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Abstract— This article studies distributed algorithms to control
self-organizing flying drones with massive MIMO networking
capabilities - a network scenario referred to as mDroneNet.
We attempt to answer the following fundamental question: what
is the optimal way to provide spectrally-efficient wireless access
to a multitude of ground nodes with mobile hotspots mounted on
drones and endowed with a large number of antennas; when we can
control the position of the drone hotspots, the association between
the ground users and the drone hotspots, as well as the pilot
sequence assignment and transmit power for the ground users?
To the best of our knowledge, this is the first time that massive
MIMO capabilities are considered in self-organizing flying drone
networks. We first derive a mathematical formulation of the
problem of joint power, association and movement control in
mDroneNet, with the objective of maximizing the aggregate
spectral efficiency of the ground users. It is shown that the
resulting network control problem is a mixed integer nonlinear
nonconvex programming (MINLP) problem. Then, a distributed
solution algorithm with polynomial time complexity is designed
by solving three closely-coupled subproblems: access association,
joint pilot sequence assignment and power control, and drone
movement control. As a performance benchmark, a globally-
optimal but centralized solution algorithm is also designed based
on a combination of the branch and bound framework and
convex relaxation techniques. Results indicate that the distributed
solution algorithm converges fast (within tens of iterations) and
achieves a network spectral efficiency very close to the global
optimum obtained by the centralized solution algorithm (over
90% in average).

Index Terms— Wireless Drone Networking, Massive MIMO,
Distributed Control, Nonconvex Optimization.
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I. INTRODUCTION

W IRELESS data traffic is drastically increasing fol-
lowing the increased prevalence of video streaming

applications and the explosion of the Internet of Things
(IoT), such as augmented reality, intelligent transportation
and surveillance [2]–[6]. This has resulted in an increasing
demand for faster wireless communication networks with
higher spectral efficiency, as well as techniques to reduce the
interference between co-located wireless links operating on
the same spectrum bands and hence to increase the spectral
efficiency [7], [8]. In this article, we focus on studying new
approaches to provide ground connectivity by exploring the
application of self-organizing flying drones (aka unmanned
aerial vehicles or UAVs) with massive MIMO networking
capabilities, a network scenario we refer to as mDroneNet.1

mDroneNet. As illustrated in Fig. 1, in mDroneNet there
are a set of many-antenna-enabled flying drones to collab-
oratively provide data collection and forwarding services to
a group of single-antenna ground users, and send to the
ground users control commands generated either locally at
the drones or in a remote fusion center. A wide range of
new applications can be enabled by using massive MIMO
on UAVs, including high-data-rate mobile multimedia sens-
ing and networking through massive MIMO communications,
beamforming-based spectrum sharing and coexistence in the
unlicensed spectrum bands with redeployable drone base sta-
tions, secure wireless networking in contested environments
through massive-MIMO-based directional communications,
aerial edge computing with massive-MIMO-enabled flying
drones, among others. In this article, we attempt to study the
best way to provide spectrally-efficient wireless access to a
group of ground users with mobile hotspots mounted on flying
drones and endowed with a large number of antennas; when we
can control the movement of the drones, access association,
as well as the pilot assignment and transmit power for the
massive MIMO communications between the ground users and
the drones. It is worth pointing out that the operation time of
a drone is affected by different factors, including the lifetime
of the battery, the energy source type, as well as the weight,

1It is reasonable to integrate massive MIMO on UAVs. This is because
massive MIMO can achieve realistic form factors as long as different ground
users have distinct spatial channel characteristics rather than that the antennas
observe uncorrelated channels [9]. As a result, e.g., at 2 GHz frequency
band it requires only a 0.75× 0.75 meter array to deploy 100 dual-polarized
antennas, for which it is practical to deploy the antennas on currently available
commercial off-the-shelf UAVs.
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speed and flight trajectory of the drone, among others [10].
Recently new technologies have been proposed to extend the
battery duration, e.g., automated battery swap and recharge
[11], [12] and dynamic recharging scheduling [13], [14].

In mDroneNet these network control strategies are tightly
coupled with each other and should therefore be jointly
considered to obtain the optimal network operating point.
Compared to infrastructure-based cellular networks with static
massive MIMO base stations [9], [15]–[18], a peculiar feature
of mDroneNet is that the drone hotspots can provide coverage
with higher spectral efficiency, by moving dynamically to
adapt to the changes in the location or traffic demands of the
ground nodes, nodes leaving or joining the network, as well as
time and the spatially-varying interference level, among others.
Moreover, in mDroneNet a massive MIMO transmission is
typically conducted in two phases: pilot-based channel esti-
mation and data transmission, while all the ground nodes are
allowed to operate over the entire available spectrum band and
at any transmission time. In this setting, the maximum number
of ground nodes associated to a drone hotspot is constrained
by the length (in symbols) of the pilot sequences used in the
channel estimation phase. Pilot contamination will occur if the
same pilot sequence is shared by multiple users, and this will
result in degraded accuracy of channel estimation and hence
lower spectral efficiency [19], [20]. Therefore, it is imperative
to jointly regulate the transmit power of the ground nodes as
well as the association among the ground nodes, the drone
hotspots and the available pilot sequences, to eliminate the
mutual interference caused by imperfect channel orthogonal-
ization in the case of limited number antennas at each drone.

Novelty and Contributions. Massive MIMO networking
has recently received a significant attention in the scientific
literature [9], [15]–[18], [21]–[30]. Readers are referred to
[9], [19], [20], [31], [32] and references therein for excellent
surveys of the main results in this area. However, most
existing research on massive MIMO has been focusing on
theoretical analysis of spectral/energy efficiency [15], design-
ing new beamforming signal processing technologies [9],
[16], increasing robustness against both unintended interfer-
ence [17], [18] and one-way/two-way droning [26]–[30] in
infrastructure-based cellular networks with static massive-
MIMO-enabled base stations, while the potential of massive
MIMO in infrastructure-less wireless ad hoc networks has not
been explored yet. While unmanned aerial networking has
also attracted extensive research in the past decade with a
large and growing body of literature [33]–[52], very few of
these work has taken massive MIMO into consideration. To
the best of our knowledge, this is for the first time massive
MIMO is considered in large-scale wireless networks with self-
organizing flying drone hotspots.

As will be clear in Section III, the resulting mDroneNet con-
trol problem studied in this article is a mixed integer nonlinear
nonconvex programming (MINLP) problem because of the
binary variables for access association and pilot assignment.
Such problems are generally NP-hard and there is no existing
solution algorithm that can be used to obtain the globally
optimal solution with polynomial computational complexity.
In this paper, we claim the following main contributions:

• mDroneNet framework and formulation. We study for
the first time mDroneNet, a new framework for self-
organizing aerial drone hotspots with massive MIMO
networking capabilities. Our objective is to maximize the
spectral efficiency of mDroneNet by jointly controlling

the movement of the drones, access association and pilot
assignment, as well as the transmit power of the ground
users.

