
INPUT-OUTPUT MAPPING PERFORMANCE OF
LINEAR AND NONLINEAR MODELS FOR

ESTIMATING HAND TRAJECTORIES FROM
CORTICAL NEURONAL FIRING PATTERNS

Justin C. Sanchez1, Sung-Phil Kim2, Deniz Erdogmus2,
Yadunandana N. Rao2, Jose C. Principe2, Johan Wessberg3, Miguel Nicolelis3

Departments of 1Biomedical and 2Electrical and Computer Engineering
University of Florida, Gainesville, FL 32611

[justin, phil, deniz, yadu, principe]@cnel.ufl.edu
3Department of Neurobiology, Duke University, Durham, NC 27710

[wessberg, nicoleli]@neuro.duke.edu

Abstract. Linear and nonlinear (TDNN) models have been shown to
estimate hand position using populations of action potentials collected
in the pre-motor and motor cortical areas of a primate’s brain. One of
the applications of this discovery is to restore movement in patients
suffering from paralysis. For real-time implementation of this
technology, reliable and accurate signal processing models that
produce small error variance in the estimated positions are required.
In this paper, we compare the mapping performance of the FIR filter,
Gamma filter and recurrent neural network (RNN) in the peaks of
reaching movements. Each approach has strengths and weaknesses
that are compared experimentally. The RNN approach shows very
accurate peak position estimations with small error variance.

INTRODUCTION

Brain-machine interfaces are a developing technology, which might provide a
new medium to transfer the intent of an individual to a variety of devices for the
purpose of locomotion, enhanced ability, or computer control. Using new multi-
electrode recording techniques, signals derived from populations of single neurons
could be used to control devices that substitute the movement for individuals with
neurologic disorders. Both linear and nonlinear filters [1] have served as tools for
studying brain derived signals to estimate hand position in 3-D space.

It still remains unknown which topology, linear or nonlinear, produces
estimations of hand trajectories that will be feasible for real-time implementation
of a brain-machine interface. The potential advantage of a nonlinear filter as
opposed to a linear filter is that it might be able to find a more complex input-
output (I/O) mapping that captures the details in the trajectories [2]. We ultimately
seek a model that produces high target accuracy with a small variance. The model
must also produce the output with a level of dexterity similar to the biologic hand.

The performance of linear and nonlinear (TDNN) models have been compared
by Nicolelis and colleagues [1] who demonstrated that firing patterns from
ensembles of cortical neurons could successfully predict (in real time) the hand
position of a primate. In the prediction procedure, a large array of 100+
microelectrodes was implanted in the pre-motor and motor areas of a primate.
Electrode outputs were processed by spike detection and sorting algorithms to
determine firings of single neurons. Spike counts in 100 msec windows are then
fed to either a 104x10 (104 channels and 10 delays) finite impulse response filter
(FIR) trained with least squares (effectively a Wiener filter [3]) or a 1040x15x3
time delay neural network (TDNN) (104 channels with 10 delays each) trained
with conjugate gradient to match the x, y, z coordinates of the primate’s hand.

Other groups have also demonstrated neural control of devices using linear and
nonlinear methods. Neural cursor control using linear filters trained with least-
squares has also been attempted by Donoghue et. al. [4]. Chapin and colleagues
utilized a recurrent neural network to predict lever pressing from ensembles of rat
cortical neurons [5].

In this paper, we aim to specifically determine which model (linear or nonlinear)
is best for producing accurate estimations during long excursions in hand
trajectory and stationary positions. Secondly, we will evaluate how well the fixed
linear and nonlinear models perform over time. We continue the work of Nicolelis
and colleagues by substituting the TDNN with a recurrent neural network (RNN)
and compare the performance to the FIR and Gamma filters. The choice of the
RNN is based upon the fact that it is a nonlinear mapper which requires much
fewer parameters than the linear and TDNN models.

MODELING

FIR Filters: In this modeling approach, we assume that there exists a linear
mapping between the desired hand position and neuronal firing counts. The
estimated hand position output of the linear filter with M delays (20 for this
problem) is given in (1). This equation shows that the delayed versions of firing
counts, x(t-i), from 104 neurons are the bases that construct the output signal.

