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Abstract.  Linear and nonlinear (TDNN) models have been shown to 
estimate hand position using populations of action potentials collected 
in the pre-motor and motor cortical areas of a primate’s brain. One of 
the applications of this discovery is to restore movement in patients 
suffering from paralysis. For real-time implementation of this 
technology, reliable and accurate signal processing models that 
produce small error variance in the estimated positions are required. 
In this paper, we compare the mapping performance of the FIR filter, 
Gamma filter and recurrent neural network (RNN) in the peaks of 
reaching movements. Each approach has strengths and weaknesses 
that are compared experimentally. The RNN approach shows very 
accurate peak position estimations with small error variance.  

 
 
INTRODUCTION 
 

Brain-machine interfaces are a developing technology, which might provide a 
new medium to transfer the intent of an individual to a variety of devices for the 
purpose of locomotion, enhanced ability, or computer control. Using new multi-
electrode recording techniques, signals derived from populations of single neurons 
could be used to control devices that substitute the movement for individuals with 
neurologic disorders. Both linear and nonlinear filters [1] have served as tools for 
studying brain derived signals to estimate hand position in 3-D space. 

It still remains unknown which topology, linear or nonlinear, produces 
estimations of hand trajectories that will be feasible for real-time implementation 
of a brain-machine interface. The potential advantage of a nonlinear filter as 
opposed to a linear filter is that it might be able to find a more complex input-
output (I/O) mapping that captures the details in the trajectories [2]. We ultimately 
seek a model that produces high target accuracy with a small variance. The model 
must also produce the output with a level of dexterity similar to the biologic hand.  



The performance of linear and nonlinear (TDNN) models have been compared 
by Nicolelis and colleagues [1] who demonstrated that firing patterns from 
ensembles of cortical neurons could successfully predict (in real time) the hand 
position of a primate. In the prediction procedure, a large array of 100+ 
microelectrodes was implanted in the pre-motor and motor areas of a primate. 
Electrode outputs were processed by spike detection and sorting algorithms to 
determine firings of single neurons. Spike counts in 100 msec windows are then 
fed to either a 104x10 (104 channels and 10 delays) finite impulse response filter 
(FIR) trained with least squares (effectively a Wiener filter [3]) or a 1040x15x3 
time delay neural network (TDNN) (104 channels with 10 delays each) trained 
with conjugate gradient to match the x, y, z coordinates of the primate’s hand.  

Other groups have also demonstrated neural control of devices using linear and 
nonlinear methods. Neural cursor control using linear filters trained with least-
squares has also been attempted by Donoghue et. al.  [4]. Chapin and colleagues 
utilized a recurrent neural network to predict lever pressing from ensembles of rat 
cortical neurons [5].   

In this paper, we aim to specifically determine which model (linear or nonlinear) 
is best for producing accurate estimations during long excursions in hand 
trajectory and stationary positions. Secondly, we will evaluate how well the fixed 
linear and nonlinear models perform over time. We continue the work of Nicolelis 
and colleagues by substituting the TDNN with a recurrent neural network (RNN) 
and compare the performance to the FIR and Gamma filters. The choice of the 
RNN is based upon the fact that it is a nonlinear mapper which requires much 
fewer parameters than the linear and TDNN models.   
 
 
MODELING 
 

FIR Filters: In this modeling approach, we assume that there exists a linear 
mapping between the desired hand position and neuronal firing counts. The 
estimated hand position output of the linear filter with M delays (20 for this 
problem) is given in (1). This equation shows that the delayed versions of firing 
counts, x(t-i), from 104 neurons are the bases that construct the output signal. 
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  The model parameters are updated using the computationally efficient LMS 
algorithm [6] which utilizes stochastic gradient descent. The linear FIR filter using 
MSE as the criterion is guaranteed to converge to a single global minimum [3]. 
Given the input vector x(t) and the desired response d(t), the weight parameters of 
the M-tap FIR filter shown in Fig. 1 are adapted using LMS as given in (2). Here, 
η is the constant learning rate and e(t)=d(t)–Σi wi

T(t)x(t-i). Since the adaptation 
only includes two multiplications and one addition per weight, the computational 
complexity of LMS is O(N), where N is the number of weights of the FIR filter. 
Thus, the computational complexity of LMS increases linearly with filter order. 
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Figure 1: Structure of the FIR filter adapted by the LMS algorithm. 
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Figure 2: Structure of the Gamma filter adapted by the LMS algorithm. 
 

