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Abstract—For autonomous vehicles to operate without hu-
man intervention, information sharing from local sensors plays
a fundamental role. This can be challenging to handle with
bandwidth-constrained communication systems, which calls for
the adoption of new wireless technologies, such as the use of
the millimeter wave (mmWave) bands, to solve capacity issues.
Another approach is to exploit Unmanned Aerial Vehicles (UAVs),
able to provide human users and their cars with an aerial bird’s-
eye view of the scene otherwise unavailable, thus offering broader
and more centralized observations. To do so, we use the ns-3
simulator to conduct an end-to-end simulation campaign with
applications that model the transmission of information from a
UAYV to vehicles based on real data extracted from the Stanford
Drone Dataset. We design a novel framework to study four
scenarios representing different UAV-to-ground communication
strategies. In each scenario, a UAYV, operating at mmWaves,
broadcasts realistic sensory data to the ground as a means
to extend the (local) perception range of vehicles. This paper
provides the first evaluation of the trade-offs between centralized
data processing in the sky and distributed local processing on the
ground, with considerations related to the throughput, latency
and reliability of the communication process.

Index Terms—UAVs, vehicular networks, millimeter waves,
offloading, e nd-to-end p erformance, ns-3.

I. INTRODUCTION

The scientific community is witnessing an increasing inter-
est in research and experimentation on autonomous driving
vehicles, powered by the several benefits they p rovide (from
improved safety to more efficient traffic management) and the
market potential they generate [1].

For future vehicles to be fully autonomous, they will be
equipped with diverse and heterogeneous sensors, from optical
cameras to Light Detection and Ranging (LiDAR) sensors,
able to perceive the environment and identify road entities
in the surroundings [2]. In this scenario, more robust scene
understanding can be achieved if vehicles share sensory data
with other vehicles, which however imposes strict demands in
terms of data rates, that may be difficult to support with legacy
bandwidth-constrained communication systems [3]. One way
to solve this issue is to compress and process the data before
transmission [4], as well as to operate at high frequencies,
e.g., in the millimeter wave (mmWave) bands, where the
large spectrum available, in combination with Multiple Input
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Multiple Output (MIMO) technologies, can support ultra-
high transmission rates [5]. At the same time, Unmanned
Aerial Vehicles (UAVs), mainly known as drones, have rapidly
become popular thanks to the ease of deployment, low main-
tenance and operating costs, and native support for ubiquitous
broadband coverage. When equipped with sensors, UAVs can
enable several services, from crowd monitoring [6] to airspace
surveillance and border patrol [7]. Drones have been further
studied as a solution to provide connectivity to ground users
and first responders in emergency situations [8], e.g., when
cellular infrastructures are unavailable or no longer opera-
tional [9]. In recent years, UAVs have been also considered
to support autonomous driving applications, especially for
vehicular edge computing [10] and traffic management [11].
In fact, UAVs operating from the sky can guarantee a birds’-
eye wide perception of the scene that would not be available
from vehicles’ (local) sensor acquisitions, thus achieving more
centralized and precise observations. Despite these benefits,
however, the limited battery power and computational capac-
ity available at the UAVs raise the questions of where to
process and how to disseminate sensory data on the ground,
in view of latency constraints. Today, UAV communication
is typically enabled by legacy wireless technologies such
as Long Term Evolution (LTE) [12] which, however, may
not satisfy the boldest latency and throughput requirements
of future vehicular networks. In this respect, several prior
works have demonstrated the feasibility of operating UAVs at
mmWaves [13], and characterized the optimal beamforming
and deployment options for aerial nodes [14].

Based on the above introduction, in this paper we evaluate
the feasibility of implementing a novel autonomous driving
framework by relying on real-world UAV’s observations, and
whether sensory information from the sky can be efficiently
delivered to ground vehicles, possibly operating at mmWaves.
To do so, we investigate several communication options be-
tween the UAV and the vehicles, each of which involves three
main components: a UAV where sensory data are generated, a
base station (BS) acting as a relay, and multiple autonomous
vehicles. Notably, we study whether autonomous driving tasks
based on these data (e.g., object detection) should be processed
on board the UAV, or delegated to on-the-ground nodes. The
performance of the different schemes will be evaluated in
Network Simulator 3 (ns-3) using the mmwave module [15]
and real-world UAV data collected in the Stanford Drone
Dataset [16], which promotes extreme levels of realism and

1610

Authorized licensed use limited to: Northeastern University. Downloaded on January 19,2023 at 22:42:17 UTC from IEEE Xplore. Restrictions apply.



