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Abstract—The next generation of cellular networks will be char-
acterized by softwarized, open, and disaggregated architectures
exposing analytics and control knobs to enable network intelli-
gence via innovative data-driven algorithms. How to practically
realize this vision, however, is largely an open problem. For a given
network optimization/automation objective, it is currently un-
known how to select which data-driven models should be deployed
and where, which parameters to control, and how to feed them
appropriate inputs. In this paper, we take a decisive step forward
by presenting and prototyping OrchestRAN, a novel orchestration
framework for next generation systems that embraces and builds
upon the Open Radio Access Network (RAN) paradigm to provide
a practical solution to these challenges. OrchestRAN has been
designed to execute in the non-Real-time (RT) RAN Intelligent
Controller (RIC) and allows Network Operators (NOs) to specify
high-level control/inference objectives (i.e., adapt scheduling, and
forecast capacity in near-RT, e.g., for a set of base stations in
Downtown New York). OrchestRAN automatically computes the
optimal set of data-driven algorithms and their execution location
(e.g., in the cloud, or at the edge) to achieve intents specified by the
NOs while meeting the desired timing requirements and avoiding
conflicts between different data-driven algorithms controlling the
same parameters set. We show that the intelligence orchestration
problem in Open RAN is NP-hard, and design low-complexity so-
lutions to support real-world applications. We prototype Orches-
tRAN and test it at scale on Colosseum, the world’s largest wireless
network emulator with hardware in the loop. Our experimental
results on a network with 7 base stations and 42 users demonstrate
that OrchestRAN is able to instantiate data-driven services on
demand with minimal control overhead and latency.

Index Terms—O-RAN, Open RAN, Artificial Intelligence, Or-
chestration, 5G, 6G.
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I. INTRODUCTION

The fifth-generation (5G) of cellular networks and its evo-
lution (NextG), will mark the end of the era of inflexi-
ble hardware-based Radio Access Network (RAN) architec-
tures in favor of innovative and agile solutions built upon
softwarization, openness and disaggregation principles. This
paradigm shift—often referred to as Open RAN—comes with
unprecedented flexibility. It makes it possible to split network
functionalities—traditionally embedded and executed in mono-
lithic base stations—and instantiate and control them across
multiple nodes of the network [1].

In this context, the O-RAN Alliance [2], a consortium led by
Network Operators (NOs), vendors and academic partners, is
developing a standardized architecture for Open RAN that pro-
motes horizontal disaggregation and standardization of RAN
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Figure 1. O-RAN reference architecture and interfaces (left). Representation
of an O-RAN network architecture as a tree graph (right).

interfaces, thus enabling multivendor equipment interoperabil-
ity and algorithmic network control and analytics. As shown in
Fig. 1, O-RAN embraces the 3rd Generation Partnership Project
(3GPP) functional split with Central Units (CUs), Distributed
Units (DUs) and Radio Units (RUs) implementing different
functions of the protocol stack. O-RAN also introduces (i) a set
of open standardized interfaces to interact, control and collect
data from every node of the network; as well as (ii) RAN Intel-
ligent Controllers (RICs) that execute third-party applications
over an abstract overlay to control RAN functionalities, i.e.,
xApps in the near-Real-time (RT) and rApps in the non-RT RIC.
The O-RAN architecture makes it possible to bring automation
and intelligence to the network through Machine Learning
(ML) and Artificial Intelligence (AI), which will leverage the
enormous amount of data generated by the RAN—and exposed
through the O-RAN interfaces—to analyze the current network
conditions, forecast future traffic profiles and demand, and
implement closed-loop network control strategies to optimize
the RAN performance. For this reason, how to design, train and
deploy reliable and effective data-driven solutions has recently
received increasing interest from academia and industry alike,
with applications ranging from controlling RAN resource and
transmission policies [3–13], to forecasting and classifying
traffic and Key Performance Indicators (KPIs) [14–18], thus
highlighting how these approaches will be foundational to the
Open RAN paradigm. However, how to deploy and manage,
i.e., orchestrate, intelligence into softwarized cellular networks
is by no means a solved problem for the following reasons:
• Complying with time scales and making input available:
Adapting RAN parameters and functionalities requires control
loops operating over time scales ranging from a few mil-
liseconds (i.e., real-time) to a few hundreds of milliseconds
(i.e., near-RT) to several seconds (i.e., non-RT) [7, 19]. As
a consequence, the models and the location where they are
executed need to be selected to be able to retrieve the necessary
inputs and compute the output within the appropriate time



constraints [7, 20]. For instance, while IQ samples are easily
available in real time at the RAN, it is extremely hard to make
them available at the near-RT and non-RT RICs within the same
temporal window, making the execution of models that require
IQ samples as input on the RICs ineffective.
• Choosing the right model: Each ML/AI model is designed to
accomplish specific inference and/or control tasks and requires
well-defined inputs in terms of data type and size. One must
make sure that the most suitable model is selected for a spe-
cific NO request, and that it meets the required performance
metrics (e.g., minimum accuracy), delivers the desired infer-
ence/control functionalities, and is instantiated on nodes with
enough resources to execute it.
• Conflict mitigation: One must also ensure that selected
ML/AI models do not conflict with each other, and that the same
parameter (or functionality) is controlled by only a single model
at any given time.

For these reasons, orchestrating network intelligence in the
Open RAN presents unprecedented and unique challenges that
call for innovative, automated and scalable solutions. In this pa-
per, we address these challenges by presenting OrchestRAN, an
automated intelligence orchestration framework for the Open
RAN. OrchestRAN follows the O-RAN specifications and op-
erates as an rApp executed in the non-RT RIC (Fig. 1) providing
automated routines to: (i) Collect control requests from NOs;
(ii) select the optimal ML/AI models to achieve NOs’ goals
and avoid conflicts; (iii) determine the optimal execution lo-
cation for each model complying with timescale requirements,
resource and data availability, and (iv) automatically embed
models into O-RAN applications that are dispatched to selected
nodes, where they are executed and fed the required inputs.

To achieve this goal, we have designed and prototyped novel
algorithms embedding pre-processing variable reduction and
branching techniques that allow OrchestRAN to compute or-
chestration solutions with different complexity and optimality
trade-offs, while ensuring that the NOs intents are satisfied.
We evaluate the performance of OrchestRAN in orchestrating
intelligence in the RAN through numerical simulations, and
by prototyping OrchestRAN on ColO-RAN [21], an O-RAN-
compliant large-scale experimental platform developed on top
of Colosseum, the world’s largest wireless network emulator
with hardware in-the-loop [22]. Experimental results on an
O-RAN-compliant softwarized network with 7 cellular base
stations and 42 users demonstrate that OrchestRAN enables
seamless instantiation of O-RAN applications with diverse
timescale requirements at different O-RAN components. Or-
chestRAN automatically selects the optimal execution locations
for each O-RAN application, thus moving network intelligence
to the edge with up to 2.6× reduction of control overhead over
the O-RAN E2 interface. To the best of our knowledge, this
is the first large-scale demonstration of an O-RAN-compliant
network intelligence orchestration system.

