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Abstract—Wireless Multimedia Sensor Network (WMSN) is increasingly being deployed for surveillance, monitoring and Internet-

of-Things (IoT) sensing applications where a set of cameras capture and compress local images and then transmit the data to a

remote controller. Such captured local images may also be compressed in a multi-view fashion to reduce the redundancy among

overlapping views. In this paper, we present a novel paradigm for compressed-sensing-enabled multi-view coding and streaming in

WMSN. We first propose a new encoding and decoding architecture for multi-view video systems based on Compressed Sensing (CS)

principles, composed of cooperative sparsity-aware block-level rate-adaptive encoders, feedback channels and independent decoders.

The proposed architecture leverages the properties of CS to overcome many limitations of traditional encoding techniques, specifically

massive storage requirements and high computational complexity. Then, we present a modeling framework that exploits the

aforementioned coding architecture. The proposed mathematical problem minimizes the power consumption by jointly determining the

encoding rate and multi-path rate allocation subject to distortion and energy constraints. Extensive performance evaluation results

show that the proposed framework is able to transmit multi-view streams with guaranteed video quality at lower power consumption.

Index Terms—Compressed sensing, multi-view video streaming, network optimization, Internet of Things

Ç

1 INTRODUCTION

WIRELESS Multimedia Sensor Networks (WMSNs) are
composed of low-cost, battery-operatedwireless camera

sensors with the ability of acquiring, processing and transmit-
ting visual data. By extending the capability of traditional
Wireless SensorNetworks (WSNs),WMSNsplay a paramount
role in the evolution of the Internet-of-Things (IoTs) paradigm
by enabling multi-media data gathering, processing and anal-
ysis, for example, disaster monitoring, pervasive surveillance,
traffic and infrastructure monitoring [2] in the scenario of
smart cities. However, WMSN poses additional challenges
compared to traditionalWSN because it requires intense proc-
essing ability and high-bandwidth availability. Given the fact
that the sensor nodes in WMSNs are characterized by tight
energy, limited processing and bandwidth, how to design a
low-complexity low-power framework pertaining to data
compression, processing and networking is a critical issue.

Recently, compressed sensing (CS) has been proposed as a
possible solution to enable video streaming in resource

constrained WMSNs. CS-based imaging systems are able to
reconstruct image or video signals from a relatively “small”
number of (random or deterministic) linear combinations of
original image pixels, referred to as measurements, without
collecting the entire frame [3], [4], thereby offering a promising
alternative to traditional video encoders by acquiring and com-
pressing video or images simultaneously at very low computational
complexity for encoders [5]. This attractive feature motivated a
number of works that have applied CS to video streaming in
low-power wireless surveillance scenarios. For example, [6],
[7], [8] mainly concentrate on single-view CS-based video
compression, by exploiting temporal correlation among suc-
cessive video frames [6], [7] or considering energy-efficient
rate allocation in WMSNs with traditional CS reconstruction
methods [8]. In [9], we showed that CS-based wireless video
streaming can deliver surveillance-grade video for a fraction
of the energy consumption of traditional systems based on
predictive video encoding such asH.264. In addition, [8] illus-
trated and evaluated the error-resilience property of CS-based
video streaming, which results in graceful quality degrada-
tion in wireless lossy links. A few recent contributions [10],
[11], [12], [13] have proposed CS-based multi-view video
streaming techniques, primarily focusing on an independent-
encoder and joint-decoder paradigm, which exploits the
implicit correlation among multiple views at the decoder side
to improve the resulting video quality using complex joint
reconstruction algorithms.

From a system view of multi-view video streaming,
besides visual data acquiring and compressing, how to
achieve power-efficient quality-assured data transmission
over a multi-hop wireless sensor network is another
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important open problem. Very limited work has been
reported in the literature to address this issue, especially for
CS-based streaming system. For example, [14] and [15] have
looked at this problem by considering traditional encoding
paradigms, e.g., H.264 or MPEG4; these contributions focus
on video transmission in single-hop wireless networks and
provide a framework to improve power efficiency by
adjusting encoding parameters such as quantization step
(QS) size to adapt the resulting rate.

To the best of our knowledge, we propose for the first
time a holistic paradigm of coding and transmitting for low-
complexity low-power compressed-sensing-enabled multi-
view video streaming in multi-hop wireless sensor networks.
The objective is to efficiently deliver high-quality video on
resource-limited video sensors. To achieve this objective, we
first propose a novel CS-based multi-view coding and decod-
ing architecture composed of cooperative encoders and inde-
pendent decoders. Unlike existing works [10], [11], [12], the
proposed system is based on independent encoding and inde-
pendent decoding procedures with limited channel feedback
information and negligible content sharing among camera
sensors. Furthermore, we propose a power-efficient quality-
guaranteed rate allocation algorithm based on a compressive
Rate-Distortion (R-D) model for multi-view video streaming
in multi-path multi-hop wireless sensor networks with lossy
links. Ourworkmakes the following contributions:

CS-based multi-view video coding architecture with indepen-
dent encoders and independent decoders. Different from state-
of-the-art multi-view coding architectures, that are either
based on joint encoding or on joint decoding, we propose a
new CS-based sparsity-aware independent encoding and
decoding multi-view structure, that relies on lightweight
feedback and inter-camera cooperation.

- Sparsity Estimation. We develop a novel adaptive
approach to estimate block sparsity based on the recon-
structed frame at the decoder. The estimated sparsity is
then used to calculate the block-level measurement rate to
be allocated with respect to a given frame-level rate. Next,
the resulting block-level rates are transmitted back to the
encoder through the feedback channel. The encoder that is
selected to receive the feedback information, referred to as
reference view (R-view), shares the content with other non-
reference views (NR-views) nearby.

- Block-Level Rate Adaptive Multi-View Encoders. R-view
and NR-views perform the block-level CS encoding inde-
pendently based on the shared block-level measurement
rate information. The objective is to not only implicitly
leverage the considerable correlation among views, but also
to adaptively balance the number of measurements among
blocks with different sparsity levels. Our experimental
results show that the proposed method outperforms state-
of-the-art CS-based encoders with equal block-level mea-
surement rate by up to 5 dB in terms of Peak Signal-to-Noise
Ratio (PSNR).

Modeling framework for CS-basedmulti-view video streaming in
multi-path multi-hop wireless sensor networks. We consider a
rate-distortion model of the proposed streaming system that
captures packet losses caused by unreliable links and playout
deadline violations. Based on this model, we propose a two-
fold (frame-level and path-level) rate control algorithm
designed tominimize the network power consumption under

constraints on the minimum required video quality for multi-
pathmulti-hopmulti-view video streaming scenarios.