∑
−

=

−=
1

0
)()(

M

i

T
i itty xw (1)

 The model parameters are updated using the computationally efficient LMS
algorithm [6] which utilizes stochastic gradient descent. The linear FIR filter using
MSE as the criterion is guaranteed to converge to a single global minimum [3].
Given the input vector x(t) and the desired response d(t), the weight parameters of
the M-tap FIR filter shown in Fig. 1 are adapted using LMS as given in (2). Here,
η is the constant learning rate and e(t)=d(t)–Σi wi

T(t)x(t-i). Since the adaptation
only includes two multiplications and one addition per weight, the computational
complexity of LMS is O(N), where N is the number of weights of the FIR filter.
Thus, the computational complexity of LMS increases linearly with filter order.

)()()()1(ittett ii −+=+ xww η (2)

x(t) z-1

wM-1(t)w1(t)w0(t)

Weight Update Rule (LMS) e(t) +
-

Σ

. . .

x(t-M+1)

ΣΣ

x(t-1)
z-1. . .

d(t)

Figure 1: Structure of the FIR filter adapted by the LMS algorithm.

x(t) . . .
x1(t)

1-µ

z-1+µ

G(z)G(z)

wM-1(t)w1(t)w0(t)

Weight Update Rule (LMS) e(t) +
-

Σ

. . .

xM-1(t)

ΣΣ

d(t)

Figure 2: Structure of the Gamma filter adapted by the LMS algorithm.

Since the signal power of the neuronal firing counts can rapidly change, the
normalized LMS algorithm can be used to avoid sensitivity to local amplitude and
to set a time-varying learning rate that traces time-variant input statistics. The
weight update rule for normalized LMS [7] is given in (3) where η0 satisfies 0 < η0

< 2, and γ is a small positive constant.

)()(
)(

)()1(2
0 itte

it
tt ii −

−+
+=+ x

x
ww

γ

η (3)

Gamma Filters: The Gamma filter incorporates the desirable features of both
FIR and IIR filters by implementing a restricted feedback architecture which
uncouples memory depth from filter order [8]. The Gamma filter structure, shown
in Fig. 2., allows for a reduction in number of free parameters for an equivalent
FIR memory depth. The memory depth of the M-tap Gamma filter is given by (4)
where µ is a feedback parameter, which is equivalent to the time resolution R of
the Gamma filter. Hence, there exists a trade-off between memory depth and
resolution. The Gamma filter reduces to the adaptive FIR structure when µ =1.

µ
MDM = (4)

This memory characteristic is especially useful for this problem since input data
has a large dimensionality (x(t) is a 104x1 vector). A 20-tap FIR architecture
incorporates 2080 parameters (20x104). For simple trajectories, this large number
of parameters can add noise to the output and cause poor performance. An
equivalent memory depth can be achieved with a 12-tap Gamma filter with µ=0.6.
This yields a 40% saving in the number of weights from 2080 → 1248.

Filter weights can be updated in the same manner as the FIR filter given in (2)
with the exception of the feedback parameter µ of (5) that will not be updated.
Since the Gamma filter employs LMS as the adaptation rule, the computational
complexity remains as O(N).

1,,1),1()1()1()(1 −=−+−−= − Mkttt kkk Lxxx µµ (5)
Recurrent Neural Network: In this I/O modeling approach, we create a mapping

which assumes a nonlinear relationship between the spike trains and hand
positions. Here the model is a recurrent multilayer perceptron (MLP) that was
proposed in [9]. This network differs from an MLP since it contains feedback
connections in its hidden layer. The architecture consists of an input layer with
104 channels, a hidden layer of nonlinear processing elements (PEs), (in this case
tanh), and an output layer of linear PEs. Fig. 3 depicts the topology of the
recurrent network (RNN) that is used in this study. Each hidden layer PE is
connected to every other hidden PE using a unit time delay. We can see in (6) that
the state produced at the output of the first hidden layer is a nonlinear function of a
weighted combination of the current input and the previous state. The feedback of
the state allows for continuous representations on multiple timescales. While both
the linear and Gamma (when trained with fixed µ) networks have a fixed memory
depth, the recurrent network does not have a constraint on the memory depth and
implements an infinite memory by the recurrency in (6). The output layer is a
simple linear combination, shown in (7), of the hidden layer states.