II. RELATED WORK

The application of ML/AI algorithms to cellular networks is
gaining momentum as a promising and effective way to design

and deploy solutions capable of predicting, controlling, and
automating the network behavior under dynamic conditions.
Relevant examples include the application of Deep Learning
and Deep Reinforcement Learning (DRL) to predict the net-
work load [9, 14, 23], classify traffic [15, 24, 25], perform
beam alignment [16, 17], allocate radio resources [3, 4, 26],
and deploy service-tailored network slices [5–10, 27]. It is clear
that ML/AI techniques will play a key role in the transition to
intelligent networks, especially in the O-RAN ecosystem [28].
However, a relevant challenge that still remains unsolved is how
to bring such intelligence to the network in an efficient, reliable
and automated way, which is ultimately the goal of this paper.

In [29], Ayala-Romero et al. present an online Bayesian
learning orchestration framework for intelligent virtualized
RANs where resource allocation follow channel conditions and
network load. The same authors present a similar framework
in [11], where networking and computational resources are
orchestrated via DRL to comply with service level agreements
(SLAs) while accounting for the limited amount of resources.
Singh et al. present GreenRAN, an energy-efficient orchestra-
tion framework for NextG that splits and allocates RAN compo-
nents according to the current resource availability [30]. In [31],
Chatterjee et al. present a radio resource orchestration frame-
work for 5G applications where network slices are dynamically
re-assigned to avoid inefficiencies and SLA violations. Relevant
to our work are the works of Morais et al. [32] and Matoussi et
al. [33], which present frameworks to optimally disaggregate,
place and orchestrate RAN components in the network to min-
imize computation and energy consumption while accounting
for diverse latency and performance requirements. Although the
above works all present orchestration frameworks for NextG
systems, they are focused on orchestrating RAN resources and
functionalities, rather than network intelligence, which repre-
sents a substantially different problem.

In the context of orchestrating ML/AI models in NextG
systems, Baranda et al. [34, 35] present an architecture for
the automated deployment of models in the 5Growth manage-
ment and orchestration (MANO) platform [36], and demon-
strate automated instantiation of models on demand. The clos-
est to our work is the work of Salem et al. [20], which proposes
an orchestrator to select and instantiate inference models at
different locations of the network to obtain a desirable balance
between accuracy and latency. However, [20] is not concerned
with O-RAN systems, but focuses on data-driven solutions for
inference in cloud-based applications.

Besides the differences highlighted in the previous discus-
sion, OrchestRAN differs from the above works in that it
focuses on the Open RAN architecture and is designed to
instantiate both inference and control solutions complying with
O-RAN specifications. Moreover, OrchestRAN allows model
sharing across multiple requests to efficiently reuse available
network resources. We prototyped and benchmarked Orches-
tRAN on Colosseum. To the best of our knowledge, this is the
first large-scale demonstration of a network intelligence orches-
tration system tailored to O-RAN architecture and networks.
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III. O-RAN: A PRIMER

O-RAN embraces the 7-2x functional split (an extension of
the 3GPP 7-2 split), where network functionalities are divided
across multiple nodes, namely, CUs, DUs and RUs (Fig. 1, left).
The RUs implement lower physical layer functionalities. The
DUs interact with the RUs via the Open Fronthaul interface and
implement functionalities pertaining to both the higher physical
layer and the MAC layer. Finally, the remaining functional-
ities of the protocol stack are implemented and executed in
the CU. The latter is connected to the DUs through the F1
interface and is further split in two entities—handling control
and user planes—connected via the E1 interface. These network
elements run on “white-box” hardware components connected
through O-RAN open interfaces, thus enabling multivendor
interoperability and overcoming the vendor lock-in [1].

Beyond disaggregation, the main innovation introduced by
O-RAN lies in the non-RT and near-RT RICs. These com-
ponents enable dynamic and softwarized control of the RAN,
as well as the collection of statistics via a publish-subscribe
model [37] through open and standardized interfaces, e.g., the
O1 and E2 interfaces (Fig. 1, left). Specifically, the near-RT
RIC hosts applications (xApps) that implement time-sensitive—
i.e., between 10 ms and 1 s—operations to perform closed-loop
control over the RAN elements. Practical examples include
control of load balancing, handover procedures, scheduling and
RAN slicing policies [7, 38–40]. The non-RT RIC, instead,
is designed to execute within a service management and or-
chestration (SMO) framework, e.g., Open Network Automation
Platform (ONAP), and acts at time scales above 1 s. It takes
care of training ML/AI models, as well as deploying models
and network control policies on the near-RT RIC through the
A1 interface. Similar to its near-RT counterpart, the non-RT
RIC supports the execution of third-party applications, called
rApps. These components act in concert to gather data and
performance metrics from the RAN, and to optimize and repro-
gram its behavior in real time through software algorithms to
reach NO’s goals. O-RAN specifications also envision ML/AI
models instantiated directly on the CUs and DUs, implementing
RT—Transmission Time Interval (TTI) level—control loops
that operate on 10 ms time-scales [41]. Although these are left
for future O-RAN extensions, OrchestRAN has been natively
designed to support such control loops, implementing RT ap-
plications, which we will refer to as dApps to avoid confusion.

IV. ORCHESTRAN
As illustrated in Fig. 1, OrchestRAN is designed to be

executed as an rApp at the non-RT RIC. Its architecture is
illustrated in Fig. 2. At a high-level, first NOs specify their
intent by submitting a control request to OrchestRAN (step I).
This includes the set of functionalities they want to deploy (e.g.,
network slicing, beamforming, scheduling control, etc.), the
location where functionalities are to be executed (e.g., RIC, CU,
DU) and the desired time constraint (e.g., delay-tolerant, low-
latency). Then, requests are gathered by the Request Collector
(step II, Section IV-C) and fed to the Orchestration Engine
(step III, Section IV-D) which: (i) Accesses the ML/AI Catalog
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Figure 2. System design of OrchestRAN and main procedures.

(Section IV-B) and the Infrastructure Abstraction module (Sec-
tion IV-A) to determine the optimal orchestration policy and
models to be instantiated; (ii) automatically creates containers
with the embedded ML/AI models in the form of O-RAN appli-
cations, and (iii) dispatches such applications at the locations
determined by the Orchestration Engine.

A. The Infrastructure Abstraction Module
This module provides a high-level representation of the

physical RAN architecture, which is divided into five separate
logical groups: non-RT RICs, near-RT RICs, CUs, DUs and
RUs. Each group contains a different number of nodes deployed
at different locations of the network. Let D be the set of such
nodes, and D = |D| be their number.

