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Abstract—This paper investigates the potential of the com-
pressed sensing (CS) paradigm for video streaming in Wireks
Multimedia Sensor Networks. The objective is to study perfo
mance limits and outline key design principles that will be he
basis for cross-layer protocol stacks for efficient transpd of
compressive video streams. Hence, this paper investigatéke
effect of key video parameters (i.e., quantization, CS sanigs per
frame, and channel encoding rate) on the received video quié&f
of CS images transmitted through a wireless channels. It is®wn
that, unlike JPEG-encoded images, CS-encoded images exiian
inherent resiliency to channel errors, caused by the unstructured
image representation; this leads to basicallyzero loss in image
quality for random channel bit error rates as high as 10~*, and .
low degradation up to 10~3. Furthermore, it is shown how, unlike
traditional wireless imaging systems, forward error correction is
not beneficial for wireless transmission of CS images. Instel, an
adaptive parity scheme that drops samples in error is proposd
and shown to improve image quality. Finally, a low-complexiy,
adaptive video encoder, is proposed that performs low-conipxity
motion estimation on sensors, thus greatly reducing the ammt
of data to be transmitted.

|I. INTRODUCTION

Wireless Multimedia Sensor Networks (WMSN) [1] are
self-organizing wireless systems of embedded devices de-
ployed to retrieve, distributively process in real-timégre,
correlate, and fuse multimedia streams originated from het
erogeneous sources. WMSNs will enable new applicatiowe
including multimedia surveillance, storage and subsefjuen
retrieval of potentially relevant activities, and persacdtor
services.

siderable progress in solving numerous wireless senser n
working challenges. However, the key problem of enabli
real-time quality-aware video streaming in large-scaldtimu
hop wireless networks of embedded devices is still open a
largely unexplored. There are two key shortcomings in syste
based on sending predictively encoded video (e.g., MPE
Part 2, H.264/AVC, H.264/SVC) through a layered wirelests
communication protocol stack, i.eencoder complexitand

coding[2] algorithms (aka Wyner- Ziv coding ) exploit
the source statistics at the decoder, thus shifting the
complexity at this end. While promising for WMSNSs [1],
most practical Wyner-Ziv codecs require end-to-end feed-
back from the decoder [3], which introduces additional
overhead and delay. Furthermore, gains demonstrated by
practical distributed video codecs are limited to 2-5 dBs
PSNR. Distributed video encoders that do not require
end-to-end feedback have been recently proposed [4], but
at the expense of a further reduction in performance.
Limited Resiliency to Channel Errors. In existing
layered protocol stacks based on the IEEE 802.11 and
802.15.4 standards, frames are split into multiple packets
If even a single bit is flipped due to channel errors, after
a cyclic redundancy check, the entire packet is dropped
at a final or intermediate receiverThis packet loss can
lead to the video decoder being unable to decode an
independently coded (I) frame, thus leading to loss of
the entire sequence of video frames that are dependent on
the | frame. Instead, ideally, when one bit is in error, the
effect on the reconstructed video should be unperceivable,
with minimal overhead. In addition, the perceived video
quality should gracefully and proportionally degrade with
decreasing channel quality.

argue, and show through preliminary analysis and experi-
ments, that new cross-layer optimized communication paito
stacks based on the recently proposed compressed sensing
In recent years, there has been intense research and {gns-) paradigm [5].’ [6], [7], [8] can offer a convincing sabn
o the aforementioned problems. However, as will become
Gearer in the following, this may require a rethinking of
aditional wireless streaming functionalities acrossltipie
Ia(yers. Compressed sensing (aka “compressive sampling”) i
A%hew paradigm that allows the faithful recovery of signals
Gf_rgm far fewer measurements than traditional methods based
on Nyquist sampling. Hence, CS can offer an alternative to
raditional video encoders by enabling imaging systems tha
sense and compress data simultaneously and much faster,

low resiliency to channel errors ) .
. - . ] very low computational complexity for the encodénage
« Encoder Complexity. Predictive encoding requires com-coging and decoding based on CS has been recently explored
plex processing algorithms, which lead to high energy; [10]. So-called single-pixel cameras that can operate

consumption [1]. Instead, new video encoding paradigngiciently across a much broader spectral range (including
are needed to reverse the traditional balance of complex

enCOd_er and S|mple decoder, whichis l:InS.UIted for_embed:NO forward error correction (FEC) is used in either IEEE 802or
ded video sensors. Recently developlstributed video 802.15.4, and hence a faulty bit corrupts the whole packet.