The rest of the paper is organized as follows. In Section 2,
we discuss related works. In Section 3, we review a few pre-
liminary notions. In Section 4, we introduce the proposed
CS-based multi-view video encoding/decoding architecture.
In Section 5 we present a modeling framework to design opti-
mization problems of multi-view streaming in multi-hop sen-
sor networks and propose a solution algorithm. Finally,
simulation results are presented in Section 6,while in Section 7
we draw themain conclusions and discuss futurework.

2 RELATED WORKS

CS-Based Multi-View Video. More recently, several proposals
have appeared for CS-based multi-view video coding based
on Distributed Video Coding (DVC)1 architecture [10], [13],
[18], [19], [20], [21], [22], [23], [24]. In [10], a distributed multi-
view video coding scheme based on CS is proposed, which
assumes the samemeasurement rates for different views, and
can only be applied together with specific structured dictio-
naries as sparse representation matrix. A linear operator [20]
is proposed to describe the correlations between images of dif-
ferent views in the compressed domain. The authors then use
it to develop a novel joint image reconstruction scheme. In
[18], the authors propose a novel CS joint multi-view recon-
struction method guided by the spatial correlation and low-
rank background constraints. [19] presents a joint optimiza-
tion model (JOM) for compressed sensing based multi-view
image reconstruction, which jointly optimizes an adaptive
disparity compensated residual total variation (ARTV) and a
multi-image nonlocal low-rank tensor (MNLRT). The authors
of [21] propose a CS-based joint reconstruction method for
multi-view images, which uses two images from the two near-
est views with higher measurement rate of the current image
(the right and left neighbors) to calculate a prediction frame.
The authors then further improve the performance by way of
amulti-stage refinement procedure [22] via residual recovery.
The readers are referred to [21], [22] and references therein for
details. Disparity-based joint reconstruction for multi-view
video is also proposed in [23] and [24], where different recon-
struction methods, i.e., residual-based and total variation
based approaches are adopted, respectively. In our previous
work [13], we proposed a motion-aware joint multi-view
video reconstruction method based on a newly designed
interview motion compensated side information generation
approach. Differently, in this article, we propose a novel CS-
based independently encoding and independently decoding archi-
tecture for multi-view video systems based on new coopera-
tive sparsity-aware-block-level rate adaptive encoders.

Energy-Efficient CS-Enabled Video Streaming. Few articles
have investigated energy-constrained compressively-sampled
video streaming. [25] presents a low-complexity and energy
efficient image compressive transmission scheme for camera
sensor networks, where the authors use residual energy of
camera sensor nodes to control the image quality to balance
energy consumption of nodes. In [9], an analytical/emperical

1. DVC algorithms (aka Wyner-Ziv coding [16], [17]) exploit the
source statistics at the decoder, thus shifting the complexity from the
encoder side to the decoder side.
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rate-energy-distortion model is developed to predict the
received video quality when the overall energy available for
both encoding and transmission of each frame is fixed and lim-
ited and the transmissions are affected by channel errors. The
model determines the optimal allocation of encoded video
rate and channel coding rate for a given available energy bud-
get. [26] proposes a cooperative relay-assisted compressed
video sensing systems that takes advantage of the error resil-
ience of compressively-sampled video to maintain good video
quality at the receiver side while significantly reducing the
required SNR, thus reducing the required transmission power.
Different from the previous works, which mainly aims at sin-
gle-view single path CS-based video streaming, in this article,
we consider CS-based multi-view video streaming inmulti-path
multi-hopwireless sensor networks.

3 PRELIMINARIES

3.1 Compressed Sensing Basics

We first briefly review basic concepts of CS for signal acqui-
sition and recovery, especially as applied to CS-based video
streaming. We consider an image signal vectorized and
then represented as x 2 RN , where N ¼ H �W is the num-
ber of pixels in the image, and H and W represent the
dimensions of the captured scene. Each element xi denotes
the ith pixel in the vectorized image signal representation.
Most natural images are known to be very nearly sparse
when represented using some transformation basis C 2
RN�N , e.g., Discrete Wavelet Transform (DWT) or Discrete
Cosine Transform (DCT), denoted as x ¼ Cs, where s 2 RN

is sparse representation of x. If s has at most K nonzero
components, we call x aK-sparse signal with respect toC.

In CS-based imaging system, sampling and compression
are executed simultaneously through a linear measurement
matrixF 2 RM�N , withM � N , as

y ¼ Fx ¼ FCs; (1)

with y 2 RM representing the resulting sampled and com-
pressed vector.

It was proven in [3] that if A , FC satisfies the following
Restricted Isometry Property (RIP) of orderK

ð1� dkÞjjsjj2‘2 � jjAsjj2‘2 � ð1þ dkÞjjsjj2‘2 ; (2)

with 0 < dk < 1 being a small “isometry” constant and ‘2
denoting ‘2 norm, then we can recover the optimal sparse
representation s� of x by solving the following optimization
problem

P1: Minimize jjsjj0
Subject to: y ¼ FCs;

(3)

by taking only

M ¼ c �Klog ðN=KÞ; (4)

measurements, where c is some predefined constant. After-
wards, x can be obtained by

x̂ ¼ Cs�: (5)

However, problem P1 is NP-hard in general, and in most
practical cases, measurements y may be corrupted by noise,

e.g., channel noise or quantization noise. Then, most state-
of-the-art work relies on l1 minimization with relaxed con-
straints in the form

P2: Minimize jjsjj1
Subject to : jjy�FCsjj2 � �;

(6)

to recover s. Note that P2 is a convex optimization problem.
Researchers in sparse signal reconstruction have developed
various solvers [27], [28], [29]. For example, the Least Absolute
Shrinkage and Selection Operator (LASSO) solver [28] can
solve problem P2 with computational complexity OðM2NÞ.
We consider a Gaussian random measurement matrix F in
this paper.

3.2 Rate-Distortion Model for Compressive Imaging

Throughout this paper, end-to-end video distortion is mea-
sured as mean squared error (MSE), which is a widely used
performance measure in the field of signal processing, espe-
cially for objective image qualitymeasurement where the qual-
ity of images are measured algorithmically [30]. Since Peak
Signal-to-Noise Ratio (PSNR) is a more common metric in the
video coding community, we usePSNR ¼ 10log 10ð2552=MSEÞ
to illustrate simulation results. The distortion at the decoder
Ddec in general includes two terms, i.e., Denc, distortion intro-
duced by the encoder (e.g., not enough measurements and
quantization); andDloss, distortion caused by packet losses due
to unreliable wireless links and violating playout deadlines
because of bandwidth fluctuations. Therefore

Ddec ¼ fðDenc;DlossÞ: (7)

To the best of our knowledge, there are only a few works [8]
that have investigated rate-distortion models for compres-
sive video streaming, but without considering losses. For
example, [8] expands the distortion model in [31] to CS
video transmission as

DðRÞ ¼ D0þ u

R�R0
; (8)

where D0, u and R0 are image- or video-dependent con-
stants that can be determined by linear least squares fitting
techniques; R ¼ M

N is the user-controlled measurement rate
of each video frame.

