
QCell: Self-optimization of Softwarized 5G
Networks through Deep Q-learning

Bernardo Casasole,∗ Leonardo Bonati,† Salvatore D’Oro,†

Stefano Basagni,† Antonio Capone,∗ Tommaso Melodia†
∗Politecnico di Milano, Milan, Italy

Email: bernardo.casasole@mail.polimi.it, antonio.capone@polimi.it
†Institute for the Wireless Internet of Things, Northeastern University, Boston, MA, U.S.A.

Email: {bonati.l, s.doro, s.basagni, t.melodia}@northeastern.edu

Abstract—With the unprecedented rise in traffic demand and
mobile subscribers, real-time fine-grained optimization frame-
works are crucial for the future of cellular networks. Indeed,
rigid and inflexible infrastructures are incapable of adapting to
the massive amounts of data forecast for 5G networks. Network
softwarization, i.e., the approach of controlling “everything” via
software, endows the network with unprecedented flexibility, al-
lowing it to run optimization and machine learning-based frame-
works for flexible adaptation to current network conditions and
traffic demand. This work presents QCell, a Deep Q-Network-
based optimization framework for softwarized cellular networks.
QCell dynamically allocates slicing and scheduling resources to
the network base stations adapting to varying interference con-
ditions and traffic patterns. QCell is prototyped on Colosseum,
the world’s largest network emulator, and tested in a variety
of network conditions and scenarios. Our experimental results
show that using QCell significantly improves user’s throughput
(up to 37.6%) and the size of transmission queues (up to 11.9%),
decreasing service latency.

Index Terms—Deep Q-Network, Network Slicing, Open RAN.

I. INTRODUCTION

The 5th generation (5G) of cellular networks will leverage
softwarization and virtualization principles to provide un-
precedented levels of service to mobile subscribers. Telecom
operators will be allowed to instantiate many heterogeneous
cellular networks on a common physical infrastructure (net-
work slicing) and to optimize the use and allocation of network
resources via software to improve the performance of the
network [1]. Custom algorithms and frameworks can now be
programmed as virtual network functions to optimize one or
multiple network functionalities. Software-based cellular op-
timization is however no trivial feat, as the network is required
to dynamically adapt in real time to multiple unpredictable
conditions. For instance, traffic demands might suddenly spike
in certain areas due to nearby events, and saturate network re-
sources. Clearly, poorly designed strategies—possibly relying
on historic operator data—would be unable to swiftly adapt to
the new network conditions and might result in poor service.

To address these issues, we introduce QCell, a Deep Q-
Network (DQN)-based framework for scalable and real-time
self-optimization of cellular networks. In a nutshell, QCell

This work was partially supported by the U.S. National Science Foundation
under grants CNS-1923789 and CNS-1925601 and by the U.S. Office of
Naval Research under grant N00014-20-1-2132.

is a multi-agent framework that dynamically adapts network
slicing policies and allocates radio resources in real time,
adapting to the current network conditions and traffic demand.
Our work makes the following contributions:
• We define QCell, a DQN-based model-free framework for
cellular network self-optimization that dynamically: (i) Al-
locates resources (e.g., bandwidth) to multiple slices of the
network, and (ii) determines the optimal scheduling policy
for each network slice. QCell is able to adapt in real time to
varying network conditions and traffic demand by querying
the performance at the Base Stations (BSs), quickly adapting
to the heterogeneous and time-varying context of 5G cellular
networks. The QCell modular design allows it to either exe-
cute as a standalone distributed framework on each network
BS, or as part of larger frameworks such as O-RAN [1]. In
the latter case, QCell can run as an xApp in the O-RAN near
real-time Radio Access Network (RAN) Intelligent Controller,
and make control decisions on one or multiple BSs interfaced
through the standardized E2 interface [1].
• We build a prototype of QCell on srsRAN (formerly
srsLTE [2]), an open-source protocol stack for cellular BSs,
User Equipments (UEs) and core network that is compliant
with 3rd Generation Partnership Project (3GPP) directives.
• We train and test QCell on Colosseum, arguably the
world’s largest wireless network emulator with hardware in
the loop [3]. Colosseum is an experimental testbed that al-
lows to design, prototype and test wireless solutions at scale
in a variety of emulated network scenarios and conditions.
Specifically, it allows to recreate virtually any wireless envi-
ronment (e.g., indoor, outdoor, etc.) and channel effects (e.g.,
path loss, fading, mobility) through FPGA-based Finite Im-
pulse Response (FIR) filters. Experimental results involving
25 Software-defined Radios (SDRs) over a variety of different
network scenarios show that QCell significantly improves the
throughput of cellular users up to 37.6%, and decreases the
size of downlink transmission queues by up to 11.9%, thus
decreasing the service latency.

