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Abstract—With more than 65M people affected by epilepsy

worldwide, early prediction and response to seizure onsets have

become more important than ever. Cutting-edge research in

implantable medical devices (IMDs) has shown that deep neural

networks (DNNs) applied to intracranial electroencephalogram

(iEEG) data can predict seizures up to an hour before onset.

However, offloading of iEEG data to the edge/cloud is highly

prohibitive, due to the sheer size of the generated data. Existing

work either focuses on the DNN training phase only, or does not

consider the severe energy/space limitations of IMDs. Moreover,

the technical aspects of patient personalization, which allows

for patient-specific hyper-parameter tuning, still remain unad-

dressed. In this paper, we propose a platform called AiEEG for in
vivo early seizure prediction, whose DNN hardware circuitry can

be reconfigured remotely without surgery. We prototype AiEEG
on a system on chip (SoC) platform and demonstrate its end-

to-end capabilities in seizure prediction with a population of

30 epileptic patients, with iEEG signals coming from a real-

world dataset. Extensive experimental results shows that (i) our

embedded and personalized DNN has an area under the curve

(AUC) averaging at 0.97 and as low as zero false positives per

hour (FPH) for over half the patients, an improvement of about

3.5x with respect to a non-personalized prediction method and

the best for a dataset of this size when compared to the state-

of-the-art; (ii) our AiEEG platform consumes 4.2x less energy

than a cloud-based approach, leading to a 4x battery lifetime

improvement; (iii) we are able to remotely fine-tune the DNN

through partial reconfiguration as needed in about 10s.

Index Terms—Ultrasound, Wireless, IoT, Deep Learning,

Seizure Prediction

I. INTRODUCTION

Major progress in the field of implantable medical devices
(IMDs) is transforming healthcare, with about 32M Ameri-
cans currently using pacemakers, defibrillators, artificial joints,
stents, and heart valves [1]. Moreover, recent advances are
enabling the medical community with a new set of tools to
create novel and connected IMDs. These include, among oth-
ers, implantable brain activity monitors and neuro-stimulator
devices that are used to combat pain or to treat diseases
caused by brain disorders such as Parkinson’s and epilepsy.
With 150,000 Americans being diagnosed with epilepsy every
year, and with 3.4 million people with epilepsy nationwide [2],
treatment for the disorder is in increasing need [3], [4]. For
this reason, numerous studies have investigated the possibility
of predicting epileptic seizures up to a couple of hours before
onset [3], which would enable patients to take precautions
against self-inflicted body injury well in advance. Currently,
seizure prediction algorithms utilize digital signal processing
(DSP) techniques operating on electroencephalography (EEG)
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Fig. 1: AiEEG enables Internet of Things functionalities for DNN-
based seizure prediction on implantable platform.

or intracranial electroencephalogram (iEEG) techniques. Pro-
posed solutions can predict brain activity with an accuracy
ranging from 85% up to 100% using a variety of methods
including deep neural networks (DNNs) [5]–[9]. However,
current DNN methods are too inefficient to be deployed on
embedded systems – as yet, only one approved clinical trial
for a real-time implementation of such systems exists [4]. Most
notably, [4] requires continuous transmission of the entire
iEEG data to an external device for processing. This poses
a challenging problem from an energy efficiency perspective,
especially if the IMD, purposed for long term use, is powered
by batteries which substitution involves complex surgery.

Furthermore, recent advances in IMD miniaturization [10]–
[12], IMD sensing [13], [14] and IMD communications [15]
have not considered the compelling need to perform DNN-
based inference inside the platform itself. The specific issues
behind DNN inference at IMDs are (i) the extremely small
space that can be dedicated to the DNN circuitry; (ii) the
need for personalization of the DNN with respect to the given
patient. As EEG patterns vary from patient to patient, it is
nearly impossible to develop universal predictors [16]. Thus,
the need for algorithm personalization has become a consensus
amongst experts in epilepsy treatment [17], [18]. This implies
the need for a reconfigurable DNN where portions of the
network – not only the weights – can be adapted to fit the
individual patient’s EEG signals.

To address these challenges, in this paper we present
AiEEG, a prototype platform that is able to infer seizure
onsets up to one hour before occurrence, communicate the
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results, and choose different convolutional neural networks
(CNNs) to be remotely reconfigured through wireless con-
nection. Figure 1 illustrates the high level architecture of
AiEEG. AiEEG would be implanted along with the iEEG
electrodes and communicates DNN-based classifications of
iEEG signals with the outside world via ultrasonic commu-
nication. The proposed AiEEG platform bridges the existing
gap between two apparently disjoint paradigms in epilepsy
treatment/monitoring, namely, the state-of-the-art in IMDs
and advances in DNN based seizure prediction. Furthermore,
AiEEG allows for patient personalization via tunable classifier
parameters and personalized CNN weights that may be easily
reconfigured wirelessly. Although miniaturization of AiEEG is
out of the scope of this paper, the computational and hardware
constraints that come with small-form factors is taken into
account in our design.
Summary of Novel Contributions

The AiEEG platform brings to the seizure prediction land-
scape what it has been missing so far – not only a mere
implementation of hardware-based embedded deep learning,
but a fully implemented prototype that (i) has connectivity
capabilities tailored for intra-body communication and net-
working; (ii) enables in vivo AI-enabled seizure prediction and
responsive neuro-stimulation; (iii) is wirelessly reconfigurable
to allow for post-surgery algorithm tuning. To summarize:
• We design, train, and prune a personalized (i.e., per-patient)

CNN for early seizure prediction and localization from a 30
patient human iEEG dataset (Section III);

• We boost the classification performance by utilizing a multi-
dimensional voting mechanism (Section III) and show that
the area under the curve (AUC) of the hardware-based CNN
averages 0.97, and false positives per hour (FPH) as low as
zero for 17 patients out of 30, leading to an improvement
of about 3.5x with respect to a prediction method that is
not patient-specific, the best for a dataset of this size when
compared to prior work [19]–[22] (Section V);