2022 IEEE Globecom Workshops (GC Wkshps): 3rd Workshop on Network Management for 6G Communication Systems (NetMan6G)

N
@

(a) Multiple full frames (MFF) (b) Broadcast full frames (BFF)

o

€ =2

(c) Broadcast frames and annotations (BFA) (d) Broadcast annotations only (BAO)

Fig. 1: An illustration of the four UAV-to-ground communication scenarios. A chip icon is placed adjacent to the node that is performing the object detection.

allows to analyze the network considering full-stack end-to-
end metrics. Our preliminary results demonstrate that data
processing at the BS guarantees more efficient communication,
in view of the limited power and computational capabilities of
the UAV. The communication network model and an energy
model will be combined in future work to characterize the
computational and time complexity of the object detection task
on the UAV, BS, and ground vehicle hardware.

The rest of this paper is organized as follows. In Sec. II
we review the most recent works on UAV-based autonomous
driving research, in Sec. III we present our system model
and communication scenarios, in Sec. IV we describe how
we extended ns-3 to simulate UAV-to-ground communication,
in Sec. V we present our main numerical results, whereas
conclusions are summarized in Sec. VL.

II. STATE OF THE ART

In this section, we discuss the recent research in the area of
UAV-based autonomous driving, specifically computational of-
floading and data dissemination. Hayat et al., in [17], evaluate
the burden of data (image) processing for UAV autonomous
navigation, that can be done on board, or fully/partially
offloaded to an edge server. Similarly, in [18] the authors study
the performance of UAV edge computing using Hydra, an
architecture for the establishment of flexible sensing-analysis-
control pipelines over autonomous airborne systems.

If cellular infrastructures are unavailable (e.g., damaged by
natural disasters), data offloading can be also between ground
vehicles, whose limited computing and energy resources make
it difficult to execute computationally sensitive mobile appli-
cations on board, and aerial platforms. In [19], the author
suggests offloading computing tasks from the ground to UAVs
that carry edge serves, and proposes an algorithm to minimize
the total energy and time required for the UAVs to complete
the offloaded tasks while optimizing their 3D flying height
and horizontal positions. Computational offloading may be
also assisted by high altitude platforms (HAPs), as proposed
in [20], where the authors designed a framework to offload
communication and computational resources to aerial nodes
to maximize the total number of user device requests with
satisfied delay requirements while minimizing the total energy
consumption. Similarly, in our prior work [10], we formalized
an optimization problem in which tasks are modeled as a
Poisson arrival process and applied queuing theory to identify

how ground vehicles should offload resource-hungry tasks to
UAVs, HAPs, or a combination of the two.

With respect to the state of the art, in this paper we do not
focus on computational offloading, but rather on how UAV
data are disseminated to ground vehicles, and where to process
them. Moreover, while most literature focuses on UAV-to-
ground communication in the legacy bands, and/or considers
link-level evaluations, we perform end-to-end simulations in
ns-3 considering mmWave frequencies, as well as both on-
board and fully-offloaded computation.

III. UAV-TO-GROUND COMMUNICATION SCENARIOS

In this section we present four possible strategies for UAV-
to-ground communication, as illustrated in Fig. 1. Notably,
each scenario consists of the following elements: a UAV that
is recording videos from the sky, N autonomous cars on the
ground, and a BS (or gNB, in 5G NR parlance) forwarding
data from the UAV to the cars. The UAV is placed at the center
of the scene (e.g., at a road intersection) at height h, the BS
is placed on the ground, perpendicular to the UAV in order
to maintain a stable connection, and vehicles are allocated
randomly within a rectangle.