We believe that our work advances future cellular network-
ing with respect to previous attempts at building network
optimization frameworks. Previous solutions in this realm
are either tied to traditional optimization techniques, and
therefore less adaptable to unpredictable network dynamics,
or use machine learning techniques for optimizing network

performance. Works belonging to the first category include
CellOS, an automated framework for cellular network opti-
mization using Lagrangian multipliers and duality theory [4].
The very nature of these techniques makes CellOS slower to
react to network changes. Machine learning-based solutions
for optimized cellular performance concern specific aspects of
the network architecture [5, 6]. For instance, Li et al. devise a
Deep Reinforcement Learning (DRL) framework for resource
management in network slicing in which actions are defined as
radio resource allocations [7]. Although simplifying system
design, this choice significantly increases the policy space,
making it harder to find optimal solutions. The works by
Chinchali et al. [8] and by Bonati et al. [9] present learning-
based schedulers that adapt to traffic demand and different re-
ward functions set by the telecom operators. Differently from
QCell, these works focus mainly on scheduling optimization,
disregarding optimal allocation of network slicing policies.

Overall, QCell takes a DQN approach to self-optimization
of softwarized cellular networks by making decisions on
slicing and scheduling policies of the BSs. As demonstrated
through an extensive experimental campaign on Colosseum,
QCell self-adapts to varying network conditions and traf-
fic, significantly improving key performance metrics such as
throughput and size of the transmission buffers.

The remainder of this work is organized as follows. Sec-
tion II provides some background knowledge on DQNs.
The QCell architecture is detailed in Section III. Section IV
presents our QCell prototype and experimental results. Con-
clusions are drawn in Section V.

II. DEEP Q-NETWORKS: A PRIMER

A Deep Q-Network (DQN) is a DRL technique used to de-
termine policies π from high-dimensional inputs by leveraging
reinforcement learning techniques [10, 11]. In a DQN model,
an agent interacts with an environment through a sequence
of observations of the environment (formed by a series of
states), actions, and rewards. A sequence of states, actions,
and rewards that lead to a terminal state of the system is called
an episode. The agent’s purpose is to choose the action that
maximizes the cumulative future rewards.

The optimal state-action value function Q∗(s, a), aka the
Q-function, of a policy π, namely, Qπ(s, a), measures the
expected return—or sum of discounted rewards—that is ob-
tained by taking action a from state s, and then following
the policy π thereafter. Q∗(a, s) is defined as the maximum
return that is obtainable by taking action a in state s, and
then following the optimal policy. This is approximated with a
Deep Neural Network (DNN), which produces the cumulative
future reward rt at time t, discounted by a factor γ ∈ [0, 1].

Q∗(s, a) =
[
r + γmax

a′
Q∗(s′, a′)

]
, (1)

where s′ is the next state, and a′ is the action taken from it.
To cope with instability due to the correlation between

consecutive episodes, the experience replay Dt at time step
t needs to be considered [10]. This is a set of agent’s expe-
riences {e1, . . . , et} that randomizes over data, where ei =

(si, ai, ri, si+1) is the set of state, action, reward, and next
state. At each time step t of the learning phase, the agent
performs an action at, which causes the system to transition to
state st. The experience vector et = (st, at, rt, st+1) is, then,
stored in the experience replay Dt. To reduce the correlation
between Q-function value Q and the optimal Q∗, a second
Q-Network—namely target Q-Network—is introduced. The
structure of the target Q-Network is the same as that of the
original Q-Network, while its weights are updated periodically
to those of the original Q-Network. Finally, the Q-learning
update at iteration t leverages the following loss function:

Lt(θt) =

Es,a,r,s′
[(
r + γmax

a′
Q(s′, a′; θ−t)−Q(s, a; θt)

)2]
, (2)

where θt (θ−t) are the weights of the original (target) Q-
Network.