• We derive a mathematical formulation to aid with the design
of the AiEEG system that accounts for all the latency,
memory, and transfer data rates between the AiEEG sub-
components (Section IV). Based on this model, we prototype
AiEEG on a system on chip (SoC) device that includes an
FPGA and a microprocessor with partial reconfiguration and
adaptive pacing capabilities. Experimental results show that
our platform runs with 7.8x less latency than a cloud-based
approach and consumes 4.2x less energy (Section V).
The rest of the paper is organized as follows: Section II

goes over the state-of-the-art in seizure prediction. Section III
describes our seizure prediction algorithm in detail. Section
IV overviews the system design of AiEEG and highlights the
hardware constraints. Section V discusses AiEEG experimental
evaluation metrics, setup and results. Finally, we conclude the
paper in Section VI.

II. RELATED WORK

Seizure prediction has been extensively investigated in
the past decade [5]–[9], [20]. While some of these works

have good classification performance, the real-time constraints
of IMDs make these solutions not applicable to real-world
systems. For example, [7] and [20] utilize Long Short-Term
Memory (LSTM) networks to predict seizures with near
perfect performance. However, the real-time implications of
their algorithm are not considered and while [20] does, they
do so minimally by only mentioning the number of parameters
that their network occupies. Furthermore, conversely from the
present paper where the testing dataset is 30 patients, existing
work mostly validates on less than 15 patients.

In the past decade, a limited number of seizure prediction
prototypes and devices have been implemented [4], [23]–[25].
These devices, however, are either not able to maintain high
performance, are not IoT compatible, or lack energy efficiency
by wirelessly transmitting raw iEEG signals. For example, [4]
requires a large implanted battery as well as a cable that ex-
tends from inside the brain to the chest–which by itself can be
challenging, discomforting and even impractical. Throughout
the clinical trial in [4], subjects had to maintain their implant
and external devices including daily recharging and data card
replacement. The approach in [25] simply implements a deep
learning (DL) algorithm on an field-programmable gate array
(FPGA), without providing a communication paradigm. The
work in [26] offloads iEEG signals to the cloud. While cloud-
based offloading is a viable option, as we show later in
Section V, the transfer process necessarily impacts the latency
(7.8x longer in our experiments), which is an issue in health
applications where the response time is critical. Besides the
computational and networking aspects, cloud-based systems
almost completely neglect the energy efficiency side. For
example, proposed DL algorithms for healthcare applications
have shown high levels of accuracy (> 90%) but require a
2.50 GHz CPU with 16 GB of RAM [27]. This, in particular
becomes quintessential in IMD technology, because IMDs
often needs non-trivial surgery for battery replacement.

Moreover, life-time exposure to wireless signals (of any
kind) may cause undesirable tissue damages [15]. Due to
the severe path loss introduced by the human tissue, AiEEG
refrains from using RF-based communications and uses novel
ultrasound-based communication to increase the energy ef-
ficiency and assure biological safety measures [15], [28].
Recently, in [12] an ultrasonic communication based IMD is
proposed that is real-world tested, but it is not DL compatible
and has not demonstrated its capabilities in a specific appli-
cation. In this paper, we implement efficient DL algorithms
in an implantable platform. To the best of our knowledge,
no past work has addressed wireless reconfiguration of IMDs
for seizure prediction. Wireless reconfiguration allows for
constant upkeep of the prediction algorithm in the IMD with
the introduction of new innovations as well as patient specific
parameter tuning without any further surgery. To accommodate
such a need, in the design of the AiEEG platform we develop
a partially reconfigurable hardware that is described later in
Section IV. Moreover, as elaborated in Sections III and V,
our DL networks are not only built with hardware overhead
in mind but are pruned to further minimize the computational
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Fig. 2: 15 minute snippet of patient iEEG signals while experiencing
a partial seizure

overhead while maintaining high performance, which has also
never been done for this application.

III. DL-BASED SEIZURE PREDICTION

The erratic nature and almost non-deterministic behaviour
of seizure occurrence makes modeling seizures extremely
challenging. Up until the past few decades the onset of seizures
were not even thought to be preceded by any interpretable
information in the brain signals, making modeling a precursor
to an onset very difficult [29], [30]. AiEEG aims to take
advantage of the emerging evidence of a pre-seizure state to
predict seizures before they happen via precursors that are not
easily modeled. To demonstrate our capabilities for seizure
prediction we employ a personalized CNN for 30 patients
that we then prune for hardware efficiency. This means that
the weights of the utilized CNN are trained on only their
data and their data only. To further improve classification
performance we employ a voting mechanism to amalgamate
many consecutive classifications into fewer more robust ones.

A. Background and Problem Definition
Seizures are a unique, rapid, and rhythmic firing of neurons

that cause different symptoms depending on location in the
brain. The states of epilepsy fall into three categories: non-
seizure (interictal), pre-seizure (preictal), and seizure (ictal).
Classifying the pre-seizure state is key to seizure prediction.
The very existence of a pre-seizure state is made more
prevalent in recent studies [26], [29], [30]. This is generally
challenging as the difference between pre-seizure states and
non-seizure states are not easily visualized.

Due to their higher accuracy, using intracranial electroen-
cephalography (iEEG) recordings is generally more desirable
than external EEG in seizure prediction algorithms [22], [31].
iEEG uses electrodes implanted directly on the exposed sur-
face of the brain to record electrical activity from the cerebral
cortex, hence it features a higher spatial resolution and higher
signal-to-noise ratio than EEG.