The hierarchical relationships between nodes can be repre-
sented via an undirected graph with a tree structure such as the
one in Fig. 1 (right). Specifically, leaves represent nodes at the
edge (e.g., RUs/DUs/CUs), while the non-RT RIC is the root
of the tree.1 For any two nodes d′, d′′ ∈ D, we define variable
cd′,d′′ ∈ {0, 1} such that cd′,d′′ = 1 if node d′ is reachable
from node d′′ (e.g., there exist a communication link such that
node d′ can forward data to node d′′), cd′,d′′ = 0 otherwise.
In practical deployments, it is reasonable to assume that nodes
on different branches of the tree are unreachable. Moreover, for
each node d ∈ D, let ρξd be the total amount of resources of
type ξ ∈ Ξ dedicated to hosting and executing ML/AI models
and their functionalities, where Ξ represents the set of all
resource types. Although we do not make any assumptions on
the specific types of resources, practical examples may include
the number of CPUs, GPUs, as well as available disk storage
and memory. In the following, we assume that each non-RT
RIC identifies an independent networking domain and the set of
nodesD includes near-RT RICs, CUs, DUs and RUs controlled
by the corresponding non-RT RIC only.

1Coexisting CUs/DUs/RUs are modeled as a single logical node with a
hierarchy level equal to that of the hierarchically highest node in the group.
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B. The ML/AI Catalog
In OrchestRAN, the available pre-trained data-driven solu-

tions are stored in a ML/AI Catalog consisting of a set M of
ML/AI models. Let F be the set of all possible control and
inference functionalities (e.g., scheduling, beamforming, ca-
pacity forecasting, handover prediction) offered by such ML/AI
models—hereafter referred to simply as “models”.

Let M = |M| and F = |F|. For each model m ∈ M,
Fm ⊆ F represents the subset of functionalities offered by
m. Accordingly, we define a binary variable σm,f ∈ {0, 1}
such that σm,f = 1 if f ∈ Fm, σm,f = 0 otherwise. We
use ρξm to indicate the amount of resources of type ξ ∈ Ξ
required to instantiate and execute model m. Let T be the set
of possible input types. For each model m ∈ M, tINm ∈ T
represents the type of input required by the model (e.g., IQ
samples, throughput and buffer size measurements).

Naturally, not all models can be equally executed every-
where. For example, a model m performing beam align-
ment [16], in which received IQ samples are fed to a neural
network to determine the beam direction, can only execute on
nodes where IQ samples are available. While IQ samples can be
accessed in real-time at the RU, they are unlikely to be available
at CUs and the RICs without incurring in high overhead and
transmission latency. For this reason, we introduce a suitability
indicator βm,f,d ∈ [0, 1] which specifies how well a modelm is
suited to provide a specific functionality f ∈ F when instanti-
ated on node d. Values of βm,f,d closer to 1 mean that the model
is well-suited to execute at a specific location, while values
closer to 0 indicate that the model performs poorly. We also
introduce a performance score γm,f measuring the performance
of the model with respect to f ∈ F . Typical performance met-
rics include classification/forecasting accuracy, mean squared
error and probability of false alarm. A model can be instantiated
on the same node multiple times to serve different NOs or
traffic classes. However, due to limited resources, each node
d supports at most Cm,d = minξ∈Ξ{bρξd/ρξmc} instances of
model m, where b·c is the floor operator.

C. Request Collector
OrchestRAN allows NOs to submit requests specifying

which functionalities they require, where they should execute,
and the desired performance and timing requirements. Without
loss of generality, we assume that each request is feasible. The
Request Collector of OrchestRAN is in charge of collecting
such requests. A request i is defined as a tuple (Fi,πi, δi,DIN

i ),
with each element defined as follows:
• Functions and locations. For each request i, we define the
set of functionalities that must be instantiated on the nodes as
Fi = (Fi,d)d∈D, with Fi,d ⊆ F . Required functionalities and
nodes are specified by a binary indicator τi,f,d ∈ {0, 1} such
that τi,f,d = 1 if request i requires functionality f on node d,
i.e., f ∈ Fi,d, τi,f,d = 0 otherwise. We also define Di = {d ∈
D :

∑
f∈Fi

τi,f,d ≥ 1} as the subset of nodes of the network
where functionalities in Fi should be offered;
• Performance requirements. For any request i, πi =
(πi,f,d)d∈Di,f∈Fi,d

indicates the minimum performance re-
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Figure 3. An example of creation and dispatchment of an xApp on the near-RT
RIC via OrchestRAN.

quirements that must be satisfied to accommodate i. For exam-
ple, if f is a beam detection functionality, πi,f,d can represent
the minimum detection accuracy of the model. We do not
make any assumptions on the physical meaning of πi,f,d as it
reasonably differs from one functionality to the other.
• Timing requirements. Some functionalities might have strict
latency requirements that make their execution at nodes far
away from the location where the input is generated imprac-
tical or inefficient. For this reason, δi,f,d ≥ 0 represents the
maximum latency request i can tolerate in executing f on d;
• Data source. For each request i, the NO also specifies the
subset of nodes whose generated (or collected) data must be
used to deliver functionality f on node d. This set is defined
as DIN

i = (DIN
i,f,d)d∈Di,f∈Fi,d

, where DIN
i,f,d ⊆ D. This

information is paramount to ensure that each model is fed with
the proper data generated by the intended sources only. For any
tuple (i, f, d) we assume that cd,d′ = 1 for all d′ ∈ DIN

i,f,d.
In the remaining of this paper, we use I to represent the set

of outstanding requests with I = |I| being their number.

D. The Orchestration Engine
As depicted in Fig. 3, once requests are submitted to Or-

chestRAN, the Orchestration Engine selects the most suitable
models from the ML/AI Catalog and the location where they
should execute (step I). Then, OrchestRAN embeds the mod-
els into containers (e.g., Docker containers of dApps, xApps,
rApps) (step II) and dispatches them to the selected nodes (step
III). Here, they are fed data from the RAN and execute their
functionalities (step IV). The selection of the models and of
their optimal execution location is performed by solving the
orchestration problem discussed in detail in Sections V and VI.
This results in an orchestration policy, which is converted into
a set of O-RAN applications that are dispatched and executed
at the designated network nodes, as discussed next.
Container creation, dispatchment and instantiation. To embed
models in different O-RAN applications, containers integrate
two subsystems, which are automatically compiled from de-
scriptive files upon instantiation. The first is the model itself,
and the second is an application-specific connector. This is a
library that interfaces with the node where the application is
running (i.e., with the DU in the case of dApps, near-RT RIC
for xApps, and non-RT RIC for rApps), collects data from
DIN
i and sends control commands to nodes in Di. Once the

containers are generated, OrchestRAN dispatches them to the
proper endpoints specified in the orchestration policy, where are
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Figure 4. Example of function outsourcing and model sharing in Open RAN.

instantiated and interfaced with the RAN to receive input data.
For example, xApps automatically send an E2 subscription
request to nodes inDIN

i , and use custom Service Models (SMs)
to interact with them over the E2 interface [37] (see Fig. 3).