III. QCELL ARCHITECTURE

The QCell architecture consists of a distributed multi-agent
optimization framework. A DQN agent runs on each cellular
BS and makes control decisions on its configuration, e.g.,
scheduling and slicing policies. These decisions are based on
the real-time performance of the network, i.e., the network
state, signaled through messages exchanged among the agents
of the interfering BSs. In this way, agents are able to learn the
best action to optimize the performance of their own BS, while
keeping the interference to the other BSs as low as possible.

Fig. 1 shows the architecture of the QCell DQN framework.
This is formed by three components: (i) The agent; (ii) the BS
protocol stack, and (iii) the BS connector.

Q
Ce

ll
Ar
ch
ite

ct
ur
e

Agent
Encoder B

DQN

Encoder A

BS
 C

on
ne

ct
or

N
et

w
or

k
St

at
e,

 𝑠
!En

c.
 S

ta
te

, 𝜐
!

Re
w

ar
d,

 𝑟 !
"
#

BS Protocol Stack

PHY
MAC
RLC

PDCP RRC

Enc. State, 𝜙!
Reward Calculator

To Other BSs

Fr
om

 O
th

er
BS

s

Action, 𝑎!

Fig. 1: The QCell architecture.

Each agent is equipped with two different encoders (A
and B in the figure) used to reduce the dimensionality of the
input data, a reward calculator, and a DQN. At each time
instant t, the agent reads the network state (st), which reflects
the performance of the BS on which QCell is deployed, and
of the UEs served by it. The feed-forward multi-layer neural
network encoders are used to normalize the dimensionality of

the input, which depends on the number of users served by the
BS. Both encoders A and B are fed with the current network
state and retain as output the information relevant to the DQN.
The output of encoder A (νt) represents the state of the QCell
BS (regardless of the state of each user). This is sent to the
interfering BSs by the BS connector, along with the reward of
the action taken at time step t − 1. The output of encoder B
(φt) is used to set the input of the DQN to a given dimension,
while retaining more than 85% of the original dataset variance
through the Principal Component Analysis process [12].

The reward calculator receives the metrics sent from the in-
terfering BSs from the BS connector and computes the reward
for the current time step t. This is the linear combination of
the variation of the metrics of the users served by the BS, and
the rewards received in input by the interfering QCell BSs.

The DQN is formed by a 4-layer deep convolutional neural
network. It takes as input the output of encoder B and the
state signaled by the other QCell BSs (received by the BS
connector), and returns as output a set of Q-values, each
of which is associated with a different action and network
configuration. Among the possible returned actions, the one
associated with the highest Q-value (at) is implemented at the
BS. For the sake of improving the efficiency of the training,
the DQN has been decoupled from the encoders, and the three
components have been trained separately [11]. The action
space of each agent is defined by a finite set of possible
network configurations. For each network slice, actions are
the combination of a scheduling policy (we considered the
round-robin, waterfilling and proportionally fair scheduling
policies) and resource allocation of the slice, i.e., the number
of Resource Block Groups (RBGs) allotted to the slice [6].

The reward function of each agent is shown in Algorithm 1.
This is a function of the average variation of the metrics of the
users the BS is serving, and of those sent by the interfering
QCell BSs. Specifically, the goal of the QCell agents is to
simultaneously optimize the downlink throughput of the users
and the size of their downlink transmission buffer, i.e., the
buffer containing the data the BS needs to transmit to each user
in downlink, which directly reflects on the service latency.

The BS connector allows the communication between the
BSs of the network. It receives the state encoded by encoder A
(νt) and the previous-step reward (rt−1), and sends them to
the interfering BSs of the network. Similarly, it also receives
analogous information from the interfering BSs and forwards
it to the reward calculator and to the DQN.

