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Current cellular networks rely on closed and inflexible infrastructure tightly controlled by a handful of vendors. 

Their configuration requires vendor support and lengthy manual operations, which prevent Telco Operators (TOs) 

from unlocking the full network potential and from performing fine grained performance optimization, especially 

on a per-user basis. To address these key issues, this paper introduces CellOS, a fully automated optimization and 

management framework for cellular networks that requires negligible intervention ( “zero-touch ”). CellOS lever- 

ages softwarization and automatic optimization principles to bridge Software-Defined Networking (SDN) and 

cross-layer optimization. Unlike state-of-the-art SDN-inspired solutions for cellular networking, CellOS: (i) Hides 

low-level network details through a general virtual network abstraction ; (ii) allows TOs to define high-level con- 

trol objectives to dictate the desired network behavior without requiring knowledge of optimization techniques, 

and (iii) automatically generates and executes distributed control programs for simultaneous optimization of 

heterogeneous control objectives on multiple network slices. CellOS has been implemented and evaluated on 

an indoor testbed with two different LTE-compliant implementations: OpenAirInterface and srsLTE. We further 

demonstrated CellOS capabilities on the long-range outdoor POWDER-RENEW PAWR 5G platform. Results from 

scenarios with multiple base stations and users show that CellOS is platform-independent and self-adapts to di- 

verse network deployments. Our investigation shows that CellOS outperforms existing solutions on key metrics, 

including throughput (up to 86% improvement), energy efficiency (up to 84%) and fairness (up to 29%). 
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. Introduction 

Current, state-of-the-art cellular networks rely on proprietary and in-
exible hardware and software solutions produced and maintained by

ew vendors. These closed architectures generally require manual con-
guration, preventing Telco Operators (TOs) from being able to fully
ontrolling resources such as spectrum, computing and transmission
ower to optimize network performance [1–3] . Remedies to this funda-
ental limitation have been piecemeal, often based on offline solutions

or frequency assignment and network planning [4,5] . Optimizing time-
ensitive network functionalities also rests on heuristics often engraved
n the hardware fabric [6,7] . As of today, autonomous optimization of
etwork parameters and swift and flexible control of real-time require-
ents of lower layer protocols are a territory that is largely uncharted. 

Through Software-Defined Networking (SDN), TOs are breaking the
mposed vendor lock-in by leaving the static and monolithic Radio Ac-
ess Network (RAN) architecture in favor of using a dynamically pro-
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rammable, i.e., softwarized, open RAN for rapid and innovative network
eployments [1,2,8–10] . Although the benefits of such an open and
ulti-vendor approach have been showcased widely [11] , how to fully

mbed softwarization in the future 5G infrastructure remains unsettled,
s the highly dynamic and distributed nature of cellular networks is not
menable to be addressed by the centralized SDN approach. This issue
s further exacerbated by the increasing densification of cellular deploy-
ents and users, which makes non-automated control ineffective, if fea-

ible at all. This is witnessed by recent works on cellular and wireless
DN clearly lamenting that the swift dynamics of these networks gen-
rate an overwhelming amount of signaling traffic, hardly bearable by
raditional softwarized controllers [12–15] . As a consequence, current
ardware implementations and centralized softwarized approaches do
ot allow timely optimization of network behavior and the increasingly
eeded superior network performance [16,17] . 

TOs are extremely sensitive to these issues. For example, the
uropean Telecommunications Standards Institute (ETSI) formed the
ant CNS-1618727 and in part by the US Office of Naval Research under Grants 
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Fig. 1. CellOS at a glance as instantiated for the 3GPP architecture. 
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ero-touch Network and Service Management group to define fully-
utomated —zero-touch —paradigms to provide flexibility to the highly
ecentralized technology of future wireless [18] . Similarly, the latest re-
eases of the 3rd Generation Partnership Project (3GPP) include a func-
ional split of 5G NR 

1 base stations (called gNBs) capabilities, so that
etwork control decisions that involve large time scales are made at the
NB Central Unit (gNB-CU), while lower layer and time-sensitive pro-
edures are executed at the gNB Distributed Units (gNB-DUs) deployed
loser to the users [21] . The Linux Foundation and the O-RAN Alliance
re promoting and building the Open Network Automation Platform
ONAP) and O-RAN, two automated orchestration frameworks to tran-
ition the rigid cellular infrastructure to an elastic and softwarized open

AN [22,23] . We observe that, although these approaches foresee net-
ork optimization as pivotal, they do not directly implement it. As of
ow, this is left to the wits of the TOand to the best of our knowledge
here is no zero-touch solution yet to perform it dynamically. 

This paper contributes to the efforts toward automated softwarization

nd self optimization of future 5G networks by proposing CellOS, the first
ero-touch software framework for next-generation cellular networks.
ike an operating system interfacing hardware and software functions
whence the name), CellOS flexibly bridges SDN with cross-layer dis-
ributed optimization techniques for the cellular architecture. We push
he SDN paradigm beyond the traditional separation of control and data
lanes, in that we also decouple control from optimization, adding fur-
her and unprecedented flexibility. Responding fully to ETSI require-
ents and industry interests, CellOS enables zero-touch control and opti-

ization of low-level network functionalities by providing TOs with an
fficient, automated, modular, and flexible network control platform.
pecifically, CellOS (i) allows TOs to define centralized and high-level
ontrol objectives (e.g., “maximize network throughput ”) without re-
uiring expertise in cross-layer optimization theory or knowledge of
etwork specifics; (ii) provides a general virtual network abstraction that
hields the TOfrom the complexity of a sophisticated framework by ab-
tracting network infrastructure and parameters, including those known
t run-time only (e.g., user-to-base station associations and channel infor-
ation); (iii) automatically converts high-level control directives into

istributed cross-layer control programs to be executed at each network
dge element, and (iv) enables zero-touch optimization of distinct con-

rol objectives on different network slices coexisting on the same infrastruc-

ure [24] . 
Fig. 1 illustrates the overall structure of CellOS, exemplified for the

GPP network architecture. 
The upper-left side of the figure depicts the high level Application

rogramming Interfaces (APIs) that the TOs can use to define the net-
ork control objectives. On the bottom we indicate the components of

he framework for automatic generation of the optimization problems
nd their decomposition into control programs. In a 3GPP scenario this
nit corresponds to the gNB-CU, a logical node primarily concerned
ith control decisions at larger time-scales. On the right, we describe

he softwarized RAN that will execute the generated programs. In the
1 Initially introduced as “New Radio ” in 3GPP [19] , the term NR now generi- 

ally refers to the 5G Radio Access Network, having lost its original meaning in 

he latest 3GPP specifications [20] . 
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GPP context, this task would be carried out by the gNB-DU, a logical
ode that makes time-sensitive decisions involving the lower layers of
he protocol stack, and that is interfaced with the gNB-CU. 

We have prototyped CellOS on heterogeneous Long Term Evolu-
ion (LTE)-compliant testbeds. We have chosen two different imple-
entations of the LTE stack, namely, OpenAirInterface (OAI) [25] and

rsLTE [26] , to show that our framework is not tied to any specific RAN
nfrastructure. Our experiments consider a variety of scenarios with mul-
iple base stations and users to show that CellOS optimizes the network
erformance by swiftly adapting to varying network configurations and
ettings. We also show the gains in performance that CellOS can bring
o RAN implementations for cellular networks, such as OAI and srsLTE,
s well as to Medium Access Control (MAC)-layer scheduling algorithms
ommonly used in cellular networks, i.e., proportional fairness, greedy,
nd round-robin scheduling algorithms. Results of the comparative per-
ormance evaluation of CellOS and prevailing baseline solutions show
hat using our framework remarkably improves key performance met-
ics, such as throughput (up to 86%), energy efficiency (up to 84%) and
ser fairness (up to 29%). We also show that CellOS is transparent to the
se of network slicing technologies [27–29] , enabling TOs to simulta-
eously optimize different network functions on distinct network slices.
o the best our knowledge this is the first such demonstration, paving
he way to the independent management of optimized network slices in
G systems. Finally, and for the first time, we provide evidence of the
otentials of zero-touch optimization in a softwarized RAN ecosystem by
esting CellOS on the long-range open-source POWDER-RENEW PAWR
G platform [30,31] . Our results show that CellOS seamlessly interacts
ith the LTE protocol stack by optimizing resource allocation strategies,

uccessfully increasing the average throughput by 23%. 
The remainder of the paper is organized as follows.

ection 2 presents CellOS in the 3GPP context, and a succinct
verview of its main components. Details of its architecture are
rovided in Section 3 . An example of CellOS operations is given
n Section 4 . An LTE-compliant prototype of CellOS is illustrated
n Section 5 . Section 6 reports the performance evaluation of CellOS on
arious testbeds, including a lab bench setup, the Arena testbed [32] ,
nd the POWDER-RENEW PAWR 5G platform [30,31] , using both the
AI and srsLTE RAN implementations with multiple base stations and
sers. Work related to our research is surveyed in Section 7 . Finally,
ection 8 concludes the paper. 

. CellOS in a 5G flair 

This section provides a primer on 5G NR, and an overview of the
ain CellOS components and on how they can be integrated in the
U/DU functional split introduced by NR. 

.1. A brief overview of 5G NR 

Compared to LTE, the 3GPP introduced a series of innovations in
R both in terms of layers of the protocol stack and functionalities, in-
luding the support for a wider range of carrier frequencies [33] . The NR
rame was endowed with a more flexible structure, which, although still
eing based on Orthogonal Frequency-division Multiplexing (OFDM),
oncerns a variable number of symbols per subframe and larger band-
idths with up to 400 MHz per carrier. The 5G RAN can operate in two
istinct configurations: Non-standalone , i.e., paired with an LTE core
etwork, and standalone , i.e., connected to the new 5G Core. Finally,
R base stations, called gNBs, can be deployed in a distributed manner
cross the network, dividing various parts of the NR protocol stack in
ifferent hardware components. 

One of the main innovations that NR introduces is the split of the
ayers of the protocol stack of gNBs into distinct units. These, namely
NB Central Unit (gNB-CU) and gNB Distributed Unit (gNB-DU), can
e deployed in separate locations across the cellular network [21] (see
ig. 1 ). Specifically, the gNB-CU, which can control multiple gNB-DUs,
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nvolves the higher layers of the 3GPP protocol stack (i.e., Packet Data
onvergence Protocol (PDCP), Service Data Adaptation Protocol (SDAP)
nd Radio Resource Control (RRC)) and makes decisions at larger time
cales. The gNB-DU, instead, is deployed closer to the edge of the net-
ork and executes time-sensitive procedures, which involve the Ra-
io Link Control (RLC), MAC, and Physical (PHY) layers of the pro-
ocol stack. Moreover, the PHY layer of the gNB-DU can be addition-
lly be broken down in a standalone gNB Radio Unit (gNB-RU), which
erforms functions such as power amplification and signal transmis-
ion/reception [34] . 