))1()(()(111 −+= tyWtxWfty f (6)

BtyWty +=)()(12 (7)

x
y

y 1

W 2

W f

W 1

PE

PE

PE

Figure 3. State Recurrent Fully Connected Neural Network

Unlike the linear and Gamma models there is no need to use memory at the

input layer. This reduces the number of free parameters in the input layer
dramatically (from 2,080 to 104). Memory is created by feeding the states of the
hidden PEs among themselves. Each of the hidden PEs outputs can be thought of

as a nonlinear adaptive basis of the input space utilized to project the large
dimensionality data. These projections are then linearly combined to form the
outputs of the RNN that will predict the desired hand movements.

The MLP from which this topology is derived has been shown to be a universal
mapper in Rn [10]. The time delay neural network (TDNN) has been also shown to
be a universal mapper in myopic functional spaces [11]. Although no theoretical
work to prove the universal approximation of the recurrent MLP is known, we
expect it to display the same universality because it can be unfolded in a TDNN
[12]. Hence this network when properly dimensioned and trained has the power to
find the mapping between spike trains and hand positions in 3D space.

Although no analytic solution to solve the nonlinear equation of the RNN is
known, adapting its parameters can be achieved using the gradient descent
procedure. Since RNNs are recurrent systems, gradients display dependencies over
time, and so the common backpropagation algorithm to train neural networks [13]
cannot be applied directly. Here we use the Backpropagation Through Time
(BPTT) algorithm [14] to train the RNN. In BPTT, the recurrent network is
unfolded to create an equivalent feedfoward network, with replicated weights,
which span a time trajectory. The length of this trajectory is empirically
determined. Input data spanning the trajectory is fed to the feedfoward network
with a random initial state and the PE outputs are stored. An error vector is created
at the output and fed (reversed in time) through the dual network to produce local
errors. The weights are then updated. Finally, the process begins again for the next
trajectory. We used the commercial tool NeuroSolutions to train the RNN [12].

Sufficiently small stepsizes were chosen to promote generalization and ensure
stability. Even with small stepsizes, feedback loops in the network can cause
outputs to oscillate. Since previous states are used in future state computations,
oscillations propagate and cause poor generalization. The network learning must
be reinitialized in this situation. Recurrent networks trained with gradient descent
methods have difficulty learning time dependencies in long trajectories. Gradients
tend to decay exponentially through the trajectory due to the PE nonlinearities
[15]. Training RNNs with BPTT also suffers from a high computational
complexity. Activations, injected errors, and copies of weights have to be stored
over a trajectory length. For one trajectory T steps long with an N node network,
BPTT requires O(N2T) computations and O(NT) storage [12].

SIMULATIONS

Data: Synchronous, multichannel neuronal spike trains were collected at Duke
University using owl monkeys (Aotus trivirgatus). Microwire electrodes were
implanted in cortical regions with known motor associations [16]. The firing times
of single neurons were recorded while the monkey performed a 3-D reaching task.
The monkey hand position was also recorded (with a shared time clock) and
digitized with a 200Hz sampling rate. The neuronal firings were binned (added) in
non-overlapping windows of 100ms, which represents the local firing rate for a
neuron. These spike counts were directly used as inputs to the linear, Gamma and

RNN. In order to take the reaction time into account, the spike trains were delayed
by 0.23 seconds with respect to the hand position.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

4

6

8

10

12

14

µ

N
um
be
r o
f T
a
ps

Contour Plot of Correlation Coefficient

Figure 4. Testing correlation coefficient as a function of the number of filter

delays and the feedback parameter µ.