Finally, the BS protocol stack implements the softwarized
cellular BS, including layers such as PHY, MAC, RLC, PDCP,
and RRC [1]. This enables the communication with the UEs
of the network and can be implemented through open source
software solutions, e.g., srsRAN (see Section IV-A). Regard-
less of the specific implementation, this element provides the
network state to encoders A and B of the QCell agent, and the
reward obtained from the last time step to the BS connector.

Algorithm 1: QCell agent reward function at time t.
Result: reward rt

1 Initialize: my reward rmt = 0
2 for all users u ∈ U do
3 for all metrics m do
4 sign ← mt−mt−1

|mt−mt−1|
5 if sign = −1 then
6 sign ← −1.2

7 variation z ← |mt−mt−1|
mt−1

8 if z 6 0.01 then
9 rmt ← rmt + sign

10 else if z 6 0.05 then
11 rmt ← rmt + 5 · sign
12 else if z 6 0.1 then
13 rmt ← rmt + 10 · sign
14 else
15 rmt ← rmt + 20 · sign

16 rmt ←
rmt
|U|

17 send(rmt)
18 other BSs’ rewards rotht−1 ← receive rewards()
19 rt ← 0.8 · rmt + 0.1 · sum(rotht−1)

A. QCell Example

We will now give a high-level example of the QCell algo-
rithm workflow. We consider a scenario with 3 interfering BSs,
namely a, b, and c (see Fig. 2). This process is also detailed in
Algorithm 2.

Agent
Encoder B

DQN

Encoder A

BS
Connector

𝜐!

𝑟!"#$ BS Protocol
Stack

𝜙!
Reward Calculator

To Other BSs

From Other BSs

𝑎! 𝑠!$2

3

4 5 6

5

1

1

Fig. 2: Example of the QCell algorithm workflow.

As the first step, the two encoders (A and B in the figure)
read the network state sat , and the BS connector reads the
previous reward rat−1 (step 1 in Fig. 2). Encoder A encodes
the state information of the BS into νt (step 2). This is sent to
the agents of the interfering QCell BSs from the BS connector,
together with the information about the reward of the agent at
time t − 1, i.e., rat−1 (step 3, outgoing blue arrow). At the
same time, this component receives the signaling messages
from the interfering BSs (step 3, incoming red arrow). These

messages contain the network state and previous-step reward
of the QCell agents of the nearby BSs. In step 4, the received
rewards (rbt−1 and rct−1) are used to compute the final agent
reward according to Algorithm 1. The received states (sbt and
sct), instead, are fed to the DQN together with the output φt
produced by encoder B (step 5). Finally, in step 6, the agent
action at time t, at, is computed by the DQN.

Algorithm 2: QCell DQN algorithm.

1 Initialize: replay memory D = N ;
Q← random weights θ; Q̂← weights θ− = θ;
network state s̃t

2 action at ← argmaxaQ(s̃t, a; θ)
3 while qcell is running do
4 sleep 35 s
5 s̃t−1 ← s̃t
6 get new network state st
7 compute output encoder A νt ← ν(st)
8 send νt to other BSs
9 receive ν̄ otht from other BSs

10 compute output encoder B φt ← φ(st)
11 s̃t ← concat

(
φt, ν̄

oth
t

)
12 rt ← r(φt, ν̄

oth
t)

13 x← rand(0, 1)
14 if x ≤ ε then
15 select random at
16 else
17 at ← argmaxaQ(s̃t, a; θ)

18 store (s̃t−1, at−1, rt−1, s̃t) in D
19 sample mini-batch of (s̃t, at, rt, s̃t+1) from D

20 y ← rt + γ ·maxaQ̂ (s̃t+1, a; θ−)

21 do gradient descent on (y −Q (s̃t, at, θ))
2 wrt θ

22 execute at
23 every C steps: Q̂← Q

IV. EXPERIMENTAL RESULTS

In this section, we describe the network emulator we
leveraged to develop our QCell prototype, the DQN training
process, and the obtained experimental results.