infrared) than conventional silicon-based cameras hase alWe would like to recovek from measurements . However,
been proposed [11]. However, transmission of CS imagsisice M < N the system is underdetermined. Hence, given a
and video streaming in wireless networks, and their stedist solutions® to (2), any vectos* such thats* = s® + n, and
traffic characterization, are substantially unexplored. ne N(\il) (whereN(\il) represents the null space &), is
In this paper, we study the potential of compressive videdso a solution to (3). However, it was proven in [6] that ith
streaming for Wireless Multimedia Sensor Networks by comeasurement matris is sufficiently incoherent with respect
ducting a cross-layer performance evaluation of wireless the sparsifying matrix¥, and K is smaller than a given
streaming of CS video on resource constrained devices. Qlureshold (i.e., the sparse representagiofithe original signal
objective is to study performance limits and outline keyigies x is “sparse enough”), then the originatan be recovered by
principles that will be the basis for cross-layer protodacks finding the sparsest solution that satisfies (2), i.e., thesgst
designed for efficient transport of compressive video stiea solution that “matches” the measurements/inrHowever, the
over multi-hop wireless networks. Our contributions can hgroblem above is in general NP-hard. For matrideswith
outlined as follows: sufficiently incoherent columns, whenever this problem aas
« We study the effect of key video parameters (i.e., quanﬁufﬁcienﬂy sparse solution, the solution is unique, ands it
zation, CS samples per frame, and channel encoding ragépal to the solution of the following problem:
on the received video quality of CS images transmitted
through a wireless channels;
« We show how, unlike JPEG-encoded images, CS-encoded subject to: [y — Ws|[3 < e, (3)
images exhibit arinherent resiliencyto channel errors,

Py . minimize ||s||1

eree is a small tolerance. Note that probldfp is a convex

caused by the unstructured image representation; this.™ =~ : ;
optimization problem. The reconstruction complexity dqua

leads to basicallygeroloss in image quality for random 2 Ar3/2 i : o .
channel bit error rates as high 84, and low degrada- 2&%03; [1)2]'f the problem is solved using interior point

tion up to10~3. We discuss the profound impact of this
finding on wireless protocol design; B. Video Model

o We show how, unlike traditional wireless imaging sys- . - .
tems, forward error correction is not beneficial in CS We represent each frame of the video by 8-bit intensity val-

images. Instead, we propose an adaptive parity scheHf& i.e., a grayscale bitmap. To satisfy the sparsity rement

that drops samples in error, thus improving the quality &f CS theory, the wavelet transform is used as a sparsifying
b

the image reconstruction process; ase. A conventional imaging system or a single-pixel camer

. We propose a low-complexity, adaptive video en[11] can be the base of the imaging scheme. In the latter case,
coder, optimized for security videos, that performs |0V\}:-he video source only obtains random samples of the image

complexity motion estimation on sensors, thus greatp e., linear combinations ofthe_ pixel intensities). Iir ouodel,
reducing the amount of data to be transmitted. the image can be sampled using a scrambled block Hadamard

The remainder of this paper is structured as follows. l%nsemble [13]
Section I, we discuss our system model. In Section Ill, we
discuss wireless transmission of intra-frame encoded @&ovi
In Section IV we propose an adaptive parity based channelwherey represents image samples (measuremeHis), is
encoding scheme, while in Section V we propose a CS-basfd 32 x 32 Hadamard matrix anet the matrix of the image
inter-frame encoder optimized for security videos. In 8ect pixels. The matrixx has been randomly reordered and shaped
VI we draw the main conclusions and discuss future work.into a 32 x 3% matrix where N is the number of pixels in
Il SYSTEM MODEL the image._ThenM sample_s are randomly chosen fram

