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Abstract. We propose a principal curve tracing algorithm that uses
the gradient and the Hessian of a given density estimate. Curve definition
requires the local smoothness of data density and is based on the concept
of subspace local maxima. Tracing of the curve is handled through the
leading eigenvector where fixed-step updates are used. We also propose
an image segmentation algorithm based on the original idea and show the
effectiveness of the proposed algorithm on a Brainbow dataset.

1 Introduction

Principal curves are the smooth curves that pass through the middle of the data
cloud or probability distribution. This definition is first formalized by Hastie [1],
where each point on the curve is the conditional mean of the points that project
there. These are called self consistent curves and their shape is inherited from
the data. Following this self consistent curves definition, various principal curve
algorithms have been defined in the literature, mostly based on Hastie’s original
definition [2, 3, 4, 5, 6]. In general, most of these algorithms use semi-global
least square construction error to find principal curves, but there are also other
locally defined principal curve definitions as in [5, 6]. Nevertheless, in all these
past works, principal curves have been formulated as nonlinear curves (for linear
case they are principal lines) that pass through the middle of the data or the
probability distribution, and they provide a nonlinear summary of the data as
compact representations on nonlinear manifolds. While in principal component
analysis (PCA) this compact representation is given in terms of finding linear
manifolds having least-square construction error, principal curves generally sat-
isfy second order statistical optimality criteria by mapping the data to nonlinear
manifolds.

Following the formal definition of locally defined principle curves and concept
of critical and principle sets discussed in [6], we employed a subspace constrained
tracing method. Given a seed point (or any arbitrary feature vector) and an
initial approximate direction, the proposed method highlights the underlying
structure in the data having locally similar characteristics with the seed. In
order to achieve this, first we find the corresponding locally defined principal
curve in the vicinity that is aligned to the initial direction and then trace it
through the data space.
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2 Principal Curves

Let x € R™ be a random vector with samples x7,Xo,...,Xy, having a given
pdf estimate of p(x). Let g(x) be the transpose of its local gradient, and let
H(x) be the local Hessian of this pdf. Finally, using the gradient and Hes-
sian, define the local covariance as: 3 71(x) = —p~1(x)H(x) + p2g(x)Tg(x)"
Let {(M1(x),q1(x)),.-., (An(X),qn(x))} be the eigenvalue-eigenvector pairs of
3~1(x), sorted in ascending order: A\; < Ay < -+ < \,. In general, a point, x,
is on the principal curve iff the local gradient is an eigenvector of the local covari-
ance, where it is orthogonal to the other n—1 eigenvectors [6]. For instance, with-
out loss of generality, let S (x) = span{qz(x),q3(x),...,qn(x)} be the normal
space spanned by the n—1 orthogonal eigenvectors and S (x) = span{qi(x)} be
the tangent vector at x. If a point is on the principle curve, then g(x) is orthogo-
nal to S, (x). Updates constrained to the S (x) plane will converge to or diverge
from the principle curves depending on the update direction, whereas propagat-
ing through tangential vector (S)(x)) will trace the locally defined principal
curve at x. So an iterative tracing algorithm using correction-update scheme
is possible by incorporating the iterations on the normal plane(correction step)
and the tangential vector(update step) with proper directions. Fig. 2 shows the
tracing of a perturbed semicircular data given an initial direction (black arrow)
and seed location (green circle). Consider a general weighted variable-width ker-
nel density estimate (KDE)? obtained from samples X;,Xs,...,Xy and initial
tracing direction vy. KDE is given as

N
p(x) =Y w(x;)Gs, (x —xi) (1)

=1

where w(x;) is the weight and Y; is the variable kernel covariance® of the Gaus-
sian kernel G(x;) = Czie—%-fTEfl

and the Hessian of the KDE are:

z for the i** data sample x;. The gradient
N
g(x) = =Y w(x)Gx, (x — %)% (x = x;) (2)
i=1
N
H(x) = Z w(x;)Gy, (x —x;)(Z Hx —x)(x —x)'8 =57 (3)
i=1

For p(x) mean-shift (MS) updates are in the form x <« x + ms(x), where

N

N
ms(x) = (Z Gs,(x —x)%;, ™! Z Gs,(x — %)% 1% (4)
i=1 i=1

IThe local covariance is defined in this manner using the second order term in the Taylor
series expansion of log p(x) in order for principal curve projections to be consistent with PCA
projections in the case of a Gaussian density.