4 CS-BASED MULTI-VIEW CODING ARCHITECTURE

DESIGN

In this section, we introduce a novel encoding/decoding
architecture design for CS multi-view video streaming. The
proposed framework is based on three main components: (i)
cooperative sparsity-aware block-level rate adaptive encoder,
(ii) independent decoder, and (iii) a centralized controller
located at the decoder. As illustrated in Fig. 1, considering a
two-view example, camera sensors acquire a scene of interest
with adaptive block-level rates and transmit sampled meas-
urements to the base station/controller through a multi-path
multi-hopwireless sensor network. Then, the centralized con-
troller calculates the relevant information and feeds it back to
the selected R-view. The R-view then shares the limited
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feedback informationwith the other one -NR-view. The archi-
tecture can be easily extended to V 	 2 views.

Different from existing compressive encoders with equal
block measurement rate [7], [8], the objective of the pro-
posed framework is to improve the reconstruction quality
by leveraging each block’s sparsity as a guideline to adapt
the block-level measurement rate. We next describe how to
implement the proposed paradigm by discussing each com-
ponent in detail.

4.1 Cooperative Block-Level Rate-Adaptive Encoder

To reduce the computational burden at encoders embedded
in power-constrained devices, most state-of-the-art multi-
view proposals focus on developing complex joint recon-
struction algorithms to improve the reconstruction quality.
Differently, in our architecture we obtain improved quality
only through sparsity-aware encoders.

To illustrate the idea, Fig. 2b depicts the sparse representa-
tion of Fig. 2a with respect to block-based DCT transforma-
tion. We can observe that sparsity differs among blocks, e.g.,
the blocks within the coat area are more sparse than others.
According to basic compressed sensing theory in Section 3.1,
(4) indicates that the number of required measurements is

inversely proportional to the sparsity K. Therefore, we pro-
pose to adapt the measurement rate at the block level accord-
ing to sparsity information, i.e., more measurements will be
allocated to less-sparse blocks, and vice versa.

In our work, the number of required measurements Mi
vf

for block i in frame f of view v, 1 � i � B, is calculated
based on the sparsity estimated at the centralized controller
and sent back via a feedback channel. Here, B ¼ N

Nb
denotes

the total number of blocks in one frame with N and Nb

being the total number of pixels in one frame and block,
respectively. Assume that we have received fMi

vfgBi¼1. Then,
the encoding process is similar to (1), described as

yivf ¼ Fi
vfx

i
vf ; (9)

where yivf 2 R
Mi

vf and Fi
vf 2 R

Mi
vf
�Nb are the measurement

vector andmeasurement matrix for block i in frame f of view
v, respectively; xivf 2 RNb represents the original pixel vector
of block i. From (9), we can see thatMi

vf varies among blocks
from 1 to Nb, thereby implementing block-level rate adapta-
tion. In real applications, the block-level rate adaptive encod-
ing process can be implemented by using block-wise lensless
compressive camera [32]. In Section 6, the simulation results
will show that this approach can improve the quality by up to

Fig. 1. Encoding/decoding architecture for multi-hop CS-based multi-view video streaming.

Fig. 2. Block sparsity: (a) Original image, (b) Block-based DCTcoefficients of (a).
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5 dB comparedwith using an independent encoder and inde-
pendent decoder.

Mean Value Subtraction. The CS-based imaging system
acquires and compresses each frame simultaneously through
simple linear operations as in (1). Therefore, it can help reduce
the energy consumption compared with traditional signal
acquisition and encoding approaches (e.g., H.264, MJPEG) as
validated in [33].In traditional video coding techniques, fre-
quency transform (e.g., 8� 8 block of DCT transform) is one
must-have component, while inter-view prediction (e.g., dis-
parity estimation) and inter-frame prediction (e.g., motion esti-
mation) are additions, which will all together result in higher
computation complexity compared to linear operations in CS-
based imaging systems, thus consuming more power. In this
paper, we exploit the inter-view correlation by using the esti-
mated sparsity from R-view feedbacked from the receiver.
However, the compression rate of CS is not as high as tradi-
tional encoding schemes [9]. There is clearly an energy-
consumption trade-off between the compression rate and the
bit transmission rate. [9] analyzes the rate-energy-distortion
for compressive video sensing encoder. To improve the com-
pression rate,we performmean value subtraction, which can fur-
ther help reduce the number of transmitted bits. How to obtain
the mean value �m will be discussed in Section 4.3. Since the
original pixels are not available at the compressive encoder,
we perform the mean value subtraction in the measurement
domain. First, we establish a mean value vector m 2 RNb with
dimensions the same as xivf , and where each element is equal
to �m. Then, we use the same block-level measurement matrix
Fi

vf to samplem and then subtract the result from yivf as

~yivf ¼ yivf �Fi
vfm ¼ Fi

vfðxivf �mÞ: (10)

After sampling, ~yivf is transmitted to the decoder. From (10),
we can see that the proposed mean value subtraction in the
measurement domain is equivalent to subtraction in the
pixel domain.

Next, to validate the effectiveness of mean value subtrac-
tion, we take the Vassar sequence as an example. We select a
uniform quantization method. The forward quantization
stage and the reconstruction stage can be expressed as q ¼
sgnðxÞ � bjxjD þ 1

2c and q̂ ¼ D � q, respectively. Here, x, q, q̂ and
D represent original signal, quantized signal, de-quantized
signal and quantization step size, respectively. Fig. 3 shows
a comparison of PSNR, the number of transmitted bits and

the compression rate with and without mean subtraction,
where a measurement rate 0.2 is used, and the total bits in
the original frame are 320� 240� 8 ¼ 614400 bits. Quanti-
zation step sizes from the set {1, 2, 3, 4, 8, 16, 32, 64, 128, 256}
are selected. From Fig. 3a, we can observe that mean sub-
traction has a negligible effect on the reconstruction quality
and there is no significant quality degradation when the
quantization step size is less than 32. This is because the
value of measurement is up to thousand and tens of thou-
sand compared to original pixel value with maximum 255.
Figs. 3b and 3c illustrate that with mean subtraction the total
number of bits transmitted for one frame is significantly
reduced by up to 30 kbits compared to not using mean sub-
traction, which corresponds to an improvement in compres-
sion rate (defined as the ratio between the number of
transmitted bits and the number of total bits in the original
frame) from 0.2391 to 0.1902. Besides mean value subtrac-
tion, we can explore the temporal correlation [9] between
successive frames in our future work to further improve the
performance with respect to compression ratio.