V. THE ORCHESTRATION PROBLEM

Before formulating the orchestration problem, we first dis-
cuss important properties of Open RAN systems.
• Functionality outsourcing. Any functionality that was orig-
inally intended to execute at node d′ can be outsourced to
any other node d′′ ∈ D as long as cd′,d′′ = 1. As we will
discuss next, the node hosting the outsourced model must have
access to the required input data, have enough resources to
instantiate and execute the outsourced model, and must satisfy
performance and timing requirements of the original request.
•Model sharing. The limited amount of resources, especially at
DUs and RUs, calls for efficient resource allocation strategies.
If multiple requests involve the same functionalities on the same
group of nodes, an efficient approach consists in deploying a
single model that can be shared across all requests.

For the sake of clarity, in Fig. 4 (left) we show an example
where a request can be satisfied by instantiating models m1

and m2 on d′, and a second one that can be accommodated
by instantiating models m1 and m3 on d′′. Fig. 4 (right) shows
an alternative solution where m1 (common to both requests)
is outsourced to d′′′ and it is shared between the two requests,
with a total of three deployed models, against the four required
in Fig. 4 (left). In the next section, we also discuss the case
where model sharing or function outsourcing are nonviable.

A. Formulating the Orchestration Problem
Let xi,f,dm,k,d′ ∈ {0, 1} be a binary variable such that xi,f,dm,k,d′ =

1 if functionality f demanded by request i on node d is provided
by instance k of model m instantiated on node d′. In the
following, we refer to the variable x = (xi,f,dm,k,d′)i,f,d,m,k,d′ as
the orchestration policy, where i∈I, f ∈F , (d, d′)∈D×D,m∈
M, k=1 . . . Cm,d′ .
• Conflict avoidance. For any tuple (i, f, d) such that τi,f,d =
1, we assume that OrchestRAN can instantiate at most one
model to avoid multiple models controlling the same param-
eters and/or functionalities. As mentioned earlier, this can be
achieved by either instantiating the model at d, or by outsourc-
ing it to another node d′ 6= d. The above requirement can be
formalized as follows:∑

m∈M
σm,f

∑
d′∈D

Cm,d′∑
k=1

cd,d′x
i,f,d
m,k,d′ = yiτi,f,d (1)

where yi ∈ {0, 1} indicates whether or not i is satisfied.
Specifically, (1) ensures that: (i) For any tuple (i, f, d) such that
τi,f,d = 1, function f is provided by one model only, and (ii)
yi = 1 (i.e., request i is satisfied) if and only if OrchestRAN
deploys models providing all functionalities specified in Fi.
• Complying with the requirements. An important aspect of
the orchestration problem is guaranteeing that the orchestration
policy x satisfies the minimum performance requirements πi of
each request i, and that both data collection and execution pro-
cedures do not exceed the maximum latency constraint δi,f,d.
These requirements are captured by the following constraints.

1) Quality of models: For each tuple (i, f, d) such that
τi,f,d = 1, NOs can specify a minimum performance level
πi,f,d. This can be enforced via the following constraint

χi,f,d
∑
m∈M

∑
d′∈D

Cm,d′∑
k=1

cd,d′x
i,f,d
m,k,d′Am,f,d ≥ χi,f,dyiπi,f,d (2)

where Am,f,d = βm,f,d γm,f σm,f , and the performance score
γm,f is defined in Section IV-B. In (2), χi,f,d = 1 if the
goal is to guarantee a value of γm,f higher than a minimum
performance level πi,f,d, and χi,f,d = −1 if the goal is to keep
γm,f below a maximum value πi,f,d.

2) Control-loop time-scales: Each model m requires a spe-
cific type of input tINm and, for each tuple (i, f, d), we must
ensure that the time needed to collect such input from nodes
in DIN

i,f,d does not exceed δi,f,d. For each orchestration policy
x, the data collection time can be formalized as follows:

∆i,f,d(x) =
∑
m∈M

σm,f
∑
d′∈D

Cmd′∑
k=1

xi,f,dm,k,d′

∑
d′′∈DIN

i,f,d

cd′,d′′Θ
i,f,d
m,d′,d′′ (3)

where Θi,f,d
m,d′,d′′ =

(
stINm

bd′,d′′ |DIN
i,f,d|

+ Td′,d′′
)

, stINm is the input
size of model m measured in bytes, bd′,d′′ is the data rate of
the link between nodes d′′ and d′, and Td′,d′′ represents the
propagation delay between nodes d′ and d′′. Let T execm be the
time to execute model m on node d′. For any tuple (i, f, d), the
execution time under orchestration policy x is

∆EXEC
i,f,d (x) =

∑
m∈M

σm,f
∑
d′∈D

T execm,d′

Cm,d′∑
k=1

xi,f,dm,k,d′ (4)

By combining (3) and (4), any orchestration policy x must
satisfy the following constraint for all (i, f, d) tuples:

∆i,f,d(x) + ∆EXEC
i,f,d (x) ≤ δi,f,d τi,f,d (5)

• Avoiding resource over-provisioning. We must guarantee that
the resources consumed by the O-RAN applications do not
exceed the resources ρξd of type ξ available at each node (i.e.,
ρξd). For each d ∈ D and ξ ∈ Ξ, we have∑

m∈M
ρξm

Cmd∑
k=1

zm,k,d ≤ ρξd (6)

where zm,k,d ∈ {0, 1} indicates whether instance k of modelm
is associated to at least one model on node d. Specifically, let

nm,k,d =
∑
i∈I

∑
f∈Fi

∑
d′∈D

xi,f,d
′

m,k,d (7)
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be the number of tuples (i, f, d′) assigned to instance k of
model m on node d (nm,k,d > 1 implies that m is shared).
Notice that (6) and (7) are coupled one to another as zm,k,d = 1
if and only if nm,k,d > 0. This conditional relationship can be
formulated by using the following big-M formulation [42]

nm,k,d ≥ 1−M(1− zm,k,d) (8)
nm,k,d ≤Mzm,k,d (9)

where M ∈ R is a real-valued number whose value is larger
than the maximum value of nm,k,d, i.e., M > IFD [42].
• Problem formulation. For any request i, let vi ≥ 0 represent
its value. The goal of OrchestRAN is to compute an orches-
tration policy x maximizing the total value of requests being
accommodated by selecting (i) which requests can be accom-
modated; (ii) which models should be instantiated; and (iii)
where they should be executed to satisfy request performance
and timescale requirements. This can be formulated as

max
x,y,z

∑
i∈I

yivi (10)

subject to Constraints (1), (2), (5), (6), (8), (9)

xi,f,dm,k,d′ ∈ {0, 1} (11)

yi ∈ {0, 1} (12)
zm,k,d ∈ {0, 1} (13)

where x is the orchestration policy, y = (yi)i∈I and z =
(zm,k,d)m∈M,k=1,...,Cm,d,d∈D. A particularly relevant case is
that where vi = 1 for all i ∈ I, i.e., the goal of OrchestRAN is
to maximize the number of satisfied requests.
• Disabling model sharing. Indeed, model sharing allows a
more efficient use of the available resources. However, out of
privacy and business concerns, NOs might not be willing to
share O-RAN applications. In this case, model sharing can
be disabled in OrchestRAN by guaranteeing that a model is
assigned to one request only. This is achieved by adding the fol-
lowing constraint for any m ∈ M, d′ ∈ D and k = 1, .., Cm,d′∑

i∈I

∑
d∈D

∑
f∈Fi,d

xi,f,dm,k,d′ ≤ 1 (14)