Seizures themselves fall into two main categories, general
and partial (focal) [32]. General seizures occur throughout
most of the brain, while partial seizures are localized to a
specific area of the brain. Depending on the type of seizure
(general or partial) and placement of the electrodes, some
channels will not experience the drastic changes that other
channels detect. This can be seen in Figure 2, where we see
a 15 minute snippet of a patient’s iEEG signals while experi-
encing a partial seizure. Here each horizontal line represents
a different EEG channel, corresponding to a specific brain
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Fig. 3: CNN Data Preprocessing.

location, with the top half representing signals from inside the
brain via depth electrodes and the bottom representing signals
from the surface of the brain through strip electrodes. The red
and orange intervals depict EEG seizure onset as labeled by
a medical professional and clinical/symptomatic seizure onset
respectively. As it can be seen in Figure 2, some channels have
larger spike fluctuations than others; therefore, it is critical to
take the varying experiences at different channels into account
when deciding how to feed data to the CNN.

B. Dataset
We use iEEG data obtained from the The European Epilepsy

Database, EPILEPSIAE1. This is the most extensive and
largest publicly available iEEG dataset in existence, recording
hundreds of seizures [33]. While there exists other publicly
available free iEEG datasets [34], none of them are as ex-
tensive as EPILEPSIAE, offering fewer patients and/or less
descriptive data. The database includes raw iEEG data from
30 human patients, sampled from a range of 256Hz to 2500Hz

with durations from 110 hours to 440 hours. The number
of iEEG channels for each patient also varies from 30 to
124 iEEG electrodes. The raw iEEG data is broken into
multiple hour long samples, each with their own metadata. We
define pre-seizure samples as any iEEG samples that come
in the hour preceding a seizure; data registered before this
time or before 60 minutes are non-seizure samples. Preictal
periods have actually been shown to vary amongst different
patients and even different seizures within the same patient
in [35]; nevertheless, they average at less than an hour in
the aforementioned paper. For this reason we chose a 60
minute pre-seizure period. The whole dataset is split by: 80%
for training, 10% for validation, and 10% for testing. Our
network is validated utilizing a validation set as opposed to
other techniques such as k-fold cross validation as our dataset
is extremely large and doing so would prove inefficient.

To prepare the data for training and testing, we first down-
sample the data utilizing an FIR antialiasing lowpass filter
to bring the sampling frequency to 256 Hz. Down-sampling
the raw signals to the same frequency ensures that the DL
network gets a consistent form of data at the cost of lower

1The database is sponsored by the European Union and is approved by The
Ethics Committee of the University of Freiburg with the file number 131/08.
In addition, all patients signed an informed consent.
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Fig. 4: Baseline CNN for all patients.

resolution. Then, the channels of the 60 minute samples are
separated and each broken into smaller 4 second samples to be
fed to the CNN. Smaller input samples to the CNN decrease
the amount of BRAM memory used in the FPGA, which is
beneficial as we use the BRAM to store the temporary input
and parameters of the CNN. The pre-processing is showcased
in Figure 3. The input to the CNN is a 1-dimensional array of
size 1024 elements (each represented by 32 bits), representing
a 4 second sample from only one iEEG channel. We only feed
one iEEG channel at a time due to the varying presence that
a seizure can have on different channels of an iEEG. This
also allows for the model to be easily adaptable to iEEGs of
varying number of channels. Furthermore, predicting on a per-
channel basis allows us to localize the seizure which has not
been given much emphasis in the literature.

C. CNN
Training: We chose to use a CNN as our classifier due

to its consistently high performance in the literature [9].
Furthermore and more importantly CNNs can offer higher ease
of implementation in hardware depending on the activation
functions used, whereas other classifiers require higher com-
putational complexity. A combination of multiple classifiers in
hardware can be considered for future work. Each patient is
trained on their own CNN to allow for personalization. Patient
specific parameters or algorithm personalization for seizure
prediction has generally shown performance improvements
[17], [18]. We build our model upon CNN-based seizure
prediction, as it has shown to be very promising in the
medical field [36], [37], and furthermore CNNs are easily
implementable in hardware.

All patients are first individually trained on a larger network
shown in Figure 4. This CNN serves as the baseline for
each patient, and follows a VGG style network with multiple
convolutions before a max pooling layer [38]. Furthermore,
we attempted to train a much larger network, double the size
of the baseline network, on all the patients data to be transfer
learned for individual training after. However, once transferred
to each individual, the patients experienced non-logistic clas-
sification performance, much worse than our results described
in Section V-C, therefore we only train individually.

The network only has two output classes, pre-seizure and
non-seizure, without actually classifying the seizure itself. This
is because iEEG readings of a seizure contain higher energy
spikes than both pre-seizure and non-seizure readings, and are
fairly distinguishable [39]. Therefore, calculating the energy

of iEEG readings periodically is enough to detect the seizure
as it is happening.

Pruning: In order to meet memory and latency constraints
(as explained later in Section IV), the CNN must be pruned
before implemented onto the FPGA. There are other methods
to be considered for minimizing CNN hardware overhead
such as weight quantization; however, weight quantization
alone only reduces memory, while pruning can reduce both
memory and number of computations. For this reason we
decided to focus on pruning our network which can be used
in conjunction with weight quantization. However, pruning a
CNN can make it more difficult to implement in hardware,
usually requiring a specialized sparse library, that needs to map
neurons to each other in a very specific way. For this reason
we have decided to prune whole filters and their corresponding
feature maps as is done in [40]. The resulting pruned network
does not have any unique connections and looks like any
other CNN, making hardware implementation simpler. We
prune each patient’s baseline CNN for 15 rounds, retraining
the network for a few epochs after each round. The filters
with the smallest l1-norm are the ones that are pruned. More
specifically, we choose the bottom 10% of filters in each layer
independent of other layers of the CNN to be pruned in each
pruning round. We have attempted to prune for more than
15 rounds, but we saw high performance degradation after
15. This will of course vary with how much the network is
decreased by in each iteration. We slightly differ from [40]
as we prune multiple layers simultaneously in each pruning
round before training rather than pruning just single layers
before training as we experience comparable results and faster
training time. This results in each patient having 16 networks
(including the baseline), which are compared later in Section
V.