• Distributed solution algorithms. As in [53], we focus on
distributed algorithm design for mDroneNet. Compared
to centralized control, distributed control does not require
the network to collect the full statistical channel state
information (CSI), the power of noise and locations,
among other network parameters, from all the ground
users and flying UAVs at a centralized control entity.
As a result, the network control does not suffer from
the single point of failure problem and hence is more
robust. Moreover, distributed algorithms are essential
particularly in large-scale wireless networks with multiple
self-organizing UAVs and ground users for scalable and
low-latency network control. In this work, we decompose
the resulting MINLP problem into three distributed sub-
problems based on primal decomposition, and design
solution algorithms for each of them: user-drone access
association, joint pilot assignment and power control, and
drone movement control.

• Globally optimal solution algorithm. To provide a perfor-
mance benchmark for the distributed solution algorithm,
we design a centralized but globally optimal solution
algorithm based on a combination of the branch and
bound framework and of convex relaxation techniques
that can result in an ε-optimal solution with ε being a
predefined level of optimality precision.

• Performance evaluation. The performance of the pro-
posed distributed solution algorithm is evaluated in terms
of network spectral efficiency by comparing it to the
global optimum through extensive simulation experi-
ments. Results indicate that the distributed solution algo-
rithm can achieve on average over 90% of the global
optimum. The convergence behaviors of the proposed
solution algorithms are also evaluated.

The remainder of the paper is organized as follows. We review
related work in Section II, and describe the system model and
problem formulation in Section III. In Sections IV and V,
we present the distributed solution algorithm and the central-
ized solution algorithm, respectively. Performance evaluation
of the proposed solution algorithms is presented in Section VI,
and finally we draw conclusions in Section VII.

II. RELATED WORK

There is a large and growing body of literature on unmanned
aerial vehicular networking, focusing on UAV-assisted guid-
ance [33], UAV-based data collection [34], [37], [38] and
relaying [35], [36], [39], [41], [43], [45], [46], ground-aerial
channel measurements [40] as well as tracking and con-
trol of UAV networks [42], [44], [54]. Readers are referred
to [47]–[52] and references therein for an extensive survey of
this research area. Most of these works focus on single-antenna
aerial vehicles and conventional MIMO, with very few recent
efforts considering massive MIMO [54]. Different from [54],
where Chandhar et al. derived the achievable uplink capacity
from a many-antenna ground base station to a set of single-
antenna aerial drones, in this paper we maximize the aggregate
throughput of single-antenna ground nodes served by a set of
aerial drones each endowed with a large number of antennas.

Compared to conventional multiuser MIMO, massive
MIMO can attain much higher spectral efficiency by using a
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Fig. 1. mDroneNet: Wireless networks with massive-MIMO self-organizing flying UAVs.

large number of antennas with low-complexity linear precod-
ing technologies [16], [19], [27]–[30], [55]. In [29], the authors
derived an exact achievable rate expression in closed-form
for maximum-ratio combining/maximum-ratio transmission
(MRC/MRT) processing and an analytical approximation of
the achievable rate for zero-forcing (ZF) processing for multi-
pair full-duplex massive MIMO relay system. In [27], Jin et al.
derived the ergodic rates in the case of a finite number
of antennas and concluded that the ergodic sum-rate can
be maintained while the relay power is scaled down by a
factor of the number of the antennas at the relay over the
number of users. Amarasuriya investigated in [28] multi-
user massive MIMO relay networks with ZF-processing by
deriving the achievable sum rate expressions in both perfect
and imperfect CSI cases. In [55], the problem of joint power
and time allocation is addressed for secure communications
in a decode-and-forward massive MIMO relaying system in
the presence of adversary eavesdroppers. In [30], the spectral
and energy efficiency for multiple amplify-and-forward two-
way full-duplex massive MIMO relay systems are studied.
Finally, [9], [19], [20], [31], [32] contain good surveys and
tutorials on massive MIMO networking. These papers are
focused on infrastructure-based cellular networks with static
many-antenna-enabled base stations, and focus on asymptotic
performance analysis with respect to a single network para-
meter (e.g., power). Our paper, instead, considers for the first
time aerial drone hotspots with massive MIMO capabilities in
infrastructure-less network scenarios.2

III. SYSTEM MODEL AND PROBLEM STATEMENT

We consider wireless networks where a set of many-antenna
drone hotspots serve a set of single-antenna ground users,
as illustrated in Fig. 1. The drones collect field information
from the users, make action decisions either locally at each
drone or by sending the information fusion results to a remote
control center, and finally send the action commands back to
the ground users. Our objective is to maximize the network-
wide spectral efficiency for the uplink transmissions since
it causes only low-level traffic load to transmit information
fusion results and control commands in the downlinks. We
consider joint control of the movement of aerial drones,
the association among the ground users and the drones, as well
as the pilot sequence assignment and transmit power control
for the ground nodes. It is worth pointing out that we consider

2Each drone hotspot is essentially a mobile base station and can serve
as the mobile infrastructure for ground wireless networks. In this paper by
infrastructure-less networks we refer to wireless networks without centralized
coordination of the self-organizing flying hotspots.

TABLE I

SUMMARY OF KEY NOTATIONS

single-antenna ground users in mDroneNet because we want
to keep the theoretical analysis and algorithm design tractable,
while the control of mDroneNet with multiple-antenna ground
users will be studied in our future research. Next, we formalize
the network control problem by describing the system model.
The key notations are summarized in Table I for the reader’s
convenience.

System Model. As mentioned in Section I, a massive
MIMO transmission is typically accomplished in two phases,
i.e., channel estimation and data transmission [19], [20], [31].
In our case, the ground users send a set of pilot sequences
to the drones for channel estimation in the first phase, while
in the second phase the drones detect the data from the users
based on the estimated channel state information (CSI). Denote
A, G and W as the sets of the drone hotspots, ground users,
and the available pilot sequences, respectively. Define αga as
the access association variable. Let αga = 1 if user g ∈ G is
associated with drone a ∈ A, and αga = 0 otherwise. Denote
the access association vector as α � (αga)a∈A

g∈G . Similarly,
let μ = (μgw)w∈W

g∈G represent the pilot sequence allocation
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vector, with μgw = 1 if pilot sequence is associated to ground
user g and μgw = 0 otherwise. We consider single-home
accommodation for the ground users in favor of tractable
complexity in modeling and theoretical analysis, i.e., each
ground user is associated to at most one drone hotspot and
at most one pilot sequence. Then we have

αga ∈ {0, 1}, ∀g ∈ G, a ∈ A (1)

μgw ∈ {0, 1}, ∀g ∈ G, w ∈ W (2)∑
a∈A

αga ≤ 1, ∀g ∈ G, (3)

∑
g∈G

αga ≤ Gmax, ∀a ∈ A, (4)

∑
w∈W

μgw ≤ 1, ∀g ∈ G, (5)

where Gmax is the maximum number of ground users that
can be served by each drone hotspot a ∈ A.3 Let Ga ⊂ G
and G′

w ⊂ G represent the set of users associated with drone
a and the set of users sharing the same pilot sequence w,
respectively, i.e., Ga � {g| g ∈ G, αga = 1} for each a ∈ A,
and G′

w � {g| g ∈ G, μgw = 1} for each w ∈ W . Denote
w(g) as the pilot sequence used by ground user g, and let
Ig(μ) � G′

w(g) represent the set of users using the same pilot
sequence as user g. Similarly, denote a(g) as the service drone
of ground user g ∈ G.