B. NP-hardness of the Orchestration Problem
Problem (10) is a Binary Integer Linear Programming (BILP)

problem which can be shown to be NP-hard. The proof consists
in building a polynomial-time reduction of the 3-SAT problem
(which is NP-complete) to an instance of Problem (10) [43].

VI. SOLVING THE ORCHESTRATION PROBLEM

BILP problems such as Problem (10) can be optimally solved
via Branch-and-Bound (B&B) techniques [44], readily avail-
able within well-established numerical solvers, e.g., CPLEX,
MATLAB, Gurobi. However, due to the extremely large num-
ber NOPT of optimization variables, these solvers might still
fail to compute an optimal solution in a reasonable amount of
time, especially in large-scale deployments. Indeed, NOPT =
|x|+|y|+|z|≈|x|, where |x|=O(IFD2MCmax), |y|=O(I),
|z| = O(MDCmax), and Cmax = maxm∈M,d∈D{Cm,d}. For
example, a deployment with D = 20, M = 13, I = 10, F = 7
and Cmax = 3 involves ≈106 optimization variables.

A. Combating Dimensionality via Variable Reduction
To mitigate the “curse of dimensionality” of the orchestration

problem, we have developed two pre-processing algorithms to
reduce the complexity of Problem (10) while guaranteeing the
optimality of the computed solutions. We leverage a technique
called variable reduction [45]. This exploits the fact that, due to
constraints and structural properties of the problem, there might
exist a subset of inactive variables whose value is always zero.
These variables do not participate in the optimization process,
yet they increase its complexity. To identify those variables, we
have designed the following two techniques.
• Function-aware Pruning (FP). It identifies the set of inactive
variables xFP

− = {xi,f,dm,k,d′ : τi,f,d = 0 ∨ σm,f = 0,∀i ∈
I, f ∈ F , (d, d′) ∈ D×D,m ∈M, k = 1, . . . , C,m,d}, which
contains all the xi,f,dm,k,d variables such that either (i) τi,f,d =
0, i.e., request i does not require function f at node d, or (ii)
σm,f = 0, i.e., model m does not offer function f ;
• Architecture-aware Pruning (AP). This procedure identities
those variables whose activation results in instantiating a model
on a node that cannot receive input data from nodes in DIN

i,f,d.
Indeed, for a given tuple (i, f, d) such that τi,f,d = 1, we
cannot instantiate any model on a node d′ such that cd,d′ = 0,
i.e., the two nodes are not connected. The set of these inactive
variables is defined as xAP

− = {xi,f,dm,k,d′ : cd,d′ = 0,∀i ∈ I, f ∈
F , (d, d′) ∈ D ×D,m ∈M, k = 1, . . . , C,m,d}.

Once we have identified all inactive variables, Problem (10)
is cast into a lower-dimensional space where the new set of
optimization variables is equal to x̃ = x \ {xFP

− ∪xAP
− }, which

still guarantees the optimality of the solution [45]. The impact
of these procedures on the complexity of the orchestration
problem will be investigated in Section VII.

B. Graph Tree Branching
Notice that |x| = O(IFD2MCmax), i.e., the number of

variables of the orchestration problem grows quadratically in
the number D of nodes. Since the majority of nodes of the in-
frastructure are RUs, DUs and CUs, it is reasonable to conclude
that these nodes are the major source of complexity. Moreover,
O-RAN systems operate following a cluster-based approach
where each near-RT RIC controls a subset of CUs, DUs and
RUs of the network only, i.e., a cluster, which have none (or
limited) interactions with nodes from other clusters.

These two intuitions are the rationale behind the low-
complexity and scalable solution proposed in this section,
which consists in splitting the infrastructure tree into smaller
subtrees—each operating as an individual cluster—and creating
sub-instances of the orchestration problem that only accounts
for requests and nodes regarding the considered subtree. The
main steps of this algorithm are:
• Step I: Let C be the number of near-RT RICs in the non-RT
RIC domain. For each cluster c, the c-th subtree Dc ⊆ D is
defined such that D =

⋃C
c=1Dc and

⋂C
c=1Dc = droot, with

droot being the non-RT RIC. A variable αd,c ∈ {0, 1} is used
to determine whether a node d ∈ D belongs to cluster c (i.e.,
αd,c = 1) or not (i.e., αd,c = 0). Since,

⋂C
c=1Dc = droot, we

have that
∑C
c=1 αd,c = 1 for any d ∈ D \ {droot};
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Table I
CONTROLLABLE NODES.

Case
Requested Nodes non-RT RIC near-RT RIC CU DU RU

All nodes (ALL) 3 3 3 3 3
Edge and RAN (ER) 7 3 3 3 3
RAN only (RO) 7 7 3 3 3

Table II
REQUEST TIMESCALE CASES AND PROBABILITIES.

Case
Time scale TTI-level -≤ 0.01s Sub-second -≤ 1s Long -> 1s

Delay-Tolerant (DT) 0.2 0.2 0.6
Low Latency (LL) 0.2 0.6 0.2

Ultra-Low Latency (ULL) 0.6 0.4 0

• Step II: For each subtree Dc we identify the subset Ic ⊆ I
such that Ic = {i ∈ I :

∑
f∈F

∑
d∈Dc

τi,f,d ≥ 1} contains all
the requests that involve nodes belonging to cluster c only;
• Step III: We solve Problem (10) via B&B considering only re-
quests in Ic and nodes inDc. The solution is a tuple (xc,yc, zc)
specifying which models are instantiated and where (xc), which
requests are satisfied in cluster c (yc) and what instances of the
models are instantiated on each node of Dc (zc).
Remark. This branching procedure might compute solutions
with partially satisfied requests. These are requests that are
accommodated on a subset of clusters only, which violates Con-
straint 1. However, as we will show in Section VII, this proce-
dure is scalable as each subtreeDc involves a limited number of
nodes only, and we can solve each lower-dimensional instance
of Problem (10) in parallel and in less than 0.1 s.