While proposed by the 3GPP in [35] , this separation has received
ignificant attention due to O-RAN [23] , which defined a series of in-
erfaces between the aforementioned gNB elements and a RAN Intel-
igent Controller (RIC), deployed at the edge of the network. The RIC
xecutes different functions of O-RAN, such as radio resource manage-
ent, higher layers procedures and policy optimization, and control of
AN elements and resources. Moreover, the RIC includes an applica-

ion layer, which can host third-party components, such as CellOS, that
egulate the behavior of the network. 

.2. CellOS in a nutshell 

A bird’s-eye view of the CellOS architecture is shown in Fig. 1 . In
ine with the 3GPP functional split [21] , CellOS is partitioned in gNB-
U and gNB-DU modular units to decouple the definition of network
ontrol procedures (at the gNB-CU) from their execution (at the gNB-
U). CellOS main components are the interface to the TO(providing the
roblem Definition APIs ) and the automatic Optimization Framework at
he gNB-CU, and the Softwarized RAN Environment at the gNB-DU. 

By means of a rich variety of APIs, the TOsets the network control
bjective through high level, highly descriptive directives (e.g., “maxi-
ize throughput ”), providing few key parameters (e.g., the number of

ase stations). That is all the TO needs to specify, as CellOS abstracts the
nderlying network structure, hiding lower-level details to the TOand
apping network elements such as base stations and User Equipments

UEs) into virtual ones ( Network Abstraction block of our Optimization
ramework). As soon as the desired control objective is specified, Cel-
OS converts it into a set of mathematical expressions that are used to
efine a centralized optimization problem, namely, the analytical rep-
esentation of the optimization objective and of its constraints ( Problem

eneration block in Fig. 1 ). The generated problem is then automati-

ally decomposed into a set of distributed sub-problems, one for each
f the edge elements (e.g., base stations). This is done by the decom-

osition engine , a core component of the Problem Decomposition block.
ased on rigorous mathematical techniques, the centralized problem is
artitioned both horizontally (decoupling variables belonging to differ-
Fig. 2. The CellOS
nt elements) and vertically (decoupling variables from different layers
f each element’s protocol stack). The obtained sub-problems are then
utomatically converted into executable programs that are individually
ispatched to each element ( distributed solution programs , in the Soft-

arized RAN Environment ). Finally, each base station updates the dis-
ributed solution program with the real-time network parameters gath-
red from the RAN software stacks, and runs it through its local solver.
t is worth mentioning that CellOS is independent of any specific RAN
nd can be interfaced with any other current or future 5G softwarized
ellular stack. Finally, since CellOS edge elements have access to net-
ork real-time information by interfacing with the RAN software stacks

e.g., OAI, srsLTE), they update the received distributed control pro-
rams, adapting to the network time-varying dynamics, such as user
rrival/departure, and mobility. 

. CellOS architecture 

In this section, we describe in details the components of the CellOS
rchitecture, depicted in Fig. 2 . 

.1. Problem definition APIs 

CellOS defines a rich set of APIs to specify general high-level infor-
ation about the desired network configuration and optimization. These
PIs include functions to add base stations and for setting per-user re-
uirements (e.g., minimum rate guarantees). The network control objec-
ive can be specified through a simple textual string, e.g., max(rate) to
aximize the network rate, min(power) to minimize the overall power

onsumption. 
An example of CellOS APIs and of the few lines of code needed to

rogram a network objective are shown in Listing 1 . In this example, the
Oinstantiates a new network with a number bs_num of base stations
line 2), and gets the network slices instantiated in the network (line 3).
n optimization problem aiming at minimizing the transmission power
ver a specific network slice ( slices[0] ) is then simply set in line 4,
ith constraints for guaranteeing a minimum rate defined in line 5. It is
orth noting that existing slices of the network, active subscribers, and
ssociations of the two, are known a priori by the TO, and stored, for
nstance, in the cellular core network. We observe that very few lines
f code are needed for the TOto set the network goal, after which no
urther interaction is required. This is because CellOS, dovetailed with
he ETSI zero-touch principles [18] , hides all low-level network details
e.g., channel status, position of mobile users) from the TOthrough the
etwork abstraction module ( Section 3.2.3 ), and also automatically de-
nes and distributively solves the optimization problem corresponding
o the set control objective. 
 architecture. 
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Listing 1. CellOS API example. 
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Fig. 3. (a) Coupling graph for 𝑓 ( 𝐱) = 𝑥 2 ( 𝑥 4 + 𝑥 5 ) + 𝑥 3 ( 𝑥 4 + 𝑥 1 ∕ 𝑥 2 ) ; (b) Network 

scenario considered in Section 4 . 
While specifying the objective function in textual form is enough for
ellOS to properly work, experienced TOs can define tailor-made cus-
om and more advanced objective functions, optimization techniques,
nd solvers through an extension module . This provides additional APIs
or custom mathematical expressions and optimization constraints, and
t also allows the TOto select specific optimization techniques and
olvers, as well as to achieve fine-grained control of network param-
ters and functionalities. These are then fed to the optimization frame-
ork in a way similar to the preloaded APIs. As of now, CellOS allows

o specify functions expressed as linear combination of capacity, Signal-
o-Interference-plus-Noise Ratio (SINR), power, and energy efficiency
erms, which already enables TOs to formulate a large number of wire-
ess networking optimization problems [36] . 

.2. Optimization framework 

The heart of CellOS resides in its Optimization Framework, which:
i) Converts the high-level centralized code into an optimization prob-
em; (ii) decomposes it into sub-problems; (iii) creates and maintains an
bstraction of the network, and (iv) dispatches the solution problems to
he Softwarized RAN. 

.2.1. Problem generation 

In order to transform high-level specifications into an optimization
roblem, CellOS first pairs high-level abstraction directives (control ob-
ective and constraints) with available network elements (e.g., base
tations and users). This is accomplished by the instance mapper mod-

le that maps physical network elements to their virtual representa-
ion, and converts the control objective defined using high-level Cel-
OS APIs ( Section 3.1 ) into machine-understandable code. For example,
ax(sum(log(rate))) is converted into max 

∑
𝑢 ∈ log ( 𝑟 𝑢 ) , where  is the

et of UEs and r u their transmit rate. The generated utility is kept as
eneral as possible by using symbolic placeholders in lieu of parame-
ers whose value will only be known at run-time (e.g., UE-base station
ssociations, channel coefficients, interfering signals, etc.). In so doing,
ur Optimization Framework is UE-agnostic. It is the base stations that,
t run-time, replace the symbolic placeholders with their current value.
pecifically, base stations interfaced with CellOS expose parameters and
ariables that can be tuned and optimized. Thus, placeholders of the
enerated problems always match physical network capabilities. 

.2.2. Problem decomposition 

This component of the Optimization Framework partitions the cen-
ralized problem into multiple sub-problems, one for each network el-
ment, to be solved distributively at each base station. In general, the
entralized network control problem can be formalized as the following
etwork utility maximization problem 

aximize 
𝐱∈ 

𝑓 ( 𝐱) (CEN)

ubject to 𝑔 ( 𝐱) ≤ ℎ ( 𝐱) , ∀𝑖 ∈  (1)
𝑖 𝑖 
here x represents the optimization variables (e.g., scheduling policies
r transmission power levels),  is the strategy space (i.e., the set of
ll feasible strategy combinations), f ( · ) is the network-wide objec-
ive function (e.g., the overall capacity or the total energy efficiency
f the network). Inequality (1) represents the set  of constraints (e.g.,
he transmission power must be bounded by some constant value; each
hysical Resource Block (PRB) can be allocated to one UE only, etc.).
he biggest challenge in solving (CEN) is that both objective function
nd constraints are, in general, coupled to different edge elements and
o different layers of each element protocol stack. Because of this tight
oupling, generating distributed sub-problems that can be locally solved
y each base station becomes challenging. 

To address this challenge, CellOS first automatically identifies cou-
led variables and then applies rigorous decomposition to generate new
ub-instances of (CEN) that are automatically assembled into uncou-
led distributed programs to be executed at each base station. This is
ccomplished performing the following ( Fig. 2 ): variable detection and

lassification, coupling graph generation , decomposition (through the de-

omposition engine ), and distributed algorithms generation . 
Variable detection and classification CellOS starts by identifying the

ptimization variables of the network control problem. This is done by
arsing the generated objective function expression looking for symbolic
laceholders introduced therein. For instance, in (CEN) CellOS detects
 to be the set of optimization variables of the problem. Then, it de-
ermines which layer of the protocol stack houses which variable, e.g.,
ower belongs to the PHY layer, scheduling to the MAC layer, and so
n. CellOS then identifies to which base station each variable belongs
o. As a result, each variable is assigned to a specific base station and to
ne of its protocol stack layers. 