Let xa, ya and za represent respectively the x-, y- and z-axis
coordinates of drone a, and define the coordinate vector for the
drones in A as x = (xa)a∈A, y = (ya)a∈A and z = (za)a∈A.
Then, the distance between user g′ and the service drone of
user g (i.e., drone a(g)), denoted as dg′g, can be expressed as

dg′g � dg′g(xa(g), ya(g), za(g))

=
√

(xa(g)−x̃g′)2+(ya(g)−ỹg′)2+(za(g)−z̃g′)2, (6)

where x̃g′ , ỹg′ and z̃g′ represent the x-, y- and z-axis coor-
dinates of ground user g′ ∈ G, respectively. Further denote
βg′g as the channel gain between ground user g′ ∈ G and
drone a(g) (i.e., the service drone of user g). Then βg′g
can be expressed as βg′g = Hg′gζg′g , where ζg′g represents
the log-normal slow fading between user g′ and drone a(g),
Hg′g � d−χ

g′g is location-dependent path loss with χ being path
loss factor and the distance dg′g defined in (6).

In this work we focus on the applications of UAVs in
networking environments in rich-scattering environments with
dense and high blockage, while UAV networking in other
scenarios [9], [37], [54], [56]–[58], e.g., LoS-dominant wire-
less environments, will be studied in our future work. In this
setting, we consider a model similar to [59], [60] to express
the effective SINR achievable by uplink massive MIMO

3The maximum number of served ground nodes cannot exceed the number
of antennas available to each aerial drone and the length of pilot sequences
used in channel estimation [15].

communication links, which jointly considers the effects of
pilot contamination and mutual interference among the ground
users. Then, a lower bound of the link capacity achievable by
ground user g in the data transmission phase, denoted as Cg ,
can be represented as

Cg = B log2(1 + γg), (7)

with γg being a lower bound of the effective SINR achievable
by ground user g ∈ G given as in (8), as shown at the bottom
of this page,4 where τ is the length (in symbols) of each
pilot sequence, M represents the number of antennas available
at each aerial drone, ρg is nominal transmit signal-to-noise
ratio (SNR) at ground user g; |Ga(g)(α)| is the cardinality of
Ga(g)(α), i.e., the set of ground users served by the service
drone of user g; and finally

ξg′g �
∑

l∈Ig′(μ)

ρlβlg (9)

and φg′g is defined as

φg′g =

⎧⎨
⎩
βg′g, if a(g′) /∈ A(Ig(μ))

βg′g

(
1 − τρg′βg′g

1 + τξg′g

)
, otherwise,

(10)

with A(Ig(μ)) � {a(g′)|g′ ∈ Ig(μ)} representing the set
of service drones of the ground users in Ig(μ), i.e., the
users sharing the same pilot sequence with user g. The
average rate achievable in the channel estimation and data
transmission phases, denoted as Rg , can then be expressed
as Rg = (1− τ

T )Cg , where Cg is the link capacity achievable
in the data transmission phase in (7), and τ and T are
the length of pilot sequences and the period of a massive
MIMO transmission in symbols, respectively [61]. In this
work, we design distributed control algorithms for mDroneNet
by considering data-transmission-phase link capacity (7)
and fixed length of pilot sequences in channel estimation
phase.

Problem Statement. Our objective is to maximize the
aggregate capacity of all the ground users in G and hence
the network spectral efficiency of the mDroneNet, by jointly
determining the access association vector α, pilot sequence
assignment vector μ, the location vectors x, y and z for the

4It is worth pointing out that we do not assume perfect CSI in this
paper. This is because the SINR model accounts for different practical
factors that affect massive MIMO networks, including channel-estimation
error, the type of linear spatial multiplexing/de-multiplexing, power control,
noncoherent inter-cell interference, and coherent inter-cell interference due to
pilot contamination, among others [59], [60]. In this setting, as pointed out in
[60], (8) provides a lower bound on the achievable SINR while deriving the
exact closed-form expression of the achievable SINR is still an open problem
as of today. In this work, we study the distributed joint power, association and
flight control in self-organizing massive-MIMO drone networks taking this
SINR model as an example, while the resulting network control framework
is not restricted to any specific SINR models.

γg � γg(α, μ, p, x, y, z) =

(
M − |Ga(g)(α)|) τρgβ

2
gg(x, y, z)pg/(1 + τξgg)

1 +
∑

g′∈G
φg′gpg′ +

τ(M−|Ga(g)(α)|) �
g′∈Ig(µ)\g

ρg′β2
g′g

(x, y, z)pg′

1+τξgg

(8)
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Fig. 2. Diagram of the distributed solution algorithm. The shaded blocks with dashed border represent operations of the drone hotspots while blocks with
solid border for the ground users.

drones, as well as the transmit power vector p. The problem
is formalized in Problem 1 as follows.

Problem 1
Given : A, G, Gmax,M, x̃, ỹ, z̃

Maximize
α,μ,p,x,y,z

: U �
∑
g∈G

Cg(α,μ,p,x,y, z)

Subject to : 0 ≤ pg ≤ pmax, ∀g ∈ G,
xmin ≤ xa ≤ xmax, ∀a ∈ A,
ymin ≤ ya ≤ ymax, ∀a ∈ A,
zmin ≤ za ≤ zmax, ∀a ∈ A,
Constraints (1), (2), (3), (4), (5) (11)

where x̃, ỹ and z̃ are the location vectors of the ground users;
Cg(α,μ,p,x,y, z) = Cg , the objective function of user g,
is the lower bound of the rate achievable by the user, as defined
through (7)-(10); pmax is the maximum transmit power of each
of the ground users in G; and finally [xmin xmax] represent the
x-axis movement range of the drones while [ymin ymax] and
[zmin zmax] are the ranges of the y- and z-axis, respectively.

The utility function U in (11) is a nonlinear nonconcave
function with respect to the control variables because of the
complicated mathematical expression of the effective SINR
in (8). Moreover, Problem 1 in (11) is a mixed integer-
continuous programming problem because of the binary access
association variables α and pilot assignment variables μ.
Given an arbitrary such problem, there is in general no existing
solution algorithm that can be used to obtain the global opti-
mum in polynomial computational complexity. Next, we first
present in Section IV a distributed solution algorithm that can
be used to achieve a sub-optimal solution to provide a lower-
bound on the utility function U in (11). Then in Section V
we will design a centralized solution algorithm to provide a
performance benchmark for the distributed solution algorithm.

IV. DISTRIBUTED SOLUTION ALGORITHM

A key step of the distributed solution algorithm design is to
decompose the original network control problem into a series
of subproblems, by solving which in a distributed manner the
original problem can be solved [62], [63]. However, in our case
the control variables α,μ,p,x, y and z are closely coupled
with each other in the complicated mathematical expression
of the effective SINR in (8). As a result, the network control
problem, i.e., Problem 1 in (11), is architecturally indecom-
posable.5 In this work, the distributed solution algorithms are

5A problem is architecturally decomposable if its dual problem obtained by
introducing Lagrange multipliers can be rewritten into a set of subproblems,
each of which can be solved locally in a single protocol layer and network
device [62].

designed by decomposing the network control problem fol-
lowing a primal decomposition approach. Roughly speaking,
with primal decomposition Problem 1 in (11) is solved by
dividing the feasible set of the original problem into multiple
parts by fixing a subset of variables at a time, which are drone
location variables x,y and z, association variables α as well
as transmit power vector p and pilot sequence assignment
variables μ. The overall diagram of the algorithm design is
illustrated in Fig. 2, where the original problem is solved
by iteratively solving three subproblems obtained from primal
decomposition, i.e., access association, joint pilot assignment
and power control, and movement control for the drones.