A. QCell Prototype

We prototyped QCell on Colosseum, the world’s largest
wireless network emulator [3]. Colosseum was developed by
DARPA for the Spectrum Collaboration Challenge as the
ideal environment for machine learning development and test-
ing [13]. It is composed of 256 USRP X310 SDRs, half of
which are controlled by high-performance, scalable servers—
namely Standard Radio Nodes (SRNs)—and used as commu-
nications devices. The remaining 128 SDRs, instead, compose
the Colosseum Massive Channel Emulator (MCHEM). This
leverages FPGA-based FIR filters to emulate heterogeneous
environments and conditions of the wireless channel (e.g.,
path loss, multi-path, node mobility, etc.) through so called
radio frequency scenarios.

We implemented 3GPP-compliant BSs and UEs through the
SCOPE framework [14], which extends srsRAN with slicing
capabilities and additional scheduling policies. Specifically,
we leveraged this software to deploy 3 cellular BSs and up
to 22 UEs on Colosseum SRNs. For each network BS, we con-
sidered 2 network slices and 3 different scheduling policies:
Round-robin, waterfilling, and proportionally fair scheduling
policies. The downlink center frequencies of the BSs were set
to 1000.0 MHz, 1002.5 MHz, and 1005.0 MHz (i.e., partially
interfering but not completely overlapped), while the channel
bandwidth to 3 MHz, corresponding to 15 physical resource
blocks (8 RBGs).

Traffic among BSs and UEs was generated through
iPerf3, which allows to measure the network performance
through TCP/UDP packet flows. To account for realistic—
yet unpredictable—traffic conditions, we varied randomly the
traffic rate and the length of the packets between BSs and UEs
in [3, 10] Mbps and [3, 10] kB, respectively.

As for the DQN, we selected the behavioral distribution
through an ε-greedy policy. At every time step, the environ-
ment state is defined by the state of every agent, which is
determined by the metrics of the UEs served by the BSs.
We considered the following metrics collected at each BS:
(i) Slice resource ratio, as the fraction of RBGs assigned
to the slice the UE belongs to; (ii) granted resource ratio,
as the ratio between the resources granted and required by
the UEs; (iii) channel quality information, which gives an
indication of the quality of the channel, as perceived by the
UEs; (iv) downlink throughput; (v) downlink buffer size, as
the amount of data the BSs need to transmit to the UEs at any
given moment, and (vi) modulation and coding scheme.

The agent actions are composed of the fraction of RBGs to
allocate to each network slice, and the scheduling policy to use
at the BS. A sample of the action space adopted in our QCell
prototype is shown in Table I. We recall that the total number
of RBGs used in our prototype is 8.

Finally, the agent reward at time t is computed as the linear
combination of the variation of the metrics of the UEs served
by the current BS, and the metrics sent by the agents of the
interfering QCell BSs (see Algorithm 1).

A diagram of the QCell prototype we implemented on
Colosseum is shown in Fig. 3. We deployed 3 softwarized
BSs and 22 UEs on Colosseum SRNs, and emulated a urban

TABLE I: Sample action space of QCell prototype.

Action Fraction of
RBGs Slice 1

Fraction of
RBGs Slice 2 Scheduling Policy

0 1/2 1/2 Round-robin
1 1/2 1/2 Waterfilling
2 1/2 1/2 Proportionally Fair
3 1/4 3/4 Round-robin
4 1/4 3/4 Waterfilling
5 1/4 3/4 Proportionally Fair
6 3/4 1/4 Round-robin
7 3/4 1/4 Waterfilling
8 3/4 1/4 Proportionally Fair

Colosseum Emulator

Cell 1 UE 1

UE 8

SRNsStandard Radio Node (SRN)

Softwarized BS 1 w/ QCell

Run-time Performance

QCell Agent

Ru
n-

tim
e

Co
nf

ig
ur

at
io

n

Base Station Connector

Re
w

ar
d

Encoded State

Sl
ic

in
g

&

Sc
he

du
lin

g

Cell 2 UE 1

UE 7

. . .

Softwarized BS 2 w/ QCell

Cell 3 UE 1

UE 7

. . .Softwarized BS 3 w/ QCell

UE 2

UE 3

UE 4

. . .

Signaling BS 1
(Enc. State & Reward)

Signaling BS 2 & 3

Signaling

Path loss, mobility, etc.