Since the signal power of the neuronal firing counts can rapidly change, the 
normalized LMS algorithm can be used to avoid sensitivity to local amplitude and 
to set a time-varying learning rate that traces time-variant input statistics. The 
weight update rule for normalized LMS [7] is given in (3) where η0 satisfies 0 < η0 

< 2, and γ  is a small positive constant. 
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Gamma Filters: The Gamma filter incorporates the desirable features of both 
FIR and IIR filters by implementing a restricted feedback architecture which 
uncouples memory depth from filter order [8]. The Gamma filter structure, shown 
in Fig. 2., allows for a reduction in number of free parameters for an equivalent 
FIR memory depth. The memory depth of the M-tap Gamma filter is given by (4) 
where µ is a feedback parameter, which is equivalent to the time resolution R of 
the Gamma filter. Hence, there exists a trade-off between memory depth and 
resolution. The Gamma filter reduces to the adaptive FIR structure when µ =1.  

µ
MDM =     (4) 



This memory characteristic is especially useful for this problem since input data 
has a large dimensionality (x(t) is a  104x1 vector). A 20-tap FIR architecture 
incorporates 2080 parameters (20x104). For simple trajectories, this large number 
of parameters can add noise to the output and cause poor performance. An 
equivalent memory depth can be achieved with a 12-tap Gamma filter with µ=0.6. 
This yields a 40% saving in the number of weights from 2080 → 1248. 

Filter weights can be updated in the same manner as the FIR filter given in (2) 
with the exception of the feedback parameter µ of (5) that will not be updated. 
Since the Gamma filter employs LMS as the adaptation rule, the computational 
complexity remains as O(N).  

1,,1),1()1()1()( 1 −=−+−−= − Mkttt kkk Lxxx µµ    (5) 
Recurrent Neural Network: In this I/O modeling approach, we create a mapping 

which assumes a nonlinear relationship between the spike trains and hand 
positions. Here the model is a recurrent multilayer perceptron (MLP) that was 
proposed in [9]. This network differs from an MLP since it contains feedback 
connections in its hidden layer. The architecture consists of an input layer with 
104 channels, a hidden layer of nonlinear processing elements (PEs), (in this case 
tanh), and an output layer of linear PEs.  Fig. 3 depicts the topology of the 
recurrent network (RNN) that is used in this study. Each hidden layer PE is 
connected to every other hidden PE using a unit time delay. We can see in (6) that 
the state produced at the output of the first hidden layer is a nonlinear function of a 
weighted combination of the current input and the previous state.  The feedback of 
the state allows for continuous representations on multiple timescales. While both 
the linear and Gamma (when trained with fixed µ) networks have a fixed memory 
depth, the recurrent network does not have a constraint on the memory depth and 
implements an infinite memory by the recurrency in (6). The output layer is a 
simple linear combination, shown in (7), of the hidden layer states. 
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Figure 3. State Recurrent Fully Connected Neural Network 
 
Unlike the linear and Gamma models there is no need to use memory at the 

input layer. This reduces the number of free parameters in the input layer 
dramatically (from 2,080 to 104). Memory is created by feeding the states of the 
hidden PEs among themselves. Each of the hidden PEs outputs can be thought of 



as a nonlinear adaptive basis of the input space utilized to project the large 
dimensionality data. These projections are then linearly combined to form the 
outputs of the RNN that will predict the desired hand movements.  

The MLP from which this topology is derived has been shown to be a universal 
mapper in Rn [10]. The time delay neural network (TDNN) has been also shown to 
be a universal mapper in myopic functional spaces [11]. Although no theoretical 
work to prove the universal approximation of the recurrent MLP is known, we 
expect it to display the same universality because it can be unfolded in a TDNN 
[12]. Hence this network when properly dimensioned and trained has the power to 
find the mapping between spike trains and hand positions in 3D space.      

Although no analytic solution to solve the nonlinear equation of the RNN is 
known, adapting its parameters can be achieved using the gradient descent 
procedure. Since RNNs are recurrent systems, gradients display dependencies over 
time, and so the common backpropagation algorithm to train neural networks [13] 
cannot be applied directly. Here we use the Backpropagation Through Time 
(BPTT) algorithm [14] to train the RNN. In BPTT, the recurrent network is 
unfolded to create an equivalent feedfoward network, with replicated weights, 
which span a time trajectory. The length of this trajectory is empirically 
determined. Input data spanning the trajectory is fed to the feedfoward network 
with a random initial state and the PE outputs are stored. An error vector is created 
at the output and fed (reversed in time) through the dual network to produce local 
errors. The weights are then updated. Finally, the process begins again for the next 
trajectory. We used the commercial tool NeuroSolutions to train the RNN [12]. 

Sufficiently small stepsizes were chosen to promote generalization and ensure 
stability. Even with small stepsizes, feedback loops in the network can cause 
outputs to oscillate. Since previous states are used in future state computations, 
oscillations propagate and cause poor generalization. The network learning must 
be reinitialized in this situation.   Recurrent networks trained with gradient descent 
methods have difficulty learning time dependencies in long trajectories. Gradients 
tend to decay exponentially through the trajectory due to the PE nonlinearities 
[15]. Training RNNs with BPTT also suffers from a high computational 
complexity. Activations, injected errors, and copies of weights have to be stored 
over a trajectory length. For one trajectory T steps long with an N node network, 
BPTT requires O(N2T) computations and O(NT) storage [12]. 
 