Linear/Gamma: The spike counts of each of the 104 neurons were used to train
both the FIR and Gamma filters to predict the x, y, and z coordinates of the
monkey’s hand. The FIR topology contained a twenty tap-delay line (2080
weights – 20x104) while the Gamma implemented an eight tap-delay line with the
feedback parameter, µ, fixed to 0.6 (1248 weights – 12x104). The effective
memory depth is equivalent for both filters and the optimal parameters were
chosen by conducting Monte Carlo simulations over a number of tap delays and
the feedback parameters. Results shown in Fig. 4 were obtained by computing the
correlation coefficient between the actual and estimated test trajectory. The
correlation coefficient gives a measure of how well the actual and estimated
trajectories are linearly related. The optimal delay length and µ, were the pair that
produced the highest correlation coefficient.

The weights of both filters were updated using the LMS rule after the
presentation of each exemplar. A training set of 20,000 consecutive bins (2,000
secs) of data was utilized. Forty presentations of the data were required to train the
filter weights. Linear filters display a slow rate of convergence when the input data
is highly correlated. Neuronal firing patterns collected from electrode arrays are
highly correlated in clusters local to the electrodes. Large eigen value spreads in
the data cause the performance surface to assume the shape of a valley to give
multiple solutions with the same MSE.

In testing, the network parameters were fixed and 3,000 consecutive bins (300
secs) of novel neuronal data were fed in to the filter to predict new hand
trajectories. The testing results were evaluated in terms of signal to noise (error)
ratio (SNR) between the actual and estimated hand trajectories using a sliding
window of 40 samples (4 seconds). The window length of 40 was selected because
each movement spans about 4 seconds. The SNR (square of the desired signal
divided by the square of the estimation error) gives a measure of the accuracy of
estimated position in terms of the error variance. High SNRs are desired since they
are produced when the estimated output error variance is small.

0 50 100 150 200 250 300
-50

0

50

100
Desired Trajectory

0 50 100 150 200 250 300
0

10

20

30
FIR Filter

SN
R

0 50 100 150 200 250 300
0

10

20

30
Gamma Filter

SN
R

0 50 100 150 200 250 300
0

10

20

30
Recurrent Neural Network

SN
R

Time (sec)

Figure 5. Signal to noise ratio between the actual and estimated hand coordinates.

The x, y, and z coordinates of hand trajectories during testing are presented in
the top subplot of Fig. 5. Also shown in subplots (2) and (3) are the SNRs for the
FIR and Gamma filters. Windowed SNRs, averaged over the three coordinate
directions, reached values of 7.51 and 8.53 for the FIR and Gamma, respectively.
Cumulative SNRs averaged over all coordinate directions and the entire test set
(3000 samples, 300 seconds) were 0.86 for the FIR and 0.89 for the Gamma. No
decay in the SNR was observed over the entire testing set.

The peaks of the estimated hand trajectory (Gamma filter) superimposed on the
actual trajectory are shown in Fig. 6, subplot (1). Three of the six peaks are not
captured by the model. Two of the six peaks show an estimated position that
reaches the target value and falls off sharply. Only one peak shows accurate
estimation by the Gamma filter.

RNN: The spike counts of each of the 104 neurons were used to train a RNN
(104x5x3) with 5 nonlinear hidden PEs and 3 linear output PEs to predict the x, y,
and z coordinates of the monkey’s hand. Each exemplar of data used for the BPTT
training algorithm contained a trajectory length of thirty samples (3 secs). Weight
updates occurred after the presentation of 10 exemplars (30 secs). A training set of
20,010 consecutive bins (2,001 secs) of data was utilized. In testing, the network
parameters were fixed and 3,000 consecutive bins (300 secs) of novel neuronal
data were fed in the network to predict new hand trajectories.

The SNR computed using a sliding window of 40 samples (4 seconds) for the
RNN is shown in Fig. 5, subplot (4). Windowed SNR calculations, averaged over
the three coordinate directions, reached a value of 31.98. This value is
significantly larger than both the FIR and Gamma models. The cumulative SNR
averaged over all coordinate directions and the entire test set (3000 samples, 300
seconds) was 1.58. The RNN produced an estimated trajectory with a cumulative
noise power that is fifty percent smaller than the desired signal. In contrast, both
the FIR and Gamma produced outputs with noise power that was fifteen percent
larger than the desired signal. No time-dependent decay of the SNR was observed.