Prediction Boosting: As classification performance can
vary from patient to patient due to a multitude of factors
(quality of data, quantity of data, pre-existing conditions,
etc.), increasing classifier performance through other means
can help alleviate the shortcomings of the CNN to provide
high performance for all patients. A low-overhead approach
to strengthening overall classifier performance is to aggregate
multiple individual classifications before coming to a conclu-
sive decision, a form of ensemble learning [41]. This increases
the robustness of the classifier to variance and furthermore
does not necessarily require highly complex computations.

We use multiple channel classifications at the same point in
time to boost the classification accuracy by way of majority
vote without increasing memory consumption. This can be
done at the receiver end (gateway) after the transmitter has sent
out the individual channel classifications outside the body. The
receiver will have access to all the individual classifications for
each channel; hence, is able to not only take a vote but also
have a full picture on the seizure occurrence and localize the
seizure. This concept is showcased in Figure 5 (top), which
shows a 15 channel iEEG in a 4 second sample interval with
all the CNN predictions for each channel. To even further
improve classification, a majority vote is taken across time
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Fig. 5: CNN seizure prediction: (top) CNN predictions of a 15
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of a single channel over 16 s window.

as well as space in a moving window, as shown in Figure
5 (bottom), which illustrates a 4-sample time window where
each sample is 4 s. Concurrently, varying the moving window
size for each patient allows another level of personalization,
as patients can have larger or smaller windows depending on
their classification performance.

It is worth noting that for channel voting, voting comes at
the cost of latency because a final decision cannot be made
until all channel classifications are finished. Unlike channel
voting, increasing the size of the time voting window does
not necessarily need to be accompanied by a linear increase
in latency if classifications are stored in a FIFO buffer. The
FIFO style buffer has a capacity of nc ⇥ nt classifications
(or equivalently nc ⇥ nt bits if each binary classification is
represented as one bit) where nc is the number of total iEEG
channels and nt is the number of samples in time per channel
in the window. When a new set of nc classifications arrive, a
new channel vote can happen immediately. At this time, a new
time vote can also happen over the nt newest classifications
(with the addition of the newest set of nc). This would require
only waiting for every nc classifications before a new time
and channel vote can be made rather than waiting to refill the
whole buffer or wait for nc ⇥ nt classifications. Furthermore,
because each classification can be represented with only one
bit, the buffer will not require a large amount of hardware
space. Although there is no substantial increased hardware
overhead from increasing the time window size, there will be
an increased delay in the detection of a pre-seizure state. This
is due to the nature of a sliding time window as it transitions
from a non-seizure state to a pre-seizure state. The window
will raise an alert only once over half the window is filled with
classifications representing the new state (because of majority
vote). For example, a 30 minute time voting window will
only raise an alert that a pre-seizure state has been entered
15 minutes after entering the pre-seizure state (or 45 minutes
before the seizure onset).

IV. SYSTEM ARCHITECTURE AND DESIGN

As illustrated in Figure 1, our proposed architecture consists
of multiple components, some designed to be implantable

and others external, that constitute a sensing, processing, and
stimulating closed-loop system.

We envision that AiEEG will be implanted subcutaneously
and partially sitting in the bone of the skull, while short
wires of few centimeters are needed to connect AiEEG to an
iEEG sensor array and to actuators (i.e., leads for real-time
preemptive and responsive neurostimulation) that are located
in the brain region to stimulate.

The iEEG sensor records the activity of the brain and its
readings are processed in the DL module. Through a wireless
ultrasonic link, the CNN classification results are sent to the
external gateway that pinpoints the origin of a seizure. Specific
pacing settings can be sent back to the implant wirelessly
based on the information inferred from the CNN results.
Interfaces to actuators are designed to connect the leads to
the pulse width modulation (PWM) signals generated by the
FPGA to pace the brain.

At its heart, the implant features a processing and a
communication unit. The processing unit (CPU) provides the
computational resources to process messages, access the files
containing new CNNs, and to execute the partial reconfigura-
tion protocol (see Section IV-B for more details). The com-
munication unit, completely developed on the FPGA instead
of the CPU to reduce power consumption and avoid non-
deterministic processing delays, hosts the ultrasonic physical
layer, and the interfaces to other modules and to the transducer.
Given its 7mm thickness, the ultrasonic transducer needs to
be implanted subcutaneously and partially sitting in the bone,
which means that the the implanted and the external transducer
are separated by only few millimeters of tissue –mostly skin.
For this reason, the power for data communication can be kept
within the FDA limits (720mW/cm

2 [15]), and specifically,
below 10 mW that, as demonstrated by previous literature [12],
is enough for communications over 10 cm of tissues, which is
about 10x the length of the AiEEG ultrasonic link. Therefore,
not only does the proposed architecture eliminate extensive
subcutaneous wiring, but it also removes the need for through-
body radio-frequency links, hence it offers a safer and more
energy efficient solution. The platform includes a memory unit
composed of a general read/write memory, RAM, as well as
FIFO queues to store software and data. Finally, an energy unit
provides the operating power to all the active components.

The external gateway is a removable device, contained, for
instance, in a patch that is attached to the skin. It receives the
classification results from the implant through the ultrasonic
link, executes the majority voting, and sends commands to the
implant to adjust its pacing settings, such as pulse duration
or pacing frequency. This process only requires minimal
wireless transmission, that is a few bits representative of
the classification results of the embedded DL algorithm. The
gateway also includes a traditional radio-frequency (Bluetooth)
communication chip. When the gateway receives a partial
reconfiguration command and relative file from its Bluetooth
interface, it forwards them to AiEEG implant –through ultra-
sonic communication– that initiates the partial reconfiguration
process.
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Fig. 6: System model showing AiEEG’s components interaction with
each other and with the buffers. The critical interfaces from a design
perspective are marked.