Coupling graph generation After detecting and classifying problem
ariables, CellOS organizes their coupling in a graph 𝐺 = ( 𝑉 , 𝐸) , where
 is the set of variables of the network control problem, which are joined
y an edge in E only if they are coupled. Similarly to what done in the
revious step, coupling among variables is detected through a symbolic
arser. As an example, a coupling graph for 𝑓 ( 𝐱) = 𝑥 2 ( 𝑥 4 + 𝑥 5 ) + 𝑥 3 ( 𝑥 4 +

𝑥 1 
𝑥 2 
) is shown in Fig. 3 a. Variables { 𝑥 𝑖 } 𝑖 =1 , 3 and { 𝑥 𝑗 } 𝑗=2 , 4 , 5 belong to eNB 1 

nd eNB 2 ( Fig. 3 b), respectively. Fig. 3 a shows that coupling is not lim-
ted to variables of a single eNB, but it might also involve those con-
rolled by other eNBs. 
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Decomposition engine Variable detection/classification and coupling
raphs are preliminary to automated problem decomposition, which
e perform by using well-established techniques, including duality the-
ry [37] and decomposition via partial linearization [16] (additional
nes can be implemented through the extension module of Fig. 2 ). Decom-
osability is achieved introducing auxiliary variables (e.g., Lagrangian
ultipliers, penalization terms, and aggregate interference functions)

hat remove coupling across optimization variables and generate objec-
ive functions and constraints with separable terms in the sense of [37] .
nfortunately, coupling in cellular networks involves heterogeneous
etwork elements and different layers of the protocol stack, resulting
n optimization problems whose utility or constraints are rarely separa-
le. For this reason, it is classified into horizontal coupling and vertical

oupling . The former reflects dependencies among different network el-
ments (e.g., among interfering base stations and their subscribers). The
atter, instead, concerns cross-layer dependencies among different layers
f the protocol stack of the same element (e.g., MAC policies affect trans-
ission power and modulation strategies at the PHY layer). Coupling
akes centralized control of cellular networks extremely challenging as

i) the number of variables of the problem grows exponentially with the
umber of network elements, resulting in high computational and time
omplexity; (ii) the TO needs to be fully aware of the underlying network
opology, the traffic demand, and the Channel State Information (CSI)
or each individual UEand base station, and (iii) centralized approaches
equire real-time information exchange between each network element
nd the centralized controller, imposing high signaling overhead and
atency. It is worth to point out that such network real-time information
s not known at CellOS controller, but only at the edge elements. Due to
he fast changing network dynamics, though, the time required to signal
ocal information to the controller, compute a centralized solution, and
dopt it at the edge elements might exceed the coherence time of the
ound solution. Such solutions, may refer to an old network state and be ob-

olete, thus resulting in poor performance. This makes distributed solutions
ighly desirable, if not mandatory. Even though distributed algorithms
ight not always guarantee globally optimal solutions, they usually
anage to compute locally optimal ones with significantly lower com-
utational complexity, while ensuring run-time performance [16,17] . 

We point out that this work does not focus on proposing new decom-
osition theories. Our aim, instead, is to automatically generate distributed

ptimization programs based on a high-level objective, irrespective of the de-

omposition method used. 

Distributed algorithms generator The final step to achieve distributed
ontrol of the cellular network is to generate distributed solution programs

hich can be executed and solved by each base station via standard opti-
ization solvers. This task is performed by the distributed algorithms gen-

rator unit of CellOS Optimization Framework ( Fig. 2 ). As mentioned,
he Optimization Framework is not cognizant of the value of parameters
hat are known at run-time only. Accordingly, the distributed solution pro-

rams contain symbols in place of these parameters. Each base station
ill then replace these symbols with their actual value at run-time, and
ssociate optimization variables to the served UEs. The instance map-

er module has been designed to perform this task ( Fig. 2 ). This is one
f the most important features of CellOS as it makes the solution pro-
ram generation process (i) fully automated; (ii) independent of network
onfiguration, and (iii) self-adapting to compute parameters at run-time
ased on current network conditions. 

.2.3. Dispatcher and abstraction module 

The last two components of the Optimization Framework are the
olution program dispatcher and the network abstraction module . The dis-

atcher utilizes sockets to transfer the generated distributed solution pro-
rams to each network base station, which will execute and solve them
o achieve the desired network objective. 

The network abstraction module creates a high-level representation
f the network infrastructure, hiding low-level, hardware/software
etails from the TO. This abstraction allows the problem generation
 Section 3.2.1 ) to automatically convert directives and constraints given
hrough the APIs of Section 3.1 into mathematical expressions and util-
ty functions. 

.3. Softwarized RAN 

The third main component of the CellOS architecture ( Fig. 2 ) is in
harge of running the distributed solution programs at each network
lement so as to reach the global network objective requested by the
O. Once the dispatcher has delivered the programs, the instance map-

er component of the Reconfigurable Edge Element (REE) replaces the
ymbolic placeholders in the program with their corresponding run-time
alues. This component is capable of dynamically adapting solution pro-
rams to current network conditions, such as arrival/departure of UEs,
andovers, and CSI. At the end of this mapping procedure each program
s executed by the local solver and a solution is computed. As mentioned
bove, CellOS uses decoupling terms (e.g., Lagrangian multipliers) to
llow individual base stations to coordinate with each other. Relevant
arameters are iteratively updated and exchanged among the coupled
EEs through already available inter-base station interfaces (e.g., X2/Xn

nterfaces of cellular networks). 
Since all the decisions are made locally at the base stations, at

ost | | ( | |+ 1) variables need to be exchanged at each iteration,
here  is the set of users,  are the available transmission chan-
els, and | · | denotes the cardinality operator. As we will demonstrate in
ection 6.3.4 through experimental results, this overhead is negligible if
ompared to that of centralized approaches, which need to gather local
nformation at the central controller. Because of this very limited signal-
ng overhead, our framework effectively self-adapts to the network fast
hanging behavior. Upon computing optimal solutions for each local
etwork control problem (e.g., transmission and scheduling policies),
hese are used by each REE through the Reconfigurable Protocol Stack
RPS), which controls MAC and PHY layers, among others. 

. CellOS in action: An example 

We consider the scenario depicted in Fig. 3 b, where two interfer-
ng eNBs in the set  share two channels and serve two UEs each.
ere,  𝑏 is the set of users u served by eNB 𝑏 ∈  . We consider
 downlink cross-layer optimization problem where each eNB has a
ransmission power budget P max , and that the UEs request a mini-
um capacity C 

min . The optimization variables of this problem con-
ern MAC and PHY layers, namely, user scheduling and transmission
ower allocation. In this example, we assume that the TOuses Cel-
OS to maximize the network capacity. The TOfirst instantiates a net-
ork with two base stations ( nwk = Network(2) ). Then the fol-

owing network control objective is set on the slice controlled by the
O: nwk.set_utility('max(capacity)', slices[0]) . 

On the other hand, CellOS needs to perform a more complex set
f operations to reach the objective specified so succinctly by the TO.
et 𝐲 =( 𝐲 1 , 𝐲 2 ) represent the network scheduling profile, where 𝐲 𝑏 =
 𝑦 𝑏, 1 ,𝑛 , 𝑦 𝑏, 2 ,𝑛 ) 𝑛 =1 , 2 is the scheduling profile for eNB b ∈ {1, 2}. Let y b,u,n ,
nstead, represent the scheduling variable such that 𝑦 𝑏,𝑢,𝑛 =1 if user u
s scheduled for downlink transmission on channel 𝑛 ∈  = {1 , 2} and
 𝑏,𝑢,𝑛 = 0 , otherwise. Similarly, 𝐩 = ( 𝐩 1 , 𝐩 2 ) represents the network power
llocation profile, where 𝐩 𝑏 =( 𝑝 𝑏, 1 ,𝑛 , 𝑝 𝑏, 2 ,𝑛 ) 𝑛 =1 , 2 is the power allocation
rofile for eNB b , and p b,u,n represents the downlink transmission power
rom b to user u on channel n . Let C b,u,n ( y, p ) be the capacity for UE u
erved by eNB b on channel n , expressed as 

 𝑏,𝑢,𝑛 ( 𝐲, 𝐩 ) = 𝐵 log 2 

⎛ ⎜ ⎜ ⎜ ⎝ 1 + 

𝑔 𝑏,𝑢,𝑛 𝑦 𝑏,𝑢,𝑛 𝑝 𝑏,𝑢,𝑛 

𝑁 + 𝑔 𝑏 ′,𝑢,𝑛 
∑

𝑢 ′∈ 𝑏 ′
𝑝 𝑏 ′,𝑢 ′,𝑛 𝑦 𝑏 ′,𝑢 ′,𝑛 

⎞ ⎟ ⎟ ⎟ ⎠ , (2)

here B is the employed bandwidth, N is the background noise power,
nd g b,u,n is the channel gain coefficient computed by u and sent to b ,
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Fig. 4. OAI-based CellOS prototype. 
s part of standard cellular networks signaling procedures between user
nd base station (e.g., LTE Physical Uplink Control Channel (PUCCH)). 

The centralized network control problem can be expressed as the
ollowing Capacity Maximization Problem (CMP) 

aximize 
𝐲, 𝐩 ∈ 

∑
𝑏 ∈ 

∑
𝑢 ∈ 𝑏 

2 ∑
𝑛 =1 

𝐶 𝑏,𝑢,𝑛 ( 𝐲, 𝐩 ) , (CMP)

ubject to 
2 ∑

𝑛 =1 
𝐶 𝑏,𝑢,𝑛 ( 𝐲, 𝐩 ) ≥ 𝐶 

min , ∀𝑏 ∈  , 𝑢 ∈  𝑏 (3)

∑
𝑢 ∈ 𝑏 

2 ∑
𝑛 =1 

𝑝 𝑏,𝑢,𝑛 ≤ 𝑃 max , ∀𝑏 ∈  (4)

2 ∑
𝑛 =1 

𝑦 𝑏,𝑢,𝑛 ≤ 1 , ∀𝑏 ∈  , ∀𝑢 ∈  𝑏 (5)

here (3) represents the users’ minimum capacity constraint, (4) en-
orces eNBs’ power budget, and (5) guarantees that each eNB allocates
ach channel to a single UEonly. 

The main challenges in decomposing (CMP) are: (i) It is a Mixed
nteger Non-Linear Programming problem, which is NP-hard in gen-
ral [38] , and (ii) both (2) and (3) are coupled among different eNBs. 