The four models differ in the way the data are broadcast,
and the location of the computing platform (the chip icon in
Fig. 1) where UAV sensory data is processed to detect critical
road entities in the scene.

a) Scenario 1 — Multiple full frames (MFF): In the
first scenario (Fig. la) the drone is sending video frames
via the BS at a rate Fpame to each ground vehicle, which
will eventually perform object detection using its own on-
board computational capacity. The frame rate is not optimized
so, in a situation where all packets are delivered without
errors (best-case scenario), the total frame rate in the first
link (UAV-BS) would be equal to N Ffame, i.€., the sum of
the video frames sent in each second link (BS-vehicle). On
the downside, computation on board vehicles may incur non-
negligible delays given the limited capacity of budget vehicles,
and the data rate in the first link would be N times larger than
the total data rate of each second link. In turn, this approach
does not require coordination with the BS.

b) Scenario 2 — Broadcast full frames (BFF): In the
second scenario (Fig. 1b), video frames are sent at an opti-
mized rate. While in the MFF scenario sensory data in the
first link were replicated [N times, with optimized settings
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the UAV sends only one video frame to the BS, which will
create N copies of the received packets and eventually forward
them to each of the IV cars. Finally, each vehicle will perform
object detection on the received data, which may still incur
long delays due to computational limitations. Ideally, the
throughput in the first link would be equal to the throughput of
each second link. In other words, the ideal throughput of the
first link is IV times smaller than the sum of the throughput
of all the second links.

c) Scenario 3 — Broadcast frames and annotations
(BFA): In the third scenario (Fig. 1c) the UAV sends one
copy of all the video frames to the BS, which then performs
object detection on the received data. This approach promotes
faster processing than in the previous scenarios, as BSs are
typically connected to continuous power sources and do not
pose strict limitations in terms of computational capacity,
space and storage [21]. Eventually, the processed output (i.e.,
coordinates of bounding boxes of the detected objects in each
video frame, also referred to as annotations) is returned to the
ground vehicles at a frame rate Fy;,., in a packet of a much
smaller size than the original frame, which allows reducing
the communication latency on the second links. In particular,
the size of an annotation « is calculated as a = N3, where 3
is the memory size of a bounding box and N is the number
of detected objects. To find the value of 3, we made offline
simulations to generate bounding boxes from real-world UAV
video recordings collected in the Stanford Drone Dataset [16].
To do so, we used the YoloV5 algorithm [22], a common
benchmark in this field.

d) Scenario 4 — Broadcast annotations only (BAO): In
the fourth scenario (Fig. 1d), object detection is performed as
soon as the video frame is generated, i.e., on board the UAV.
While this allows low-size annotations to be sent already on
the first link, as well as on the second link, thereby reducing
the overall communication latency, the computational capacity
of aerial nodes is generally lower than that available at the
BSs, which may increase the processing delay compared to
the BFA scenario. Ideally, the per-user throughput in the first
link is equal to the per-user throughput in each second link.

IV. NS-3 IMPLEMENTATION

In this section, we describe how we extended the ns-3
simulator to implement the four communication scenarios
presented in Sec. III. While most simulators focus on Physical
(PHY) and Medium Access Control (MAC) layer designs
and sacrifice the accuracy of the higher layers to reduce the
computational complexity, ns-3 incorporates accurate models
of the whole protocol stack, thus enabling scalable end-to-end
simulations. In particular, in our work communication nodes
operate at mmWaves. As such, we use the ns3-mmwave
module, described in [15], which enables the simulation of
5G-NR-compliant end-to-end cellular networks at mmWave
frequencies. It features a complete stack for User Equipments
(UEs) and gNBs, with custom PHY (described in [23]) and
MAC layers with an Orthogonal Frequency Division Mul-
tiplexing (OFDM) frame structure, dynamic Time Division

TABLE I: Main simulation parameters.