Cooperation via Sparsity Pattern Sharing. Multi-view video
streaming is based on reducing the redundancy among views
captured by arrays of camera sensors that are assumed to be
close enough to each other. Most state-of-the-art literature
adopts the concept of distributed system coding architecture
[16], [17], where a reference view transmits more measure-
ments than other non-reference views and then the receiver
jointly decodes by exploiting the implicit correlation among
views. Instead, we allow the encoders to explicitly cooperate
to a certain extent. For example, the R-view selected by the
centralized controller will periodically receive feedback infor-
mation, i.e., fMigBi¼1 and �m, and then share it with the NR-
views in the same group. Since camera sensors in the same
group are assumed to be close enough to each other, the block
sparsity among views will be correlated. By using the same
sparsity information,we candirectly exploitmulti-view corre-
lation at the encoders, thus resulting in a clean-slate compres-
sive multi-view coding framework with simple encoders and
simple decoders butwith improved reconstruction quality.

4.2 Independent Decoder

Asmentioned above, the proposed framework results in rela-
tively simple decoders. At each decoder, the received ŷivf , dis-
torted version of ~yivf because of the joint effects of

Fig. 3. Comparison of (a) PSNR, (b) the number of transmitted bits, and (c) the compression rate between approaches with and without mean
subtraction.
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quantization, transmission errors, and packet drops, will be
independently decoded. The optimal solution si;

?

vf can be
obtained by solving

P3 : Minimize jjsivf jj1
Subject to: jjŷivf �Fi

vfCbs
i
vf jj2 � �;

(11)

where Cb 2 RNb�Nb represents the sparsifying matrix (2-D
DCT in this work). We then use (5) to obtain the recon-
structed block-level image x̂ivf , by solving x̂ivf ¼ Cbs

i;?

vf .
Afterward, fx̂ivfgBi¼1 can be simply reorganized to obtain the
reconstructed frame x̂vf .

4.3 Centralized Controller

The centralized controller is the key component at the
receiver, which is mainly in charge of selecting the R-view
and estimating sparsity and mean value required to be sent
back to the transmitter via a assumed delay-negligible [34],
[35] and error-free feedback link.2 How to implement a fast
feedback channel in practical scenarios is important and feasi-
ble, which can help further improve the performance of the
proposed framework and is currently beyond the scope of the
paper. Additionally, the controller is also responsible for
implementing the power-efficient multi-path rate allocation
algorithm discussed in Section 5. Next, we introduce the three
key functions executed at the controller in sequence, i.e., R-
view selection, sparsity estimation, andmean value estimation.

R-View Selection. The controller selects a view to be used
as reference view (R-view) among views in the same group
and then sends feedback information to the selected R-
view. For this purpose, the controller first calculates the
Pearson correlation coefficient among the measurement vec-
tors of any two views as

rmn ¼ corrðŷmf ; ŷnfÞ; 8m 6¼ n; m; n ¼ 1; . . . ; V; (12)

where ŷmf is the simple cascaded version of all ŷimf and

corrðŷmf; ŷnfÞ ,
covðŷmf ;ŷnf Þ

smfsnf
. Then, viewm

?
, referred to as R-

view, is selected by solving

m
? ¼ argmax

m¼1;...;V
~rm; (13)

where ~rm , 1
V�1

X
n6¼m

rmn denotes the average Pearson coeffi-

cient for viewm. From (13), we can see that the viewwith the
highest average Pearson coefficient is selected as R-view.3 The

reconstructed frame x̂vf of the R-view is then used to estimate

the block sparsityKi and the framemean value �m for block i.
Table 1 shows the calculated ~rm for Vassar, Exit and Ball-

room 5-view sequences with lower resolution (i.e., 320�
240, represented as L) and higher resolution (i.e., 640� 480,

represented as H), respectively. We can see that the average
Pearson correlation coefficient of view 3 is the largest for all
scenarios while the correlation degree decreases as resolution
increases. Therefore, view 3 is selected as R-view. Moreover,
we take the Vassar 5-view sequences as an example to elabo-
rate how much quality gain we can obtain if the other views
except view 3 are selected as R-viewwith respect to lower res-
olution and higher resolution, respectively, as shown in
Table 2. We can observe that the improved average PSNR is
proportional to ~rm, where selecting view 3 as R-view results
in the highest improved average PSNR gain, i.e., 1.6674 and
1.3132 dB for lower and higher resolution scenarios, respec-
tively. We can also see that the quality gain slightly decreases
for higher resolution Vassar sequences because of the
decreased correlation degree. For this case, because theVassar
multi-view sequences used here is captured by parallel-
deployed cameras with equal spacing, we obtain the same
result, i.e., view 3 as R-view, as if we were to choose simply
the most central sensor. However, for scenarios with cameras
that are not parallel-deployedwith unequal spacing, selecting
themost central sensor is not necessarily a good choice.

Sparsity Estimation. Most natural images are character-
ized by large smooth or textured regions and relatively few
sharp edges. Signals with this structure are known to be
very nearly sparse when represented using DWT or DCT
domain [38], where lowest frequency components provide a
coarse scale approximation of the image, while the higher
frequency components fill in the detail and resolve edges.
Moreover, most DWT or DCT coefficients are very small.
Hence, we can obtain a good approximation of the signal by
setting the small coefficients to zero, or thresholding the
coefficients, to obtain k-sparse representation. Moreover, in
CS-based imaging system, the original frame in the pixel
domain is not available, therefore, we propose to estimate
sparsity based on the reconstructed frame x̂vf as follows. By
solving the optimization problem P3 in (11), we can obtain
the block sparse representation si;

?

vf and then reorganize
fsi;?vf gBi¼1 to get the frame sparse representation s

?

vf periodi-
cally. The sparsity coefficient Ki is defined as the number of
non-zero entries of s

?

vf . However, natural pictures in general
are not exactly sparse in the transform domain. Hence, we

TABLE 1
Average Pearson Correlation Coefficient ~rm for Vassar,

Exit and Ballroom Five Views

View 1 View 2 View 3 View 4 View 5

Vassar-L 0.8184 0.8988 0.9243 0.8973 0.8435
Vassar-H 0.7655 0.8464 0.8815 0.8551 0.7920
Exit-L 0.5703 0.6787 0.7038 0.6838 0.5078
Exit-H 0.5358 0.6281 0.6643 0.6315 0.4745
Ballroom-L 0.8366 0.8713 0.8812 0.8627 0.8135
Ballroom-H 0.7574 0.7961 0.8099 0.7922 0.7484

TABLE 2
Improved Average PSNR (dB) When Selecting Different Vassar

Views as R-View

R-view View 1 View 2 View 3 View 4 View 5

Vassar-L 1.2312 1.6241 1.6674 1.6167 1.3833
Vassar-H 0.6686 0.8865 1.3132 1.2138 0.9019

2. Since we mainly consider a slow block-fading environment, the
feedback delay is significantly less than the coherence time of the fad-
ing channels concerned. Thus, the effect of feedback delay can be negli-
gible. Moreover, with a small data rate, efficient error control coding
techniques over feedback link can be used to achieve error-free feed-
back [36], [37].