A. Access Association

The core idea of the proposed access association strategy is
to let the ground users in G interact iteratively with the drone
hotspots in A to compete for association opportunities based
on certain locally-calculated preference criterion, as illustrated
in Fig. 2. To this end, in each iteration the ground users first
report their own association preferences to the drones, which
then make association offers based on the received preference
information. Let x(ν), y(ν) and z(ν) represent the coordi-
nates of the drones in current iteration ν. Then in iteration
ν + 1 the objective of the access association is to maximize
the aggregate capacity of all the ground users in A by deter-
mining the association vector α(ν+1) subject to association
constraints (1), (3) and (4).

Denote A(ν)
g ⊂ A as the set of drones nearby ground user

g ∈ G (i.e., the drones in the communication range of the
ground user). Then, the association preference of ground node
g with respect to drone a ∈ A(ν)

g , denoted as λga, can be
computed as

λga =
log(1 + γga)∑

a′∈A(ν)
g

log(1 + γga′)
, (12)

where γga′ represents the interference-free single-input-single-
output (SISO) SINR, i.e., the SINR achievable with single
antenna and without interference from the other ground users
co-located in the mDroneNet, achievable by ground user g if
the user is associated with drone a′ ∈ A(ν)

g . In this work,
the SINR γga′ is defined as

γga′ � ρgβgg|a(g)=a′ , (13)

with ρg being the transmit SNR for ground user g and
βgg|a(g)=a′ being the path loss for the wireless channel
between ground user g and its service drone a(g). Denote
λa = (λga)g∈�Ga

as the preference vector drone a receives
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from its nearby ground users in G̃a � {g|g ∈ G, a ∈ A(ν)
g }.

Then, each drone a ∈ A(ν)
g first sorts λa in a descending

order and then sends association offers to a preferred set of
maximum Gmax of ground users, as follows,

λdsc
a = (λg1a, λg2a, · · · , λgGmaxa︸ ︷︷ ︸

Preferred Ground Users

, · · · ), (14)

where Gmax is the maximum number of users each drone
can serve at the same time. Let Aoffer

g represent the subset
of the drones that send an association offer to ground user
g, and denote |Aoffer

g | as the cardinality of Aoffer
g . Then, each

user accepts the association offer it receives from the drones
corresponding to the highest SISO SINR, i.e., associate with
drone a∗ with

a∗ � arg max
a∈Aoffer

g

λga, (15)

where λga is the association preference defined in (12). The
above procedure is executed until no ground user receives
more than one association offer. The output of this step is
the updated access association strategies, i.e., α(ν+1). The
association strategy is summarized in Algorithm 1.

Remark 1: In the association strategy described in
Algorithm 1, the rationale of computing the association
preference as in (13), i.e., based on the interference-free SISO
SINR, is as follows. In massive MIMO settings, particularly
when the number of antennas M is large, the received SINR
is dominated by the power of noise and large-scale fading
effects, e.g., path loss, shadow fading. Therefore, the capacity
with interference-free SISO capacity, i.e., (12), can serve as a
good indication of association preference and can be computed
with low computational complexity.

B. Joint Pilot Assignment and Power Control

With given coordinates of the drones and the updated access
association vector, i.e., α(ν+1) obtained in Section IV-A,
as shown in Fig. 2, the objective in the second network control
subproblem is to jointly determine the pilot assignment and
transmit power for the ground users. The subproblem can be
formalized as

Problem 2
Given : x(ν),y(ν), z(ν),α(ν+1)

Maximize
μ, p

: U �
∑
g∈G

Cg(μ, p)

Subject to : 0 ≤ pg ≤ pmax, ∀g ∈ G,
Constraints (2), (5). (16)

Algorithm 1 Competition-Based Access Association

Data: Drone coordinates x(ν), y(ν) and z(ν)

Result: Updated association vector α(ν+1)

1 Initialization: Set |Aoffer
g | = |A|, ∀g ∈ G;

2 Operations for Ground Users:
3 while ∃g ∈ G, |Aoffer

g | > 1 do
4 for each user g ∈ G do
5 if |Aoffer

g | ≤ 1 then
6 continue;
7 else
8 for each drone a ∈ Ag , calculate association

preference λga based on (12) and (13);
9 broadcast the calculated λga;

10 end
11 accept association offers based on (15);
12 update α(ν+1);
13 end
14 end
15 Operations for Drones:
16 for each drone a ∈ A do
17 make association offers based on (14);
18 end

As discussed in Section III, Problem 2 in (16) is a mixed inte-
ger nonlinear and nonconvex programming (MINLP) problem
because of the complicated mathematical expression of the
effective SINR γg(μ, p) in (8) and that the pilot sequence
assignment variables take only binary values. Such problems
are generally NP-hard and there is typically no existing
solution algorithm than can be used to obtain the global
optimum in polynomial computational complexity. In this
section, we solve Problem 2 by designing a pricing-based
distributed solution algorithm. To this end, we first reformulate
Problem 2 by relaxing the binary pilot sequence assignment
variables μ.

Problem Reformulation. We first relax the pilot sequence
assignment variables μ by allowing each ground user to use
multiple pilot sequences. For this purpose, let pgw represent
the transmit power that ground user g ∈ G allocates to pilot
sequence w ∈ W and define p̃ = (pgw)w∈W

g∈G . Then the power
constraints in (16) can be rewritten as

0 ≤ pgw ≤ pmax, ∀g ∈ G, w ∈ W , (17)∑
w∈W

pgw ≤ pmax, ∀g ∈ G. (18)

γgw(p̃) =

(
M − |Ga(g)|

)
τρgβ

2
ggpgw/(1 + τξgg)

1 +
∑

g′∈G

∑
w′∈W

μg′g(μ)pg′w′ +
τ(M−|Ga(g)|)

�
g′∈Ig\g

�
w′∈W

ρg′β2
g′g

pg′w′

1+τξgg

(19)

=

(
M − |Ga(g)|

)
τρgβ

2
ggpgw

(1 + τξgg)(1 +
∑

g′∈G

∑
w′∈W

μg′g(μ)pg′w′) + τ
(
M − |Ga(g)|

) ∑
g′∈Ig\g

∑
w′∈W

ρg′β2
g′gpg′w

(20)
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Algorithm 2 Pricing-Based Joint Pilot and Power Control
Data: Drone coordinates x, y, z; association strategy α;

ν = 0; current transmit power vector p̃(ν);
η(ν) > 0

Result: Updated transmit power p̃(ν+1);
1 for each user g ∈ G do
2 Compute p̂g by solving Problem 2 (penal) in (27);

3 Set p̃(ν+1)
g = p̃(ν)

g + η(ν)(p̂g − p̃(ν+1)
g );

4 end
5 if p̃(ν+1) satisfies certain termination criterion then
6 STOP;
7 else
8 Set ν = ν + 1; go to Step 1.
9 end

Then, for each pilot sequence w ∈ W , the effective SINR
γg defined through (8)-(10) can be redefined as γgw(p̃) for
each ground user g ∈ G, as in (19) and (20), as shown at the
bottom of the previous page. Then, Problem 2 in (16) can be
reformulated as Problem 2 (reform):

Problem 2 (reform)
Given : x(ν),y(ν), z(ν),α(ν+1)

Maximize
�p

: U �
∑
g∈G

∑
w∈W

Cgw(p̃)

Subject to : Constraints (17), (18), (21)

where Cgw(p̃) = B log2(1 + γgw(p̃)) with γgw(p̃) defined
in (19) and (20). Next we solve Problem 2 (reform) in (21)
by designing a distributed pricing-based solution algorithm.

