we first demonstrate the impact of burstiness

on load balancing in a distributed simulation environment,

which is developed on the CSim library [4]. We refer the

interested readers to [5] for the details on system design and

remark that such a simulation environment can be used to

simulate a cloud computing framework. In our simulation, the

system consists of N computing sites, where each site runs

the First-In-First-Out (FIFO) policy to schedule the assigned

jobs. The specifications of a job, including job inter-arrival

time and job execution time, are created based on the specified

distributions and methods.

To select an effective site for an incoming job, a load

balancer periodically queries the load information (e.g., queue

length and site utilization level) about each site as the ranking

criteria from the host resource management systems. The load

balancer then selects a computing site that has the highest

ranking value (such as the shortest queue length) among all

sites of the targeting application. The higher ranking values,

the more likely we can complete jobs with shorter queuing

times and thus obtain better system performance. Such a load

balancing scheme can be referred to as “greedy” because

it always selects the top-ranked site for service. We also

evaluate another load balancing scheme, dubbed as Rand,

which randomly selects one among all available sites.

To demonstrate the performance impact of bursty arrivals,

we run the simulations under three different arrival processes

with burstiness profiles as shown in Figure 1. Each arrival

process is drawn from a 2-state Markovian-Modulated Poisson

Process (MMPP)1 that can be parameterized to have the same

mean equal to 10s but three different levels of burstiness:

strong, weak, and non-bursty, such that the corresponding

values of index of dispersion I are equal to 313.5, 32.25, and

1, respectively, see the details of I in Section III-B1. Here,

we remark that the index of dispersion has been frequently

used as a measure of burstiness in the analysis of time series

and network traffic [7], [8]. The higher I indicates stronger

burstiness in workloads. We observe that the number of arrivals

are significantly varied under the three different workloads. In

all experiments, the system consists of N = 16 sites and has

an average site utilization equal to 50%.

1Markovian-Modulated Poisson Process (MMPP) is a special case of the
Markovian Arrival Process (MAP) [6], which is used here to generate bursty
flows because it is analytically tractable.

Table I shows the average response times of two load bal-

ancers. We first observe that burstiness in arrivals dramatically

degrades the system performance under both two algorithms.

As the intensity of burstiness increases, such negative impacts

on system performance become more significant. More impor-

tantly, the “greedy” load balancer, Qlen, outperforms when

there is no burstiness in arrivals yet ceases to be effective

due to the imbalance of load among computing sites when

the workload arrival process is bursty. We interpret this effect

by observing that the greedy algorithms cannot detect system

load surges on computing sites during bursty arrivals because

of the delay in updating load information from sites, and thus

make incorrect decisions based on the outdated information.

For example, once a job is assigned to a computing site, the

associated load information (e.g., the present queue length) of

that site cannot be updated immediately at the load balancer.

As a result, the load balancer always submits the bursty arrivals

to that top-ranked site within the delay period2. Consequently,

significant load is incurred on that particular site, resulting in

the performance degradation under bursty workloads.

Response Strong-bursty Weak-bursty Non-bursty
time Fig. 1 (a) Fig. 1 (b) Fig. 1 (c)

Rand 1520.9s 168.5s 80.5s

Qlen 6541.5s 466.5s 7.6s

TABLE I
MEAN RESPONSE TIMES OF TWO LOAD BALANCERS UNDER THE THREE

WORKLOADS. THE NUMBER OF COMPUTING SITES IS N = 16 AND THE

INFORMATION QUERY DELAY IS D = 1S.

We stress that such an information query delay unfortunately

is unavoidable in real systems because when a job is submitted

to a site, it takes non-negligible time for that particular site

to update the information about system load. Similarly, the

communication for querying and broadcasting such load in-

formation between the distributed load balancers and the sites

via network also take a non-negligible amount of time among

clouds. Therefore, we argue that such deleterious effects due

to burstiness and information query delay must be considered

in the performance evaluation and load balancer design for

cloud computing.