) S and transmitted to the receiver. The receiver then usedfthe

A. Compressed Sensing Preliminaries samples transmitted along with the randomization pattfnns

We consider an image signal represented through a vedsath randomizing the pixels int& and choosing the samples
x € RN, whereN is the vector length. We assume that thereut of z to be transmitted (both of which can be decided upon

y =Hsz - x, 4)

exists an invertibleV x N transform matrix® such that before network setup) and recreates the image sol¥inn
X — Ws (1) S%]through a suitable algorithm, e.g., GPSR4], StOMP

wheres is a K-sparse vector, i.el|s||o = K with K < N,

and where|| - ||, representsp-norm. This means that the [1l. TRANSMISSION OFINTRA-FRAME ENCODED VIDEO
image has a sparse representation in some transformedromailn this section, we study the effect of key design parameters
e.g., wavelet. The signal is measured by takihy < N on the received video quality of CS images transmitted tijhou
measurements from linear combinations of the element k&cta wireless channels: We first consider intra-coded frames,

through a linear measurement operadarHence,
2GPSR is used for image reconstruction in the simulationlteguesented

y = &x = ®Us = Us. (2) in this paper.



SSIMvs Quantization Rate SSIM vs Bit Error Rate for Compressed Sensing and JPEG Compression

iy

- - - JPEG

- -~ Conpression Rate of 37} —— Compressed Sensing

I | I
Sanpl e 5Qxantl zati 0:1 Rate [ bi (/‘Esawl e]

Structural Similarity Index (SSIM
Structural Similarity Index (SSIM)

10* 107
Bit Error Rate (BER)

Fig. 1. Structural Similarity (SSIM) Index [16] for Imagestiva Constant Fig. 2. Structural Similarity (SSIM) vs Bit Error Rate (BER)r compressed
Bit Rate of 37% of the Original Image Size for Varying Quaatian Levels sensed images, and images compressed using JPEG

SSIMvs BER with and Wthout Parity

i.e., we temporarily ignore the temporal correlation among T R TSN R
different frames. For a given data rate at the transportrlaye I ‘
F [bit/s], number of frames per second, and end-to-end
bit error rate (BER), there are three main parameters that
determine the perceptual quality of the received video &am
i.e., the quantization level of each samg)e the number of
samples per fram@/, and the channel encoding rake

1) Sample Quantization Rat&hesample quantization rate
Q [bit/sample] is the number of bits used to quantize each
sample. The smalle®, the lower the amount of informationrig. 3. Compressed Sensed Images Reconstructed With arigbit
sent per sample, and therefore the greater the numberingbrrect Samples
samples that can be transmitted for a target dataffat the
expense of greater quantization distortion in each sanvjie.
empirically evaluated the video quality of CS images adains 2) Samples per FrameThe number of sampled” needed
the optimal ratio of number of sample¥ vs quantization t0 reconstruct the image to a predefined quality level is
rate. To do so, we evaluated tiStructural Similarity Index dependenton the sparsity of the transmitted image. Theegrea
(SSIM) [16] between the original and the encoded image féRe number of transmitted samples compared to the spafsity o
a standardized set of 25 images. We kept the total image stBe image, the better the image quality of the received frame
constant at 37% of the original image size, i.e., the image siPepending on the desired video quality at the receiver, the
that allows sendingV samples (whereV corresponds to the Maximum number of samples per frame can be selected to
number of image pixe|s) with 3-bit quantization_ achieve that qua“ty We will discuss this further in Secth
Figure 1 shows the average SSIM of the above-mentioned) Effect of Channel Errorsin CS, the transmitted samples
images against sample quantization rate, Wit confidence Constitute a random, incoherent combination of the origina
intervals. Clearly,the benefit of more samples outweigh#nage pixels. This means that, unlike traditional wireless
the distortion caused be less accurate sampiiesvn to |mag|ng_systems, in CS no individual sample is more impor-
5bit/sample. Intuitively, this is because the recovery algot@nt for image reconstruction than any other sample. ldstea
rithm findsimage with the sparsest transforiiat minimizes the number of correctly received samplissthe only main
the difference between the samples received and the sam{f&or in determining the quality of the received image.ohls
generated from the reconstructed image. This means that e@eSmall amount of random channel errors does not affect the
though a small amount of samples (less than ont)f) may perceptual guahty of the received image _aII, since, for
be corrupted, the reconstructed image is the same or vEMpderate bit error rates, the greater sparsity of the “cgtre
similar to the image which would have been reconstructdé@iage will offset the error caused by the incorrect bit. This
without bit errors. is demonstrated in Fig. 3. For any BER lower thapr,
there is no noticeable drop in the image qualityp to
3The SSIM index is preferred to the more widespread PSNR, iwhias BERs lower than10*3, the SSIM is above).8, which is an
been recently shown to be inconsistent with human eye péocefil6]. indicator of good image quality. CS image representation is