Pricing-based Solution Algorithm. As illustrated in Fig. 2,
the main idea of the pricing-based solution algorithm is to let
each ground user iteratively determine its own pilot assignment
and transmit power by maximizing a penalized version of its
own utility in each iteration. Let p(ν)

gw represent the power of
ground user g when transmitting using pilot sequence w in
current iteration ν. Define

p̃(ν)
g = (log(p(ν)

gw ))w∈W , (22)

p̃(ν)
−g = (log(p(ν)

g′w))w∈W
g′∈G\g. (23)

Then the transmit power constraints in (17) and (18) can be
rewritten as, in each iteration ν = 1, 2, · · · ,

p̃(ν)
gw ≤ log(pmax), ∀g ∈ G, w ∈ W , (24)∑

w∈W
e�p

(ν)
gw ≤ pmax, ∀g ∈ G. (25)

Algorithm 3 Pilot Sequence Claim
Data: Results of joint pilot and power control: p∗

Result: Updated pilot assignment vector μ;
1 Initialization: Set Wg = W , ∀g ∈ G;
2 Set μgw = 1, ∀g ∈ G, w ∈ W ;
3 for each user g ∈ G do
4 Set μgw = 0 with w∗ = argmin

w∈Wg

p∗gw;

5 Set Wg = Wg \ w∗;
6 end
7 if

∑
w∈W

μgw ≤ 1 is satisfied for all users in G then

8 STOP;
9 else

10 Run Algorithm 2;
11 Go to Step 3.
12 end

Then, the pricing-based solution algorithm can be formalized
in Algorithm 2, where Ug(p̃g, p̃

(ν)
−g) =

∑
w∈W

Cgw(p̃g, p̃
(ν)
−g) is

the individual rate achievable by ground user g, η(ν) is the
step size in iteration ν. The convergence of Algorithm 2 is
given in Theorem 1.

Theorem 1: If Algorithm 2 doesn’t stop after certain num-
ber of iterations and suppose that the step-size sequence
{η(ν)} is chosen to satisfy

η(ν) ∈ (0, 1], η(ν) → 0,
∑

ν

η(ν) = +∞, (26)

then the algorithm converges to a stationary point of
Problem 2 (reform) defined in (27), as shown at the bottom of
this page, and none of the stationary points is local minimum
of the problem.

Proof: We first show that the utility function of
Problem 2 (reform) in (27) is a strongly concave function
with respect to the transformed power control variables p̃(ν)

g

of ground user g with given control strategies p̃(ν)
−g for the other

users in G \g. Since the penalization item is an affine function
of p̃(ν)

g and the convexification item is strongly concave with
ψg > 0, we only need to show that Ug(p̃g; p̃

(ν)
−g) is concave

and the feasbile set defined by constraints (24) and (25)
is convex. Consider high SINR in massive MIMO setting,
i.e., γgw(p̃) 	 1 in (19) and (20), then, with the logarithm
transformation in (22) and (23), the achievable rate Rgw(p̃)
in (21) can be represented in the form of minus-log-sum-exp
and hence is a concave function [64]. Similarly, the left-hand
side of constraint (25) has a form of log-sum-exp and hence

Problem 2 (penal)
Given : x,y, z,α, p̃(ν)

Maximize
�pg

: Ug(p̃g; p̃
(ν)
−g) +

∑
g′∈G\g

∇�pg
Ug′(p̃(ν))(p̃g − p̃(ν)

g )

︸ ︷︷ ︸
Penalization Item

−ψg

2
‖p̃g − p̃(ν)

g ‖2︸ ︷︷ ︸
Convexification Item

Subject to : Constraints (24), (25)

(27)
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the constraint defines a convex set. Then, the convergence of
Algorithm 2 follows Theorem 3 in [65].

Remark 2: In Theorem 1, the conditions on the choice of
step-size sequence {η(ν)} is relatively weak; for instance all
the step-size rules using in diminishing gradient-like schemes
can be used here. The following are two effective rules [65],
given η(0) = 1:

Rule 1 : η(ν) = η(ν−1)(1 − εη(ν−1)), ν = 1, 2, · · · (28)

Rule 2 : η(ν) =
η(ν−1) + β1

1 + β
(ν)
2

, ν = 1, 2, · · · (29)

where ε ∈ (0, 1) and β1, β2 ∈ (0, 1) are predefined constants
with β1 < β2.

Pilot Sequence Claim. Recall in Section III that we
consider that each ground user occupies at most one pilot
sequence. This is accomplished by pilot sequence claim
based on the results of the joint pilot and power allocation
described above. Let p∗ = (p∗gw)w∈W

g∈G represent the output of
Algorithm 2. Then the pilot sequence claim can be summa-
rized in Algorithm 3 as follows, where the rationale of the
pilot sequence claim is to let each user claim not to use the
pilot sequence that has been allocated the least transmit power.

C. Movement Control

As illustrated in Fig. 2, in the third subproblem each drone
determines its own best coordinates to adapt to the changes in
association strategies and transmit power of the ground users
resulting from solving the previous two subproblems. With the
newly obtained association vector α(ν+1) and transmit power
vector p(ν+1), the subproblem of aerial drone movement can
be written as, for each drone a ∈ A,

Problem 3

Given : α(ν+1),μ(ν+1),p(ν+1)

Maximize
x, y, z

:
∑
g∈Ga

Cg(x, y, z),

Subject to : xmin ≤ xa ≤ xmax, ∀a ∈ A,
ymin ≤ ya ≤ ymax, ∀a ∈ A,
zmin ≤ za ≤ zmax, ∀a ∈ A, (30)

where Ga represents the set of ground users associated with
drone a with given access association vector α(ν+1). In this
subproblem, the mathematical expression of utility function
Cg(x, y, z) defined in (7) has a log-convex form, which
is in general nonconcave with respect to coordinate variables
x, y and z. In this paper we solve subproblem (30) using
an interior point method [64] to search for locally-optimal
coordinates for each aerial drone in favor of a low-complexity
distributed solution.

D. Complexity Analysis

In the distributed solution algorithm, the above three
subproblems are solved iteratively and sequentially at each
iteration. In the ground-drone association subproblem,
the association strategy is determined iteratively as well.
In each iteration, the association variable αga can be

determined for at least one ground node, and therefore the
maximum number of associations is |G|, and the overall
computational complexity of the association is O(|G|). The
subproblem of joint power and pilot control in (27) and the
aerial drone movement control subproblem (30) can be solved
in polynomial computational complexity, i.e., O(|G||A|).
Therefore, the complexity of the overall distributed solution
algorithm is O(|G|(|A| + 1)) for each iteration.