3. The adopted Pearson correlation just considers the linear relation
among views. We believe that more advanced correlation algorithms
which also consider the features in the correlation will result in more
accurate R-view selection and better performance gain based on our
proposed CS-based multi-view coding/decoding architecture.
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introduce a predefined percentile ps,
4 and assume that the

frame can be perfectly recovered with N � ps measurements.
Based on this, one can adaptively find a threshold T above
which transform-domain coefficients are considered as non-
zero entries. The threshold can be found by solving

jjmaxðjs?

vf j � T; 0Þjj0
N

¼ ps; (14)

which is a ‘0 counting norm problem. Since the sample space
of the above-mentioned problem is small and limited, we
employ an exhaustive search approach to solve it. Then, we
apply T to each block i to estimate the block sparsityKi as

Ki ¼ jjmaxðjsi;?vf j � T; 0Þjj0: (15)

According to (4) and given the frame measurement rate R,
Mi

vf can then be obtained as

Mi
vf ¼

Kilog 10ðNb
Ki
ÞPB

i¼1 K
ilog 10ðNb

Ki
ÞNR: (16)

Mean Value Estimation. Finally, the mean value �m can be
estimated from x̂vf as

�m ¼ 1

N

XN
i¼1

x̂vfðiÞ: (17)

With limited feedback and lightweight information shar-
ing, implementing block-level rate adaptation at the encoder
without adding computational complexity can improve the
reconstruction performance of our proposed encoding/
decod-ing paradigm. This claim will be validated in Section 6
in terms of Peak Signal-to-Noise Ratio (PSNR) and Structure
Similarity (SSIM) [39].

5 NETWORK MODELING FRAMEWORK

We consider compressive wireless video streaming over
multi-path multi-hop WMSNs. We first formulate a video-
quality-assured power minimization problem, and then solve
the resulting nonlinear nonconvex optimization problem by
proposing an online solution algorithm with low computa-
tional complexity.

Network Model. In the considered WMSN there are a set V
of camera sensors at the transmitter side, with each camera
capturing a video sequence of the same scene of interest,
and then sending the sequence to the server side through a
set Z of pre-established multi-hop paths. Denote Lz as the
set of hops belonging to path z 2 Z, with dz;l being the hop
distance of the lth hop in Lz. Let V ¼ jVj, Z ¼ jZj, and Lz ¼
jLzj represent cardinality of sets V, Z and Lz, respectively.
The following three assumptions are considered:

– Pre-established routing, i.e., the set of multi-hop paths
Z is established in advance through a given routing

protocol (e.g., AODV [40]) and does not change dur-
ing the video streaming session.

– Orthogonal channel access, i.e., there exists a pre-estab-
lished orthogonal channel access, e.g., based on
TDMA, FDMA, or CDMA, and hence concurrent
transmissions do not interfere with each other [41].

– Time division duplexing, i.e., each node cannot transmit
and receive simultaneously, implying that only half of
the total air-time is used for transmission or reception.

At the receiver side, the video server concurrently and
independently decodes each view of the received video
sequences, and based on the reconstructed video sequences it
then computes the rate control information and sends the
information back to camera sensors for actual rate control. For
this purpose, we define two types of video frames, Reference
Frame (referred to as R-frame) and Non-Reference Frame
(referred to asNR-frame). A R-frame is only periodically trans-
mitted by the R-view, which is encoded at fixed block-level
rate and used for sparsity and mean value estimation in the
centralized controller. All other frames sent out by the R-view
and all frames transmitted by the NR-views are categorized
as NR-frames, which are encoded at adaptive block-level rate
based on the estimated sparsity. Compared to an NR-frame,
an R-frame is encodedwith equal or higher sampling rate and
then sent to the receiver side with much lower transmission
delay. Hence, an R-frame can be reconstructed with equal or
higher video quality and used to estimate sparsity pattern
information, which is then fed back to video cameras for rate
control in encoding the following NR-frames. For the R-view,
we consider a periodic frame pattern, meaning that the R-
view camera encodes its captured video frames as R-frames
periodically, e.g., one every 30 consecutive frames.

In the above setting, our objective is to minimize the aver-
age power consumption of all cameras and communication
sensors in the network with guaranteed reconstructed video
quality for each view, by jointly controlling video encoding
rate and allocating the rate among candidate paths.

To handle CS-based multi-view video streaming with
guaranteed quality, a rate-distortion model to measure the
end-to-end distortion that jointly captures the effects of
encoder distortion and transmission distortion as stated in
(7) is needed. To this end, we modify the R-D model (8) pro-
posed in [8] by adding a packet loss term to jointly account
for compression loss and packet loss5 in compressive wire-
less video streaming systems, described as

Ddec ¼ fðDenc; DlossÞ ¼ D0 � u

R� kploss �R0
: (18)

The parametersD0, u, andR0 can be estimated from empirical
rate-distortion curves via a linear least squared curve fitting
[42]. Next, we describe how to derive them in compressive
multi-view streaming systems.

Since the original pixel values are not available at the receiver
end and even not available at the transmitter side in compressive

4. ps represents the number of the largest original coefficients that
are kept for video reconstruction. We can set it to an empirical well-
performing value, e.g., 15 percent, and then slightly tune it during the
video streaming. If the estimated sparsity is too small and cannot result
in good reconstruction quality, then we can gradually increase ps till
we reach a satisfied point.

5. Different from traditional predictive-encoding based imaging sys-
tems, each packet in CS-based imaging systems has the same impor-
tance, i.e., it contributes equally to the reconstruction quality.
Therefore, the packet loss probability can be converted into a measure-
ment rate reduction through a conversion parameter and considered
into the rate-distortion performance.
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multi-view streaming systems, we let the R-view periodi-
cally transmit a frame at a higher measurement rate, e.g.,
60 percent.6 In this way, after reconstruction at the decoder
side, the reconstructed frame is considered as the original
image in the pixel domain. We then resample it at different
measurement rates and perform the reconstruction procedure
to obtain several rate-distortion sample pairs which are then
used to complete the linear least squared curve fitting to
obtain. Fig. 4 illustrates the effectiveness of the above-men-
tioned online rate-distortion estimation approach, where Vas-
sar view 2 sequence is used. We can observe that the fitted
rate-distortion curve (depicted in black solid line) matches
well the ground-truth distortion values (depicted in red pen-
tagrams, blue squares and green pluses for frames 1, 4 and 80,
respectively).

