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ABSTRACT
The Long Range (LoRa) protocol for low-power wide-area networks

(LPWANs) is a strong candidate to enable the massive roll-out of

the Internet of Things (IoT) because of its low cost, impressive

sensitivity (-137dBm), and massive scalability potential. As tens of

thousands of tiny LoRa devices are deployed over large geographic

areas, a key component to the success of LoRa will be the develop-

ment of reliable and robust authentication mechanisms. To this end,

Radio Frequency Fingerprinting (RFFP) through deep learning (DL)

has been heralded as an effective zero-power supplement or alterna-

tive to energy-hungry cryptography. Existing work on LoRa RFFP

has mostly focused on small-scale testbeds and low-dimensional

learning techniques; however, many challenges remain. Key among

them are authentication techniques robust to a wide variety of

channel variations over time and supporting a vast population of

devices.

In this work, we advance the state of the art by presenting (i) the

first massive experimental evaluation of DL RFFP and (ii) new data

augmentation techniques for LoRa designed to counter the degrada-

tion introduced by the wireless channel. Specifically, we collected

and publicly shared more than 1TB of waveform data from 100

bit-similar devices (with identical manufacturing processes) over

different deployment scenarios (outdoor vs. indoor) and spanning

several days. We train and test diverse DL models (convolutional

and recurrent neural networks) using either preamble or payload

data slices. We compare three different representations of the re-

ceived signal: (i) IQ, (ii) amplitude-phase, and (iii) spectrogram.

Finally, we propose a novel data augmentation technique called

DeepLoRa to enhance the LoRa RFFP performance. Results show

that (i) training the CNN models with IQ representation is not al-

ways the best combo in fingerprinting LoRa radios; training CNNs

and RNN-LSTMs with amplitude-phase and spectrogram represen-

tations may increase the fingerprinting performance in small and

medium-scale testbeds; (ii) using only payload data in the finger-

printing process outperforms preamble only data, and (iii)DeepLoRa
data augmentation technique improves the classification accuracy

from 19% to 36% in the RFFP challenging case of training on
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data collected on a different day than the testing data. More-

over, DeepLoRa raises the accuracy from 82% to 91% when training

and testing 100 devices with data collected on the same day.

CCS CONCEPTS
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1 INTRODUCTION
The massive scale of the IoT – expected to reach 30B devices by

2025 – implies that tens of thousands of tiny, low-power nodes

will be deployed under large geographical areas for sensing and

communication purposes [7]. Thanks to the promise of low-power

communications (up to 10 years of battery lifetime) with very long-

range connectivity (up to tens of kilometers), LPWAN protocols

such as LoRa [6], Sigfox [32], andNB-IoT [11] are gaining significant

momentum in both the industrial and academic communities [2].

For useful surveys of LPWANs, we refer the reader to [18, 26].

Due to the extremely low computation capabilities, the success of

LPWANs relies on performing on-board operations – for both com-

munication and computation – in the most efficient and effective

way possible [13]. Indeed, LoRa relies on a very simple and low-

power communication scheme called Chirp Spread Spectrum (CSS),

allowing low-rate long-distance communications with throughput

in the order of tens of kilobytes per second. The simplicity of LoRa

can lead to security issues. Most of the existing work has focused

on improving its proprietary communication protocol to improve

throughput [27] or energy consumption [29]. However, a critical

aspect that has so far been mostly neglected is designing scalable

and reliable authentication techniques for LoRa devices without re-

lying on energy-hungry cryptography [20]. Classic authentication

techniques are off-limits in low power LoRa application since they

would severely diminish the battery lifetime, and in most cases, ex-

ceed the computational capability that a tiny LoRa device can offer.

To address this vital issue, authentication techniques based on RFFP
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have received a surge of interest from the research community [17].

RFFP leverages tiny imperfections in the analog circuitry of radio

devices, e.g., IQ imbalance, frequency/sampling offsets, to derive a

unique "signature" of the device, which can hardly be imitated by an

adversarial device [19]. Most importantly, RFFP operates on exist-

ing device transmissions without impacting the device operations,

and thus, it has no impact on the device’s required computational

or energy resources. The Radio-Frequency Machine Learning Sys-

tems (RFMLS) program by the Defense Advanced Research Projects

Agency (DARPA) [8], focused on RFFP, is just one example to attest

to the interest that this topic is generating in the community.