III. NEW LOAD BALANCER: ARA

In this section, we present our new ARA algorithm for

adaptive resource allocation in cloud systems, which attempts

to counteract the deleterious effect of burstiness by allowing

some randomness in the decision making process and thus

improve overall system performance and availability.

A. Static Version

To address the load unbalancing problem caused by bursti-

ness, we present a new load balancer which can balance bursty

workloads across available resources and thus improve the

overall system performance. Later, we show how this new load

balancer can be deployed for load balancing across a set of

instances of the same application in a real cloud platform.

2In our simulation, we set the information query delay D as 1 second. The
sensitivity analysis to D will be given in the next subsections.
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Fig. 1. Illustrate the number of arrives per second under the three workloads with mean inter-arrival times equal to 10s.

We observed in Section II that under non-bursty conditions

the “greedy” methods that always select the best site, obtain

better performance than the “random” ones. But we also

observed the advantage of distributing jobs randomly among

all computing sites under bursty conditions. This observation

inspires us to design a new ARA algorithm which adjusts the

randomness and the greediness in the decision making process.

Algorithm: static version of ARA
1. initialize

a. number of candidates: K = k;
b. information query delay: D = d;

/* load information updating*/
2. for each window of D time

a. send queries to all computing sites for load information;
b. update load information received from all computing sites;
end

/* site selection process */
3. upon each job arriving

a. sort all sites Si, 1 ≤ i ≤ N , by current load information;
b. set S = {S1, S2, ..., SK}; /* get K sites with least load */
c. set s = uniform(1,K); /* randomly select one site from

the candidate set S */
d. submit the job to site Ss;
end

Fig. 2. The high level idea of the static ARA.

Given an incoming job and N available computing sites,

ARA finds K sites, where K ≤ N , as the best candidates

for serving that job, using queue length as the ranking crite-

rion. Then, that particular job will be randomly submitted or

enqueued to one site among the selected K candidates. The

value of K in ARA is critical for system performance, which

in turn should be set appropriately based on the intensity of

burstiness in workloads. For example,

• under the case of no burstiness in arrivals, K is set to

small values (i.e., close to 1). It turns out that ARA

performs exactly the same as the “greedy” load balancer,

always selecting the best site with shortest queue length;

• under the case of extremely strong burstiness in arrivals,

the number of best candidates is set equal (or close)

to the total number of available sites, i.e., K = N .

Consequently, ARA has behavior similar to the “random”

method, which allows the bursty workload to be shared

among all sites, therefore alleviating the imbalance of

load;

• otherwise, K is set to the value between 1 and N .

As a result, ARA dispatches the load among sites by combin-

ing the features of both Qlen and Rand. Figure 2 presents the

high level idea of this static version of ARA.

In order to evaluate the performance of ARA, we here

investigate the sensitivity analysis over a range of bursty

conditions and statically set the value of K from 1 to N .

Figure 3 shows the average response times under ARA as a

function of the number of candidates K, as well as ones under

both Qlen (see the left most bar in the figure) and Rand (see

the right most bar in the figure) policies. These results give

us a first proof of concept that ARA with an appropriate K

value can be beneficial for performance of cloud applications

with bursty arrivals. For example, in the case of non-bursty

condition, a small K (e.g., K = 3 in Figure 3 (c)) allows

ARA to achieve performance similar to Qlen, which greedily

chooses the best candidate for the incoming jobs and thus

obtains the best performance. As burstiness becomes stronger,

the value of K then keeps increasing which allows ARA

to behave almost the same as Rand counteracting the load

unbalancing problem incurred by burstiness, see Figure 3 (a).

We also notice that our static ARA achieves very similar

performance as the algorithm in [9], which considers the

supermarket model such that customers can randomly choose

a constant number of servers and waits for service at the one

with the fewest customers3.

However, such performance improvements depend on the

degree of randomness that is introduced by the number of top

candidates K. A good choice of K can result in significant

performance improvements, but an unfortunate choice may

also result in poor performance. Furthermore, real traffic

of dynamic cloud environments indeed changes over times:

extremely busy in some periods and quite idle in other periods.