It is worthy of note that to be compliant with the FDA
regulations, the implantable parts of AiEEG system have to
be encapsulated in a hermetically isolated casing of bio-
compatible material, such as titanium. While the design of
the casing and choice of material is beyond the scope of our
study, we have considered the computational and hardware
limitations that are imposed by the small-form factor of the
implant in our design.

Key challenges in the design of the AiEEG system were: (i)
decreasing the memory allocation and computational resources
required by the CNN on hardware; (ii) reducing the execution
latency of the DL algorithm guaranteeing that the real-time
condition is respected; and (iii) enabling a low overhead partial
hardware reconfiguration to allow for non-invasive improve-
ment of the prediction algorithm. For this reason, we introduce
a system model of the interactions between components and
report a mathematical formulation to systematically account
for latencies and data rates.

A. Timing and Memory Constraints
Figure 6 shows the block diagram of the AiEEG system

highlighting the critical interfaces between its components.
The two most stringent design constraints are the minimum
data rate that has to be supported by the ultrasonic communi-
cation interface, and the amount of data that the CNN needs
to process in a time unit, as these identify (i) the maximum
tolerable processing delay of the DL module and (ii) the
smallest required memory sizes. Noticeably, memory buffers
are required at the interface between the sensor unit and the
processing unit and at the interface between the processing
and the communication units.

Let us suppose that an application needs to be designed on
top of AiEEG and that the results of the DL processing are
encoded into Bapp bits (application bits) that are requested
each tapp seconds, hence the minimum bit rate required by
the application is Rapp = Bapp/tapp (in bit/s).
Condition I. The communication unit introduces a short
processing overhead, tproc [s], for each bit. ttx = 1/Rtx is

the actual 1-bit transmit time in [s], where Rtx in [bit/s] is
the transmission rate. The transmitter needs to send data at an
average rate Rtx equal or larger than Rapp.
Condition II. The DL module computes a single classification
in tDL [s] and the result is encoded with BDL bits. Thus,
the DL module produces (and transfers to the communication
unit) information bits at an average rate of RDL = BDL/tDL

[bit/s]. The Bapp bits must be generated by the DL unit in
time to be ready for transmission, that is in an interval (TDL)
smaller or equal to tapp.

To avoid memory overflows, RDL has to be smaller than
Rtx. Hence, the condition on the output data rate is given by:

Rtx > RDL =
BDL

tDL
=

Bapp

TDL
> Rapp. (1)

The data exchange between the sensing unit (iEEG sensor
grid) and the processing unit requires a buffer to temporarily
store the sensed data. An iEEG sensor grid is composed of
Ns sensors, sending each rsens = 1/tsens voltage values to
the ADC per unit of time. The cumulative rate of ADC input
values -before digitization- per unit of time is Rsens = Ns ·
rsens. The ADC converts the analog input signals into digital
samples with a resolution of ⌘ bits per sample. The cumulative
conversion rate (Rconv in [bit/s]) of the ADC can be given as

Rconv =

✓
Ns ·

✓
rsens +

1

tconv

◆◆
· ⌘, (2)

where tconv is the ADC conversion latency for a single sample.
Condition III. The DL algorithm takes in input MDL bits
and must process them before the sensing unit terminates its
conversion. Thus, the minimum size of the buffer between the
sensing unit and the DL module is MDL bits while, at the
same time, the number of bits that the DL module can read
per second (RDL,in = MDL/TDL) has to be

RDL,in > Rconv. (3)

Condition IV. The transmitter module in the communication
interface transfers data in bursts of Kpkt packets of Bpkt

bits each. A FIFO is needed at the interface between the
communication and the DL modules to momentarily store
the bits produced by the DL classification before enough bits
are produced to fill the payloads of the packets. Thus, the
minimum size of the FIFO can be set to Bpkt ·Kpkt bits.

B. Partial Reconfiguration
Given the infancy stage of AI applied to epilepsy prediction,

we cannot disregard the fact that new deep learning algorithms
will be proposed in the future, therefore, we provided AiEEG
with the capability to easily update its hardware wirelessly.
We achieve this goal through FPGA partial reconfiguration
(PR), that consists in updating only one or few subsections
(modules) of the FPGA fabric and their internal routing, while
the fixed non reconfigurable resources of the hardware keep
running during the PR operation. The advantage of the PR
is threefold: (i) it allows for changing the CNN network on
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Fig. 7: AiEEG partial reconfiguration (PR) logic. New BIT files
containing personalized CNNs can be downloaded to the implant
wirelessly.

the device wirelessly, without needing to physically access the
device and removes the need and discomfort of surgery; (ii)
it permits to update the deep learning algorithm whenever a
new one is designed, or new EEG data from the patient suggest
that a different processing is required; (iii) PR has been shown
to provide embedded systems with higher performance, and
better energy and computational efficiency [42].

Keeping the device alive, or interrupting its operations
only for short intervals, at most in the order of few seconds
(it takes AiEEG about than 10 s to partially reconfigure its
FPGA), is essential while monitoring patients suffering from
chronic neurological diseases. Long interruptions to update
the hardware of the implanted device, might lead to missing
important anomalies in the monitored physiological signal that
could indicate major events, such as a seizure, happening in
the future.

Figure 7 shows a conceptual block diagram of AiEEG
PR logic and, as illustrated, an initial plan separates the
static (non-reconfigurable) portions of the FPGA from the
reconfigurable ones. The static plan, or static logic region,
serves as a fixed context to place and route new reconfigurable
modules and it is used for all subsequent configurations. Then,
during the initial plan design, specific hardware resources are
reserved for PR and to contain future bitstream files (BIT).