Recently, CNNs have been proposed to fingerprint radios through

deep learning of the hardware impairments [24]. CNN’s are becom-

ing more and more popular in the wireless community [15, 19, 20],

thanks to their ability to avoid manual – and thus, cumbersome

and necessarily sub-optimal – feature extraction techniques, such

as Zigbee’s O-QPSK modulation in [17] or with the WiFi training

symbols in [5]. Another downside of waveform specific methods is

that the derived algorithm is highly protocol-dependent and not en-

tirely applicable to general waveforms. Conversely, using "raw" (i.e.,
unprocessed) IQ samples, CNNs can fingerprint wireless devices

using any wireless technology of choice. This key aspect makes

deep learning-based radio fingerprinting particularly desirable for

the IoT, where different wireless technologies co-exist [31].

Challenges. One of the most crucial challenges in radio finger-

printing is the wireless channel’s time-varying variations intro-

duced to the IQ samples that are typically fed to the decision maker.

The channel “action” significantly decreases radio fingerprinting

accuracy. The authors in [1] carried out an extensive experimental

campaign on 20 WiFi devices. They illustrated that the wireless

channel significantly degrades the classification accuracy, i.e., the

fingerprinting accuracy of equalized IQ dataset dropped from 85%

(train-and-test-one-day) to 9% (train-one-day-test-another). An-

other crucial challenge in the RFFP domain is the testbed scalabil-

ity; existing work in LoRa RFFP has mostly focused on small or

medium-scale testbeds and low-dimensional learning techniques.

However, these problems are clearly best addressed through a large-

scale data collection campaign. Today, large-scale datasets of LoRa

transmissions in rich and diverse indoor and outdoor environments

are missing.

This paper attempts to address the above challenges and to create

a benchmark dataset for RFFP.We also propose newly designed data

augmentation techniques that improve the LoRa RFFP bymitigating

the wireless channel’s impact. We propose DeepLoRa as a distinct
data augmentation technique. This technique applies a wide vari-

ety of multipath channels generated and used as complex-valued

finite input response (FIR) filter taps. Applying these synthetic

FIR filters to the collected LoRa samples during the DL training

phase increases the diversity of the propagation channels. Accord-

ing to statistical learning theory, data augmentation regularizes the

deep learning models and develops generalizations [9]. Through

DeepLoRa, we expect our models to become more robust to channel

variations by “forcing” them to learn to recognize specific transmit-

ter impairments rather than the channel conditions under which

these were collected. To the best of our knowledge, this paper, for

the first time, improves the RFFP worst-case scenario (train-one-

day-test-another) using data augmentation.

Contributions. Our paper makes the following contributions:

•Massive Data Collection Campaign.We conduct a massive

data collection campaign to assess the RFFP performance in authen-

ticating 100 bit-similar LoRa devices, thus generating a dataset that

will continue to grow. We train different NN models (two CNNs

and three RNN-LSTM models) over different deployments (outdoor

vs. indoor vs. mix of environments) and spanning several days.

We label our dataset using SigMF-metafiles. Moreover, we extend

this format to incorporate a new extension designed to capture

environmental and LoRa specific information. Each SigMF record

consists of (i) the binary file containing the IQ samples and (ii) the

extended SigMF metadata file[10]. As a significant additional con-

tribution both SigMF records used in this paper are made available

on https://www.interdigital.com/data_sets/ lora-radio-data.
• Study of the impact of various packet components on

the RFFP accuracy. We customize our DL models’ input by ex-

tracting the preamble, and the payload data from LoRa received

packets. Then we investigate the impact of training and testing

a DL model using preamble data only or payload data only. This

process can help identify which part of the packet holds specific de-

vice hardware impairments that are most valuable in increasing the

RFFP accuracy and expedite the training process to avoid training

models with the full packet data.

• Comparison of different representations.We employ dif-

ferent representations of the received signal, (i) raw IQ, (ii) amplitude-

phase, and (iii) spectrogram. Each representation highlights distinct

characteristics in the time and frequency domains. By analyzing

these divers representations against varying testbed scales and NN

models, we shed light on which representation is a good fit for

each specific setup. For example we show that the spectrogram

representation results in a better RFFP performance in small-scale

testbeds using RNN-LSTM NNs, while amplitude-phase and IQ rep-

resentations provide better robustness in medium and large-scale

testbeds.