 
SIMULATIONS 
 

Data: Synchronous, multichannel neuronal spike trains were collected at Duke 
University using owl monkeys (Aotus trivirgatus). Microwire electrodes were 
implanted in cortical regions with known motor associations [16]. The firing times 
of single neurons were recorded while the monkey performed a 3-D reaching task. 
The monkey hand position was also recorded (with a shared time clock) and 
digitized with a 200Hz sampling rate. The neuronal firings were binned (added) in 
non-overlapping windows of 100ms, which represents the local firing rate for a 
neuron. These spike counts were directly used as inputs to the linear, Gamma and 



RNN.  In order to take the reaction time into account, the spike trains were delayed 
by 0.23 seconds with respect to the hand position. 
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Figure 4. Testing correlation coefficient as a function of the number of filter 

delays and the feedback parameter µ. 
 

Linear/Gamma: The spike counts of each of the 104 neurons were used to train 
both the FIR and Gamma filters to predict the x, y, and z coordinates of the 
monkey’s hand. The FIR topology contained a twenty tap-delay line (2080 
weights – 20x104) while the Gamma implemented an eight tap-delay line with the 
feedback parameter, µ, fixed to 0.6 (1248 weights – 12x104). The effective 
memory depth is equivalent for both filters and the optimal parameters were 
chosen by conducting Monte Carlo simulations over a number of tap delays and 
the feedback parameters. Results shown in Fig. 4 were obtained by computing the 
correlation coefficient between the actual and estimated test trajectory. The 
correlation coefficient gives a measure of how well the actual and estimated 
trajectories are linearly related. The optimal delay length and µ, were the pair that 
produced the highest correlation coefficient.  

The weights of both filters were updated using the LMS rule after the 
presentation of each exemplar. A training set of 20,000 consecutive bins (2,000 
secs) of data was utilized. Forty presentations of the data were required to train the 
filter weights. Linear filters display a slow rate of convergence when the input data 
is highly correlated. Neuronal firing patterns collected from electrode arrays are 
highly correlated in clusters local to the electrodes. Large eigen value spreads in 
the data cause the performance surface to assume the shape of a valley to give 
multiple solutions with the same MSE.  

In testing, the network parameters were fixed and 3,000 consecutive bins (300 
secs) of novel neuronal data were fed in to the filter to predict new hand 
trajectories. The testing results were evaluated in terms of signal to noise (error) 
ratio (SNR) between the actual and estimated hand trajectories using a sliding 
window of 40 samples (4 seconds). The window length of 40 was selected because 
each movement spans about 4 seconds. The SNR (square of the desired signal 
divided by the square of the estimation error) gives a measure of the accuracy of 
estimated position in terms of the error variance. High SNRs are desired since they 
are produced when the estimated output error variance is small. 
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Figure 5. Signal to noise ratio between the actual and estimated hand coordinates. 

The x, y, and z coordinates of hand trajectories during testing are presented in 
the top subplot of Fig. 5. Also shown in subplots (2) and (3) are the SNRs for the 
FIR and Gamma filters. Windowed SNRs, averaged over the three coordinate 
directions, reached values of 7.51 and 8.53 for the FIR and Gamma, respectively. 
Cumulative SNRs averaged over all coordinate directions and the entire test set 
(3000 samples, 300 seconds) were 0.86 for the FIR and 0.89 for the Gamma. No 
decay in the SNR was observed over the entire testing set. 

The peaks of the estimated hand trajectory (Gamma filter) superimposed on the 
actual trajectory are shown in Fig. 6, subplot (1). Three of the six peaks are not 
captured by the model. Two of the six peaks show an estimated position that 
reaches the target value and falls off sharply. Only one peak shows accurate 
estimation by the Gamma filter.  

RNN: The spike counts of each of the 104 neurons were used to train a RNN 
(104x5x3) with 5 nonlinear hidden PEs and 3 linear output PEs to predict the x, y, 
and z coordinates of the monkey’s hand. Each exemplar of data used for the BPTT 
training algorithm contained a trajectory length of thirty samples (3 secs). Weight 
updates occurred after the presentation of 10 exemplars (30 secs). A training set of 
20,010 consecutive bins (2,001 secs) of data was utilized. In testing, the network 
parameters were fixed and 3,000 consecutive bins (300 secs) of novel neuronal 
data were fed in the network to predict new hand trajectories. 