Parameter Value

Carrier frequency 28 GHz
Bandwidth 1 GHz

BS TX power 30 dBm

UAV TX power 30 dBm

RLC buffer size 10 MB
Frame rate {15,30} FPS
Frame size See Fig. 2
Number of UEs {4,21}
Simulation time 15s

Duplexing (TDD), Adaptive Modulation and Coding (AMC),
and several scheduler implementations. Thanks to the inte-
gration with ns-3, it also features a complete implementation
of the User Datagram Protocol (UDP) stack. The simulator
also features antenna and beamforming models for mmWave
communications [24], as well as a 3GPP-compliant chan-
nel model where UAVs are characterized by a particularly
strong Line-of-Sight (LOS) link, which provides more robust
channels compared to terrestrial networks. In terms of the
implementation, in the MFF scenario UDP is installed at the
end vehicles: the UAV is set up as a client while vehicles
as servers. With this configuration, the UAV sends the same
amount of packets N Ff.ame to every car. On the other hand, to
implement broadcast communications in the other scenarios,
some changes were applied to the ns3-mmwave module that
manages the forwarding of the packets at the BS. With these
changes, the UAV is sending only one copy of each packet to
the BS, that in turn produces N copies of the received packet,
which are transmitted to the vehicles on the ground. Finally,
the packet size and the packet sending rate are set. For the
simulations where the size of a single video frame recorded
by the UAV is larger than the maximum size of a UDP packet
(UDPp,cx), the data must be split and sent in smaller packets
of size UDP, . In MFF and BFF and in the first link of BFA,
the packets sending rate is equal to 1/((7 - Frame)/UDPpek)
where ¢ is the total size in Byte of the sensory video frame to
be sent, and F}4me 18 the source frame rate. For the second link
in BFA, and in BAO, the annotation rate is 1/(Fanno/(8-N)).

V. PERFORMANCE EVALUATION

In this section, we introduce our performance evaluation
setup and discuss the simulation performance of the different
UAV-to-ground communication scenarios.

A. Simulation Parameters

Our simulator implements the communication scenarios
described in Sec. III. The main parameters for the simulations
are described in Table I. We also provide the source code and
simulation scripts as a reference.! We run the simulations with
the ns-3 Simulation Execution Manager (SEM) library [25],
which takes care of running multiple statistically independent
instances of the same scenario and collecting relevant metrics.

Uhttps://bitbucket.org/mat_bord/autonomous-driving-from-the-sky
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Fig. 2: Size of each video frame vs. the number of detected objects/vehicles.

The ns-3 simulation time is set to 15 s, and we consider the
following parameters:

o Application frame rate. According to the Stanford Drone
Dataset, the camera of the UAV records at Fiame €
{15,30} frames per second (FPS). Therefore, we set the
frame rate of the ns-3 application generating UAV data to
1/ Firame (independently of weather annotations or video
frames are transmitted).

o Number of vehicles (N). It corresponds to the number

of objects detected in each video frame of the Stanford

Drone Dataset and sets the number of vehicles in each

simulation. Based on offline simulations, we obtained

that each processed video frame featured from 4 to 21

vehicles, as shown in Fig. 2.

Full frame size. It is the size of a video frame of the

Stanford Drone Dataset to be sent from the UAV. As

shown in Fig. 2 the video frame size does not follow

an increasing trend with the number of vehicles in the
video scene, i.e., the size of each video frame does not
necessarily correlate with the number of vehicles or the

color richness, resolution, and speed of objects [26].

o Annotation size a. It is the size of an annotation produced
after object detection. It is modeled as o = SN, where
B = 39.7 bytes is the average size of a single bounding
box detected by the YoloV5 detection algorithm [22], and
N is the number of vehicles in the scene.

We consider 90 random UAV video frames from the Stan-

ford Drone Dataset, and run multiple statistically independent
simulations to capture the following end-to-end metrics:

o Per-user throughput. It corresponds to the total number
of received bytes per user divided by the total simulation
time, averaged over all connected vehicles.

Per-user reliability. Tt is measured as the ratio between
the number of packets delivered to the cars without errors
and the total number of packets transmitted by the UAV.
Per-user latency. It is modeled as L1 + L2, where L1
represents the latency between the UAV and the BS
(uplink) and L2 represents the latency between the BS
and the vehicles (downlink), averaged over all connected
vehicles. Both L1 and L2 account for the transmission
time as well as the queuing time resulting from NR-
specific scheduling and buffering, as modeled in the
ns3-mmwave module.