• DeepLoRa.We propose DeepLoRa, a novel data augmentation

technique based on ITU-R channel models, to enhance the reliability

and robustness of the RFFP algorithms. This augmentation tech-

nique is shown to improve performance regardless of which day

the test data was collected. The key innovation in DeepLoRa is the
ability to apply a wide variety of ITU standard multipath channels

generated and employed as FIR filter taps; this action extends the

propagated channels’ diversity of the received signal. To evaluate

the scalability of DeepLoRa, we conducted extensive experiments

using various modeling scenarios over different fading distributions

(Rayleigh and Rician) and among several signal-to-noise powers.

2 RELATEDWORK
Deep learning in LPWANs. Neural Networks (NNs) succeeded
in improving the fingerprinting accuracy of the wireless devices by

analyzing and tracking the unique hardware impairments emitted

from the radios during the wireless transmissions process [19, 24].

NNs are employed to identify the radio’s unique hardware impair-

ments and patterns by exploring a massive amount of raw data

emitted from them. In most cases, IoT networks have a dense de-

ployment, and applying DL techniques to fingerprint these IoT

devices benefit the devices’ authentication process, security, and ac-

cessibility to the services. The authors in [21] proposed a supervised
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per-symbol classification methodology, including MLPs and CNNs,

to fingerprint 22 LoRa devices with three different chipset vendors.

The fingerprinting accuracy for these three chipset vendors was

99% to 100%. Additionally, they used a zero-shot learning model;

however, they could not distinguish other chipset vendors when

training the model with devices from one vendor. Their testing

accuracy degraded to 22% and 26% using different channel condi-

tions and sampling rates. In [14] the authors compared the CNN,

DNN, and LSTM networks in fingerprinting 6 ZigBee devices over

several SNR levels to guarantee the proposed models’ resilience to

various wireless channel conditions. Experimental results demon-

strate high accuracy using the DNN method. However, a newer

paper[12] showed promising results for fingerprinting radio mod-

ulation based on LSTM. All previous works in LPWANs did not

consider (i) evaluating the RFFP using a large-scale indoor and out-

door data collection campaign, (ii) testing with samples collected

on a day different than the training day using bit-similar devices

and without altering the collected samples, and (iii) excluding any

useless information of the received packet that is not helping in

expediting the DL process.

Data Augmentation in LPWANs. The Computer Vision and Nat-

ural Language Processing (NLP) domains use data augmentation

techniques to improve the deep learning models’ robustness and

reduce the models’ overfitting. To the best of our knowledge, no

prior work has investigated data augmentation on LPWAN. How-

ever, there are few works related to data augmentation in radio

fingerprinting—a recent work [12] applied data augmentation on

deep learning-based radio modulation classification. The authors

considered three methods to apply data augmentation by rotating,

flipping, and adding Gaussian noise to the IQ samples. They im-

proved the classification accuracy using the three methods. This

work is different from our work since they classify and augment

data collected using various modulation schemes, each scheme de-

fined by district constellations characteristics. In contrast, in our

study, we classify and augment data collected from bit-similar de-

vices and transmitted using one modulation scheme. The authors in

[25] employed two approaches for WiFi RFFP data augmentation:

(i) the first approach augments the transmitter data "pure signals

without channel distortion." The authors then simulated the device-

specific RF impairments and indoor wireless channel instances

before classifying the synthetically created devices, and (ii) their

second approach augments "over-the-air" transmitted signals using

samples collected in the same days to train and test the model. In

our work, we did not embed any RF hardware impairments to the

transmitted signal as in their first approach. While in their second

approach, the authors did not consider the worst-case scenario,

which includes testing a large scale of bit-similar devices using data

collected in a day different from the training day "Train one day,

test another." As per our knowledge, we are the first to report an im-

provement of this worst-case scenario. Our proposal expedites the

DL process by specifying and extracting the part of the packet that

holds the most remarkable impairments and uses it as an input to

the DL model. We exclude any device identification in the received

signal to ensure that we do not learn the device-specific ID. We use

different representations of the received signal to train our models

IQ, amplitude-phase, and spectrogram. Our paper presents a new

data augmentation technique DeepLoRa that successfully improved

the RFFP performance when testing with samples collected on a

day different than the training day.