CellOS recognizes y and p to be the problem optimization variables
nd associates them to the MAC and PHY layers, respectively. Now, the
roblem decomposition module understands which variables belong to
hich eNB and creates a coupling graph similar to that in Fig. 3 a. This

s, then, used to detect the aggregate interference term in the capacity
xpression (2) . Accordingly, it defines the following auxiliary function

 𝑏,𝑢,𝑛 ( 𝐲 − 𝑏 , 𝐩 − 𝑏 ) = 

∑
𝑏 ′∈ ⧵{ 𝑏 } 

𝑔 𝑏 ′ ,𝑢,𝑛 

∑
𝑢 ′∈ 𝑏 ′

𝑝 𝑏 ′ ,𝑢 ′𝑛 𝑦 𝑏 ′ ,𝑢 ′ ,𝑛 (6)

here 𝐲 − 𝑏 = 𝐲⧵{ 𝐲 𝑏 } and 𝐩 − 𝑏 = 𝐩 ⧵{ 𝐩 𝑏 } are the scheduling and power al-
ocation variables of the eNBs belonging to  ⧵{ 𝑏 } . At this point, new
uxiliary variables are introduced to rewrite (CEN) as 

aximize 
𝐲, 𝐩 , 𝐢 

∑
𝑏 ∈ 

∑
𝑢 ∈ 𝑏 

2 ∑
𝑛 =1 

𝐶 𝑏,𝑢,𝑛 ( 𝐲 𝑏 , 𝐩 𝑏 , 𝐢 𝑏 ) , (DCMP)

ubject to 
2 ∑

𝑛 =1 
𝐶 𝑏,𝑢,𝑛 ( 𝐲 𝑏 , 𝐩 𝑏 , 𝐢 𝑏 ) ≥ 𝐶 

min , ∀𝑏 ∈  , 𝑢 ∈  𝑏 (7)

 𝑏,𝑢,𝑛 ≥ ℎ 𝑏,𝑢,𝑛 ( 𝐲 − 𝑏 , 𝐩 − 𝑏 ) , ∀𝑏 ∈  , 𝑢, 𝑛 = 1 , 2 

Constraints (4) , (5) (8)

CellOS can now use duality optimization tools to generate the fol-
owing Lagrangian dual function 

 ( 𝝀, 𝝁, 𝐢 , 𝐲, 𝐩 ) = 

∑
𝑏 ∈ 

∑
𝑢 ∈ 𝑏 

2 ∑
𝑛 =1 

𝐶 𝑏,𝑢,𝑛 ( 𝐲 𝑏 , 𝐩 𝑏 , 𝐢 𝑏 ) 

− 

∑
𝑏 ∈ 

∑
𝑢 ∈ 𝑏 

𝜆𝑏,𝑢 

( 

𝐶 

min − 

2 ∑
𝑛 =1 

𝐶 𝑏,𝑢,𝑛 ( 𝐲 𝑏 , 𝐩 𝑏 , 𝐢 𝑏 ) 
) 

− 

∑
𝑏 ∈ 

∑
𝑢 ∈ 𝑏 

2 ∑
𝑛 =1 

𝜇𝑏,𝑢,𝑛 
(
ℎ 𝑏,𝑢,𝑛 ( 𝐲 − 𝑏 , 𝐩 − 𝑏 ) − 𝑖 𝑏,𝑢,𝑛 

)
, (9)

here 𝝀 = ( 𝜆𝑏,𝑢,𝑛 ) and 𝝁 = ( 𝜇𝑏,𝑢,𝑛 ) are the non-negative Lagrangian mul-
ipliers used in constrained optimization [37] . 

We observe that problems (CMP) and (DCMP) , and the Lagrangian
ual function (9) all aim at solving the centralized control prob-
em (CEN) . However, the advantage of using (9) is that function L ( 𝝀,

, i, y, p ) is written with separable variables, meaning that it can be
plit into | | sub-problems locally solvable by each eNB. 

Finally, CellOS dispatches the generated distributed solution pro-
rams to the eNBs that populate them with network run-time informa-
ion (e.g., users’ channel coefficients), and compute optimized solutions
hrough their local solver . 
It is worth noting that the procedures detailed in Sections 3.1 and
.2 need to be executed only once per control problem specified by the
Oand that they take very little time to be performed, e.g., 0.03 s for
he example of this section (more details on the scalability of CellOS
utomatic procedures will be given in Section 6.3.4 ). 

. OAI-based CellOS prototype 

In this section, we discuss the prototypes of CellOS, which have been
uilt based on the OAI and srsLTE open-source RAN implementations.
he OAI-based prototype is illustrated in Fig. 4 . 

The CellOS Controller performs the functionalities of the Problem Def-
nition APIs and of the Optimization Framework. Particularly, it creates
nd maintains the network abstraction, generates the optimization prob-
em based on the directives from the TO, and performs the problem de-
omposition. In our experiments the decomposition process is obtained
hrough Lagrangian duality theory [37] and decomposition via partial
inearization [16] . 

Multiple eNB Controllers , one for each base station, are connected to
he CellOS Controller through a Gigabit Ethernet connection. These con-
rollers use interior-point and sub-gradient algorithms [37] to solve the
eceived distributed programs, and set the parameters to be used with
he RF front-ends they are connected to. Each of these controllers drives
n Ettus Research Universal Software Radio Peripheral (USRP) B210,
hich serves UEs over LTE frequencies. As UEs we used a set of het-
rogeneous Commercial Off-the-Shelf (COTS) cellular phones (Samsung
alaxy S5, S6 and S7, and Apple iPhone 6s). 

In this prototype, CellOS interfaces with the LTE protocol stack im-
lementation offered by OpenAirInterface , i.e., an open-source software-
ased experimental platform for LTE implementations [25] . OAI fea-
ures LTE RAN applications along with Evolved Packet Core com-
onents. As OAI does not directly allow per-user power control, or
ptimized PRB allocation —key essential requirements of many net-
ork control objectives —we have extended its functionalities by sig-
ificantly modifying its core implementation. Specifically, power con-
rol is obtained by amplitude-modulating the downlink data signal in-
ended for a specific UE. PRB allocation, instead, is based on an opti-
ized waterfilling-like fair scheduling algorithm [39] , which has low-

omplexity, thus complying with LTE strict timing requirements. Be-
ause of the PRB short time duration it is of utmost importance to com-
ute the PRB allocation very quickly to guarantee compliance with LTE
nd promptly serve the UEs. According to our scheme, PRBs are al-
ocated only to those UEs whose downlink transmission buffer is not
mpty. 
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Fig. 5. The CellOS lab bench testbed. 
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A similar approach has been followed for the srsLTE prototype,
hich leverages USRPs X310 in place of USRPs B210. This time, each
NB controller connects to the Software-Defined Radio (SDR) through
 10 Gbit/s PCI Express network card. In this prototype, CellOS inter-
aces with the open-source cellular protocol stack offered by srsLTE,
hich, similarly to what done for OAI, has been extended to perform
HY-layer power control by adjusting the USRPs transmission power,
nd MAC-layer scheduling by optimally allocating PRBs to UEs. 

. Experimental evaluation 

The effectiveness of CellOS in automatically creating distributed op-
imization programs from high-level directives, and in managing the
etwork infrastructure to reach different control objectives, is demon-
trated via experimentation on various LTE-compliant testbeds. We de-
cribe our testbed in Section 6.1 , we introduce the investigated perfor-
ance metrics in Section 6.2 , and present our experimental results in

ection 6.3 . 

.1. Network scenarios and testbed settings 

To demonstrate its platform-independence, we test CellOS over dif-
erent software and hardware platforms, using OAI and srsLTE, as well
s heterogeneous software-defined radios and testbeds. 

The OAI-based prototype of Section 5 has been used in a testbed
omposed of 3 eNBs and up to 9 UEs. Each eNB uses a 10 MHz channel
andwidth corresponding to 50 PRBs. For this prototype we consider
he two indoor scenarios depicted in Fig. 5 : (i) A high interference sce-
ario, where two eNBs are in line-of-sight conditions and have largely
verlapping coverage areas ( Fig. 5 a), and (ii) a low interference scenario
here eNBs are in non-line-of-sight conditions and their coverage areas
nly partially overlap with each other ( Fig. 5 b). 

The high interference scenario represents those crowded environ-
ents (e.g., university campuses, concert halls or convention centers)
here several femtocells are deployed in a crowded region to balance

he traffic load of a macrocell farther away. In this case, while the inter-
erence among macro- and femtocells is small, femtocells with overlap-
ing coverage areas are subject to significant inter-cell interference. In
he low interference scenario, instead, eNBs are located far away from
ach other and, thus, are less subject to inter-cell interference and the
ubsequent performance degradation. 

The srsLTE-based prototype is evaluated on a low-interference setup
n the Arena testbed [32] . We instantiated 3 LTE eNBs on USRPs X310
hose antennas are connected to the ceiling of a 208.1 m 

2 office space.
 set of Dell EMC PowerEdge R340 servers are used to drive the USRPs

hrough 10 Gigabit Ethernet connections. This set of experiments shows
hat CellOS can simultaneously obtain different control objectives on mul-

iple network slices. This represents the scenario in which multiple Mo-
ile Virtual Network Operators (MVNOs) share the same edge elements,
r that of a single TO wishing to set diverse control problems on each
etwork slice. To demonstrate the benefits of automatic optimization
f the open RAN , we finally instantiate CellOS on the long-range open-
ource 5G POWDER-RENEW platform [31] , which is the combination
f the Platform for Open Wireless Data-driven Experimental Research
POWDER) and Reconfigurable Eco-system for Next-generation End-to-
nd Wireless (RENEW), and part of the Platforms for Advanced Wireless
esearch (PAWR) [30] . 
We assess CellOS performance by letting UEs download a file stored
n our local server for 60 s. It is worth mentioning that it only took CellOS

.43 s and 8 lines of code (see Listing 1 ) to automatically generate the evalu-

ted distributed control programs (more details on the scalability of these
perations will be given in Section 6.3.4 ) 

.2. Performance metrics 

CellOS has been evaluated against the following metrics. 

• Sum throughput of the network , defined as 

𝑆 = 

∑
𝑏 ∈ 

∑
𝑢 ∈ 𝑏 

𝑆 𝑏,𝑢 , ∀𝑏 ∈  , 𝑢 ∈  𝑏 (10)

where  and  𝑏 are the sets of the eNBs b and of UEs u they are
serving, and S b,u is the throughput offered to 𝑢 ∈  𝑏 by b . 

• Normalized transmission power of the base stations to the UEs. To
analyze the impact of power control policies on the transmission
power of eNBs, we show the transmission power of the base stations
normalized to their maximum transmission power. Let 𝑃 max 

𝑏 
and 𝑃 min 

𝑏 

be the maximum and minimum power levels of base station b , the
normalized transmission power is defined as 

𝑃 𝑁 

𝑏,𝑢 
= 

𝑃 𝑏,𝑢 − 𝑃 min 
𝑏 

𝑃 max 
𝑏 

− 𝑃 min 
𝑏 

, ∀𝑏 ∈  , 𝑢 ∈  𝑏 (11)

where 𝑃 𝑏,𝑢 ∈ { 𝑃 min 
𝑏 

, 𝑃 max 
𝑏 

} is the power used by eNB 𝑏 ∈  to transmit
to its user 𝑢 ∈  𝑏 . 