VII. NUMERICAL EVALUATION

To evaluate the performance of OrchestRAN in large-scale
scenarios, we have developed a simulation tool in MATLAB
that uses CPLEX to execute optimization routines. For each
simulation, NOs submit R = 20 randomly generated requests,
each specifying multiple sets of functionalities and nodes, as
well as the desired timescale. Unless otherwise stated, we con-
sider a single-domain deployment with 1 non-RT RIC, 4 near-
RT RICs, 10 CUs, 30 DUs and 90 RUs. For each simulation,
the number of network nodes is fixed, but the tree structure of
the infrastructure is randomly generated. We consider the three
cases shown in Table I, where we limit the type of nodes that
can be included in each request. Similarly, we also consider the
three cases in Table II. For each case, we specify the probability
that the latency requirement δi,f,d for each tuple (i, f, d) is
associated to a specific timescale. The combination of these 6
cases covers relevant Open RAN applications.

The ML/AI Catalog consists of M = 13 models that provide
F = 7 different functionalities. Ten models use metrics from
the RAN (e.g., throughput and buffer measurements) as input,
while the remaining three models are fed with IQ samples
from RUs. The input size stINm is set to 100 and 1000 bytes
for the metrics and IQ samples, respectively. For the sake of
illustration, we assume that βm,f,d = σm,f , πi,f,d = τi,f,d
and Cm,d = 3 for all m ∈ M, i ∈ F , f ∈ F and d ∈ D.
The execution time of each model is equal across all models
and nodes and set to T execm,d = 1 ms. The available bandwidth
bd,d′ is 100 Gbps between non-RT RIC and near-RT RIC,
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Figure 5. Number of variables and computation time for different network size.

50 Gbps between near-RT RICs and CUs, 25 Gbps between
CUs and DUs, and 20 Gbps between DUs and RUs, while the
propagation delay Td,d′ is set to [10, 10, 5, 1] ms, respectively.
The resources ρd available at each node are represented by the
number of available CPU cores, and we assume that each model
requests one core only, i.e., ρm = 1. The number of cores
available at non-RT RICs, near-RT RICs, CUs, DUs and RUs
are 128, 8, 4, 2, and 1, respectively. Results presented in this
section are averaged over 100 independent simulation runs.
• Computational complexity. Fig. 5 shows the number of op-
timization variables and computation time of our algorithms
with varying network size. At each simulation run, we consider
a single non-RT RIC and a randomly generated tree graph
that matches the considered size. As expected, the number of
variables and the complexity increase with larger networks.
This can be mitigated by using our FP and AP pre-processing
algorithms, which reduce the number of optimization variables
while ensuring the optimality of the computed solution. Their
combination allows computation of optimal solutions in 0.1 s
and 2 s for networks with 200 and 500 nodes, respectively.
Fig. 5 also shows the benefits of branching the optimization
problem into sub-problems of smaller size (Section VI-B).
Although the branching procedure might produce partially
satisfied requests, it results in a computation time lower than
0.1 s even for instances with 2000 nodes, providing a fast and
scalable solution for large-scale applications.
• Acceptance ratio. Fig. 6 (left) shows the acceptance ratio
for different cases and algorithms. The number of accepted re-
quests decreases when moving from loose timing requirements
(i.e., Delay-tolerant (DT)), to tighter ones (i.e., Low Latency
(LL) and Ultra-Low Latency (ULL)). For example, while 95%
of requests are satisfied on average for the DT configuration,
we observe ULL instances in which only 70% of requests are
accepted. Indeed, TTI-level services may only be possible at the
DUs/RUs which, however, have limited resources and cannot
support the execution of many concurrent O-RAN applications.
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In Fig. 6 (right), we show the probability that a request is
partially accepted when considering the branching algorithm.
Specifically, it shows that branching results in ≈99% of re-
quests being partially satisfied on one subtree or more. This
means that in the case where not enough resources are available
to accept the entirety of the request, OrchestRAN can satisfy
portions of it. Thus, requests that would be otherwise rejected
can be at least partially accommodated.
• Advantages of model sharing. Fig. 7 shows the resource
utilization with and without model sharing (left) and the cor-
responding resource utilization saving (right). As expected,
model sharing always results in lower resource utilization and
uses 2× less resources than the case without model sharing.
Fig. 8 shows the acceptance ratio when model sharing is dis-
abled, and by comparing it with Fig. 6 (left)—where model
sharing is enabled—we notice that model sharing also increases
the acceptance ratio. Specifically, model sharing accommodates
at least 90% of requests in all cases, while this number drops to
≈70% when model sharing is disabled.

To better understand how OrchestRAN orchestrates intelli-
gence, Fig. 9 shows the distribution of models across the differ-
ent network nodes for the ER case (see Table I) with different
timing constraints. Requests with loose timing requirements
(DT) result in ≈45% of models being allocated in the RICs.
Instead, stringent timing constraints (LL and ULL) result in
≈70% of models being instantiated at CUs, DUs, and RUs.

VIII. PROTOTYPE AND EXPERIMENTAL EVALUATION

To demonstrate the effectiveness of OrchestRAN, we lever-
aged ColO-RAN [21], an O-RAN-compliant large-scale exper-
imental platform developed on top of the Colosseum wireless
network emulator [22]. Colosseum includes 128 computing
servers (i.e., Standard Radio Nodes (SRNs)), each controlling
a USRP X310 Software-defined Radio (SDR), and a Mas-
sive Channel Emulator (MCHEM) emulating wireless channels
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Table III
DRL AGENTS IN THE ML/AI CATALOG

Reward
Slice 0 Slice 1 Slice 2 Actions

M3 max(Throughput) max(TX pkts) max(PRB ratio) Scheduling
M4 max(Throughput) max(TX pkts) min(Buffer size) Scheduling, RAN slicing
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ConnectorConnector
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OrchestRAN
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Figure 10. OrchestRAN prototype architecture on Colosseum and integration
with O-RAN and SCOPE [26] components.

between the SRNs to reproduce realistic and time-varying
wireless characteristics (e.g., path-loss, multi-path) under dif-
ferent deployments (e.g., urban, rural, etc.) [22]. We leverage
the publicly available tool SCOPE [26] to instantiate a soft-
warized cellular network with 7 base stations and 42 User
Equipments (UEs) (6 UEs per base station) on the Colos-
seum city-scale downtown Rome scenario, and to interface
the base stations with the O-RAN near-RT RIC through the
E2 interface. SCOPE, which is based on srsRAN [46], im-
plements open Application Programming Interfaces (APIs) to
reconfigure the base station parameters (e.g., slicing resources,
scheduling policies, etc.) from O-RAN applications through
closed-control loops, and to automatically generate datasets
from RAN statistics (e.g., throughput, buffer size, etc.). Users
are deployed randomly and generate traffic belonging to 3
different network slices configured as follows: (i) slice 0 is
allocated an Enhanced Mobile Broadband (eMBB) service,
in which each UE requests 4 Mbps constant bitrate traffic;
(ii) slice 1 a Machine-type Communications (MTC) service,
in which each UE requests Poisson-distributed traffic with an
average rate of 45 kbps, and (iii) slice 2 to a Ultra Reliable and
Low Latency Communication (URLLC) service, in which each
UE requests Poisson-distributed traffic with an average rate of
90 kbps. We assume 2 UEs per slice, whose traffic is handled
by the base stations, which use a 10 MHz channel bandwidth
with 50 Physical Resource Block (PRB).