2.1 Background on LoRa Technology
LoRa operates under the Industrial, Scientific, and Medical (ISM)

radio frequency bands such as 868 MHz in Europe, 915 MHz in

North America, and 923 MHz in Asia. LoRa refers to the physical

layer, and it does not involve any encryption method. Typical LoRa

deployment uses a star network topology and uses a CSS modula-

tion technique and defines a “chirp” as one symbol [23].The LoRa

signal is very robust to noise, interference [26]. The LoRa signal

is scalable to different Bandwidths (BWs), Spreading Factors (SFs),

and code rates (CR). Optimizing the CR, SF, and BW values trade off

the data rate for range. Increasing the SF or lowering the CR allows

more extended coverage at the expense of reducing the data rate.

LoRa transmission can be customized using different parameters

as follows:

• LoRa BW: it is scalable to three BW settings 125kHz, 250kHz,

and 500kHz. Higher BW provides a higher data rate but degrades

the sensitivity. A LoRa symbol is one such chirp spanning the BW.

The chirp is cyclically shifted (modulated) by one of 2
𝑆𝐹

values to

carry SF bits of information. Each of the possible shifts is referred

to as a chip. The chip rate is equal to the radio BW.

• LoRa SF: LoRa employs six different SFs ranging from 7 to 12;

the SF represents the ratio between the symbol and chip rate. The

SF also trades data rate with the transmission range. Increasing the

SF improves the transmission range; however, the packet duration

will also increase, thus- lowering the data rate. For example, if SF

equals 7 (each symbol carries seven bits but symbol lasts 2
7
chips),

then the length of the chirp is 2
𝑆𝐹 = 128 chips or 7/128 bits per

chip =8.8k bps.

•CodingRate (CR): Forward error correction (FEC) techniques
applied to further improve the receiver sensitivity. LoRa supports

four CR values between 1/2 and 1.0. The CR equals 4/(4 + 𝑛) , with
𝑛 ∈ {1, 2, 3, 4}. FEC technique protects LoRa transmission from

interference. Increasing the CR enhances the protection but lowers

the information bit rate.

Customizing these parameters determines the radio energy con-

sumption, the transmission range, and the resilience to noise [4].

LoRa Frame structure illustrated in Figure 1 starts with a preamble

that is composed of (i) multiple (typically 8) un-modulated up-chirps

employed to detect the start of packet, (ii) two modulated up-chirps

used for frame synchronization, and finally, (iii) 2.25 un-modulated

down-chirps for frequency synchronization. An optional physi-

cal Header and a Header CRC follow the preamble. The final part

consists of the physical payload and the payload CRC. This paper

focuses on extracting the preamble and frame payload data. The

reader can refer to [30] for more details about LoRa frame.

Payload CRC 

Frame
Port

PHY CRC  

Frame 
Header

PHY Header

Extract 

Preamble

MIC

PHY Payload

MAC Header

Frame 
Payload

MAC Payload
Extract 

Fig. 1: LoRa Frame structure: Extracting Preamble and Payload.
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2.2 Preamble and Payload Extraction
Methodology

We use the Gnuradio gr-lora implementation by Robyns [22] to

receive LoRa radio signals using a Software Defined Radio (SDR).

The gr-lora receiver chain, as illustrated in Figure. 2 starts with

frame synchronization, including (i) sampling and filtering, (ii) pre-

amble detection, and (iii) synchronization to ensure detection of the

preamble and estimating the Sampling Time Offset (STO) and Car-

rier Frequency Offset (CFO). Frame synchronization is followed by

chirp demodulation, Gray de-mapping, de-interleaving, Hamming

decoding, de-whitening, and CRC. The gr-lora implementation de-

tails are discussed briefly in [23]. We modified this gr-lora code to

extract the preamble and payload IQ data as shown in Figure 1. All

fields that carry address information are removed. Preamble and

payload data are employed separately to determine which holds

more prominent features that can improve the learning process.

The preamble and payload high-level detection process is shown in

Figure 2.

Chirp 
Demodulation

DeinterleavingHamming 
DecodingDewhitening

Synchronization and 
preamble detection

Extract Preamble

SDR Hardware

Gray 
Demapping

Extract Frame Payload

Fig. 2: The gr-lora receiver chain.