We thus remark that with a fixed K both static ARA and the

algorithm in [9] cannot always achieve the best performance

across different bursty conditions. To quickly adapt to the

changes in user demands, an effective way for online adjusting

K, instead of using a fixed K, becomes imminently important

in cloud systems.

B. Online Version

Here, we design an online version of ARA which can re-

adjust the degree of randomness (i.e., K) on-the-fly according

to the workload changes. We first leverage the knowledge of

3The experimental results obtained under [9] are not reported here due the
limited space.
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Fig. 3. The average response times of the ARA load balancer as a function of the number of candidates K under (a) strong bursty workload, (b) weak
bursty workload, and (c) non-bursty workload. The average response times of the Qlen and Rand load balancers, as well as the best performance of ARA
(see the black bars) are also marked in the plots.

burstiness to develop predictors which can accurately detect

the changes in user demands and then present the online

ARA which dynamically shifts between the “greedy” and the

“random” schemes based on the predicted information.

1) On-Off Predictor: We incorporate the index of disper-

sion [7], [8] I to detect bursts in the incoming traffic. The

advantage of I is that it can qualitatively capture burstiness in

a single number and thus provide a simple yet powerful way

to promptly identify the start and the end of a bursty period.

The mathematical definition of the index of dispersion I of a

stochastic process is given as follows:

I = SCV (1 + 2
∑

∞

k=1
ρk) , (1)

where SCV is the squared-coefficient of variation and ρk
is the autocorrelation function (ACF ) at lag k. The joint

presence of SCV and autocorrelations in I is sufficient to

discriminate traces with different burstiness intensities and

thus to capture changes in user demands.

To understand how I performs as a single measure, we

illustrate the arrival rates (i.e., the number of arrivals per 100

seconds) of a bursty workload across the time in Figure 4 (a).

The trace shown in this plot consists of two idle phases and

one single peak phase. We divide the whole trace into five parts

during the following time windows: W1 = [40K, 50K),W2 =
[50K, 55K),W3 = [55K, 64K),W4 = [64K, 70K), and

W5 = [70K, 75K), where only windows W2 and W4 cover

both idle and peak phases while the remaining windows

include only one phase. We also measure the corresponding

index of dispersions for each window, see the values of I

marked in the plot. We notice that the values of I are quite

small when the trends of traffic are stable during both idle

and peak phases, e.g., windows W1,W3, and W5, however,

for the windows with clear changes in traffic, e.g., W2 with

the burst arriving and W4 with the burst ending, the values of I

significantly increase. This observation indicates that dramatic

changes in I can be used as a measure criterion to detect

the start and the end of bursty arrivals and further predict the

changes in user demands.

In [10], an algorithm has been proposed to use I coupled

with information about the current and previous arrival rates to

detect changes in arrival intensities. In this paper, we consider

to exploit this algorithm for identifying changes in cloud user

demands. However, we also find that the algorithm in [10]

cannot accurately detect the start and the end of some bursts.

Especially, the end of a burst is easily missed because of the

deficiency of the algorithm, which results in the unnecessary

delay in the detection of changes from peak to idle. In addition,

the monitoring window size used in [10] is too large, which

although is beneficial to capture the state transition, further

extends the delay of detections in the ending of bursts.

In order to improve the prediction accuracy, we refine the al-

gorithm by dynamically adjusting the monitoring window size

m instead of a fixed value in [10] to trade off the contradiction

of monitoring window size and detection delay. To shorten

the detection delay, a small window size is preferred which

however may miss the detections of state changes, especially

the end of bursts. This is because m now is too short to

provide sufficient samples for readjusting I from small values

to large ones, see W3 and W4 in Figure 4. In our algorithm, we

initially choose a small value of m, but dynamically enlarge

the monitoring window (e.g., 2m requests) to collect enough

samples for updating I , given that the original window size

(i.e., m) is not large enough.