• Global energy efficiency , defined as the amount of information per
unit of energy the eNBs transmit to their subscribers: 

𝐸𝐸 = 

∑
𝑏 ∈ 

∑
𝑢 ∈ 𝑏 𝑆 𝑏,𝑢 ∑

𝑏 ∈ 
∑

𝑢 ∈ 𝑏 𝑃 𝑏,𝑢 
, ∀𝑏 ∈  , 𝑢 ∈  𝑏 (12)

where P b,u is the power used by eNB b to transmit to its user u . 
• System fairness , measured through Jain’s equation [40] . Given users
𝑢 ∈  = 

⋃
𝑏 ∈  𝑏 , Jain’s fairness index  is defined as 

 = 

( 
∑

𝑏 ∈ 
∑

𝑢 ∈ 𝑏 𝑆 𝑏,𝑢 ) 2 | |∑𝑏 ∈ 
∑

𝑢 ∈ 𝑏 𝑆 

2 
𝑏,𝑢 

, ∀𝑏 ∈  , 𝑢 ∈  𝑏 . (13)

.3. Experimental results 

CellOS has been evaluated against the metrics of Section 6.2 in a
ariety of network configurations (i.e., high and low interference, with
nd without network slicing), and on different testbeds, including a lab
ench setup, the Arena testbed [32] , and the POWDER-RENEW PAWR
G platform [30,31] . 

To fully appreciate the effects of the automatic optimization pro-
edures introduced by CellOS, we consider a cellular network imple-
ented through OAI and srsLTE and we compare the achieved net-
ork performance with and without CellOS. Moreover, we also compare

he performance achieved by state-of-the-art scheduling algorithm com-
only used in commercial cellular networks, i.e., proportional fairness,

reedy, and round-robin, to that achieved by CellOS-managed networks.
 summary of our experimental setup is shown in Table 1 . 

.3.1. High interference scenario 

Fig. 6 presents results obtained when optimizing throughput (net-
ork control objective of max(rate) ) in the high interference scenario

n Fig. 5 a. We start by evaluating the throughput gains brought to OAI
y CellOS zero-touch approach. Average total and per-user throughput
re shown in Fig. 6 a. We observe that CellOS brings significant benefits
o the network performance, with improvements as high as 75% (63%
n average). This is because of the interplay between the optimized per-
ser power control and scheduling determined by CellOS and executed
ocally by the Softwarized RAN. Indeed, CellOS automatic optimization
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Table 1 

Summary of experimental setup. 
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Fig. 7. Power minimization in the high interference scenario on the OAI-based 

prototype. 

Fig. 8. Sum-log-rate maximization in the high interference scenario on the OAI- 

based prototype w/ and w/o CellOS. 
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rocedures allow the eNBs to serve UEs with an optimized resource al-
ocation and power-controlled signals, which significantly reduces the
nter-cell interference while guaranteeing a minimum rate to UEs. To
rovide further insights on the resource allocation procedures automat-
cally executed by each eNB, we investigated the network throughput,
nd power and PRBs allocated to the users during an experiment run of
he max(rate) solution program ( Fig. 6 b and c, respectively). For clarity,
nly the power for four users is shown. As time progresses, the through-
ut (both total and per-user) plateaus out to a stable value, which is a
onsequence of local optimality of the solution program that success-
ully limits interference. Power is changed for the individual user in
ime, also responding to optimization requirements and reflecting cur-
ent network conditions. Fig. 6 b depicts the PRBs allocated to UEsat
ime instants t 1 and t 2 of Fig. 6 c. We observe that the eNBs adapt the
RB allocation in real-time to satisfy user requests while achieving the
et network objective. In fact, time slots with unassigned PRBs may even
ccur, without compromising the eNB ability of satisfying its subscribers
equirements. 

To show that different network control objectives produce different
esults, we investigate throughput and power determined by CellOS for
ower minimization (control objective of min(power) ), while guarantee-
ng a minimum per-user data rate of 1 Mbit/s ( Fig. 7 ). As expected, the
chieved throughput is lower than that of the max(rate) control program
 Fig. 6 c). This is due to the normalized transmission power of the eNBs
eing remarkably lower than that in Fig. 6 c (up to one order of mag-
itude). We notice, though that UEs achieve an average throughput of
.63 Mbit/s, which satisfies the constraint on their minimum rate. 
The next set of experiments concerns the performance of OAI with
nd without CellOS in scenarios with varying number of eNBs and UEs.
he network control objective requires to maximize throughput while
xplicitly accounting for fairness, namely, is set to max(sum(log(rate))) .
cenarios with one base station consider only eNB 3 , while Scenarios
ith two base stations concern eNB 2 and eNB 3 , i.e., the base stations
ith overlapping cells (see Fig. 5 a). Results concerning sum throughput,

nergy efficiency and fairness are shown in Fig. 8 . 
The throughput comparison is shown in Fig. 8 a, where we can see

hat OAI with CellOS always outperforms OAI without CellOS. In Fig. 8 b,
e evaluate energy efficiency, pivotal in large-scale networks [41] . As

xpected, since our framework achieves a higher throughput with a
ower power expenditure, the network is more energy efficient when
anaged by CellOS. System fairness is shown in Fig. 8 c. We notice that,

n general, CellOS improves user fairness, with increases up to 29%. Im-
rovements are more evident in scenarios with higher number of eNBs
Fig. 6. Throughput maximization in the 

high interference scenario on the OAI- 

based prototype. 
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Fig. 9. Sum-log-rate maximization in the low interference scenario on the OAI- 

based prototype w/ CellOS. 

Fig. 10. Rate maximization in the low interference scenario: OAI w/ CellOS vs. 

OAI w/ proportional fairness [42] and OAI w/ greedy [43] scheduling policies. 
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nd UEs, as optimization techniques are more effective in those more
ense scenarios with higher interference. Specifically, since in these sce-
arios suboptimal algorithm solutions generate inefficient resource allo-
ation policies, optimal ones are required the most. Indeed, CellOS opti-
ized resource allocation, and its ability to fine-tune the power directed

o the served UEs allows the base stations to contain the interference di-
ected to other eNBs, thus increasing the network performance. 

.3.2. Low interference scenario 

These experiments concern 3 eNBs and 9 UEs in low interference con-
itions ( Fig. 5 b). Results on throughput and on the allocated normalized
ower are shown in Fig. 9 . In this scenario CellOS is required to optimize
he network control objective max(sum(log(rate))) . As expected, perfor-
ance is better than in the high interference scenario because of the

ower interference level, that allows the eNBs to use higher power with-
ut disrupting each other transmissions. In Fig. 10 , we compare CellOS
ate maximization with two well-known state-of-the-art scheduling al-
orithms: The proportional fairness algorithm, that is the de facto standard

n cellular networks [7,42] , and the greedy algorithm [43] . 
We notice that CellOS outperforms the proportional fairness algo-

ithm because of this overarching optimization approach to network
anagement. The greedy approach, instead, obtains throughput lev-

ls similar to those of CellOS, albeit with a significant delay. Indeed,
ecause of its optimized MAC-layer procedures, which allow the net-
ork base stations to mindfully allocate resources to the served UEs,
ellOS achieves said throughput level after only few seconds from
he system start and maintains it until the UEs finish downloading
ata. 

.3.3. Network slicing 

This set of experiments concerns 3 eNBs instantiated on the USRPs
310 of the Arena testbed [32] through srsLTE. The eNBs serve 9 COTS
Es. The antennas of the USRPs are hung off the ceiling of a 208.1 m 

2 

ffice space. 
We target a scenario in which multiple MVNOs lease infrastructure

esources from an Infrastructure Provider (IP). The IP, which owns the
hysical equipment (e.g., the base stations), allocates slices of the net-
ork to MVNOs following, for instance, the approach described in D’Oro

t al. [29] . Since MVNOs act independently from one another, with
ifferent subscribers and requirements (e.g., quality of service), they
ay need to optimize different control programs on their slice of the
etwork. Considering this, and cognizant of current 5G cellular net-
orks trends, we designed CellOS to handle different network slicing

onfigurations. 
Fig. 11 showcases the unique ability of CellOS in implementing dif-

erent control strategies for different network slices, simultaneously opti-

izing different control programs on different network slices, namely, Slice 1
nd Slice 2, on each eNB. Specifically, Slice 1, which is allocated to
VNO 1, aims at maximizing the network throughput, while Slice 2, al-

ocated to MVNO 2, minimizes the power consumption. The network
um and average throughput achieved by this per-slice behavior are
hown in Fig. 11 . In our experiments, the two slices were allocated dif-
erent percentages of the available PRBs (see Fig. 11 c): First 70% to
lice 1 and 30% to Slice 2 (Case A of Fig. 11 ), then 50% to each slice
Case B), and finally a 30%–70% allocation was used (Case C). Fig. 11 a
hows the throughput of Slice 1 in the three cases. Fig. 11 b presents that
f Slice 2. As expected, the throughput of the max(rate) control pro-
ram instantiated by MVNO 1 on Slice 1 increases with the resources
llocated to the slice. On the contrary, the throughput performance of
he min(power) control program instantiated by MVNO 2 on Slice 2 does
ot increase with the resources allocated to the slice. All three configu-
ations of Fig. 11 b converge toward 7 Mbit/s. This is due to the fact that
his control problem aims at reaching the minimum per-user rate con-
traint set by the TOwithout consuming all available network resources.
y looking at Fig. 11 , we notice that CellOS managed to independently
ptimize different control problems on different slices of the network
 max(rate on Slice 1, and min(power) on Slice 2). This demonstrates that
ellOS provides softwarized MVNOs with independent control of all re-
ources in their leased network slice while sharing the same physical
etwork infrastructure. 

.3.4. CellOS scalability 

In this section, we evaluate the scalability of CellOS in terms
f time and operations required by the controller to generate dis-
ributed solution programs, and by the REEs to solve them. Finally,
e compare the overhead generated by CellOS REEs to that of state-
f-the-art solutions, such as FlexRAN [13] and Orion [44] . The re-
ults presented in this section have been obtained by executing Cel-
OS on a single CPU of a Dell EMC PowerEdge R340 server of the
rena testbed [32] . The server is equipped with an Intel Xeon E-
146G processor with 3.5 GHz base frequency and 32 GB DDR4-2666
AM. 

Fig. 12 shows the time needed by CellOS controller to generate the
istributed solution programs starting from the TOdirectives as a func-
ion of the number of network eNBs, UEs, and for different network
ontrol problems. This includes the time to perform: (i) The problem
efinition procedures, which interpret the TOhigh level directives; (ii)
he generation of the centralized version of the problem based on an
bstraction of the network, and (iii) the problem decomposition op-
rations, which divide the centralized problem into sub-problems to
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Fig. 11. Optimization of different control programs on different slices on the srsLTE-based prototype instantiated on the Arena testbed [32] : (a) Throughput of 

Slice 1 ( max(rate) ); (b) throughput of Slice 2 ( min(power) ); (c) PRB allocation. 