Massive Channel
Emulator (MCHEM)

1
2

3

Fig. 3: The QCell prototype implementation on Colosseum.

scenario through MCHEM. Each BS runs a QCell agent. The
agent reads the run-time performance of the BS (e.g., network
conditions, traffic demand, and level of service provided to
the UEs), which forms the network state. It then encodes this
state and signals it, together with the previous reward, to the
interfering BSs (which are also running QCell) through the
BS connector. At the same time, this component receives the
signaling messages from the interfering BSs and forwards
them to the QCell agent. Finally, the agent leverages this
information, together with the network state, to compute the
optimal action (i.e., slicing and scheduling policies) through
the DQN, and re-configures the BS at run time.

B. QCell Training

To let QCell interact dynamically with a diversified en-
vironment, in our training we periodically reinitialize the
experiments on Colosseum, randomly assigning UEs to the
network BSs. QCell periodically reads the up-to-date network
performance collected at the BS by srsRAN and modifies
slicing and scheduling policies used to serve the UEs, if
necessary.

Relevant QCell hyperparameters are shown in Table II. We

TABLE II: List of relevant QCell hyperparameters.

Hyperparameter Value
Minibatch size 32
Replay memory size 10000
Target network update frequency 35
Discount factor, γ 0.9
Learning rate 0.01
Initial exploration value for ε 1
Final exploration value for ε 0.05
Final exploration iteration 10000

set the minibatch size to 32, which determines the number
of training cases over which the Stochastic Gradient Descent

(SGD) algorithm is computed. The replay memory size (set
to 10000) regulates the number of training cases considered
by the SGD algorithm, while the target network update fre-
quency, measured as the number of network parameter up-
dates, is set to 35. The discount factor γ of the Q-learning
update, and the learning rate of the SGD algorithm are set
to 0.9 and 0.01, respectively. Finally, the initial and final
exploration ε values, which enable QCell to self-adapt to
unseen network scenarios, are set to 1 and 0.05, respectively,
and the final exploration iteration to 10000.

Our training consisted of almost 16000 episodes, for a total
of 150 hours of training. Fig. 4 shows the loss value evolution
over the training episodes. As the training goes on, we notice a

Fig. 4: Loss value vs. number of episodes.

decrease in the average loss value after around 1900 episodes.
This metric, then, continues to decrease until the end of the
training, indicating convergence of QCell learning process.

Fig. 5 shows the reward of QCell agents, both instantaneous
and average, over the various episodes of the training. We

Fig. 5: Reward value vs. number of episodes.

can see that the agent reward keeps increasing, on average,
for the whole duration of the training, except for the final
3000 episodes, in which the reward oscillates around simi-
lar value intervals. This suggests convergence of the QCell
algorithm, which is able to get the average optimal reward
for each episode. Moreover, at the end of the training, the
reward assumes positive values, demonstrating that QCell can
efficiently optimize the performance of the network.

C. QCell Testing

To test QCell, we ran over 17 hours of experiments on
the Colosseum testbed (see Section IV-A). We compared the
network performance in terms of downlink throughput and
buffer queue length with and without QCell. In the case

without QCell, we considered both the average of all the static
configurations (see Table I), and the best performing static
configuration (action 7 in Table I).

Fig. 6 depicts the downlink throughput with and without
QCell in the above-mentioned cases. We notice that QCell is

Fig. 6: Downlink throughput w/ and w/o QCell.

able to significantly improve the user throughput compared
to both average and best static configurations. This is due to
the tight interactions among the BS agents, which allow to
dynamically reconfigure the network at run time based on the
current network conditions and performance.

Fig. 7 shows the average downlink buffer occupancy with
and without QCell. In general, the occupancy of the downlink

Fig. 7: Downlink buffer occupancy w/ and w/o QCell.

buffer is reduced when QCell is active, implying a faster
service to the UEs. This is due to the superior behavior of
QCell, which leverages the UE feedback collected at the BSs
to efficiently adapt to the varying network dynamics.

The action probability distribution of QCell agents is de-
picted in Fig. 8. This metric conveys how often a certain
action is selected by the agents after the training phase has
been completed. We observe that the actions (reported in
Table I) are chosen with similar probabilities by QCell, which
enacts the best-performing configuration based on the specific
network scenario and traffic demand.