2KDE is used as an example since it encompasses parametric mixture models as a special
case; the method is general for any pdf model.

3 Assuming Gaussian kernels here for simplicity.



and ms(x) can be decomposed as ms(x) = ms|(x) + ms (x). Here ms (x) is
the normal component given as V| VI'ms(x), where V| = [q2(x), q3(X), . . ., qn(X)].
Similarly, ms)|(x) is the tangential component given by qi(x)qi(x)’ ms(x).
Constrained MS iterations on S, (x) force x to converge to the principle curve
through fix-point iterations whose convergence is guaranteed. At each itera-
tion, sign of the ms(x) must be corrected with the current tracing direction
defined by the previous iteration (y;—1) and normalized to the step length:
v(x), = sign('y(x)ilms“(x))msH(x). Summary of the algorithm is presented

in Table 1.

3 Principal Curves for Fiber Tracing in Volumetric Images

Curvilinear objects are very common in images, especially in biomedical imag-
ing (i.e. vessels, neurons). Color values (c) and pixel locations(p) form the
feature space. In order to reduce computational load, KDE computations are
restricted to the K-Nearest Neighbors (KNN) in space denoted by NNV,
Weights in KDE can be selected as the pixel intensity values (e.g., sum of RGB
color coordinates). Separable bounded-support kernels replace Gaussian kernels
Gs,(x — x;) < aBy(p — pi)Gsr(p — Pi)Gxo(c — ¢;) constraining computa-
tions to neighboring pixels. Here, p; and ¢; are the position and color vector
components of x;. B (p — p;) is the support ball with Ly norm radius €, and
« is the normalization constant of the kernel. KDE becomes

N
p(x) = ZinéBze(P - pi)GZf (p— pi)G2§ (c—ci)
i=1
= Y waGyr(p—pi)Gyelc—c) (5)
z;€B2 (pP)

Letting 8;(x) = aw;Gsr (p — pi)Gxe(c — ¢;), the gradient and Hessian are

so=- > a2 )

H H,.
HE = Y ae| g ] )
z;€B2 (P) pe “
where H,, = Ei_pl(p -pi)p— pi)TEi_pl -t Hye = HY = Ei_pl(p —pi)(c—

ip
c))T's ! and Hee = 2 (e — ¢;)(c — ¢;)T%;t — ¥5.'. Furthermore, in order
to obtain continuous tracing overvoxels, tracing iterations can be restricted to
immediate spatially neighboring voxels.

4 Experimental Results

In this section we present results obtained on synthetic and real datasets. For
simplicity, isotropic fixed bandwidth kernels are employed. Since principle curves
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Fig. 1: Axial (xy-plane) slices of a sample brainbow image stack showing a
bundle of axons of motor neurons connecting from the spinal cord to a muscle.

(a) Circular data (b) Brainbow images

Fig. 2: Tracing of synthetic and real datasets.

pass through cluster modes, MS algorithm [8] is run starting from the provided
arbitrary seed and tracing starts from the corresponding mode. Synthetic data
is composed of data uniformly distributed along a semicircle (radius = 1) and
radially perturbed by a Gaussian (0-mean 0.1-std). Sample weights in KDE
are equal and the stopping threshold thr is 0.01 with unit step size (u = 1).
Kernel covariance is 0?1 with o = 0.1. Fig. 2-a shows the tracing result for this
semi-circular dataset. Second, a Brainbow image set composed of 31 confocal
microscopy image slices (with z-direction resolution of 64um) with each slice
being 1024 x 1024 pixels (x & y directions at 11um resolution) is used. In the
preprocessing step the images are downsampled by 3 in the x & y directions and
upsampled by 2 in the z direction yielding a voxel size of 33 x 33 x 32um3. The
resampled image stack is smoothed in 3D using a bilateral filter with Gaussian
kernel with diagonal covariance (spatial scale of 5 voxels and RGB-color scale
of 0.2). Fig. 1 shows sample slices after smoothing with axons visible in each
slice. We used an e-ball having a radius sufficient to cover N, = 250 neighbors