Fig. 12. Scalability of CellOS controller operations as a function of the number 

of eNBs, UEs and for different network control problems. 
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Fig. 13. Scalability of CellOS local solver operations as a function of the number 

of eNBs, UEs and for different network control problems: (i) Rate maximization 

(solid lines); (ii) sum-log-rate maximization (dot-dashed lines), and (iii) power 

minimization (dashed lines). 
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e distributively solved by the softwarized RAN. We notice that, even
hough the computation time increases with the number of users and
ase stations, these operations are executed once per control problem.
lso, recall that the generated problems utilize symbolic placeholders
nd do not require knowledge of real-time parameters. For this rea-
on, all operations can be performed offline, and computation times
re thus negligible if compared to the typical service times of cellular
etworks. 

Fig. 13 shows the time needed by CellOS REEs to solve the distributed
roblems automatically generated by the controller ( Section 3 ) for dif-
erent numbers of base stations and UEs in the network. Different control
roblems require different solution times. 

For instance, the power minimization problem, whose objective
unction is a linear function in the transmission power variables, is
olved more rapidly than the rate and sum-log-rate maximization prob-
ems, whose utility functions are non-linear because of logarithmic
nd fractional terms, which increase the problem complexity. As a
onsequence, the execution time of each problem strongly depends
n the complexity of the underlying objective function to be opti-
ized. It is worth noticing that the times of both Figs. 12 and 13 can

e considerably reduced if executed on high-performance equip-
ent, as the one typically used in commercial cellular network
eployments. 
The signaling overhead generated by each CellOS REE is eval-
ated in Fig. 14 against that generated by other well-established
oftware-defined cellular control frameworks such as FlexRAN [13] and
rion [44] . Since CellOS executes the optimization problems locally at
ach REE, its overhead stems from the REEs exchanging | | ( | |+ 1)
ptimization variables and Lagrangian multipliers. These are the only
nformation required to converge to a distributed problem solution
 Section 3.3 ). These variables are represented by real numbers en-
oded as 32-bit floating point numbers. Fig. 14 shows that the sig-
aling overhead generated by CellOS REEs is significantly lower than
hat of prevailing state-of-the-art centralized approaches. Even when
anaging a single network base station, as it is the case of Fig. 14 ,
revious approaches must exchange a massive amount of local infor-
ation with the central controller, thus generating large signaling and

atency. 

.3.5. Experiment of POWDER-RENEW PAWR platform 

We demonstrate the platform- and RAN-independence of CellOS by
unning long-range experiments on one of the Platforms for Advanced
ireless Research (PAWR) wireless platforms [30] . Specifically, we

everage POWDER-RENEW [31] and the 5G implementation of srsLTE
o deploy a NR gNB and 2 UEs in an authentic outdoor wireless envi-
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Fig. 14. Signaling overhead: CellOS vs. FlexRAN [13, Figure 7] and Orion [44, 

Figure 13a] . 
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onment. The gNB employs a USRP X310 located on the rooftop of a
8.75 m-tall building, while we use ground-level USRPs B210 as UEs.
he gNB utilizes a reduced channel bandwidth of 15 PRBs (correspond-

ng to 3 MHz) to reach the two UEs distant 270 m and 420 m, respec-
ively (see Fig. 15 b). In this case, the UEs download a file from a local
erver for 400 s. 

Fig. 15 a shows the throughput gains achievable by running CellOS
ate maximization on top of srsLTE, which uses a round-robin scheduler
hen instantiated without CellOS. Albeit the reduced bandwidth and in-

reased gNB-UEs distance result in a lower total throughput than that of
he previous experiments, we notice that CellOS significantly improves
he network performance because of its zero-touch approach to opti-
ization, which allows to optimize the resources allocated to the UEs,

nd bring gains as high as 86% (23% on average). To the best of our
nowledge, this is the first demonstration of zero-touch optimization on
 long-range open-source 5G testbed. Such instantiation gives evidence
f the potential of the softwarized Open RAN approach cellular networks
re moving toward. 

. Related work 

Recent years have heralded SDN as the technology that would in-
erently endow the monolithic Internet architecture with much needed
exibility . The largest part of SDN work focuses on the programma-

ility of wired networks, with few works exploring scenarios com-
rising wireless devices [12–14,45–48] . To the best of our knowl-
ig. 15. Long-range experiments on the POWDER-RENEW PAWR platform [30,31] : (a

xperiment area. 
dge, there is no solution aimed at integrating a zero-touch, flexi-
le, and dynamic optimization framework to the fabric of cellular net-
orks. Therefore, this section reviews SDN-based solutions for wireless
etworking. 

Guan et al. proposed WNOS, a wireless network operating system
eaturing network virtualization and distributed solution of optimiza-
ion problems [14] . Although this work is the most similar to ours, it
nly focuses on infrastructure-less ad hoc networks with static nodes.
or this reason, it is not suitable to handle mobile and dynamic cellular
cenarios. An effort to explicitly take mobility into account is made by
ertizzolo et al. with SwarmControl, a distributed control framework
or the self-optimization of drone networks [ 50 ]. 

ONAP and O-RAN are two infrastructure-oriented automation plat-
orms with the ambition of “orchestrating ” many network func-
ions [22,23] . They offer TOs network abstractions to specify system de-
ails and traffic policies. However, optimization policies and algorithms
ust be explicitly programmed. 

Adaptations of the SDN paradigm to cellular networks have been
roposed by Li et al. (CellSDN [47] ), Bernardos et al. (SDWN [49] ),
nd by Bradai et al. (CSDN [48] ). CellSDN proposes a control-
riented operating system focused on cellular network management
nd subscriber policies rather than on performance optimization. Works
ike SDWN and CSDN, instead, describe general frameworks to op-
imize network utilization and performance leveraging edge network
nformation. 

Few works have addressed the interplay between the SDN archi-
ecture and that of networks including LTE explicitly. Gudipati et al.
nvision SoftRAN as an abstraction of all eNBs in a geographical area
s a single virtual base station to perform operations including metrics
ptimization [46] . This centralized approach, however, can hardly ad-
ress heterogeneous optimization problems in the dense, flexible and
apidly growing architecture of 5G cellular networks. Foukas et al. pro-
ose FlexRAN [13] and Orion [44] as centralized controllers coordinat-
ng various LTE agents, and supporting network slicing, respectively.
hese systems, though, neglect optimization, and their centralized na-
ure may result in limited scalability and reduce the performance in
ense scenarios. Finally, OpenRadio, by Bansal et al., develops a pro-
rammable wireless data plane providing programming interfaces on
HY and MAC layers [45] . Optimization, however, is left to the wits of
he TO. 

Finally, we notice that all the mentioned solutions for cellular net-
orks propose programmable protocol stack implementations where the
ptimization procedures need to be manually designed and there is no
ay to perform them dynamically or automatically . 
) srsLTE w/ CellOS rate maximization vs. srsLTE w/ round-robin ; (b) long-range 
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. Conclusions 

We presented CellOS, the first zero-touch optimization and manage-
ent framework for next-generation cellular open RANs. CellOS enables
Os to automatically optimize the network behavior through high-level
irectives without requiring knowledge of optimization theory or of net-
ork specifics. CellOS automatically generates distributed solution pro-
rams to be run at the base stations to simultaneously optimize hetero-
eneous objectives on different network slices. We prototyped CellOS
y using the LTE-compliant OpenAirInterface and srsLTE software, and
emonstrated its capabilities through a experimental campaign under
arying indoor settings, characterized by different interference condi-
ions and heterogeneous devices. Results indicate that CellOS remark-
bly improves key performance metrics when compared with existing
olutions, including throughput (up to 86%), energy efficiency (up to
4%), and user fairness (up to 29%). Finally, we evaluated CellOS
n the outdoor environment of the POWDER-RENEW PAWR 5G plat-
orm, providing long-range links. Results from those experiments con-
rm the effectiveness of CellOS in obtaining superior performance and

ndicate a new way of managing and optimizing softwarized cellular
etworks. 

RediT authorship contribution statement 

Leonardo Bonati: Formal analysis, Methodology, Software, Investi-
ation, Validation, Writing - original draft, Writing - review & editing.
alvatore D’Oro: Methodology, Formal analysis, Investigation, Super-
ision, Validation, Writing - original draft, Writing - review & editing.
orenzo Bertizzolo: Resources. Emrecan Demirors: Resources, Writ-
ng - original draft. Zhangyu Guan: Conceptualization, Methodology,
esources, Supervision. Stefano Basagni: Conceptualization, Writing -
eview & editing, Supervision. Tommaso Melodia: Conceptualization,
riting - review & editing, Supervision. 

eferences 

[1] Radisys, Open RAN - Enabling the O-RAN of the Future Today, 2019,
( hub.radisys.com/white-papers/open-ran-enabling-the-o-ran-future ). 

[2] Telecom Infra Project, OpenRAN: The Next Generation of Radio Access Networks,
2019, ( https://telecominfraproject.com/wp-content/uploads/OpenRAN-v11082019
-vFinal.pdf ). 

[3] S. Kumar , E. Hamed , D. Katabi , L.E. Li , LTE Radio Analytics Made Easy and Ac-
cessible, ACM SIGCOMM Computer Communica-Tion Review 44 (4) (August 2014)
211–222 . 

[4] D. Gonzalez , M. Garcia-Lozano , S. Ruiz Boqué, D.S. Lee , Optimization of soft fre-
quency reuse for irregular LTE macrocellular networks, IEEE Trans. Wirel. Commun.
12 (5) (2013) 2410–2423 . 

[5] I. Siomina , D. Yuan , Analysis of cell load coupling for LTE network planning and
optimization, IEEE Trans. Wirel. Commun. 11 (6) (2012) 2287–2297 . 

[6] L. Korowajczuk , LTE, WiMAX and WLAN Network Design, Optimization and Perfor-
mance Analysis, John Wiley & Sons, Chichester, United Kingdom, 2011 . 

[7] R. Margolies , A. Sridharan , V. Aggarwal , R. Jana , N.K. Shankaranarayanan ,
V.A. Vaishampayan , G. Zussman , Exploiting mobility in proportional fair cellular
scheduling: measurements and algorithms, IEEE/ACM Trans. Netw. 24 (1) (2016)
355–367 . 

[8] Mair S., AT&T 2019 5G Recap: New Year, New Ways for AT&T Customers to Connect,
2019, ( https://about.att.com/innovationblog/2020/01/2019_5g_recap.html ). 