To configure the FPGA for PR, we developed multiple
reconfigurable modules, each contained in a separated BIT file.
When a PR module needs to be updated, the relative bitstream
file is downloaded from the gateway onto the dedicated
reconfigurable portion in the FPGA. A read/write memory
on the implant stores one or more BIT files, each containing
an updated version of an existing CNN or a completely
new neural network. The processor, which has access to the
memory, then uploads the BIT files to the FPGA using a
specific PR protocol defined in [43].

PR bitstream files occupy few kilobits of memory, therefore
they can be transferred over the ultrasonic interface in less
than 10 s, while the process to replace a BIT file on the
implant, once it has been received, only takes 10 ms. This

reconfiguration time is very low when considering that seizures
generally happen hours apart (in the non-cluster case), reduc-
ing the possibility of a seizure occurring in the 10 seconds
it takes to reconfigure wirelessly. Considering that AiEEG
power supplied to the communication unit is 20 mW during
reception, the whole PR process requires 200mJ.

V. EXPERIMENTAL RESULTS

The extensive experimental evaluation presented in this sec-
tion serves two fundamental purposes. We need to demonstrate
(i) whether the deep learning techniques presented in the
previous sections can be effective and successfully integrated
inside a resource-challenged embedded implantable system,
and (ii) whether a hardware-based DL can provide better
energy and latency performance with respect to a cloud-
based offloading of the DL classification. In fact, when DL
classification does not happen in real-time, but it is instead
executed offline in the cloud, as for example in [26], machines
have resources that are far beyond what a tiny IMD can
offer. This means that a task can be executed using more
computational power, in a shorter amount of time –in some
cases– and with disregard for the energy consumption. The
drawback of this approach is that the implant needs to send
large amounts of raw data to the cloud. Thus, we need to
obtain a complete break down of the energy and latency
spent in different tasks (communication, computation etc.), and
establish (a) if the on-board processing is energetically more
efficient than cloud offloading, (b) if the processing latency
of the embedded device allows for DL computation on board,
and (c) if a cloud-based approach provides a better trade-off
between the energy needed for communication and the energy
that the implant would save given the offloaded processing.

In the next subsections, we first present the performance
metrics used to evaluate our classifier performance in Section
V-A. Then the AiEEG prototype in Section V-B. We then
report the performance of the trained CNN for individual
patients and the achieved improvements from the prediction
boosting in Sections V-C. Finally, in Section V-D, we bench-
mark the FPGA based approach of AiEEG against a cloud-
based solution and further present a system-wide demonstra-
tion of AiEEG to evaluate its latency, power, and energy
consumption.

A. Performance Metrics
Two metrics that are highly indicative of a classifier’s per-

formance for seizure prediction and widely used in the seizure
prediction research domain are sensitivity and specificity [44],
[45]. Sensitivity is defined as the ability for a classifier to
predict true positives (pre-seizure state), while specificity is
the ability to predict true negatives (non-seizure state). These
two metrics alone however only tell a part of the story, time
is also a factor in seizure prediction. For this reason we report
sensitivity as a function of time, and for specificity, the Time
In Warning (TIW). More specifically, TIW is defined as the
percentage of time that a patient spends incorrectly waiting
due to a false positive or false alarm for a seizure to come,
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ideally spending no time at all (or 0% TIW). TIW is calculated
as,

TIW = PredictionHorizon ⇤ FalsePositives

TotalTestPeriod
, (4)

where in our case the prediction horizon is 1 hour and the
total test period (total time of all test samples classified)
and total number of false positives varies per patient. The
fraction on the right is the FPH. Furthermore, we clip TIWs
at 100% as anything over essentially just means the patient is
always falsely waiting for a seizure. In addition, for a better
holistic view of our classifier, we also utilize the area under the
receiver operating characteristic curves (AUC-ROC or AUC),
which are widely used in previous works [3].

B. Prototype Implementation
We implemented AiEEG on a Zynq UltraScale+ system-on-

chip (SoC) on top of a ZCU102 evaluation board.This board
features an FPGA that can be fabricated in format as small as
31 ⇥ 31 mm. For perspective, NeuroPace, an FDA approved
brain implantable for epilepsy treatment is 28⇥ 60 mm at its
smallest and 42 ⇥ 60 mm at its largest, therefore this FPGA
is well within the range of admissible sizes.

The CNN was trained and tested on a local computer. The
weights and architecture of the CNN were then transferred to
the FPGA. A key point here is that the CNN was not trained
on the FPGA, but only used on the FPGA for predicting new
outputs from new inputs once already trained offline. The
weights and architecture of the CNN were first coded in C
and then synthesized using High Level Synthesis (HLS) tools.

We prototyped the implant according to the model in Sec-
tion IV and in consideration of the conditions in Section IV-A.
We dimension the system for the worst case scenario, that is
with respect to the patient’s iEEG that has the largest number
of electrodes (124).
• AiEEG’s bitrate over the ultrasonic link is Rtx = 150kbit/s

with a BER of 10
�6. Thus, according to Condition I,

150 kbit/s is the maximum application rate Rapp that
can be satisfied. The processing delay introduced by the
communication unit before transmission is tproc = 75 µs
per byte. The CNN carries out a classification over all the
channels in tDL = 26ms · 124. The CNN processing result
is encoded into BDL = 124 bits, as only 1 bit per channel
is enough to represent a binary outcome (pre-seizure/non-
seizure).

• To classify a 4 s sample the DL takes in input 1024 · 32
bits per channel and a total of MDL = 4.1 Mbits across
all the channels. Condition II (RDL < Rtx) is seamlessly
respected.

• As discussed in Section III-B, the fastest sampling rate per
channel is 2500 Hz and each sample is digitized with a
resolution of ⌘ = 32 bits. Therefore, in the most con-
servative case, the ADC unit needs to sustain a rate of
124 · 2500 Sa/s, and the conversion frequency of the ADC
unit is Rconv = 9.92 Mbit/s, reduced to 1.02 Mbit/s after
downsampling at 256Hz, which is the input rate of the CNN.