Besides determining the fitting parameters in (18), next
we derive the packet loss probability ploss and packet loss
rate to measurement rate reduction converter k in (18) to
formalize the network optimization problem.

Packet Loss Probability. According to the proposed modi-
fied R-D model (18), packet losses affect the video recon-
struction quality because they introduce an effective
measurement rate reduction. Therefore, effective estimation
of packet loss probability at the receiver side has significant
impact on frame-level measurement rate control.

In real-time wireless video streaming systems, a video
packet can be lost primarily for two reasons: i) the packet
fails to pass a parity check due to transmission errors intro-
duced by unreliable wireless links, and ii) it takes too long
for the packet to arrive at the receiver side, hence violating
the maximum playout delay constraint. Denoting the corre-
sponding packet loss probability as pper and pdly, respec-
tively, the total packet loss rate ploss can then be written as

ploss ¼ pper þ pdly: (19)

In the case of multi-path routing as considered above, pper
and pdly in (19) can be further expressed as

pper ¼
X
z2Z

bz

b
pzper; (20)

pdly ¼
X
z2Z

bz

b
pzdly; (21)

where pzper and pzdly represent the packet loss rate for path z 2
Z due to transmission error and delay constraint violation,
respectively; b and bz represent total video rate and the rate
allocated to path z 2 Z, respectively.

Since each path z 2 Z may have one or multiple hops, to
derive the expressions for pzper and pzdly in (20) and (21), we
need to derive the resulting packet error rate and delay vio-
lation probability at each hop l of path z 2 Z, denoted as
pz;lper and pz;ldly, respectively. For this purpose, we first express
the feasible transmission rate achievable at each hop. For
each hop l 2 Lz along path z 2 Z, let Gz;l and Nz;l represent
the channel gain that accounts for both path loss and fading,
and the additive white Gaussian noise (AWGN) power cur-
rently measured by hop l, respectively. Denoting Pz;l as the
transmission power of the sender of hop l, then the attain-
able transmission rate for the hop, denoted by Cz;lðPz;lÞ, can
be expressed as [43]

Cz;lðPz;lÞ ¼ W

2
log 2

�
1þK

Pz;lGz;l

Nz;l

�
; (22)

whereW is channel bandwidth in Hz, calibration factorK is
defined as

K ¼ �f1

log ðf2pberÞ
; (23)

with f1, f2 being constants depending on available set of
channel coding and modulation schemes, and pber is the pre-
defined maximum residual bit error rate (BER). Then, if path
z 2 Z is allocated video rate bz, for each hop l 2 Lz, the aver-
age attainable transmission rate should be equal to or higher
than bz, i.e.,

E½Cz;lðPz;lÞ
 	 bz; (24)

with E½Cz;lðPz;lÞ
 defined by averaging Cz;lðPz;lÞ over all
possible channel gains Gz;l in (22).

Based on the above setting, we can now express the sin-
gle hop packet error rate pz;lper for each hop l 2 Lz of path z 2
Z as

pz;lper ¼ 1� ð1� pberÞL; (25)

where L is the predefined packet length in bits. Further, we
characterize the queueing behavior at each wireless hop as in
[44] using a M/M/1 model to capture the effects of channel-
state-dependent transmission rate (22) single-hop queueing
delay. Denoting Tz;l as the delay budget tolerable at each hop
l 2 Lz of path z 2 Z, the resulting packet drop rate due to
delay constraint violation can then be given as [45]

pz;ldly ¼ e�ðE½Cz;lðPz;lÞ
�bzÞTz;l

L ; (26)

withE½Cz;lðPz;lÞ
defined in (24). For eachpath z 2 Z, themax-
imum tolerable end-to-end delay Tmax can be assigned to each
hop in different ways, e.g., equal assignment or distance-
proportional assignment [46]. We adopt the same delay bud-
get assignment scheme as in [46].

Fig. 4. Rate-distortion curve fitting for Vassar view 2 sequence.

6. Based on CS theory [38], image reconstructed by using 60 percent
measurement can result in basically the original image, i.e., the differ-
ences between the reconstructed image and the original image cannot
be perceived by human eyes.
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Finally, given pz;lper and pz;ldly in (25) and (26), we can
express the end-to-end packet error rate pzper and delay vio-
lation probability pzdly in (20) and (21) as, for each path z 2 Z

pzper ¼
X
l2Lz

pz;lper; 8z 2 Z; (27)

pzdly ¼
X
l2Lz

pz;ldly; 8z 2 Z; (28)

by neglecting the second and higher order product of pz;lper
and of pz;ldly. The resulting pzper and pzdly provide an upper
bound on the real end-to-end packet error rate and delay
constraint violation probability. The approximation error is
negligible if packet loss rate at each wireless hop is low or
moderate. Note that it is also possible to derive a lower
bound on the end-to-end packet loss rate, e.g., by applying
the Chernoff Bound [47].

Packet Loss toMeasurement Rate.After having modeled ploss,
we now concentrate on determining k to convert ploss to mea-
surement rate reduction (referred to as Rd ¼ k � ploss). First,
parameter t ¼ 1

QN is defined to convert the amount of trans-
mitted bits of each frame to its measurement rate R used in
the (18), with Q being the bit-depth for each measurement.
We assume that b is equally distributed among F frames
within 1 second for all V views, i.e., the transmitted bits for
each frame is b=F=V . Thus, measurement rate R for each
frame of each view is equal and defined as R ¼ tb=F=V .
Then, we can define k as

k ¼ tL
�b=F=V

L

�
; (29)

and rewrite (18) as

Ddec ¼ D0 � u

tb=F=V � kploss �R0
: (30)

Problem Formulation. Based on (30), we formulate, as an exam-
ple of applicability of the proposed framework, the problem
of power consumptionminimization for quality-assured com-
pressive multi-view video streaming over multi-hop wireless
sensor networks, by jointly determining the optimal frame-
level encoding rate and allocating transmission rate among
multiple paths, i.e.,

P4 : Minimize
Pz;l;bz;l2Lz;8z2Z

X
z2Z

X
l2Lz

P z;l (31)

Subject to:b ¼
X
z2Z

bz (32)

Ddec � Dt (33)

0 < tb=F=V � kploss � 1 (34)

0 � Pz;l � Pmax; 8l 2 Lz; z 2 Z; (35)

whereDt and Pmax represent the constraints upon distortion
and power consumption, respectively. Here, (33) and (34)
are the constraints for required video quality level and total
measurement rate not lower than 0 and higher than 1,
respectively. In fact, the optimization problem P4 is non-
convex because the distortion constraint is non-convex.
Solving it directly will be computationally expensive due to

the large space of b. Therefore, in the following, we design a
solution algorithm to find the solution to the problem in
real time.