Finally, we analyzed the frequency at which QCell mod-
ifies the BS configuration after the training phase has been
completed. Results confirmed the overall stability of QCell
optimization framework, which varied the configuration of
the BSs every 101.45 s, on average (corresponding to a 0.44
coefficient of variation).

V. CONCLUSIONS

We present QCell, a DQN-based framework for the real-
time self-optimization of softwarized cellular networks. QCell

Fig. 8: Agent action probability distribution.

follows a multi-agent approach for dynamic slicing and
scheduling allocation to BSs at run time, adapting to cur-
rent network and traffic conditions. We prototype QCell on
Colosseum and test it in a host of different network scenarios
and configurations. Our experimental results show that QCell
is able to achieve up to 37.6% increase in user’s throughput
and shortens the transmission queue size by 11.9%, thus
decreasing the service latency.

REFERENCES
[1] L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia, “Open,

Programmable, and Virtualized 5G Networks: State-of-the-Art and the
Road Ahead,” Computer Networks, vol. 182, pp. 1–28, December 2020.

[2] I. Gomez-Miguelez, A. Garcia-Saavedra, P. Sutton, P. Serrano, C. Cano,
and D. Leith, “srsLTE: An Open-source Platform for LTE Evolution and
Experimentation,” in Proceedings of ACM WiNTECH, New York City,
NY, USA, October 2016.

[3] Colosseum. https://www.colosseum.net. Accessed April 2021.
[4] L. Bonati, S. D’Oro, L. Bertizzolo, E. Demirors, Z. Guan, S. Basagni,

and T. Melodia, “CellOS: Zero-touch Softwarized Open Cellular Net-
works,” Computer Networks, vol. 180, pp. 1–13, October 2020.

[5] Z. Xiong, Y. Zhang, D. Niyato, R. Deng, P. Wang, and L.-C. Wang,
“Deep Reinforcement Learning for Mobile 5G and Beyond: Funda-
mentals, Applications, and Challenges,” IEEE Vehicular Technology
Magazine, vol. 14, no. 2, pp. 44–52, June 2019.

[6] S. D’Oro, L. Bonati, F. Restuccia, and T. Melodia, “Coordinated 5G
Network Slicing: How Constructive Interference Can Boost Network
Throughput,” IEEE/ACM Transactions on Networking, vol. 29, no. 4,
pp. 1881–1894, August 2021.

[7] R. Li, Z. Zhao, Q. Sun, I. Chih-Lin, C. Yang, X. Chen, M. Zhao, and
H. Zhang, “Deep Reinforcement Learning for Resource Management in
Network Slicing,” IEEE Access, vol. 6, pp. 1–4, November 2018.

[8] S. Chinchali, P. Hu, T. Chu, M. Sharma, M. Bansal, R. Misra,
M. Pavone, and S. Katti, “Cellular Network Traffic Scheduling with
Deep Reinforcement Learning,” in Proceedings of the AAAI Conference
on Artificial Intelligence, April 2018.

[9] L. Bonati, S. D’Oro, M. Polese, S. Basagni, and T. Melodia, “In-
telligence and Learning in O-RAN for Data-driven NextG Cellular
Networks,” IEEE Communications Magazine, 2021.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level Control through Deep Reinforcement Learning,”
Nature, vol. 518, no. 7540, pp. 529–533, February 2015.

[11] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep Reinforcement Learning: A Brief Survey,” IEEE Signal Process-
ing Magazine, vol. 34, no. 6, pp. 26–38, November 2017.

[12] H. Abdi and L. J. Williams, “Principal Component Analysis,” Wiley
Interdisciplinary Reviews: Computational Statistics, vol. 2, no. 4, pp.
433–459, 2010.

[13] DARPA Spectrum Collaboration Challenge. https://www.darpa.mil/
program/spectrum-collaboration-challenge. Accessed August 2021.

[14] L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “SCOPE: An Open and
Softwarized Prototyping Platform for NextG Systems,” in Proceedings
of ACM MobiSys, Virtual Conference, June 2021.