Condition III is also met, as the DL module reads bits at
rate RDL,in = 1.27 Mbit/s, which is > 1.02 Mbit/s.

• Finally, the FIFO size needs to be at least Bpkt · Kpkt =

124 bits to avoid overflows (Condition IV).
The external gateway was implemented on a Zynq-7000

system-on-chip (SoC) on top of a Zedboard evaluation board
and it features an ultrasonic communication interface, similar
to the one of the implant system. Internet access, is provided
to the gateway either through Bluetooth, or by a host computer
using a wired connection, e.g. Ethernet.

In this paper, we present a prototype version of AiEEG.
However, in our vision, three major development and test
phases which include R&D and manufacturing, pre-clinical
testing, and regulatory clinical trials, will be necessary be-
fore AiEEG can reach a commercial stage. AiEEG devices
will initially be miniaturized and manufactured as class III
medical implants. The first step towards miniaturization is the
design of a single printed circuit board (PCB) containing the
FPGA, a microcontroller, a memory slot and the ultrasonic
transducer that, in the current prototype, are provided by large
evaluation boards as can be seen from Figure 11. Reduced
form factor will introduce new technical challenges mostly
to design the ultrasonic front-end, the memory circuitry, and
to reserve enough space to allocate the energy storage in a
space and energy limited environment. Miniaturized devices
will be packaged and submitted to pre-clinical testing. After
the completion of validation and verification testing (in-vitro
and in-vivo animal study), aiming at mitigating risk among
other compliance testing, US FDA regulatory approval will
be sought by completing a first in man trial with a small
sample of tents of patients. This preliminary trial is required
to demonstrate technical feasibility, effectiveness, and safety.
FDA approval will be obtained after a successful controlled
pivotal study involving a larger patient set (hundreds of
implantations). Fault tolerance is a crucial aspect for medical
systems and determining factor to obtain regulatory approval.
Therefore, one of the ways to increase the robustness of
the system against hardware/firmware failures is replication.
Replication could be achieved by reserving other portions of
the FPGA for emergency backup purposes and using them
in case of failure of the main logic. Hardware replication,
i.e. equipping AiEEG with a secondary backup FPGA to be
used in case of failure, is another option but an increase
in the size of the PCB has to be considered. Adopting this
solution also requires to create extra connections between the
memory, the microcontroller and the auxiliary FPGA. The
whole development and approval process of AiEEG can take
approximately between 7 and 10 years.

C. Seizure Prediction and Prediction Boosting
After 15 rounds of pruning, the fully pruned network for

each patient remained either the highest performing network
or only slightly lower than the baseline (about 4% lower
in the worst case scenario for a single patient). We use the
receiver operating characteristic (ROC) curves to judge the
overall classification performance of our predictor, amongst
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Fig. 8: Prediction improvements for each patient from channel and
time voting employed on the smallest pruned CNN.

other metrics discussed later. More specifically, we report the
area under the ROC curve (AUC) in Figure 8, where each bar
is a different patient. This figure illustrates both the AUC for
the fully pruned network alone as well as the AUC for pruned
network with voting. Without vote boosting, the mean AUC is
0.82. This mean is higher than the highest performing AUCs
on substantially sized (but not nearly as large as our dataset)
datasets in two seizure prediction competitions [21], [22], both
of which had an AUC of 0.76 on further unseen data.

With voting we can clearly see a substantial performance
improvement from combining multiple classifications in space
and time, increasing the AUC average form 0.82 to 0.97.
For Figure 8 we use a 120 sample time window, which is
a total of about 8 minutes worth of data. We choose this
voting window as the majority of patients start to experience
significant improvement at this time window size, most likely
due to the large sample size.

It is worth noting that the majority of improvements occur
with the addition of time voting. This is due to our flexibility
in increasing the voting window size. The time window can
be made larger or smaller depending on the patient, allowing
for fine tuning of the CNN’s performance even after AiEEG is
implanted. This is made possible with partial reconfiguration.
The channel voting, however, is bottle-necked by the number
of available iEEG channels, which varies from one patient to
another.

For space or channel voting, we use all the iEEG channels
available for each patient. The more iEEG channels the
better the performance, but the higher the latency to make
a classification for a single point in time. Figure 9 plots
the average sensitivity as a function of time in the seizure
horizon or pre-seizure period (one hour before the seizure
onset) with just channel voting. We can see that our sensitivity
decreases only slightly towards the beginning of the pre-
seizure period, showing that we can make predictions far in
advance to the onset. This also allows us to take a vote in
time without concerns of contaminating the voting window
with low performing points in time.

Finally, we present the Time In Warning (TIW) for each

Fig. 9: Average sensitivity as a function of time in the seizure horizon
using a fully pruned CNN w/ channel voting.

patient in Figure 10 as a specificity metric, which describes
the percentage of time a patient is waiting for a seizure that
will never come due to false positives. This value ideally
needs to be 0 and is calculated as done in [44] using FPH.
Each patients interval voting window size is varied depending
on the CNNs performance. By relying on AiEEG patient
personalization capabilities, we increased the window size for
those that have shown worse specificity in order to optimize
the system performance for each patient. By personalizing time
windows for each patient we are able to reduce the average
FPH by 3.5 times. We notice that while few of the patients
experience TIW higher than 50%, most experience little to no
TIW. Our framework averages a TIW of 29% over 30 patients.
For comparison, [19] and [20] have an average TIW of 27%
and 0.4% respectively but are only averaged over 10 and 8
patients respectively, where in the latter the patients whose
EEG data deemed to be incomplete were omitted from the
dataset. To put that in perspective we have 17 patients with
0% TIW or 0 FPH.