Figure 4 (b) shows the outputs of the algorithm, where state

“on” indicates the start of a burst and state “off” means the

end of a burst. We can see that the changes of states “on”

and “off” correctly follow the actual bursts plotted in solid

lines in the figure. One should notice that the algorithm is

slower in the detection of an idle period. This is the outcome

of our new dynamic window size, which indeed has negligible

impacts on our new load balancer’s performance because of

few arrivals during idle periods. Figure 4 (c) further validates

the effective of this new predictor algorithm, illustrating the

accurate prediction results for the arrival traffic with strong

burstiness, as shown in Figure 1 (a). We expect that this new

refined predictor can accurately forecast the changes in user

demands and thus can provide significant valuable information

to ARA for effectively load balancing in clouds.

2) Online Adjusting of K: Motivated by the fact that

Internet flash-crowds and traffic surges often present in real

systems, we now propose a new load balancing algorithm,

named ARA PRED, that detects the phases of “burst” and

“idle” in user demands and further discriminates these two

phases by introducing different degrees of randomness in an

online fashion. In particular, when the predictor detects the

start of a burst, we increase the degree of randomness by
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Fig. 4. Illustrating (a) the index of dispersions that are measured within five monitoring windows under a bursty workload, (b) prediction results that
accurately capture the start and the end of bursts, where the solid lines are actual traffic (i.e., arrival rates across time) and dashed lines show the detection
of when burstiness starts (state “on”) and when it ends (state “off”), and (c) prediction results for the strong bursty workload, see Fig. 1(a), where the above
plot shows the detections and the bottom plot presents the actual traffic.

setting K to a large value th l close to the total number of

available sites. On the other hand, when the predictor detects

the start of an idle period, the value of K is be decreased

to a small value th s close to 1. The degree of greediness

is then increased and ARA performs closely to Qlen. As a

result, by leveraging the knowledge of burstiness, this new

load balancer can quickly adapt to changes in user demands

by shifting between the “greedy” and the “random” schemes,

and thus optimize the utilization of available resources and

application performance by making a smart site selection for

cloud users. The high level idea of the online ARA is described

in Figure 5.

Algorithm: online ARA
1. initialize

a. the large threshold thl for K; /* e.g., thl = ⌈0.5 ∗N⌉ */
b. the small threshold ths for K; /* e.g., ths = 1 */

2. run the prediction algorithm;
3. upon the detection of changes in user demands

a. if detect the start of “burst”
then increase K to thl;

b. if detect the start of “idle”
then decrease K to ths;

c. use K for the site selection process as shown in Fig. 2;
end

Fig. 5. The high level idea of the online ARA.

C. Performance Improvement of ARA PRED

To investigate the performance of the online ARA, we here

consider a case such that user demands arriving during the

“burst” and the “idle” phases both have non-negligible impacts

on the system load, as well as the overall system performance.

For example, in the arrival trace used by the following experi-

ments, there are almost half of traffic arriving when the system

is relatively idle, although 51% of jobs aggregate in bursts. It

becomes sophisticated and time consuming to search a good

value of K for the static version. Some value of K may benefit

the arrivals during “idle” periods but degrade the performance

of those in the “burst” periods; vice versa. Thus, adjusting

values of K based on the changes in traffic becomes more

important to such a case.

Figure 6 depicts the performance measures (e.g., the average

response times) under the online version of ARA. The results

under the greedy (e.g., Qlen) and the random (e.g., Rand)

algorithms are plotted in the figure as well. Also, in order to

evaluate the prediction algorithm, we present the results for

a new version of ARA, dubbed as ARA OPT, that assumes

to have a priori knowledge of each job’s arrival time and

thus makes an exact detection of when the burst starts and

when it ends. This version thus provides an upper bound for

ARA PRED. Note that when both ths and thl are equal to 1,

ARA PRED performs exactly as Qlen. In all experiments, the

number of computing sites is N = 16, the average utilization

of each computing site is 50%, and the information query

delay is D = 1s. Additionally, we here fix the small threshold

ths as 1 but change the large threshold thl from 1 to 16 in

Figure 6 (a), while fix the large threshold thl as 14 but change

the small threshold ths from 1 to 16 in Figure 6 (b).
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Fig. 6. The average response times under the online version of ARA, where
(a) the small threshold ths is kept as 1 while the large threshold thl is
changed from 1 to 16, and (b) the small threshold ths is changed from 1 to
16 while the large threshold thl is kept as 14. The performance under Qlen,
Rand and ARA OPT are also plotted. Here, the number of computing sites is
N = 16, and the average site utilization is 50%, and the information query
delay is D = 1s.