0 10 20 30 40 50 60 70 80 90 100
15

20

25

30

35

40
Gamma Filter

Actual
Estimated

0 10 20 30 40 50 60 70 80 90 100
15

20

25

30

35

40
Recurrent Neural Network

Time (sec)
Figure 6. Peaks of Hand Trajectory (Z-Coordinate)

0
10

20
0 10 20 30 40

0

20

40

Estimation Errors for Three Peaks

FIR
Gamma
RNN
Target

0
10

20
0 10 20 30

0

10

20

0
5

10
0 10 20 30 40

0

10

20

Error x-direction

Peak 3

Error y-direction
E
rro
r z
-d
ire
ct
io
n

Figure 7. Estimation errors for three peak values. Targets are represented by an x

at the origins. The error (mm) in each direction is displayed on the respective axis.

The peaks of the estimated hand trajectory superimposed on the actual trajectory
are shown in Fig. 6, subplot (2). Five of the six peaks were captured by the model.
None of the estimated peaks display any sharp drop-offs and four of the six are
within ten percent error bar around target value. RNN estimation of the peak
values is significantly better than the FIR and Gamma filters.

The target accuracy of the RNN is further compared in Fig. 7 that shows the
target estimation errors for three peak values. In the figure, the target hand position
is represented by an x located at the origin of the coordinate system. The absolute
value of the error associated with each direction (x, y, z) is plotted on its respective
axis. The RNN errors form a tight cluster of points around the target value, while
both the FIR and Gamma filters have large errors in all three directions.

DISCUSSION AND CONCLUSIONS

In this paper, real neurophysiological data from neuronal spike populations was
used to compare linear and nonlinear I/O models to predict 3-D hand positions.
The three models utilized differ in the following ways:

• The memory depth of the FIR is limited by the number of delays in the tap-delay
line. Longer memory depths result in more free parameters to train. Although
the FIR has a single minimum, the convergence speed is affected by a large
eigenvalue spread. Training requires a low computational complexity.

• The Gamma filter decouples memory depth from filter order by implementing a
restricted feedback architecture. Equivalent memory depths can be achieved
with a fewer number of free parameters. Gamma filter training is as
computationally efficient as the FIR filter.

• The RNN implements an infinite memory depth on multiple timescales.
Memory is moved from the input layer to the hidden layer where the largest
decrease in the number of free parameters can be achieved. The RNN
architecture used in this paper contained the fewest number of free parameters.
RNN is capable of constructing complex nonlinear I/O mappings. BPTT is more
computationally complex than standard LMS.
Our results show that during testing, the RNN provides the highest signal to

noise ratio for the hand movement in the reaching part of the trajectories.
Windowed SNRs were up to four times larger than both the FIR and Gamma
filters during the reaching movements. Even with a reduced number of free
parameters, the Gamma filter performed only slightly better than the FIR but
produced a smaller SNR than the RNN.

We conclude from the SNR plots in Fig. 5 that the part of the trajectory that is
more difficult to model (largest error variance) for all three models is when the
monkey's hand is at rest close to the body. SNRs in these rest positions drops to
zero. We also conclude that there is no noticeable progressive degradation in time
of all three models for the period of observation (5 min). This important result
shows that models with fixed parameters are capable of producing accurate
position estimates over a substantial period of time. Note that the task is rather
repetitive and test sets were short.

Accurate target estimation is crucial for the success of this technology. If targets
cannot be acquired with fine precision, real-time implementation of a reaching
task may not be feasible. The RNN peak estimation showed superior qualities
compared to the FIR and Gamma filters. The RNN repeatedly produced peak
estimations with errors that formed tight clusters around the target, while the FIR
and Gamma had errors with a large spread. The ability to capture the peak values
can be attributed to the complex functions produced by nonlinearities in the
network. Unlike the linear filters, which occasionally captured a peak, the RNN
also maintained the peak value.