Summary: So far, we have presented a distributed solution
algorithm for mDroneNet (i.e., wireless ad hoc networks
with massive-MIMO drone hotspots) to jointly control the
movement of the drone hotspots, the ground-drone association
as well as power control and pilot sequence assignment for the
ground users. A natural question is: How does the distributed
solution algorithm compare to the global optimum in terms
of aggregate spectral efficiency? In the remainder of the
paper we answer this question by designing a centralized
solution algorithm to provide a performance benchmark for
the distributed solution algorithms.

V. CENTRALIZED SOLUTION ALGORITHM

Recall from Section III that, in the social network control
problem, i.e., Problem 1 in (11), the individual through-
put Cg(α,μ,p,x,y, z) defined through (7)-(9) is a noncon-
vex/nonconcave function with respect to coordinates variables
x, y, z and transmit power variables p. Moreover, the asso-
ciation variables α and pilot sequence assignment variables
μ take only binary values. Therefore the resulting network
control problem is a mixed integer nonlinear nonconvex pro-
gramming (MINLP) problem, for which there is in general
no existing solution algorithm that can be used to obtain the
global optimum in polynomial computational complexity. In
this paper, we design a globally optimal solution algorithm
based on a combination of the branch and bound framework
and of convex relaxation techniques [66], [67]. Next we first
describe the overall algorithm design framework.

A. Overall Algorithm

Denote Γ0 = {α, μ, p, x, y, z| constraints in (11)} as
the feasible set of initial problem (11) and let U∗(Γ0) represent
the global optimum of problem (11) over Γ0, then the objective
of our algorithm is to iteratively search for a U so that

U(Γ0) ≥ εU∗(Γ0), (31)

where ε ∈ (0, 1] is predefined optimality precision. To this
end, the algorithm maintains a set Γ = {Γi, i = 0, 1, 2, · · · }
of subproblems by iteratively partitioning feasible set Γ0 into
a series of smaller subsets (see Section V-C).6 The algorithm
also maintains a global upper bound Uglb(Γ0) and a global
lower bound Uglb(Γ0) on U∗(Γ0) so that

Uglb(Γ0) ≤ U∗(Γ0) ≤ Uglb(Γ0) (32)

to drive the iterations of subproblem partitions, as follows.

6In this paper we use Γi to refer to both subproblem i and the corresponding
feasible set.
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• Global upper bound Uglb(Γ0): For each subproblem
Γi ∈ Γ, the algorithm computes a local upper bound
U lcl(Γi) on network utility function U via convex relax-
ation (see Section V-B). Then the global upper bound
Uglb(Γ0) can be updated as

Uglb(Γ0) = max
Γi∈Γ

{U lcl(Γi)}. (33)

• Global lower bound Uglb(Γ0): Similarly, for each sub-
problem Γi ∈ Γ a local lower bound U lcl(Γi) is
computed based on the solution obtained by solving the
relaxed convex network control problem. Then the global
lower bound Uglb(Γ0) can be updated as

Uglb(Γ0) = max
Γi∈Γ

{U lcl(Γi)}. (34)

The algorithm terminates if Uglb(Γ0) ≥ εUglb(Γ0) is reached
and the global optimum U∗(Γ0) is set to U∗(Γ0) = Uglb(Γ0)
as a upper-bound benchmark. Otherwise, the algorithm selects
a subproblem from Γ and further partitions its feasible set into
two smaller subsets, computes local upper and lower bounds
and updates the global bounds Uglb(Γ0) and Uglb(Γ0) as
in (33) and (34), respectively. In our algorithm, we select the
subproblem Γi ∈ Γ with the highest local upper bound to
partition, i.e.,

Γi = argmax
Γi

U lcl(Γi). (35)

Based on the global bounds update criterion in (33) and (34),
the gap between the two global bounds converges to 0 as the
partition progresses. Furthermore, from (32), Uglb(Γ0) and
Uglb(Γ0) converge to the global optimum U∗(Γ0).

B. Convex Relaxation

For each subproblem Γi ⊂ Γ, which is MINLP in our case,
a key step is to obtain a relaxed but convex version of Γi so
that it is easy to compute a tight local upper bound U lcl(Γi).
In this paper the convex relaxation is designed following a
two-phase approach as follows.

Phase 1: In this phase the relaxation is accomplished by
assuming i) there is no mutual interference among ground
nodes, i.e., interference items in the denominator of (8) are
set to zero, and that all ground nodes use different pilot
sequences in channel estimation and hence ξgg = 0 in (8);
ii) the maximum number of the ground nodes that can be
associated with a drone hotspot is not limited to Gmax in (4).
Then, the objective of the relaxed network control problem
is to maximize the aggregate capacity of ground nodes by
determining the optimal coordinate x, y and z of the drones,
i.e.,

Problem 4
Maximize

x, y, z
: U �

∑
g∈G

Cg(x, y, z)

Subject to : xmin ≤ xa ≤ xmax, ∀a ∈ A,
ymin ≤ ya ≤ ymax, ∀a ∈ A,
zmin ≤ za ≤ zmax, ∀a ∈ A, (36)

Fig. 3. Approximiation of log(t) using three tangent lines and one segment
line.

where Cg(x, y, z) = B log2(1 + γg(x, y, z)) with
γg(x, y, z) defined in (8). Since γg(x, y, z) 	 1,
Rg(x, y, z) can be approximated as

Cg(x, y, z)
≈ B log2(γg(x, y, z)) (37)

≤ B log2

(
Mτρgp0ζ

2
ggH

2
gg(x, y, z)

)
(38)

= B log2

(
Mτρgp0ζ

2
gg

dχ
gg(x, y, z)

)
(39)

= B log2(Mτρgp0ζ
2
gg) − χB log2(dgg(x, y, z)), (40)

where the inequality in (38) holds since Ga(g) ≥ 0 in (8), χ is
path loss factor and dgg(x, y, z) is distance (in meter) from
ground node g to its service aerial drone a(g).

Since dgg(x, y, z) in (40) is a convex Euclidean norm
with respect to x, y and z [64], log2(dgg(x, y, z)) cannot be
theoretically guaranteed to be concave. In this phase, we obtain
a convex relaxation of (40) based on linear approximation of
logarithmic function. To this end, we first replace dgg(x, y, z)
in (40) with t, then log2(dgg(x, y, z) in (40) can be
represented as log2(t) subject to t ≥ dgg(x, y, z). Then,
log2(t) can be further relaxed using a set of linear functions,
e.g., as shown in Fig. 3, using a segment and three tangent
lines.