The results shown in Figure 6 first confirm that neither Qlen

nor Rand is able to obtain good performance for this workload.

Qlen even presents the worst behavior because of the moderate

burstiness in arrivals. Instead, our new algorithms ARA PRED

and ARA OPT significantly improve the system performance,

using distinguished values of K for the phases with different



burstiness intensities. Also, ARA PRED performs closely to

the one with optimal forecasting, validating the accuracy of

our prediction algorithm. More importantly, ARA PRED can

always achieve such performance improvements as long as

thl is larger than some thresholds (e.g., 8 in Figure 6 (a))

and ths is smaller than some thresholds (e.g., 6 in Figure 6

(b)). This is because jobs in a “burst” phase could be almost

equally distributed among all the sites in the following cases:

when K = 8 and the duration of a “burst” phase is short

(e.g., around 2s), the jobs in this phase may be sent randomly

to the top 8 sites in the first second and to the remaining

8 sites in the second seconds, leading to the similar results

as the case that K = 16 and all jobs are sent randomly

to 16 sites in two seconds. Therefore, we argue that the

results shown in Figure 6 demonstrate that our algorithms

ARA PRED has more robustness, which provides a simple yet

flexible knob for deciding the value of K. In contrast, the static

version described in Section III-A and the algorithm proposed

in [9] require more efforts to tune the values of K, which is

sophisticated when the workload is dynamically changed.

D. Sensitivity Analysis on Experimental Parameters

Now, we turn to analyze the effects of different experimental

parameters on ARA PRED’s performance. We first focus on

investigating the sensitivity of ARA to the network size (i.e.,

the number of computing sites) by evaluating job response

time for N = 8, 16, and 32. In all experiments, we scale the

mean service times in order to fix the site utilization levels

equal to 50%. All the other parameters are kept the same as the

experiments shown in Figure 6. The performance results under

the four algorithms are shown in Table II(a). These results first

confirm that the conventional algorithms (e.g., Rand and Qlen)

poorly behave under all the three network sizes, and our new

ARA ones improve the system performance by discriminating

bursty periods from non-bursty ones. We also observe that as

the system becomes larger (i.e., N increases), jobs experience

worse response times under the “greedy” and the “random”

methods. But, such a performance trend disappears under the

two ARA ones. We interpret that as the number of sites

becomes larger, it is more likely for Qlen (resp. Rand) to make

wrong decisions for bursty (resp. non-bursty) traffic, resulting

in more dramatic degradation on system performance. On the

other hand, by online adjusting the values of K for bursty

and non-bursty traffic, two ARA algorithms select the good

sites for incoming jobs, which may have less loads (i.e., the

number of queuing jobs) as the number of sites increases and

thus reduce the waiting times for those jobs.

As the existence of delays in computing and communi-

cating the site load information is critical to the algorithm

performance, we investigate the sensitivity of load balancers

to information query delay D. In this set of experiments, we

fix all the other parameters, e.g., N = 16 and site utilization is

50%, but increase D to 2s and 6s. The reason to set D = 6s is

because the average duration of bursty periods is equal to 6s

as well, which then provides an extreme case such that all jobs

arriving during bursty periods are either sent to a single site or

(a)

network Load Balancer
size Rand ARA OPT ARA PRED Qlen

8 1089.25 1063.39 1064.66 1101.02
16 1109.33 1056.07 1059.00 1244.32
32 1148.38 1042.79 1051.21 1751.43

(b)

delay Load Balancer
time Rand ARA OPT ARA PRED Qlen

1s 1109.33 1056.07 1059.00 1244.32
2s 1111.07 1057.76 1062.97 1692.26
6s 1110.77 1063.23 1070.57 3653.21