[9] O-RAN Alliance, The O-RAN Alliance and the Telecom Infra Project
(TIP) Reach New Level of Collaboration for OpenRadio Access Networks,
2020a, ( https://static1.squarespace.com/static/5ad774cce74940d7115044b0/t/
5e54df89a726e63147f0b569/1582620555237/2020-02-25_O-RAN-TIP-PR-v1.0 
.pdf ). 

10] O-RAN Alliance, O-RAN Alliance Continues to Grow as Global Operators
and Suppliers Reach Across Borders to Collaborate on Open Innovation
in Radio Access Networks, 2020b, ( https://static1.squarespace.com/static/
5ad774cce74940d7115044b0/t/5e4ed59178b98159a8b1f881/1582224786007/ 
2020-02-20_O-RAN+progress+PR_v1.0.pdf ). 

11] O-RAN Alliance, O-RAN Alliance Conducts First Global Plugfest to Fos-
ter Adoption of Open and Interoperable 5G Radio Access Networks,
2019, ( https://static1.squarespace.com/static/5ad774cce74940d7115044b0/t/
5dfba8fb1326ae1bcf4a8b6f/1576773884092/O-RAN-2019.12.19-EC-C-PR-on- 
2019-Plugfest-v1.0.pdf ). 

12] D. Thembelihle , M. Rossi , D. Munaretto , Softwarization of mobile network functions
towards agile and energy efficient 5G architectures: a survey, Wirel. Commun. Mob.
Comput. 2017 (2017) 1–21 . 
13] X. Foukas , N. Nikaein , M.M. Kassem , M.K. Marina , K. Kontovasilis , FlexRAN: a flexi-
ble and programmable platform for software-defined radio access networks, in: Proc.
of ACM SIGCOMM Conf. on Emerging Networking Experiments and Technologies
(CoNEXT), Irvine, CA, USA, 2016 . 

14] Z. Guan , L. Bertizzolo , E. Demirors , T. Melodia , WNOS: an optimization-based wire-
less network operating system, in: Proc. of ACM Intl. Symp. on Mobile Ad Hoc Net-
working and Computing (MobiHoc), Los Angeles, CA, USA, 2018 . 

15] D. Lynch , M. Fenton , D. Fagan , S. Kucera , H. Claussen , M. O’Neill , Automated self-op-
timization in heterogeneous wireless communications networks, IEEE/ACM Trans.
Netw. 27 (1) (2019) 419–432 . 

16] G. Scutari , F. Facchinei , P. Song , D.P. Palomar , J.S. Pang , Decomposition by par-
tial linearization: parallel optimization of multi-agent systems, IEEE Trans. Signal
Process. 62 (3) (2014) 641–656 . 

17] G. Scutari , F. Facchinei , L. Lampariello , Parallel and distributed methods for con-
strained nonconvex optimization-Part I: theory, IEEE Trans. Signal Process. 65 (8)
(2016) 1929–1944 . 

18] ETSI ZSM, Zero-touch Network and Service Management Reference Architecture,
2019, ( https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/002/01.01.01_60/gs_
ZSM002v010101p.pdf ). 

19] 3GPP, Study on Scenarios and Requirements for Next Generation Access Technolo-
gies, 2018a, (TS 38.913, V14.1.0a). 

20] 3GPP, NR and NG-RAN Overall Description, 2018b, (TS 38.300, V15.0.0b). 
21] 3GPP , Release description; Release 15, Technical Report (TR), 3rd Generation Part-

nership Project (3GPP), 2019 . Version 15.0.0 
22] The Linux Foundation, Open Network Automation Platform Architecture,

2018, ( https://www.onap.org/wp-content/uploads/sites/20/2018/11/ONAP_
CaseSolution_Architecture_112918FNL.pdf ). 

23] O-RAN Alliance, O-RAN: Towards an Open and Smart RAN, 2018,
( https://www.o-ran.org/s/O-RAN-WP-FInal-181017.pdf ). 

24] I. Afolabi , T. Taleb , K. Samdanis , A. Ksentini , H. Flinck , Network slicing and soft-
warization: a survey on principles, enabling technologies, and solutions, IEEE Com-
mun. Surv. Tutor. 20 (3) (2018) 2429–2453 . 

25] F. Kaltenberger , A. P. Silva , A. Gosain , L. Wang , T.-T. Nguyen , OpenAirInterface:
democratizing innovation in the 5G era, Comput. Netw. 176 (107284) (2020) . 

26] I. Gomez-Miguelez , A. Garcia-Saavedra , P. Sutton , P. Serrano , C. Cano , D. Leith ,
srsLTE: an open-source platform for LTE evolution and experimentation, in: Proc.
of ACM Intl. Workshop on Wireless Network Testbeds, Experimental Evaluation &
Characterization (WiNTECH), New York City, NY, USA, 2016 . 

27] S. D’Oro , F. Restuccia , T. Melodia , Toward operator-to-waveform 5G radio access
network slicing, IEEE Commun. Mag. 58 (4) (2020) 18–23 . 

28] S. D’Oro , F. Restuccia , A. Talamonti , T. Melodia , The slice is served: enforcing radio
access network slicing in virtualized 5G systems, in: Proc. of IEEE Intl. Conf. on
Computer Communications (INFOCOM), Paris, France, IEEE, 2019 . 

29] S. D’Oro , L. Bonati , F. Restuccia , M. Polese , M. Zorzi , T. Melodia , Sl-EDGE: network
slicing at the edge, in: Proc. of ACM Intl. Symp. on Theory, Algorithmic Founda-
tions, and Protocol Design for Mobile Networks and Mobile Computing (MobiHoc),
Shanghai, China, 2020 . 

30] Platforms for Advanced Wireless Research, https://advancedwireless.org . 
31] Platform for Open Wireless Data-driven Experimental Research, https://www.

powderwireless.net , 
32] L. Bertizzolo , L. Bonati , E. Demirors , T. Melodia , Arena: A 64-antenna SDR-based

ceiling grid testbed for Sub-6 GHz radio spectrum research, in: Proc. of ACM Intl.
Workshop on Wireless Network Testbeds, Experimental Evaluation & Characteriza-
tion (WiNTECH), Los Cabos, Mexico, 2019 . 

33] M. Mezzavilla , M. Zhang , M. Polese , R. Ford , S. Dutta , S. Rangan , M. Zorzi , End–
to-end simulation of 5G mm wave networks, IEEE Commun. Surv. Tutor. 20 (3)
(2018) 2237–2263 . 

34] Bonati L., Polese M., D’Oro S., Basagni S., Melodia T., Open, Programmable, and
Virtualized 5G Networks: State-of-the-Art and the Road Ahead, arXiv preprint
arXiv:2005.10027 [cs.NI] (2020). 

35] 3GPP , Study on CU-DU Lower Layer Split for NR, Technical Report (TR), 3rd Gen-
eration Partnership Project (3GPP), 2018 . Version 15.0.0 

36] S. D’Oro , P. Mertikopoulos , A.L. Moustakas , S. Palazzo , Interference-based pricing
for opportunistic multicarrier cognitive radio systems, IEEE Trans. Wirel. Commun.
14 (12) (2015) 6536–6549 . 

37] D.P. Bertsekas , Convex Optimization Algorithms, Athena Scientific Belmont, Nashua,
NH, USA, 2015 . 

38] J. Lee , S. Leyffer , Mixed Integer Nonlinear Programming, Springer Science & Busi-
ness Media, New York, NY, USA, 2011 . 

39] G. Scutari , D. Palomar , S. Barbarossa , The MIMO iterative waterfilling algorithm,
IEEE Trans. Signal Process. 57 (5) (2009) 1917–1935 . 

40] R.K. Jain, D.M.W. Chiu, E.R. Hawe, A quantitative measure of fairness and discrim-
ination for resource allocation in shared computer system, Eastern Research Labo-
ratory, Digital Equipment Corporation: Hudson, MA, USA (1984) 2–7. 

41] 3GPP , Telecommunication management;Study on system and functional aspects of
energy efficiency in 5G networks, Technical Report (TR), 3rd Generation Partnership
Project (3GPP), 2019 . Version 16.1.0 

42] T. Bu , L.E. Li , R. Ramjee , Generalized proportional fair scheduling in third generation
wireless data networks, in: Proc. of IEEE Intl. Conf. on Computer Communications
(INFOCOM), Barcelona, Spain, IEEE, 2006 . 

43] X. Wu , R. Srikant , J.R. Perkins , Scheduling efficiency of distributed greedy schedul-
ing algorithms in wireless networks, IEEE Trans. Mob. Comput. 6 (6) (2007)
595–605 . 

44] X. Foukas , M. Marina , K. Kontovasilis , Orion: RAN slicing for a flexible
and cost-effective multi-service mobile network architecture, in: Proc. of ACM
Intl. Conf. on Mobile Computing and Networking (MobiCom), Snowbird, UT, USA,
2017 . 

http://hub.radisys.com/white-papers/open-ran-enabling-the-o-ran-future
https://telecominfraproject.com/wp-content/uploads/OpenRAN-v11082019-vFinal.pdf
http://refhub.elsevier.com/S1389-1286(20)30503-X/othref0003
http://refhub.elsevier.com/S1389-1286(20)30503-X/othref0003
http://refhub.elsevier.com/S1389-1286(20)30503-X/othref0003
http://refhub.elsevier.com/S1389-1286(20)30503-X/othref0003
http://refhub.elsevier.com/S1389-1286(20)30503-X/othref0003
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0001
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0001
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0001
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0001
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0001
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0002
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0002
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0002
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0003
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0003
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0004
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0004
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0004
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0004
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0004
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0004
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0004
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0004
https://about.att.com/innovationblog/2020/01/2019_5g_recap.html
https://static1.squarespace.com/static/5ad774cce74940d7115044b0/t/5e54df89a726e63147f0b569/1582620555237/2020-02-25_O-RAN-TIP-PR-v1.0.pdf
https://static1.squarespace.com/static/5ad774cce74940d7115044b0/t/5e4ed59178b98159a8b1f881/1582224786007/2020-02-20_O-RAN+progress+PR_v1.0.pdf
https://static1.squarespace.com/static/5ad774cce74940d7115044b0/t/5dfba8fb1326ae1bcf4a8b6f/1576773884092/O-RAN-2019.12.19-EC-C-PR-on-2019-Plugfest-v1.0.pdf
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0005
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0005
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0005
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0005
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0006
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0006
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0006
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0006
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0006
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0006
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0007
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0007
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0007
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0007
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0007
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0008
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0008
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0008
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0008
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0008
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0008
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0008
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0009
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0009
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0009
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0009
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0009
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0009
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0010
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0010
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0010
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0010
https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/002/01.01.01_60/gs_ZSM002v010101p.pdf
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0011
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0011
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0011
https://www.onap.org/wp-content/uploads/sites/20/2018/11/ONAP_CaseSolution_Architecture_112918FNL.pdf
https://www.o-ran.org/s/O-RAN-WP-FInal-181017.pdf
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0012
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0012
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0012
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0012
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0012
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0012
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0013
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0013
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0013
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0013
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0013
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0013
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0014
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0014
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0014
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0014
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0014
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0014
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0014
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0015
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0015
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0015
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0015
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0016
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0016
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0016
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0016
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0016
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0017
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0017
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0017
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0017
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0017
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0017
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0017
https://advancedwireless.org
https://www.powderwireless.net
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0018
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0018
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0018
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0018
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0018
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0019
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0019
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0019
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0019
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0019
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0019
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0019
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0019
http://arXiv:2005.10027
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0020
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0020
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0020
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0021
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0021
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0021
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0021
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0021
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0022
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0022
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0023
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0023
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0023
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0024
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0024
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0024
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0024
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0025
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0025
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0025
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0026
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0026
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0026
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0026
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0027
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0027
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0027
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0027
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0028
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0028
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0028
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0028