SSIM is a more accurate measuremenF of error because thenhuisizal completelyunstructured this factmakes CS video much more
system perceives structural errors in the image more tharstFor example, ilient th isti id di h t d chh.
changes in contrast or luminance, although mathematicadipificant, are resilient than existing video coding schemes to random n

very difficult to discern for the human eye. Structural difleces such as errors. This has important consequences pmavides a strong

blurring, however, are very noticeable. SSIM is able to Wweifese structural motivation for Study|ng:0mpress|ve wireless video Stream|ng
differences better to create a measurement closer to whistially noticeable

than traditional measures of image similarity such as meprared error In WMS_NS' . .
(MSE) or PSNR. This inherent resiliency of compressed sensing to random

Structural Similarity Index (SSIM)
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SSIMvs BER with FEC and Adaptive Parity

number of samples, which are all dropped at the receiver
or at an intermediate node if the parity check fails. This is
particularly beneficial in situations when the BER is stili

but too high to just ignore errors. To determine the amount
of samples to be jointly encoded , the amount of correctly
received packets is modeled as
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Where(' is the estimated amount of correctly received sam-
Fig. 4. Adaptive Parity vs RCPC Encoding for Variable Bitdrrates  ples,b is the number of jointly encoded samples, &nds the
guantization rate per sample. To determine the optimalevalu
of b for a given BER, (5) can be differentiated, set equal to zero
channel bit errors is even more noticeable when comparaad solved fom. If the end-to-end BER can be estimated by
to traditional image compression schemes. Figure 2 shotke transmitting node, the optimal channel encoding rate ca
the average SSIM of 25 images transmitted through a binahen be chosen and used to encode the samples. The received
symmetric channel with varying crossover probability. Theideo quality using the parity scheme described was condpare
quality of CS-encoded images degrades gracefully as the BERdifferent levels of channel protection using rate corifypat
increases, and is still very high for BERs as highlés®. punctured codes (RCPC). Specifically, we use henother
Instead, JPEG-encoded images very quickly deterioratis. Thodes discussed in [17]. Briefly, § convolutional code is
is visually emphasized in Figs. 5 and 6. Figure 5 shows ti@inctured to decrease the amount of redundancy needed for
received imagé&enaencoded with CS and transmitted with bithe encoding process. These codes are punctured progfgssiv
error rates ofl0—?%, 10=4, and10~3. Figure 6 shows the sameso that everyhigher ratecode is a subset of the lower rate
image, but encoded with JPEG. The difference is stunningedes. For example, any bits that are punctured in @e
the effect of channel errors is disruptive for structureadacode must also be punctured in thecode, thei code, and
like JPEG-encoded images. The reader will easily realiaé tso on down to the highest rate code, in this case%thm)de.
the effect of channel errors on predictively-encoded vigeo Because of this setup, the receiver can decode the entiily fam
even more disruptive, since even low bit error rates can leaflcodes with the same decoder. This allows the transmitter
to the loss of | frames, causing the decoder to be unablettochoose the most suitable code for the given data. Clearly,
decode long sequences of frames that depend on the | fragee.these codes are punctured to reduce the redundancy, the
To determine thehannel encoding rateve first must deter- effectiveness of the codes decreases as far as the ability to
mine the channel coding strategy appropriate for compdesseorrect bit errors. Therefore we are trading bit error rate f
sensed imaging data transmitted over a multi-hop wirelegansmission rate.
network. One of the biggest advantages of compressed gensinFigure 4 shows the adaptive parity scheme compared to
is that the transmitted samples constitute a random, imeohe RCPC codes. Clearly, for all reasonable bit error rates, the
combination of the original data. This means that no singéglaptive parity scheme outperforms all levels of RCPC codes
sample is any more important than any other sample. Insteqfle parity scheme performs better for all levels of BER, and
only the numberof correctly received samples is the mairt is also much simpler to implement than more powerful
factor in determining the quality of the received image.dAls forward error correction (FEC) schemes. The parity scheme
following the same logic as for the quantization parametperforms better because, even though the FEC schemes show
selection, a small amount of errors will not considerablstronger error correction capabilities, the additiona¢rtvead
affect the perceptual quality of the received image, sincgoes not make up for the video quality increase compared to
for a moderate error rate, the greater sparsity of the corr@@st dropping the samples which have errors.
image will offset the error caused by the incorrect bit. Tibis
demonstrated in Figs 3 and 4. In Fig. 3, the same set of images
were reconstructed both with and without corrupted samples
after being transmitted through a binary symmetric channel In this section, we present a method for inter-frame en-
Clearly, the image quality considerably improves when thigoding. While the proposed method is general, it works
corrupted samples are dropped. particularly well for security videos. Security videos aae
special case of video in which we can assume that the camera
is not moving, but only the objects within the field of view
As discussed in the previous section, for a fixed numb@fOV) of the camera are moving. Because of this, there will
of bits per frame, the perceptual quality of video streams caften be a large amount of redundancy from one frame of
be further improved by dropping errored samples that woutde video to the next. One way to exploit this redundancy
contribute to image reconstruction with incorrect infotima.  within the framework of compressed sensing is by taking
This can be obtained by using even parity on a predefintdte algebraic difference between two frames, encoding this