(c)

site Load Balancer
load Rand ARA OPT ARA PRED Qlen

30% 487.83 471.05 473.04 606.62
50% 1109.33 1056.07 1059.00 1244.32
80% 4220.09 3964.39 3968.77 4138.34

TABLE II
SENSITIVE ANALYSIS OF SYSTEM PARAMETERS (A) NETWORK SIZE, (B)

DELAY TIME, AND (C) SITE LOAD ON ARA PRED PERFORMANCE.

fully randomly sent to one of all sites in average. Table II(b)

shows the performance results. First, different delay times do

not affect the performance of the “random” algorithm because

the candidate site is always selected randomly no matter how

long the delay is. However, for the “greedy” algorithm, the

performance becomes worse as the delay time increases. This

is because more jobs in bursty periods are then sent together

to the same site due to the outdated load information and thus

the load of that particular site significantly increases, causing

serious load unbalancing and bad performance. For both

of the ARA algorithms, we observe again the performance

improvement compared to the other two conventional ones.

Also, the delay time has less impact on the ARA performance.

This is because after detecting the start of bursty periods, ARA

quickly shifts to the “random” scheme.

In order to understand the performance benefit of the

algorithm when the system reaches critical congestion, we

turn to analyze the impacts of utilization levels on ARA

performance. We here conduct experiments with three different

site utilization levels: 30%, 50% and 80% by scaling the mean

service times, while keeping the other parameters fixed as the

experiments shown in Figure 6. The performance measures

provided by four load balancing algorithms are illustrated in

Table II(c). We observe that both two ARA algorithms achieve

better performance than the conventional ones (e.g., Rand and

Qlen) across all three utilization levels.

In summary, the extensive experimentation produced in this

section has validated that ARA using prediction information

can effectively improve the system performance, compared to

the conventional load balancers which ignore the effects of

burstiness in arrivals. The sensitivity results on network size,

delay time, and system load have further demonstrated that the

gains of ARA are visible in a variety of different conditions.

IV. CASE STUDY: AMAZON EC2

To further verify the effectiveness of our new load balancer,

we implement and evaluate the ARA algorithms as well as the

conventional ones (i.e., Rand and Qlen) in Amazon EC2, a real



Fig. 7. The overview framework of our implementation in Amazon EC2.

cloud platform that provides pools of computing resources to

developers for flexibly configuring and scaling their compute

capacity on demand. Figure 7 illustrates the basic framework

of our implementation in Amazon EC2.

In particular, we replace the Elastic Load Balancing (ELB)

in Amazon EC2 with our load balancing (LB) service and

then direct all the incoming application requests to this new

LB service for load dispatch across multiple Amazon EC2

instances. This new LB service is then run at a High-CPU

Medium Instance which provides five EC2 compute units for

compute-intensive applications. We also lease 8 Small Stan-

dard Instances as servers, each of which has one EC2 compute

unit and 1.7GB memory by default. Such a configuration of

instances aims to ensure that the system bottleneck is not

our load balancer while the overall performance is dominated

by the load balancing algorithms as well as the processing

capability of each server instance.

We then conduct real experiments in Amazon EC2 by

running microbenchmarks like the execution of Fibonacci

numbers. As illustrated in Figure 7, multiple users can simul-

taneously send HTTP requests to our load balancer instance.

Each HTTP request contains an URL, which includes a

decision maker ID and the corresponding job size parameters.

Once the load balancer receives an HTTP request, Apache

Tomcat, an installed Java Servlet container, parses that re-

quest’s header and then selects a server instance for serving

that request according to the implemented load balancing al-

gorithm. Here, on each of server instances, the sar command

was run for measuring and reporting the CPU utilizations every

1 second to load balancer via advert board. The chosen server

instance then calculates a Fibonacci number and sends the

result back to a client through the load-balancer instance.
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Fig. 8. The average end-to-end response times under Rand, Qlen and our
online ARA where the small threshold ths is kept as 1 while the large
threshold thl is changed from 1 to 8.