These metrics are key to properly capture and model how
different communication setups can help achieve the au-
tonomous driving goals with information that (i) is collected
in a distributed fashion and (ii) needs to be timely delivered
to the vehicles, i.e., with low latency and transmission time
and high reliability.

B. Performance Evaluation

In the following paragraphs we compare the performance
of the different communication scenarios described in Sec. III.
Fig. 3 reports the end-to-end throughput, latency and reliability
for all configurations.

MFF scenario. The results in Fig. 3 clearly highlight that
the wireless network (despite a bandwidth of 1 GHz) cannot
support MFF with more than 11 vehicles and 30 FPS. Notably,
the throughput (Fig. 3a) and reliability (Fig. 3c) decrease,
while the latency (Fig. 3b) increases to more than 200 ms.
This is due to the bottleneck in the first link (UAV-BS), which
transmits N times more data compared to each second link
(BS-car). Notice that the latency of the second link is not
particularly representative, as it is relative to only the correctly
received packets. Given that most packet losses happen on the

—e— MFF, 30 fps

MFF, 15fps —— BFF, 30fps - -4~ - BFF, 15fps —a— BFA, 30fps - -e- - BFA, 15fps
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(a) Per-user throughput.

Number of vehicles

(b) Per-user latency.
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Fig. 3: Performance evaluation for the 4 communication scenarios, with two different frame rates. MFF stands for multiple full frames, with the UAV sending
one video frame for each vehicle, then relayed by the BS. BFF stands for broadcast full frames, with the UAV sending a common reference video frame for
all vehicles, then relayed by the BS. With broadcast frames and annotations, or BFA, the UAV sends the common reference video frame, and the BS forwards
only the annotations. Finally, with broadcast annotations only, or BAO, the UAV sends annotations which are then relayed by the BS.
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first link, which makes the system less congested, the (few)
packets that make it to the second link are then transmitted
with very low latency. This also explains the latency plateau of
around 200 ms, due to the fact that the UAV transmit buffer
(e.g., at the Radio Link Control (RLC) layer) overflows for
more than 11 cars. On the other hand, the MFF configuration
can better support an application generating data at 15 FPS, as
a consequence of the 50% less traffic on the UAV-BS link, and
the resulting less populated RLC queues at the UAV. The sys-
tem performance is stable for up to 19 vehicles (Fig. 3a). After
this threshold, the UAV buffer saturates causing degradation
in latency (which reaches the 200 ms plateau) and reliability.

BFF scenario. The BFF strategy is more efficient than
MFF, as it does not saturate the UAV buffer and the capacity
of the first link by avoiding unnecessary duplication of the
video frames in the uplink. The performance of BFF with an
application rate of 30 FPS only degrades for more than 20
connected vehicles. Unlike MFF, this is due to a saturation
of resources in the downlink, i.e., in the second links from
the BS to the end vehicles. In fact, Fig. 2 shows that the file
size of a video frame with few users (e.g., 4) is comparable
with the file size of a video frame with 21 users. In the first
case, however, the resources on the wireless link are split only
among the UAV (uplink) and 4 more users (downlink), while
in the latter more than 20 users contend for the same downlink
resources, which may saturate the available capacity. BFF also
easily sustains the performance with 15 FPS at the application.

This strategy, while being more efficient than MFF, requires
the support for multicasting at the RAN, a feature that has been
only recently standardized in 5G networks [27].