The high-level architecture of the OrchestRAN prototype on
Colosseum is shown in Fig. 10. OrchestRAN runs in an Linux
Container (LXC) embedding the components of Fig 2. For
each experiment, we randomly generate a new set of control
requests every 4 minutes. The Orchestration Engine computes
the optimal orchestration policy and embeds the models within
O-RAN applications that are dispatched to the nodes where they
are executed. We consider the case where models can run at the
near-RT RIC (as xApps) or at the DU (as dApps via SCOPE).

We used SCOPE to generate datasets on Colosseum and train
4 ML models that constitute our ML/AI Catalog. Models M1
and M2 have been trained to forecast throughput and transmis-
sion buffer size.2 Models M3 and M4 control the parameters

2Due to space limitations, and since the goal of this paper is focused on
how to orchestrate pre-trained models to accomplish NOs goals, details on the
training procedures are omitted.
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of the network to maximize different rewards through Proximal
Policy Optimization (PPO)-based DRL agents (see Table III).
Specifically, M3 consists of three DRL agents, each making
decisions on the scheduling policies of one slice only. The three
agents aim at maximizing the throughput of slice 0, the number
of transmitted packets of slice 1, and the ratio between the
allocated and requested PRBs (i.e., the PRB ratio which takes
values in [0, 1]) of slice 2, respectively. Model M4, instead,
consists of a single DRL agent controlling the scheduling and
RAN slicing policies (i.e., how many PRBs are assigned to
each slice) to jointly maximize the throughput of slice 0 and
the number of transmitted packets of slice 1, and to minimize
the buffer size of slice 2. Each model requires one CPU core,
and we consider three configurations: (i) “RIC only”, in which
models can be executed via xApps at the near-RT RIC only;
(ii) “RIC + lightweight DU”, in which DUs have 2 cores each
to execute up to two dApps concurrently; and (iii) “RIC +
powerful DU”, in which DUs are equipped with 8 cores. In all
cases, the near-RT RIC has access to 50 cores. Overall, we ran
more than 95 hours of experiments on Colosseum.
• Experimental results. Fig. 11 (left) shows the probability
that models are executed at the near-RT RIC for different
configurations and number of requests. As expected, in the
“RIC only” case, all models execute as xApps at the near-
RT RIC, while both “RIC + lightweight DU” and “RIC +
powerful DU” cases result in ≈25% of models executing at
the RIC. The remaining 75% of the models are executed as
dApps at the DUs. Fig. 11 (right) shows the traffic in Mbyte
over the E2 interface between the near-RT RIC and the DUs
for the different configurations. This includes messages to set
up the initial subscription between the near-RT RIC and the
DUs, messages to report metrics from the DUs to the RIC
(e.g., throughput, buffer size), and control messages from the
RIC to the DUs (e.g., to update scheduling and RAN slicing
policies). Results clearly show that ≈40% of the E2 traffic
transports payload information (dark bars), while the remaining
60% consists of overhead data. Although the initial subscription
messages exchanged between the near-RT RIC and the DUs are
sent in all considered cases, running models as dApps at the
DUs still results in up to 2.6× less E2 traffic if compared to the
“RIC only” case.

Finally, we showcase the impact of the real-time execution
of OrchestRAN on the network performance. We focus on
DU 7, and in Fig. 12 (top) we show the location and time
instant at which OrchestRAN instantiates the four models on
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the near-RT RIC and on DU 7 for a single experiment. The
impact on the network performance of the different orchestra-
tion policies is shown in Fig. 12 (center and bottom). Since
M1 and M2 perform forecasting tasks only, the figure only
reports the evolution of the metrics used to reward the DRL
agents M3 and M4 (see Table III) for different slices. We
notice that OrchestRAN allows the seamless instantiation of
dApps and xApps, controlling the same DU without causing
any service interruptions. Moreover, although M3 and M4
share the same reward for slices 0 and 1, M4 can also make
decisions on the network slicing policies. Thus, it provides a
higher throughput for slice 0 (≈10% higher than M3), and a
higher number of transmitted packets for slice 1 (≈2× higher
thanM3) (Fig. 12 (center)). Similarly, in the case of slice 2,M3
aims at maximizing the PRB ratio, while M4 at minimizing
the size of the transmission buffer, which results in M3 and
M4 computing different control policies for slice 2. As shown
Fig. 12 (bottom), although M3 converges to a stable control
policy that results in a PRB ratio ≈1, its buffer size is higher
than that ofM4. Conversely, the buffer size of slice 2 decreases
once M4 is instantiated with a decrease in the PRB ratio.

IX. CONCLUSIONS

In this paper, we presented OrchestRAN, a novel network
intelligence orchestration framework for Open RAN systems.
OrchestRAN is based upon O-RAN specifications and lever-
ages the RIC xApps and rApps and O-RAN open interfaces
to provide NOs with an automated orchestration tool for de-
ploying data-driven inference and control solutions with diverse
timing requirements. OrchestRAN has been equipped with
orchestration algorithms with different optimality/complexity
trade-offs to support non-RT, near-RT and RT applications.
We assessed OrchestRAN performance and presented an O-
RAN-compliant prototype by instantiating a cellular network
with 7 base stations and 42 UEs on the Colosseum network
emulator. Our experimental results demonstrate that Orches-
tRAN achieves seamless instantiation of O-RAN applications
at different network nodes and time scales, and reduces the
message overhead over the O-RAN E2 interface by up to 2.6×
when instantiating intelligence at the edge of the network.
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[17] A. Klautau, P. Batista, N. González-Prelcic, Y. Wang, and R. W. Heath,
“5G MIMO Data for Machine Learning: Application to Beam-selection
Using Deep Learning,” in Proc. of ITA Workshop, 2018.

[18] C. Luo, J. Ji, Q. Wang, X. Chen, and P. Li, “Channel State Infor-
mation Prediction for 5G Wireless Communications: A Deep Learning
Approach,” IEEE Trans. on Network Science and Engineering, vol. 7,
no. 1, pp. 227–236, 2018.

[19] J. M. DeAlmeida, L. DaSilva, C. B. Bonato Both, C. G. Ralha, and M. A.
Marotta, “Artificial Intelligence-Driven Fog Radio Access Networks:
Integrating Decision Making Considering Different Time Granularities,”
IEEE Vehicular Technology Magazine, 2021.