D. AiEEG End-to-End Performance Evaluation
To exhaustively measure the latency and energy consump-

tion of each and every component, we set up a testbed shown

Fig. 10: Time In Warning (TIW) for each patient using the fully
pruned CNN with interval and channel voting.
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in Figure 11. The first board –labelled as “AiEEG”– hosts
the AiEEG prototype, while the other board on the right side
(which includes an ultrasonic module and a 1GigE Ethernet
interface) serves as the gateway and it is connected to a host
that exchanges data with the cloud. An ultrasonic transducer is
connected to each of the two boards to send and receive data
through the ultrasonic link, mimicked by a piece of porcine
tissue (6 cm). We used a piece of fresh pork belly made out
of different tissue layers, including skin, to model the human
scalp, fat and muscle. The external transducer was attached on
the skin side of the meat. AiEEG is designed to be implanted
subcutaneously, thus the extra thickness of the porcine meat
guarantees the communication performance of the ultrasonic
link in more superficial applications.

The AiEEG platform is initially programmed with a CNN
and the iEEG data loaded to the BRAM are processed and
classified. The classification results are sent to the gateway
and from here to the host.

(1) CNN Latency. To compute the energy consumption to
classify a total of 124 samples (one for each iEEG channel
in the most conservative case), we first need to compute the
latency to run the CNN on AiEEG’s FPGA. By using a timer
on the FPGA, we find the latency of classifying one input sam-
ple on the FPGA (one time interval on one channel) as 26ms.

Fig. 12: Latency for classifying all channels for a different patients
with different number of iEEG channels.

Depending on the number of iEEG channels each patient has,
the latency for calculating a channel vote or classifying all
the channels in a single time sample will vary. In Figure
12 we see the latency for performing classifications on all
channels at one instance in time for different patients. Patients
with more iEEG channels experience higher latency. In our
application to predict the seizure up to an hour in advance,
a few seconds of latency are negligible. If the classification,
instead, is performed in the cloud for faster computing, the
process would be bottle-necked by the transmission latency of
sending raw multi-channel iEEGs from the wireless ultrasonic
interface resulting in an end-to-end delay 7.8x longer when
compared to on-baord processing as we report later in (3).

(2) Ultrasonic Link Latency. The next step is to measure
the ultrasonic data rate –to estimate the time needed to transfer
the CNN input data to the cloud. We measured a bitrate of
150 kbit/s with a BER of 10�6 for the ultrasonic connection
and an average rate of 500Mbit/s on the 1GigE Ethernet link.
The average uplink time to exchange data with the cloud, for
packets smaller than 2 Mbytes, is 232 ms. Both the Ethernet
and the connection with the cloud are based on TCP transport
protocol and use a socket to establish a connection. Each
socket set-up time measured approximately 96 ms.

(3) End-to-End Performance. The latency information
alone is not sufficient to have a complete insight of the task
performance, therefore we measured the power consumption
of each basic operation executed inside the SoC using the
Vivado tool which gives a circuit-level breakdown of the
power consumption on both the CPU and the FPGA. In Figure
13 we report the power, latency, and energy consumption in
the case of classification carried out directly on the AiEEG
system and in the case of cloud offloading. The histograms
show the distribution of the power between DL, external
communications (Ethernet and to cloud), ultrasonic link and
other processing performed on the implant.

In cloud-based offloading, a large percentage of the implant
power is spent for the ultrasonic data transmission. Further-
more, this solution takes almost 30 s for data communication,
91% of which are needed to transfer data from the implant to
the the gateway over the ultrasonic link. This clearly shows the
importance of having an embedded system like AiEEG that is
capable of performing crucial tasks such as DL-based seizure
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Fig. 14: Rechargeable battery duration for varying duty cycle of the
CNN execution frequency on AiEEG vs cloud offloading.

prediction at the implant level.
As it can be seen in Figure 13, AiEEG has an even

distribution of the power (0.56W total) among DL, ultrasonic
communication and other processing. Indeed, since the data
that need to be transmitted outside are only the CNN classifi-
cation results (i.e., 16 bytes), the time spent during ultrasonic
communication is smaller than the 1% of the total end-to-end
delay. The latency histogram relative to AiEEG shows that
424 ms of the total 3.82 s are spent in sending data to the
cloud. Also, there is a minimum delay of 232 ms to upload a
packet of any size smaller than 2MB to the cloud. This fixed
delay is between the host and the remote database, it does not
depend on the AiEEG system and it does not affect the power
(and the energy) consumption of the implant.

(4) AiEEG Lifetime. To have a practical understanding of
the lifetime of the platform, we consider the case in which
the CNN is executed at periodic intervals. We compare the
energy consumption of AiEEG with cloud offloading using a
12 mAh rechargeable battery (PowerStream GM300910 [46])
as a reference to power the implant. We define a duty cycle as
the fraction of the time to execute the CNN (ON time) on the
FPGA. Figure 14 shows the duration of the battery for different
values of the duty cycle assuming energy consumption values
measured above. This figure shows that the battery duration is
about 4x longer when the DL classification is performed on
the board than the cloud-based solution.

VI. CONCLUSION

We presented AiEEG, an embedded ultrasonically net-
worked platform with a deep learning core for AI-enabled
closed-loop responsive neuro-stimulators with in vivo recon-
figurability. The system implements a convolutional neural
network (CNN) to classify iEEG signals for the early predic-
tion of epileptic seizures. AiEEG, furthermore, is wirelessly
reconfigurable to allow for patient-specific hyper-parameter
tuning and upgrading after implanted on a patient with min-
imal interruption. We proposed a practical implementation
based on hardware, including a field programmable gate array
(FPGA) as the core. In addition, we reported experimental
results to show the feasibility of AiEEG, specifically of the
implementation of the CNN on an embedded system that
includes a communication unit. This allowed us to drastically
save on energy as we only transmit CNN classifications rather
than raw iEEG signals, as needed for cloud offloading. We

demonstrated the transferring of the CNN output through
animal tissues to a receiving unit and reported an average AUC
of 0.97 and with 7.8x less latency and 4.2x less energy than
cloud based methods.
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