Table 1: Summary of Principal Curve Tracing Algorithm
1. At iteration ¢=0 initialize x, the step size u, and the direction of the curve ~p.
2. At iteration t evaluate the mean shift update ms(x(t)) as in Eqn. 4.

3. Evaluate the gradient, the Hessian, and perform the eigendecomposition of £ 71(x) =
VTV, where V., are the eigenvectors with corresponding eigenvalues I' = diag{\1
A2 <--- < >\n}-

4. Let V1, and V2. be the eigenvectors that consequently span S (x), and S (x), such

IN

that ms (x) = q1(x)a1 (x)Tms(x), and ms (x) = ngnvgnms(x).
5. Evaluate the new curve direction vector ¢ = sign('ytqllms” (x))ms (x)

6. If p(x) < thr then stop, else x(t+ 1) — x(¢t) + ms (x) + um

Table 2: Summary of Principal Curve Tracing Algorithm for Image Datasets
1. At iteration ¢=0 initialize x, and the direction of the curve 7.

2. At iteration ¢ evaluate the wKDE mean shift update ms(x(t)) as in Eqn. 4 using the
samples that are in the vicinity.

3. Evaluate the gradient, the Hessian, and perform the eigendecomposition of 71 (x) =
VTV, where V1., are the eigenvectors with corresponding eigenvalues I' = diag{\1 <
Az <o < Aa)

4. Let V1, and V2.5, be the eigenvectors that consequently span S| (x), and S (x), such

)T

that ms)(x) = q1(x)q1(x)" ms(x), and ms (x) = Vg;nV%:nms(x).

5. Evaluate the new curve direction vector ¢ = sign(wﬁlms” (x))ms (x)

6. If x is outside the image boundary stop, else x(¢t+ 1) = arg mi{‘l (v (%3 — x)). Here
r;€Tx

Tk is the connected neighborhood of the x composed of 26 voxels in 3D.

(approximately radius of 4 voxels). Kernel covariances " and Eic are selected
as O‘ZI and 021 where 0, = 5 and 0. = 0.3. Since fiber colors vary along the axis,
we employed moving averaging smoothing for the colors to adapt to this spatial
color change along each axon. At each step, direction of the principal curve is
calculated () as described in Tab. 2. The immediate neighbor voxel center that
is closest to the direction pointed by ~; is selected as the next approximate curve
sample. In displaying the axon trajectories another moving averaging filter is
used to smooth these. Fig. 2-b shows the trajectories of some selected axons.

5 Discussion and Conclusion

In this paper, we presented a curve tracing algorithm that uses locally defined
critical set definitions. Proposed method uses the gradient and the Hessian of the
density estimate to calculate the principal curves as the underlying structures.
While iterations on the constrained normal space pull towards to the principal
curve, fixed step size or fixed-length updates trace the curve along the center
of the data (if local maximum coincides with mean). Selection of the step size



and kernel bandwidths are manual and proper selection should be determined
by data geometry. Depending on the curvature, large step sizes might result in
irrecoverable errors (one possible case in Brainbow analysis is two fibers with
similar colors and high curvatures getting very close to each other - this might
result in the traced curve to jump from one axon to the other). Kernel band-
width selection is well researched for density estimation (e.g. leave-one-out cross
validation maximum likelihood), but best density estimation bandwidth might
not be the best principal curve estimation bandwidth and procedures specific to
the latter should be researched in the future. Local principle set definition solves
issues related to bifurcations, loops, and self intersections naturally. In tracing
branching curves, one possibility is to initialize another tracing algorithm when
a bifurcation is detected (indicated by a circular local Hessian on the curve).
Further work is needed to solve practical issues in this area.
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