L. Bonati, S. D’Oro and L. Bertizzolo et al. Computer Networks 180 (2020) 107380 

[  

 

[  

 

[  

[  

[  

 

[  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

45] M. Bansal , J. Mehlman , S. Katti , P. Levis , OpenRadio: a programmable wireless dat-
aplane, in: Proc. of ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking (HotSDN), Helsinki, Finland, 2012 . 

46] A. Gudipati , D. Perry , L.E. Li , S. Katti , SoftRAN: software defined radio access net-
work, in: Proc. of ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking (HotSDN), Hong Kong, China, 2013 . 

47] L.E. Li , M.Z. Mao , J. Rexford , CellSDN : Software-Defined Cellular Networks (2012)
(ftp://ftp.cs.princeton.edu/techreports/2012/922.pdf) . 

48] A. Bradai , K. Singh , T. Ahmed , T. Rasheed , Cellular software defined networking: a
framework, IEEE Commun. Mag. 53 (6) (2015) 36–43 . 

49] C.J. Bernardos , A. de la Oliva , P. Serrano , A. Banchs , L.M. Contreras , H. Jin , J.C. Zu-
niga , An architecture for software defined wireless networking, IEEE Wirel. Com-
mun. Mag. 21 (3) (2014) 52–61 . 

50] L. Bertizzolo , S. D’Oro , L. Ferranti , L. Bonati , E. Demirors , Z. Guan , T. Melodia ,
S. Pudlewski , SwarmControl: An automated distributed control framework for self-
optimizing drone networks, Proc. of IEEE Intl. Conf. on Computer Communications
(INFOCOM), Toronto, ON, Canada, 2020 . 

Leonardo Bonati received his B.S. in Information Engineer-
ing and his M.S. in Telecommunication Engineering from Uni-
versity of Padova, Italy in 2014 and 2016, respectively. He is
currently pursuing a Ph.D. degree in Computer Engineering at
Northeastern University, MA, USA. His research interests fo-
cus on 5G cellular networks, network slicing, software-defined
networking for wireless networks, and unmanned aerial vehi-
cles networks. 

Salvatore D’Oro received received his Ph.D. degree from the
University of Catania in 2015. He is currently an Associate Re-
search Scientist at Northeastern University. In 2015, 2016 and
2017 he organized the 1st, 2nd and 3rd Workshops on Com-
petitive and Cooperative Approaches for 5G networks (CO-
COA). He also served on the Technical Program Committee
(TPC) of the IEEE Conference on Standards for Communica-
tions and Networking (CSCN’18), Med-Hoc-Net 2018 and the
CoCoNet8 workshop at IEEE ICC 2016. He serves on the TPC
of Elsevier Computer Communications journal. Dr. D’Oro is
also a reviewer for major IEEE and ACM journals and con-
ferences. Dr. D’Oro’s research interests include game-theory,
optimization, learning and their applications to telecommuni-
cation networks. He is a Member of the IEEE. 

Lorenzo Bertizzolo is a candidate for Ph.D. in Computer Engi-
neering and research assistant at the Institute for the Wireless
Internet of Things at Northeastern University and a collabora-
tor of AT&T Labs Research, working on the integration of Un-
manned Aerial System into the next generations’ cellular net-
works. He earned his B.S. and his M.S. in Computer and Com-
munication Networks Engineering from Politecnico di Torino,
Italy in 2014 and 2015, respectively. His research focuses on
5G, software-defined networking for wireless networks, dis-
tributed optimization, and Unmanned Aerial Networks. 

Emrecan Demirors is a Research Assistant Professor with the
Department of Electrical and Computer Engineering at North-
eastern University. He is conducting research at the Wire-
less Networks and Embedded Systems Laboratory. Previously,
he was an Associate Research Scientist with the Department
of Electrical and Computer Engineering at Northeastern Uni-
versity, from 2017 to 2019. He received my Ph.D. degree in
Electrical and Computer Engineering from Northeastern Uni-
versity in 2017, under the supervision of Professor Tommaso
Melodia. He had previously received my B.S. and M.S degrees
in Electrical and Electronics Engineering from Bilkent Univer-
sity, Ankara, Turkey in 2009 and 2011, respectively, under
the supervision of Professor Hayrettin Koymen. From 2010 to
2011, he was a Systems Engineer at Meteksan Defence Indus-
try Inc., Ankara, Turkey. 

Zhangyu Guan is an Assistant Professor with the Department
of Electrical Engineering (EE) at The State University of New
York at Buffalo (SUNY Buffalo). He received his Ph.D. in Com-
munication and Information Systems from Shandong Univer-
sity in China in 2010. Dr. Guan was a visiting Ph.D. student
with the Department of EE, SUNY Buffalo, from 2009 to 2010.
He also worked at UB as a Postdoctoral Research Associate
from 2012 to 2015. After that, he worked as an Associate Re-
search Scientist with the Department of ECE at Northeastern
University in Boston, MA, from 2015 to 2018. He directs the
Wireless Intelligent Networking and Security (WINGS) Lab at
SUNY Buffalo, with research interests in modeling, control,
and system design toward next-generation, intelligent and se-
cure wireless networking. 

Stefano Basagni is with the Institute for the Wireless Internet
of Things and an associate professor at the ECE Department at
Northeastern University, in Boston, MA. He holds a Ph.D. in
electrical engineering from the University of Texas at Dallas
(December 2001) and a Ph.D. in computer science from the
University of Milano, Italy (May 1998). Dr. Basagni’s current
interests concern research and implementation aspects of mo-
bile networks and wireless communications systems, wireless
sensor networking for IoT (underwater and terrestrial), defi-
nition and performance evaluation of network protocols and
theoretical and practical aspects of distributed algorithms. Dr.
Basagni has published over nine dozen of highly cited, refer-
eed technical papers and book chapters. His h-index is cur-
rently 44 (June 2020). He is also co-editor of three books.
Dr. Basagni served as a guest editor of multiple international
ACM/IEEE, Wiley and Elsevier journals. He has been the TPC
co-chair of international conferences. He is a distinguished sci-
entist of the ACM, a senior member of the IEEE, and a member
of CUR (Council for Undergraduate Education). 

Tommaso Melodia is the William Lincoln Smith Chair Pro-
fessor with the Department of Electrical and Computer Engi-
neering at Northeastern University in Boston. He is also the
Founding Director of the Institute for the Wireless Internet
of Things and the Director of Research for the PAWR Project
Office. He received his Ph.D. in Electrical and Computer En-
gineering from the Georgia Institute of Technology in 2007.
He is a recipient of the National Science Foundation CAREER
award. Prof. Melodia has served as Associate Editor of IEEE
Transactions on Wireless Communications, IEEE Transactions
on Mobile Computing, Elsevier Computer Networks, among
others. He has served as Technical Program Committee Chair
for IEEE Infocom 2018, General Chair for IEEE SECON 2019,
ACM Nanocom 2019, and ACM WUWnet 2014. Prof. Melo-
dia is the Director of Research for the Platforms for Advanced
Wireless Research (PAWR) Project Office, a $100M public-
private partnership to establish 4 city-scale platforms for wire-
less research to advance the US wireless ecosystem in years
to come. Prof. Melodia’s research on modeling, optimization,
and experimental evaluation of Internet-of-Things and wire-
less networked systems has been funded by the National Sci-
ence Foundation, the Air Force Research Laboratory the Of-
fice of Naval Research, DARPA, and the Army Research Lab-
oratory. Prof. Melodia is a Fellow of the IEEE and a Senior
Member of the ACM. 

http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0029
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0029
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0029
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0029
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0029
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0030
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0030
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0030
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0030
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0030
http://refhub.elsevier.com/S1389-1286(20)30503-X/othref0017
http://refhub.elsevier.com/S1389-1286(20)30503-X/othref0017
http://refhub.elsevier.com/S1389-1286(20)30503-X/othref0017
http://refhub.elsevier.com/S1389-1286(20)30503-X/othref0017
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0031
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0031
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0031
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0031
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0031
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0032
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0032
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0032
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0032
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0032
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0032
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0032
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0032
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0025aa
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0025aa
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0025aa
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0025aa
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0025aa
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0025aa
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0025aa
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0025aa
http://refhub.elsevier.com/S1389-1286(20)30503-X/sbref0025aa

	CellOS: Zero-touch Softwarized Open Cellular Networks
	1 Introduction
	2 CellOS in a 5G flair
	2.1 A brief overview of 5G NR
	2.2 CellOS in a nutshell

	3 CellOS architecture
	3.1 Problem definition APIs
	3.2 Optimization framework
	3.2.1 Problem generation
	3.2.2 Problem decomposition
	3.2.3 Dispatcher and abstraction module

	3.3 Softwarized RAN

	4 CellOS in action: An example
	5 OAI-based CellOS prototype
	6 Experimental evaluation
	6.1 Network scenarios and testbed settings
	6.2 Performance metrics
	6.3 Experimental results
	6.3.1 High interference scenario
	6.3.2 Low interference scenario
	6.3.3 Network slicing
	6.3.4 CellOS scalability
	6.3.5 Experiment of POWDER-RENEW PAWR platform


	7 Related work
	8 Conclusions
	CRediT authorship contribution statement
	References