Phase 2: Phase 2 of relaxation is invoked if the algorithm is
done with partitioning coordinate variables x, y and z, i.e., for
each aerial drone a ∈ A,

xmax,a − xmin,a ≤ Δx, (41)

ymax,a − ymin,a ≤ Δy, (42)

zmax,a − zmin,a ≤ Δz, (43)

where xmax,a and xmin,a (ymax,a and ymin,a) are upper and
lower bounds of x-axis coordinate xa (y-axis coordinate ya),
and Δx, Δy and Δz are predefined movement step size of
aerial drones in x- and y-axis, respectively. The objective in
this phase is to determine the optimal association vector α
with given aerial drones coordinates vectors x∗, y∗ and z∗

and without considering mutual interference among ground
nodes as in Phase 1 relaxation. Let Cga represent the capacity
achievable by ground node g ∈ G if g is associated to aerial
drone a ∈ A, then the optimal association can be obtained by
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solving the following linear optimization problem:

Problem 5

Given : x∗, y∗, z∗

Maximize
α

:
∑
a∈A

∑
g∈G

αgaCga(α, x∗,y∗, z∗)

Subject to : 0 ≤ αga ≤ 1, ∀a ∈ A, g ∈ G,∑
g∈G

αga ≤ Gmax, ∀a ∈ A,
∑
a∈A

αga ≤ 1, ∀g ∈ G. (44)

As variable partition progresses, the association variable αga

becomes fixed either to 0 or 1 in all subproblems, for which
the optimal transmit power p and pilot sequence assignment μ
can be obtained by solving a geometric programming problem
as in Section IV.

C. Variable Partition

Variable partition can be conducted by partitioning associa-
tion variable α and movement variables x, y and z. For exam-
ple, given a subproblem Γi ∈ Γ, by fixing association variable
αga subproblem Γi can be partitioned into two subproblems
with feasible sets Γi,1 = {(α, p, x, y, z) ∈ Γi|αga = 0}
and Γi,2 = {(α, p, x, y, z) ∈ Γi|αga = 1}, respectively.
For movement variables, say xa ∈ [xmin,a xmax,a] for aerial
drone a ∈ A, the partition can be conducted by splitting xa

from the half, resulting in two subproblems with feasible sets

Γi,1 = {(α,p,x,y, z) ∈ Γi|xa ∈ [xmin,a xmid,a]}, (45)

Γi,2 = {(α,p,x,y, z) ∈ Γi|xa ∈ [xmid,a xmax,a]}, (46)

where xmid,a � xmin,a+xmax,a

2 . As variable partition pro-
gresses, the algorithm converges to the global optimum,
as stated in the following theorem.

Theorem 2: With convex relaxation the variable partition
strategies in Sections V-B and V-C, global upper bound Uglb

and global lower bound Uglb converge to the global optimum
U∗ of the original social network control problem formulated
in (11).

Proof: To show convergence of the globally optimal
solution algorithm, it is sufficient to show that the algorithm
converges with respect to aerial drone movement variables x, y
and z since i) there is a finite number of possible combinations
of association strategies for a given set A of aerial drones and
set G of ground nodes, and ii) the power control subproblem
is a convex optimization problem.

For this purpose, we first redefine the domain set based on
the notation of hyper-rectangle. The initial ranges of aerial
drone movement variables xa, ya and za for each aerial drone
a ∈ A are [0 xmax], [0 ymax] and [0 zmax], respectively.
This results in an initial feasible set, which is an L = 2|A|-
dimensional hyper-rectangle denoted as Γinit with |A| being
the number of aerial drones in A. As in Section V, denote Γ
as the set of sub-rectangles obtained from partitioning Γinit as
the iteration goes. For any sub-rectangle Γ̃ ∈ Γ, denote vl

upp

and vl
lwr as the upper and lower bound of the lth edge of the

rectangle with l = 1, · · · , L. For example, for the x-axis of the

initial domain set Γinit, we have vl
lwr = 0 and vl

upp = xmax.
Further define the size, volume (vol), and condition number
(cond) of Γ̃ as follows:

• size(Γ̃) ≡ max
l=1,··· ,L

1
2 (vl

upp− vl
lwr), i.e., the maximum of

half edge length;
• vol(Γ̃) ≡ ∏

l=1,··· ,L
(vl

upp − vl
lwr), i.e., the edge length

production;

• cond(Γ̃) ≡
max

l=1,··· ,L
(vl

upp−vl
lwr)

min
l=1,··· ,L

(P l
upp−P l

lwr)
, i.e., the ratio of the

maximum and the minimum edge lengths.

Then, considering the domain partition strategy described in
Section V (i.e., in each iteration, partition the variable that has
the largest range from its middle), after a sufficiently large
number of iterations, say k, the following inequality holds:

min
�Γ∈Γ

size(Γ̃) ≤ max{cond(Γinit), 2}
(

vol(Γinit)
k

)
, (47)

which implies that the minimum size (hence the largest range
of movement variables) in all subproblems converges to zero
as k → ∞, i.e., the ranges of aerial drone movement variables
xa and ya shrink to constant for all drones a ∈ A.

Denote Γ̃∗ as the sub-rectangle with the smallest size.
Then, inequality (47) further implies that the local upper and
lower bounds over Γ̃∗, i.e., U(Γ̃∗) and U(Γ̃∗), converge to
each other if i) it holds for any sub-rectangle Γ̃ ∈ Γ that
the local upper bound U(Γ̃) is non-increasing as Γ̃ shrinks,
which is true because that the algorithm partitions aerial drone
movement variables (x, y and z) from their middle, and
ii) the local upper bounds U(Γ̃)) are non-increasing, which
follows that the highest local lower bound is always used in
the algorithm.

Then, as the local upper and lower bounds over Γ̃∗ converge
to each other, we can find a δ > 0 for any optimality precision
ε ∈ (0 1) such that any sub-rectangle Γ̃ with size(Γ̃) ≤ δ
satisfies U(Γ̃) ≥ εU(Γ̃). Take the iteration index k sufficiently
large so that the size of all sub-rectangles in Γ̃ do not exceed
δ, then we have Uglb = max

�Γ∈Γ
U(Γ̃) ≥ εmax

�Γ∈Γ
U(Γ̃) = Uglb.

VI. PERFORMANCE EVALUATION

We evaluate the performance of the proposed network
control solution algorithms by considering a network area of
500×500 m2 while the altitude of the drone hotspots is set to
100 meters for simplicity of the simulations. The number of
the ground users is set to {2, 4, 6, 8, 10, 12}, and the number
of the drone hotspots is set to {2, 3}. The number of antennas
of each drone hotspot is set to {10, 20, 30, 40, 50, 100}. The
maximum transmit power of each ground user is set to
{20, 40, 60, · · · , 500} mW. The path loss factor is set to
χ = 2, and the average noise power is set to 10−8 mW. The
number of the available pilot sequences is set to {6, 8}, and the
length of each pilot sequence is set to 10 symbols. The results
are obtained by averaging over 20 independent simulation
instances with network topology randomly generated. Next,
we first discuss the convergence of the distributed and cen-
tralized solution algorithms, and then evaluate the optimality
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Fig. 4. (a) x- and y-axis of the drone hotspots and (b) aggregate network spectral efficiency with the distributed solution algorithm; (c) optimality ratio with
the centralized solution algorithm.

Fig. 5. Aggregate network spectral efficiency with the distributed and centralized solution algorithms with (a) 4 ground users, 2 drone hotspots with each
having 100 antennas, and 8 pilot sequences, and (b) 8 ground users, 2 drone hotspots with each having 20 antennas, and 6 pilot sequences.

of the distributed solution algorithm by comparing it to the
centralized. Finally we study the effects of different network
control strategies on the aggregate network spectral efficiency.