BFA scenario. BFA, which assumes data processing at
the BS and the transmission of annotations in the downlink,
manages to easily support the traffic for all the users in the
tested environment. Fig. 3c and Fig. 3b show that this scheme
provides ultra-high reliability, with an average of 98.472%
correctly delivered annotations, and an end-to-end latency as
low as 3 ms, respectively. In this case, the performance with
30 and 15 FPS is comparable. Notice that the BFA throughput
is reasonably lower than that of MFF and BFF. This is due
to the much lower size of annotations compared to video
frames (on average up to 4 orders of magnitude), which limits
the source rate on the second link. In Fig. 4 we plot the
average per-user latency in the uplink L, i.e., the UAV-BS
link, and in the downlink Lo, i.e., the BS-car links. We can
see that in BFA the throughput in the uplink, where video
frames are transmitted, is higher than the throughput in the
downlink. Nonetheless, the latency is lower in the first link.
This can be explained by considering the resource scheduling
process implemented in the simulated 5G BS. As discussed
in Sec. IV, this follows a TDD scheme, where the resources
are first split between the uplink and the downlink, and then
assigned to each uplink or downlink user. In this case, the UAV
is the only uplink user — thus it does not have to contend for
resources with other users. Additionally, to accommodate for
the analog beamforming implemented at the BS to improve the
link budget with the vehicles at mmWaves, each symbol at the
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Fig. 4: Average per-user latency in the uplink (UAV-BS, or L1) and downlink
(BS-vehicles, or L2) considering the BFA scenario.

PHY layer is allocated to a single user at a time. This further
deteriorates the contention performance in the downlink and
results in lower efficiency (in the resource allocation) with
higher latency. Future developments can try to address this
by using different scheduler implementations, frequency range
(which does not require beamforming), or hybrid beamforming
schemes [28].

BAO scenario. In this case, we assume data processing
at the UAV, and the transmission of only annotations (with a
size proportional to the number of vehicles) in the two links.
While the throughput is as low as 0.208 Mbit/s (0.104 Mbit/s)
for 30 (15) FPS, as expected, the reliability increases with
respect to BFA to 99.66% for 30 FPS and 99.88% for 15
FPS. The latency is 2.922 ms on average for both 30 and 15
FPS, regardless of the number of vehicles in the scenario.

Overall end-to-end comparison. This analysis clearly
highlights that throughput should not be the only metric used
to profile the performance of data dissemination systems in
the context of vehicular networks. A more important metric,
which is independent of the application source rate, is indeed
the end-to-end reliability, which indicates (in this case) how
many video frames or annotations are received correctly. The
throughput analysis then can provide inputs on what kind
of dissemination strategy a certain wireless network (in this
case, a 5G mmWave deployment) can support. In Fig. 3a the
highest throughput is obtained in the BFF scenario with 30
FPS, where the UAV is sending only one copy of each video
frame in the first link and then the BS is broadcasting the
received information to each connected vehicle. However, with
more than 20 users the latency drastically increases (Fig. 3b)
and the reliability decreases (Fig. 3c). The scenarios that are
transmitting only annotations (BFA only in the downlink, BAO
in both uplink and downlink) have the highest reliability and
the lowest latency overall. Moreover, in both scenarios, the in-
formation that each car is receiving is the same, but in one case
the object detection has to be performed by the BS while in the
other it has to be performed by the UAV. On one side, the UAV
has generally more energy and computational constraints than
the BS, which makes BOA more desirable. On the other side,
BFA may be the only available choice in those environments
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lacking coverage from terrestrial infrastructures [29]. Further
studies on power consumption will help understand what is the
final choice for UAV-to-ground communication, depending on
whether it is feasible to perform object detection at the UAV.

VI. CONCLUSIONS

In this paper, we presented and evaluated four communi-
cation frameworks between UAVs and ground vehicles for
the dissemination of UAV sensory observations to augment
vehicles’ autonomous driving capabilities, based on high-
capacity mmWave links. We assessed the performance of four
different communication scenarios, with applications trans-
mitting data at 15 and 30 FPS with UDP at the transport
layer. An extensive performance evaluation based on real-
world UAV data and considering ns-3 simulations showed
that those configurations that transmit annotations (rather than
video frames) achieve the best performance in terms of latency
and reliability. For up to 21 connected users, they guarantee
a latency of around 2 ms and reliability above 99%. Our
results provide a first quantitative evaluation of the feasibility
of complementing a vehicle’s on-board sensors with UAV data
from the sky. As part of our future work, we will combine
the communication network model with an energy model that
profiles the computational and time complexity of the object
detection task on the UAV, BS, and ground vehicle hardware.
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