In terms of evaluation, we measured end-to-end response

times (i.e., the duration between request submission and reply

receiving) for the QoS assessment and monitored utilization

levels at each site (or application instance) for the load

balance assessment. Figure 8 presents the performance of the

online ARA in our Amazon EC2 model, where burstiness

was injected into the arrivals of HTTP requests. The results

under both Qlen and Rand are also plotted in the figure.

We observe that consistently to our simulations, none of the

conventional load balancers (e.g., Qlen and Rand) is able

to obtain good performance under bursty workload, while

our online ARA algorithm achieves significant performance

improvements by dynamically shifting between “greedy” and

“random” according to the workload changes. The best per-

formance under ARA is obtained when K is equal to 4 such

that the relative improvements are 48% over Qlen and 50%
over Rand, respectively. We also observe that the measured

utilization levels at all 8 server instances are quiet close to

each other, i.e., about 41% in average, which indicates a good

load balancing across multiple Amazon EC2 instances.

V. RELATED WORK

Burstiness has been known as an important characteristic of

traffic in communication networks [11], [12], [13], [14] and

has fueled much research over the past two decades [15], [13].

Recently, the presence of burstiness has also been identified

in a variety of settings, including enterprise systems [2], [16],

grids [1], storage systems [17], [18] and file systems [19].

The impact of burstiness on system performance has been

examined and reported in [20], [21], [2].

In resource-sharing environments, such as grids and clouds,

a privileged resource management system is designated to

manage how these resources are used. LoadLeveler [22],

PBS [23], LSF [24], NQS [25], Maui [26] and Condor [27]

are the most commonly used resource management systems.

These systems manage computing resources within a single

administrative domain. Loadleveler, PBS, and LSF can allocate

resources in a parallel system running a homogeneous oper-

ating system. Condor is designed for a distributed computing

environment with non-dedicated resources that can be shared

with local users while processing computational requests from

remote users. Nimrod/G [28] is a resource management and

scheduling system based on the Globus Toolkit. It targets

applications that involve a large number of task executions

and a range of parameters.



In cloud computing systems, users pay to lease a collection

of virtual machines that are used to execute applications.

These virtual machines are assigned to physical resources

so as to achieve certain goals. These goals may include

satisfying users’ resource requirements and computational de-

mands, minimizing application latency, or maximizing appli-

cation throughput. [29] evaluated conservative, selective, and

aggressive backfill cloud scheduling algorithms by comparing

computing the performance/cost ratio for each algorithm.

Other market-based scheduling algorithms have been proposed

to manage cloud resources [30]. However, we notice that

none of the above studies research resource management in

cloud systems by taking account of the performance impact

of burstiness.

A dynamic load balancing scheme was proposed by Mitzen-

macher in [9] which considers the supermarket model such that

customers can randomly choose a constant number of servers

and waits for service at the one with the fewest customers.

Via theoretical justification and simulations, the author shows

that two or a small number of choices can produce exponential

improvements. We notice that this approach [9] is the closest

one to our work presented in this paper. However, it only con-

siders the Poisson arrival streams as well as the exponentially

distributed service time and the fixed number of choices (i.e.,

servers). On the other hand, we provide a method of adjusting

the number of candidates depending on the measurement of

traffic burstiness.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have described our new adaptive load bal-

ancing algorithms for clouds under bursty workloads. Our new

static ARA algorithm tunes the load balancer by adjusting the

trade-off between randomness and greediness in the selection

of sites. While this approach gives very good performance,

tuning the algorithm can be difficult. We therefore proposed

our new online ARA algorithm that predicts the beginning and

the end of workload bursts and automatically adjusts the load

balancer to compensate. We show that the online algorithm

gives good results under a variety of system settings. This

approach is more robust than the static algorithm, and does

not require the algorithm parameters to be carefully tuned.

We conclude that an adaptive, burstiness-aware load balancing

algorithm can significantly improve the performance of cloud

computing systems.
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