SolutionAlgorithm.The core idea of the solution algorithm is
to iteratively control video encoding and transmission strate-
gies at two levels, i.e., adjusting video encoding rate for each
frame (frame level) and allocating the resulting video data rate
among different paths (path level). In each iteration, the algo-
rithm first determines at the frame level the minimum video
encoding rate required to achieve predefined reconstructed
video quality, i.e., b in (33); and then determines at the path
level the optimal transmission rate strategy with minimal
power consumption, i.e., bz for each path z 2 Z.

At the frame level, given the current total video encoding
rate b and assigned rate bz for each path z 2 Z, the algorithm
estimates the video construction distortionDdec based on (19)-
(30). Then, if the video quality constraint in optimization prob-
lemP4 can be strictly satisfied, i.e., the inequality holds in (33),
it means that power consumption can be further reduced by
reducing the total video encoding rate b, e.g., by a predefined
step Db, while keeping the distortion constraint (33) still satis-
fied. Otherwise, if constraint (33) is violated, we need to
reduce reconstructed video Ddec by increasing the video
encoding rate b hence transmission power. Whenever there
are changes with the total encoding rate b, it triggers at the
path level rate allocation among different paths. For example,
if b is increased byDb, the increased amount of video data rate
is allocated to the path that results in minimum increase of
power consumption, and vice versa.

As the above procedure goes on, the resulting video dis-
tortion Ddec is maintained fluctuating around, ideally equal
to, the predefined maximum tolerable distortion Dmax.
Hence, we approximately solve the optimization problem
P4 formulated in (31)-(35), and the resulting power con-
sumption provides an upper bound on the real minimum
required total power. Next, in Section 6 we validate the
effectiveness of the proposed solution algorithm through
extensive simulation results.

6 PERFORMANCE EVALUATION

The topology includes a certain number V camera sensors and
pre-established paths with random number of hops between
camera sensors and the receiver. The frame rate is F ¼ 30 fps,
and the R-view periodically sends the R-frame every second.
At the sparsity-aware CS independent encoder side, each
frame is partitioned into 16� 16 non-overlapped blocks imply-
ing Nd ¼ 256. A measurement matrix Fi

vf with elements
drawn from independent and identically distributed (i.i.d)
Gaussian random variables is considered, where the random
seed is fixed for all experiments tomake sure thatFi

vf is drawn
from the samematrix. The elements of themeasurement vector
~yivf are quantized individually by an 8-bit uniform scalar quan-
tizer and then transmitted to the decoder. At the independent
decoder end, we use Cb composed of DCT transform basis as
sparsifyingmatrix and choose the LASSO algorithm for recon-
struction motivated by its low-complexity and excellent recov-
ery performance characteristics. We consider four test multi-
view sequences, Vassar, Exit, Ballroom, and Balloons, which are
made publicly available [48], [49] and represent scenarios
with slow, moderate and fast movement characteristics,
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respectively. In the sequences considered, the optical axis of
each camera is parallel to the ground, and each camera is 19.5
cm away from its left and right neighbors. There spatial resolu-
tions of ðH ¼ 240Þ � ðW ¼ 320Þ, ðH ¼ 480Þ � ðW ¼ 640Þ, and
ðH ¼ 768Þ � ðW ¼ 1024Þ (in pixel) are considered.

6.1 Evaluation of CS-Based Multi-View Encoding/
Decoding Architecture

Wefirst experimentally study the performance of the proposed
CS-basedmulti-view encoding/decoding architecture by eval-
uating the PSNR of the reconstructed video sequences. Experi-
ments are carried out only on the luminance component. Next,
we discuss a performance comparison among (i) traditional
Equal-Block-Measurement-Rate Independent Encoding and
Independent Decoding approach (referred to as EBMR-IEID),
(ii) the proposed sparsity-aware Adaptive-Block-Measure-
ment-Rate Independent Encoding and Independent Decoding
approach (referred to as ABMR-IEID) and (iii) Independent
Encoding and Joint Decoding (referred to as IEJD) proposed in
[12] which selects one view as reference view reconstructed by
traditional CS recovery method, while other views are jointly
reconstructed by using a reference frame.

Figs. 5 and 6 show the PSNR comparisons of 50 frames for
views 1, 2, 3 and 4 of Vassar and Exit multi-view sequences,
where a 0.3 measurement rate for each view of ABMR-IEID7

and EBMR-IEID is selected. To assure fair comparison, the
measurement rate of each view in IEJD is also set to 0.3.
Besides, according to the R-view selection algorithm, view 2 is
chosen as the R-view for this scenario. Since the R-view trans-
mits the R-frame periodically which is not encoded based on
sparsity pattern at the encoder, thereforewe can observe drops
occurred periodically in Figs. 5b and 6b. For theVassar sequen-
ces, as illustrated in Fig. 5, we can see that the proposed
method ABMR-IEID outperforms the traditional approach
EBMR-IEID and IEJD by up to 3.5 and 2.5 dB in terms of PSNR,
respectively. For theExit sequences, Fig. 6 shows improvement
in the reconstruction quality of ABMR-IEID compared with
EBMR-IEID and IEJDfluctuatesmore than that ofVassar video,
with increasedPSNRvarying from5 to 2dB and from4 to 1dB,
respectively. This phenomenon occurs because of the video-
based features, i.e., the texture of Exit changes faster than in
Vassar. In other words, the proposed scheme is more robust in
surveillance scenarios where the changes of texture are less
severe. However, we can eliminate this phenomenon by trans-
mitting R-framesmore frequently. Figs. 5 and 6 also depict per-
formance improvement on NR-views (views 1, 3 and 4 here),
i.e., by sharing the sparsity information between R-view and
NR-views, correlation among views is implicitly exploited to
improve the reconstruction quality.

We then illustrate the rate-distortion characteristics of
ABMR-IEID, EBMR-IEID and IEJD. Figs. 7, 8, and 9 show
the comparisons of 3-view Ballroom, 4-view Vassar and 4-
view Exit scenarios with resolution 240� 320, where the
3rd frame of Ballroom, 75th frame of Vassar and 9th frame of
Exit are taken as example, respectively. Evidently, ABMR-

Fig. 5. PSNR against frame index for (a) view 1, (b) view 2 (R-view), (c) view 3, and (d) view 4 of sequence Vassar.