The SNR computed using a sliding window of 40 samples (4 seconds) for the 
RNN is shown in Fig. 5, subplot (4). Windowed SNR calculations, averaged over 
the three coordinate directions, reached a value of 31.98. This value is 
significantly larger than both the FIR and Gamma models. The cumulative SNR 
averaged over all coordinate directions and the entire test set (3000 samples, 300 
seconds) was 1.58. The RNN produced an estimated trajectory with a cumulative 
noise power that is fifty percent smaller than the desired signal. In contrast, both 
the FIR and Gamma produced outputs with noise power that was fifteen percent 
larger than the desired signal. No time-dependent decay of the SNR was observed. 
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Figure 6. Peaks of Hand Trajectory (Z-Coordinate) 
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Figure 7. Estimation errors for three peak values. Targets are represented by an x 

at the origins. The error (mm) in each direction is displayed on the respective axis.  
 

The peaks of the estimated hand trajectory superimposed on the actual trajectory 
are shown in Fig. 6, subplot (2). Five of the six peaks were captured by the model. 
None of the estimated peaks display any sharp drop-offs and four of the six are 
within ten percent error bar around target value. RNN estimation of the peak 
values is significantly better than the FIR and Gamma filters. 

The target accuracy of the RNN is further compared in Fig. 7 that shows the 
target estimation errors for three peak values. In the figure, the target hand position 
is represented by an x located at the origin of the coordinate system. The absolute 
value of the error associated with each direction (x, y, z) is plotted on its respective 
axis. The RNN errors form a tight cluster of points around the target value, while 
both the FIR and Gamma filters have large errors in all three directions.   
 
 
DISCUSSION AND CONCLUSIONS 
 

In this paper, real neurophysiological data from neuronal spike populations was 
used to compare linear and nonlinear I/O models to predict 3-D hand positions. 
The three models utilized differ in the following ways:  



• The memory depth of the FIR is limited by the number of delays in the tap-delay 
line. Longer memory depths result in more free parameters to train. Although 
the FIR has a single minimum, the convergence speed is affected by a large 
eigenvalue spread. Training requires a low computational complexity. 

• The Gamma filter decouples memory depth from filter order by implementing a 
restricted feedback architecture. Equivalent memory depths can be achieved 
with a fewer number of free parameters. Gamma filter training is as 
computationally efficient as the FIR filter. 

• The RNN implements an infinite memory depth on multiple timescales. 
Memory is moved from the input layer to the hidden layer where the largest 
decrease in the number of free parameters can be achieved. The RNN 
architecture used in this paper contained the fewest number of free parameters. 
RNN is capable of constructing complex nonlinear I/O mappings. BPTT is more 
computationally complex than standard LMS. 
Our results show that during testing, the RNN provides the highest signal to 

noise ratio for the hand movement in the reaching part of the trajectories. 
Windowed SNRs were up to four times larger than both the FIR and Gamma 
filters during the reaching movements. Even with a reduced number of free 
parameters, the Gamma filter performed only slightly better than the FIR but 
produced a smaller SNR than the RNN.  

We conclude from the SNR plots in Fig. 5 that the part of the trajectory that is 
more difficult to model (largest error variance) for all three models is when the 
monkey's hand is at rest close to the body. SNRs in these rest positions drops to 
zero. We also conclude that there is no noticeable progressive degradation in time 
of all three models for the period of observation (5 min). This important result 
shows that models with fixed parameters are capable of producing accurate 
position estimates over a substantial period of time. Note that the task is rather 
repetitive and test sets were short. 

Accurate target estimation is crucial for the success of this technology. If targets 
cannot be acquired with fine precision, real-time implementation of a reaching 
task may not be feasible. The RNN peak estimation showed superior qualities 
compared to the FIR and Gamma filters. The RNN repeatedly produced peak 
estimations with errors that formed tight clusters around the target, while the FIR 
and Gamma had errors with a large spread. The ability to capture the peak values 
can be attributed to the complex functions produced by nonlinearities in the 
network. Unlike the linear filters, which occasionally captured a peak, the RNN 
also maintained the peak value.  

The training of the two systems should also be compared. The FIR and Gamma 
use a very straightforward and well-established training procedure (LMS). We 
may think that this simple training procedure is an advantage, but the eigenvalue 
spread of the data causes long convergence times to multiple solutions at a single 
minima.  The RNN has fewer parameters that need to be tuned to the data, but the 
computational complexity of BPTT is higher. In addition, the trajectory length has 
to be tuned by hand because it has to include at least one full cycle of the hand 
movement. The learning rates also have a critical role in the accuracy of the final 



model. Improvements in the training of the RNN are in order. For real-time, 
portable implementation (DSP/FPGA) the RNN poses challenging problems.   

We (and other groups) have shown that rather simple procedures are capable of 
capturing the I/O mappings required to predict hand position from neural spike 
train populations. Although a lot of work is still required to create reliable and 
accurate signal processing models, this study can guide us in choosing model 
classes which provide superior performance.  
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