Structural Similarity Index (SSIM

ontob|

Bit Error Rate (BER)

V. INTER-FRAME ENCODED COMPRESSEDVIDEO
STREAMING

IV. ADAPTIVE PARITY-BASED CHANNEL CODING
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Fig. 5. Lena encoded using compressed sensing with(@f BER (b) 10~% BER (c) 10~3 BER.
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Lena encoded with JPEG with (#)—5 BER (b) 10—% BER (c) c0~3 BER.

Fig. 6.

difference, recreating an image representing this diffeee levels are setygn andf,,oderate, Which determine what type
and combining it with the reference frame at the receiver. &f encoding should be used.
the image being encoded and the reference image are very

similar (i.e. have a very high correlation coefficient),ittis ~ * @ < Omoderate. When the correlation between a frame
difference image will be sparser than either of the original
images, and can therefore be transmitted at the same quality
using fewer samples than the original image. Note that while
the reference image is sparse only in the transformed domain
(e.g., wavelet), the difference image is sparse in the maigi  °
domain. Even though there are proposed algorithms thatrobta
higher received video quality [18], [19], [20], these meatko

all involve having access to at least some of the frames at the
transmitter. Because the proposed method works directly on
the samples and does not require knowledge of this original
image, it is suitable for use with a single pixel camera where
the original image is not available.

The procedure for encoding the video is based on the
amount of correlation between frames, as measured by the
correlation coefficientln order to minimize the propagation
of errors between frames, raference framds used to both
compare the current frame, and to base a difference frame
from for a slow moving video sequence. The correlation
coefficientx is calculated between the reference frame and the
current frame being evaluated. The spargitgf the recreated
difference frame can be calculated by a linear functiorof
defined by (6)

B=-A-a+B (6)

where A and B can be estimated by regression techniques.
Since the amount of samples required to correctly decode the
image is based on the sparsity of the received image, the type
of compression used can be directly based.omwo threshold

and the reference frame is low, the frame being consid-
ered is compressed using the standard intra-frame process
described in the previous section. Also, the frame being
considered is marked as the curregfierence frame
Omoderate < o < Opign. When there is moderate
correlation between the frame being considered and the
reference frame, difference frameés calculated between
the frame being considered and the most recent reference
frame. The difference frame is generated by finding the
difference between the samples of the current frame and
the samples of the reference frame. Then, the first
samples are transmitted, wherés calculated by a linear
function of the correlation coefficient.

These samples are then decoded at the receiver, thus
recreating the actual difference frame. That difference
frame can be added to the reference frame stored at the
receiver in order to reconstruct the frame at the source.
This method allows us to exploit the correlation between
similar frames while keeping the complexity at the source
low.

The three main advantages of this method are:

— The reference frame imherently sparsei.e., it is
sparse in the domain of random samples, not in
the transformed domain. Hence, it can be decoded
without using an additional sparsifying transform.
This can greatly speed up the performance of the
decoder;

— The reference frame can be quantized using less bits
than a reference frame. This is because there is less



Correlation and Sparsity for Security Video

o parity scheme that drops samples in error thus improving the
1 quality of the reconstructed image. Finally, we have prepas
low-complexity adaptive video encoder that performs motio
estimation on the video sensors, thus considerably reducin
the amount of data to be transmitted. Our future work will
be focused on designing cross-layer optimized communica-
] tion protocols for CS-based WMSN based on the principles
1 outlined in this preliminary investigation.

Frame Index
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