The training of the two systems should also be compared. The FIR and Gamma
use a very straightforward and well-established training procedure (LMS). We
may think that this simple training procedure is an advantage, but the eigenvalue
spread of the data causes long convergence times to multiple solutions at a single
minima. The RNN has fewer parameters that need to be tuned to the data, but the
computational complexity of BPTT is higher. In addition, the trajectory length has
to be tuned by hand because it has to include at least one full cycle of the hand
movement. The learning rates also have a critical role in the accuracy of the final

model. Improvements in the training of the RNN are in order. For real-time,
portable implementation (DSP/FPGA) the RNN poses challenging problems.

We (and other groups) have shown that rather simple procedures are capable of
capturing the I/O mappings required to predict hand position from neural spike
train populations. Although a lot of work is still required to create reliable and
accurate signal processing models, this study can guide us in choosing model
classes which provide superior performance.

Acknowledgements: This work was supported by a seed grant from the College
of Engineering, University of Florida and DARPA.

REFERENCES

[1] J. Wessberg, C. R. Stambaugh, J. D. Kralik, P. D. Beck, M. Laubach, J. K. Chapin,

J. Kim, S. J. Biggs, M. A. Srinivasan, and a. Nicolelis et, "Real-time prediction of
hand trajectory by ensembles of cortical neurons in primates," Nature, vol. 408, pp.
361-365, 2000.

[2] S. Haykin, Neural networks: a comprehensive foundation. New York: Toronto:
Macmillan; Maxwell Macmillan Canada, 1994.

[3] S. S. Haykin, Adaptive filter theory, 3rd ed. Upper Saddle River, NJ: Prentice-Hall
International, 1996.

[4] M. D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows, and J. P. Donoghue,
"Brain-machine interface: Instant neural control of a movement signal," Nature, vol.
416, pp. 141-142, 2002.

[5] J. K. Chapin, K. A. Moxon, R. S. Markowitz, and M. A. Nicolelis, "Real-time
control of a robot arm using simultaneously recorded neurons in the motor cortex,"
Nature Neuroscience, vol. 2, pp. 664-670, 1999.

[6] B. Widrow, "Adaptive noise cancelling: principles and applications," Proceedings of
the IEEE, vol. 63, pp. 1692-1716, 1975.

[7] J. I. Nagumo and A. Noda, "A learning method for system identification," IEEE
Transactions on Automation and COntrol, vol. AC-12, pp. 282-287, 1967.

[8] B. De Vries and J. C. Príncipe, "The gamma model: a new neural network model for
temporal processing," Neural Networks, vol. 5, pp. 565-576, 1993.

[9] G. V. Puskorius, L. A. Feldkamp, L. I. Davis, and Jr., "Dynamic neural network
methods applied to on-vehicle idle speed control," Proceedings of the IEEE, vol. 84,
pp. 1407-1420, 1996.

[10] G. Cybenko, "Approximation by superpositions of a sigmoidal function,"
Mathematics of Control, Signals, and Systems, vol. 2, pp. 303-314, 1989.

[11] I. W. Sandberg and L. Xu, "Uniform approximation of multidimensional myopic
maps," IEEE Transactions on Circuits and Systems, vol. 44, pp. 477-485, 1997.

[12] J. C. Príncipe, N. R. Euliano, and W. C. Lefebvre, Neural and adaptive systems:
fundamentals through simulations. New York: Wiley, 2000.

[13] D. Rumelhart, G. Hinton, and R. Williams, "Learning Internal Representations by
Error Back-propagation," Nature, vol. 323, pp. 533-536, 1986.

[14] P. J. Werbos, "Backpropagation Through Time: What It Does and How to Do it,"
Proceedings of the IEEE, vol. 78, pp. 1550-1560, 1990.

[15] J. F. Kolen and S. C. Kremer, A field guide to dynamical recurrent networks. New
York: IEEE Press, 2001.

[16] M. A. Nicolelis, A. A. Ghazanfar, B. M. Faggin, S. Votaw, and L. M. Oliveira,
"Reconstructing the engram: simultaneous, multisite, many single neuron
recordings," Neuron, vol. 18, pp. 529-537, 1997.