Convergence. The convergence of the distributed solution
algorithm and the centralized solution algorithm is shown
in Fig. 4. In Fig. 4(a), two drone hotspots and eight ground
users are considered and the initial locations of the drones are
randomly generated within the networking area. It can be seen
that the movement of the drone hotspots converge quickly in
around 40 iterations. In Fig. 4(b) we plot the resulting aggre-
gate network spectral efficiency of all the ground users. It can
be seen that the network spectral efficiency converges quickly
as well. The convergence of the centralized solution algorithm
is shown in Fig. 4(c). The optimality precision is set to 90%
and the maximum number of iterations is set to 5000. In can be
seen that the optimality ratio converges monotonically as the
interation progresses and the predefined optimality precision
is reached in 600 iterations. The computational complexity of
the distributed and centralized solution algorithms is compared
in terms of the number of iterations required to converge

in the case of different number of ground nodes. We tested
20 more network instances with the number of ground nodes
varying from 2 to 10. Results showed that both the distributed
and centralized solution algorithms converge in all the tested
instances. With distributed solution algorithms it takes on
average 25 iterations to coverage, e.g., 15, 26 and 35 iterations
in the cases of 2, 8 and 10 ground nodes, respectively. The
centralized solution algorithm takes more iterations than the
distributed to converge. For example, it takes 4592 iterations
for the centralized solution algorithm to converge in the case
of 8 ground nodes and 4688 iterations on average. It is worth
pointing out that while the centralized solution algorithm has
higher computational complexity, the objective of the central-
ized solution algorithm is to provide a benchmark performance
for the distributed solution algorithm.

Optimality. Figure 5 reports the network spectral effi-
ciency, i.e., the spectral efficiency summed over all the
users in the network, achievable by the distributed solution
algorithm and the centralized global optimum. Four ground
users, 2 drone hotspots and 8 pilot sequences are considered
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Fig. 6. Network spectral efficiency in the case of different number of ground
users.

in Fig. 5(a) while 8 ground users, 2 drones and 6 pilot
sequences in Fig. 5(b). It can be seen that in both cases the
distributed solution algorithm achieves an aggregate network
spectral efficiency very close to the global optimum in all
of the 20 tested network topology instances, with average
optimality of 97% and 91% for Figs. 5(a) and (b), respec-
tively. Comparing Fig. 5(b) to Fig. 5(a) it can be found
that, as expected, the aggregate network spectral efficiency
increases as more users are accommodated in the network, e.g.,
from 105 bps/Hz to 165 bps/Hz for the distributed solution
algorithm.

The average performance of the achievable network spectral
efficiency is reported in Fig. 6 with different number of ground
users. Results indicate that in average around 92.5% of the
global optimum can be achieved by the distributed solution
algorithm, and the optimality is 97%, 98% and 88.6% with 4,
8 and 12 ground users, respectively. It is also noticed that the
achievable network spectral efficiency increases linearly with
the number of the served ground users in the setting of the
considered mDroneNet.

In Fig. 7 we plotted the achievable network spectral effi-
ciency against the maximum transmit power of the ground
users. Eight ground users and 2 drone hotspots each having
100 antennas are considered in this experiment. On average
over 93% of the global optimum can be achieved by the
distributed solution algorithms, with 95%, 97% and 90%
for transmit power in [20 80] mW, [100 160] mW and
[180 220] mW, respectively. From the results of the central-
ized solution algorithm we noticed that the aggregate network
spectral efficiency rises only around 4.5% by increasing the
maximum transmit power by 2.4 times from 100 to 240 mW.
This is because in massive MIMO setting the network basically
operates at high SINR regime, i.e., in bandwidth-limited
regime.

The network spectral efficiency is reported in Fig. 8 with
the number of antennas for each drone hotspot varies from
20 to 100, with 8 ground users and 6 pilot sequences. The
distributed network control strategy achieves on average over

Fig. 7. Network spectral efficiency in the case of different maximum transmit
power for the ground users.

Fig. 8. Network spectral efficiency in the case of different number of antennas
for the drone hotspots.

93.5% of the global optimum obtained by the centralized
solution algorithm. We notice that the achievable network
spectral efficiency monotonically increases with the number
of antennas but at a decreasing speed. This is consistent with
the results in [9, Fig. 4(a)]. It is worth pointing out that,
comparing to [9, Fig. 4(a)], the network spectral efficiency
gain achievable by using more antennas is less significant in
our case, e.g., in this experiment the effect of increasing the
number of antennas is only marginal if each drone hotspot
has more than 30 antennas. This is because our objective is
to study joint power, association and flight control in self-
organizing massive-MIMO-enabled UAV networks, and in this
setting the network spectral efficiency is jointly determined
by all the affecting factors. As a future research direction we
will study how many antennas are required to achieve certain
spectral efficiency in self-organizing UAV networks.

We further study the effects of different network con-
trol strategies on the achievable network spectral efficiency
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Fig. 9. Network spectral efficiency achievable with different network control
strategies: 12 ground users, 2 drone hotspots.

Fig. 10. Network spectral efficiency achievable with different network control
strategies: 12 ground users, 3 drone hotspots.

through Figs. 9-10, where the joint network control strategy
is compared to the other four strategies: (i) the locations of
the drone hotspots are randomly generated in “w/o Aerial
Drone Movement”; (ii) the transmit power is randomly gen-
erated for the ground users in “w/o Power Control”; (iii) the
access association is executed only once in “w/o Association
Control”; and (iv) the pilot sequence assignment is executed
only once in “w/o Pilot Assignment”. In Fig. 9 the experiment
considers 12 ground users sharing 6 pilot sequences and
2 drone hotspots each having 100 antennas. We can see
that the joint network control achieves the highest aggregate
network spectral efficiency in almost all of the tested instances.
An obvious performance degradation can be observed without
power control for the ground users or movement control for the
drone hotspots, which are 5% and 4% on average, respectively.
It can also be noticed that a spectral efficiency very close
to that of joint control can be achieved by “w/o Association
Control” and “w/o Pilot Assignment”. This implies that only

one-time access association and one-time pilot assignment
would be sufficient in the joint network control. Similar results
are reported in Fig. 10 where three drone hotspots are used
to serve 12 ground users with each drone endowed with
100 antennas. Unsurprisingly, the aggregate network spectral
efficiency can be significantly improved by using more drone
hotspots, while the performance degradation because of the
lack of power control reduces to less than 4% on average.

VII. CONCLUSIONS

We studied wireless ad hoc networking with massive-MIMO
drone hotspots. The network control objective is to maximize
network-wide spectral efficiency by jointly controlling the
movement of the drones, associating single-antenna ground
nodes to many-antenna drones, and adapting the transmit
power as well as the pilot sequence assignment for the ground
nodes. The network control problem was formulated as a
mixed integer nonlinear nonconvex programming (MINLP)
problem. Both distributed and globally optimal solution algo-
rithms have been designed and evaluated with extensive sim-
ulation results. Results indicated that the distributed solution
algorithm converges within tens of iterations and can achieve
around 90% of the global optimum.
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