7. Here, we consider a worst case for ABMR-IEID, i.e., the measure-
ment rate of R-frame in R-view is set to 0.3 as the same as NR-frames.
Higher measurement rate of R-view will result in higher performance
gain because the estimated sparsity pattern will be more accurate.
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IEID outperforms significantly EBMR-IEID and IEJD, espe-
cially as the number of measurements increases. Since view
2 is selected as reference view, aka K-view for IEJD, we set a
fixed measurement rate 0.6 for the K-view [12], therefore, a
platform is observed in view 2 for IEJD method. We can
observe that at measurement rate 0.4, ABMR-IEID can
improve PSNR by up to 3.5, 4.4 and 2.4 dB, not only on R-
view but also on NR-views for all video sequences. To fur-
ther evaluate the impact of resolution, we take 3-view Ball-
room andBalloons with resolution 480� 640 (denoted as
Ballroom-H), and 768� 1024, respectively as examples since
the textures of both sequences change more frequently com-
pared toVassar andExit. As illustrated in Fig. 10, we can see
that the proposed ABMR-IEID also outperforms the other

two methods by up to 4 dB for Ballroom although the corre-
lation slightly decreases as the resolution increases as
shown in Table 1. In Fig. 11, we also observe upto 5 dB
PSNR improvement obtained by ABMR-IEID compared to
the other two methods for Balloons.

Next, we extend the scenario to 8 views on Vassar, where
view 4 is selected as R-view, and the measurement rate is
set to 0.35 for all views. Fig. 12 shows the specific recon-
structed image comparison, where the left column illus-
trates the reconstructed frame 25 of view 3 and view 7 by
ABMR-IEID, respectively. The milldle column shows the
reconstructed images by EBMR-IEID, and the left columns
shows the results obtained by using IEJD. We can observe
that the quality of images located in the left column is much

Fig. 6. PSNR against frame index for (a) view 1, (b) view 2 (R-view), (c) view 3, and (d) view 4 of sequence exit.

Fig. 7. Rate-distrotion comparison of frame 3 of Ballroom sequences: (a) view 1, (b) view 2, and (c) view 3.
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Fig. 8. Rate-distortion comparison for frame 75 of Vassar sequences: (a) view 1, (b) view 2, (c) view 3, and (d) view 4.

Fig. 9. Rate-distortion comparison for frame 9 of Exit sequences: (a) view 1, (b) view 2, (c) view 3, and (d) view 4.
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better than that in the right two columns (e.g., the curtain in
the 2nd floor and person in the scene, and etc.). Further-
more, Table 3 shows the detailed PSNR and SSIM value
comparison between ABMR-IEID and EBMR-IEID and IEJD
for frame 25 of 8 views. From Fig. 12 and Table 3, we can

see that ABMR-IEID also works well on 8 views compared
to ABMR-IEID and EBMR-IEID, with PSNR and SSIM
improvement up to 3.5 dB and 0.05, respectively. However,
the IEJD method proposed in [12] does not perform well on
8 views, where the gain is almost negligible.

Fig. 10. Rate-distortion comparison of frame 3 of higher resolution Ballroom sequences: (a) view 1, (b) view 2, and (c) view 3.

Fig. 11. Rate-distortion comparison of frame 25 of higher resolution Balloons sequences: (a) view 1, (b) view 2, and (c) view 3.

Fig. 12. Reconstructed frame 25 of view 3 by (a) ABMR-IEID, (b) EBMR-IEID, (c) IEJD, and reconstructed frame 25 of view 7 by (d) ABMR-IEID, (e)
EBMR-IEID, and (f) IEJD.
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6.2 Evaluation of Power-Efficient Compressive
Video Streaming

The following network topologies are considered: i) 2-path
scenario with 2-hop path 1 and 1-hop path 2; ii) 3-path sce-
nario with 2-hop path 1, 1-hop path 2 and 2-hop path 3. We
assume bandwidth W ¼ 1 MHz for each channel. The maxi-
mum transmission power at each node is set to 1W and the
target distortion in MSE is 50. We also assume the maxi-
mum end-to-end delay is Tmax ¼ 0:5s assigned to each hop
proportional to the hop distance. To evaluate PE-CVS
(referred to as the proposed power-efficient compressive

video streaming algorithm proposed in Section 5), we com-
pare it with an algorithm (referred to as ER-CVS) that
equally splits the frame-level rate calculated by PE-CVS
onto different paths.

Figs. 13 and 14 illustrate the total power consumption
comparison between PE-CVS and ER-CVS and the saved
power by PE-CVS compared to ER-CVS for 2-path and 3-
path topologies, respectively. From Figs. 13a and 14a, we
see that PE-CVS (depicted in red line) results in less power
consumption than ER-CVS (black dash line) for both cases.
At some points, the total power consumption of PE-CVS

TABLE 3
PSNR and SSIM Comparison for Vassar Eight Views

View # ABMR-IEID EBMR-IEID IEJD

PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM

1 33.6675 0.8648 30.0883 0.8215 30.2717 0.7887
2 33.7768 0.8686 30.3459 0.8262 30.3355 0.7902
3 34.1934 0.8771 30.6265 0.8323 30.9214 0.8106
4 33.5766 0.8696 30.4168 0.8294 30.4168 0.8294
5 33.3030 0.8624 30.1011 0.8169 30.3641 0.7909
6 34.2191 0.8846 30.6803 0.8382 30.7265 0.8059
7 32.9924 0.8575 29.8250 0.8162 29.6648 0.7772
8 32.3376 0.8472 29.3713 0.8054 29.5466 0.7742

Fig. 13. 2-path Scenario: (a) Total power consumption comparison, (b) Saved power consumption by PE-CVS compared to ER-CVS.

Fig. 14. 3-path Scenario: (a) Total power consumption comparison, (b) Saved power consumption by PE-CVS compared to ER-CVS.
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and ER-CVS is almost the same. This occurs because the
path-level bit rates calculated by PE-CVS are equal to each
other. Since ER-CVS uses frame-level rate obtained from
PE-CVS and equally allocates it to each path, thereby result-
ing in the same power consumption. As shown in Figs. 13b
and 14b, the histograms clearly show that PE-CVS saves
more power than ER-CVS, up to 170 mW.

7 CONCLUSION

We addressed the problem of compressive multi-view coding
and power-efficient streaming in multi-hopWMSNs. We first
proposed a novel compressed sensing basedmulti-viewvideo
coding/decoding architecture, composed of cooperative spar-
sity-aware independent encoder and independent decoder.
We also introduced a central controller to do the sparsity pat-
tern estimation, R-view selection, mean value estimation and
implement network optimization algorithms. By introducing
limited channel feedback and enabling lightweight sparsity
information sharing between R-view and NR-views, the
encoders independently encode the video sequences with
sparsity awareness and exploit multi-view correlation to
improve the reconstruction quality of NR-views. Based on the
proposed encoding/decoding architecture, we developed a
modeling framework tominimize themulti-view video trans-
mission power but with guaranteed video quality for a multi-
hop multi-path sensor network. Extensive simulation results
showed that the designed compressive multi-view frame-
work can considerably improve the video reconstruction
qualitywithminimal power consumption.
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