[20] T. S. Salem, G. Castellano, G. Neglia, F. Pianese, and A. Araldo, “To-
wards Inference Delivery Networks: Distributing Machine Learning with
Optimality Guarantees,” in Proc. of IEEE MedHocNet, 2021.

[21] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “ColO-RAN:
Developing Machine Learning-based xApps for Open RAN Closed-loop
Control on Programmable Experimental Platforms,” arXiv:2112.09559
[cs.NI], 2021.

[22] L. Bonati, P. Johari, M. Polese, S. D’Oro, S. Mohanti, M. Tehrani-
Moayyed, D. Villa, S. Shrivastava, C. Tassie, K. Yoder, A. Bagga,

P. Patel, V. Petkov, M. Seltser, F. Restuccia, A. Gosain, K. R. Chowdhury,
S. Basagni, and T. Melodia, “Colosseum: Large-Scale Wireless Experi-
mentation Through Hardware-in-the-Loop Network Emulation,” in Proc.
of IEEE DySPAN, 2021.

[23] M. Polese, R. Jana, V. Kounev, K. Zhang, S. Deb, and M. Zorzi, “Machine
Learning at the Edge: A Data-driven Architecture with Applications to 5G
Cellular Networks,” IEEE Trans. on Mobile Computing, 2020.

[24] Y. Li, B. Liang, and A. Tizghadam, “Robust Online Learning against Ma-
licious Manipulation and Feedback Delay with Application to Network
Flow Classification,” IEEE Journal on Selected Areas in Communica-
tions, vol. 39, no. 8, pp. 2648–2663, 2021.

[25] T. N. Weerasinghe, I. A. Balapuwaduge, and F. Y. Li, “Supervised
Learning Based Arrival Prediction and Dynamic Preamble Allocation for
Bursty Traffic,” in Proc. of IEEE INFOCOM Workshops, 2019.

[26] L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “SCOPE: An Open and
Softwarized Prototyping Platform for NextG Systems,” in Proc. of ACM
MobySys, 2021.

[27] H. Chergui and C. Verikoukis, “OPEX-Limited 5G RAN Slicing: An
Over-Dataset Constrained Deep Learning Approach,” in Proc. of IEEE
ICC, 2020.

[28] H. Lee, J. Cha, D. Kwon, M. Jeong, and I. Park, “Hosting AI/ML
Workflows on O-RAN RIC Platform,” in Proc. of IEEE GLOBECOM
Workshops, 2020.

[29] J. A. Ayala-Romero, A. Garcia-Saavedra, X. Costa-Perez, and G. Iosi-
fidis, “Bayesian Online Learning for Energy-Aware Resource Orchestra-
tion in Virtualized RANs,” in Proc. of IEEE INFOCOM, 2021.

[30] R. Singh, C. Hasan, X. Foukas, M. Fiore, M. K. Marina, and Y. Wang,
“Energy-Efficient Orchestration of Metro-Scale 5G Radio Access Net-
works,” in Proc. of IEEE INFOCOM, 2021.

[31] S. Chatterjee, M. J. Abdel-Rahman, and A. B. MacKenzie, “On Optimal
Orchestration of Virtualized Cellular Networks with Statistical Multiplex-
ing,” IEEE Trans. on Wireless Communications, 2021.

[32] F. Z. Morais, G. M. de Almeida, L. Pinto, K. V. Cardoso, L. M. Contreras,
R. d. R. Righi, and C. B. Both, “PlaceRAN: Optimal Placement of
Virtualized Network Functions in the Next-generation Radio Access
Networks,” arXiv:2102.13192 [cs.NI], 2021.

[33] S. Matoussi, I. Fajjari, S. Costanzo, N. Aitsaadi, and R. Langar, “5G
RAN: Functional Split Orchestration Optimization,” IEEE Journal on
Selected Areas in Communications, vol. 38, no. 7, pp. 1448–1463, 2020.

[34] J. Baranda, J. Mangues-Bafalluy, E. Zeydan, L. Vettori, R. Martı́nez,
X. Li, A. Garcia-Saavedra, C.-F. Chiasserini, C. Casetti et al., “On the In-
tegration of AI/ML-based Scaling Operations in the 5Growth Platform,”
in Proc. of IEEE NFV-SDN, 2020.

[35] J. Baranda, J. Mangues-Bafalluy, E. Zeydan, C. Casetti, C. F. Chiasserini,
M. Malinverno, C. Puligheddu, M. Groshev et al., “Demo: AIML-as-a-
Service for SLA management of a Digital Twin Virtual Network Service,”
in Proc. of IEEE INFOCOM Workshops, 2021.

[36] X. Li et al., “5Growth: An End-to-End Service Platform for Automated
Deployment and Management of Vertical Services over 5G Networks,”
IEEE Communications Magazine, vol. 59, no. 3, 2021.

[37] O-RAN WG3, “O-RAN Near-Real-time RAN Intelligent Controller E2
Service Model 1.0,” Technical Specification, February 2020.

[38] S. D’Oro, L. Bonati, F. Restuccia, and T. Melodia, “Coordinated 5G
Network Slicing: How Constructive Interference Can Boost Network
Throughput,” IEEE/ACM Trans. on Networking, vol. 29, no. 4, 2021.

[39] S. D’Oro, F. Restuccia, and T. Melodia, “Toward Operator-to-Waveform
5G Radio Access Network Slicing,” IEEE Communications Magazine,
vol. 58, no. 4, pp. 18–23, April 2020.

[40] S. D’Oro, L. Bonati, F. Restuccia, M. Polese, M. Zorzi, and T. Melodia,
“Sl-EDGE:Network Slicing at the Edge,” in Proc.ofACM Mobihoc, 2020.

[41] O-RAN WG2, “O-RAN AI/ML Workflow Description and Requirements
- v1.01,” Technical Specification, Apr. 2020.

[42] R. Raman and I. Grossmann, “Modelling and Computational Techniques
for Logic Based Integer Programming,” Computers & Chemical Engi-
neering, vol. 18, no. 7, pp. 563–578, 1994.

[43] R. M. Karp, “Reducibility Among Combinatorial Problems,” in Complex-
ity of Computer Computations, 1972, pp. 85–103.

[44] L. A. Wolsey, Integer programming. John Wiley & Sons, 2020.
[45] X. Li, Q. Zhai, J. Zhou, and X. Guan, “A Variable Reduction Method for

Large-Scale Unit Commitment,” IEEE Trans. on Power Systems, vol. 35,
no. 1, pp. 261–272, 2020.

[46] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano,
C. Cano, and D. J. Leith, “srsLTE: An Open-source Platform for LTE
Evolution and Experimentation,” in Proc. of ACM WiNTECH, 2016.

10