3 DEEP LEARNING AND DATA
AUGMENTATION METHODOLOGY

We considered two popular deep learning approaches with distinct

architectures; a CNN and an RNN. The intention behind using

these different architectures is to compare their performance in

large-scale and in diverse environments. We illustrate the CNN

and RNN-LSTM architectures in Section 3.1. We describe the IQ

representations in Section 3.2. Then, Section 3.3 presents DeepLoRa,
a customized data augmentation technique based on ITU-R channel

models. Finally, we describe the performance metrics used in this

paper in Section 3.4.

3.1 NN Models Architecture
CNN.We consider two CNN models that differ in the dimension

of the convolutional layers (ConvLayers).

• 1DCNN: Figure 3 shows the architecture of the 1D CNNmodel

used in this study, inspired by a well-known AlexNet CNN. The

model consists of two one-dimension (1D) ConvLayers with recti-

fied linear units (ReLU) activation function. The first ConvLayer

operates with 128 filters of size 1x7, while the second ConvLayer

also operates with 128 filters but each with 1x5 kernel size. The I and

Q data are presented as separate channels to the 1D convolutions,

i.e., each channel has separate convolutions, but the convolutions’

results are summed at the output. The two ConvLayers are followed

by a 1x2 MaxPooling layer. This setup was repeated five times and

then fed to three fully connected (FC) layers with ReLU activations

and 256, 256, and 128 neurons, respectively. Finally, to generate

the radio classification probabilities, an FC layer with a softmax

activation function is used.

• 2D CNN: The structure is similar to 1D CNN model, except

a two-dimensional ConvLayer is used. Based on this, the kernel

size and the MaxPolling layer dimension were modified to match

the change. For completeness, we note that the 1D CNN was im-

plemented with Keras/TensorFlow, while the 2D model was imple-

mented with PyTorch.

ConvLayer 
128, (7) MaxPool FC 

256
Classes 

Probabilities

X 5

Softmax Activation 
Function

Input 
Sequence

ConvLayer 
128, (5)

FC 
256

FC 
128

Fig. 3: CNN model architecture.

RNN-LSTM. An RNN is a generalization of a feed-forward neural

network designed to retain and use information over a sequence

of inputs. The RNN output depends on its current input and the

computation from the previous input using feedback connections.

However, training basic RNN using backpropagation through time

suffers from exploding or vanishing gradients. Long Short Term

Memory (LSTM) is a particular class of the RNN that helps solve

the exploding/vanishing gradient problems [28]. Each LSTM cell

consists of current input data, short-termmemory from the previous

cell, and long-term memory. The cell uses filters as gates to decide

what memory to keep or discard at each cell before moving to the

next one. Figure 4 shows the LSTM model architecture used in

this work. We analyze the performance of three LSTMs applied

to fingerprint LoRa radios. The goal is to analyze the trade-offs

between the LSTM network depth and classification accuracy. Our

LSTM models include one, two, or three LSTM layers, each with

memory cells that equals the input slice length. The output is then

fed to an FC layer, and finally, the output layer, which is another

FC layer with a softmax activation function, produces the radios

classification probabilities. A dropout with a probability of 0.5 is

used after each LSTM layer to reduce overfitting. LSTM models were
implemented using Keras with TensorFlow backend. We slice our

dataset using the sliding window technique described in [1], and

then we feed it to the LSTM network as a consecutive modulated

in-phase (I) and quadrature (Q) sequences as shown in Figure 4.

Each slice is mapped to a its device label during the training phase.

LSTM
LoRa 1

LoRa m-1

LoRa 2

Input Sequence
(2, slice length) 

LSTM layers 
1, 2, or 3 stacked layers

Fully Connected 
Layer

LoRa m

…
…

  …
.

Output Layer

Q1

Qn

Q2

Qn-1

I1

In

I2

…
…

  …
.

…
…

  …
.

LSTM

LSTM

In-1

LSTM

Dropout

…
…

  …
.

 …
.

Fig. 4: LSTM model architecture.

3.2 IQ Dataset Representation
We reproduce our dataset in three different representations to rec-

ognize each representation characteristics’ impact in the training

and testing phases. We employ the following forms:

• Raw IQ: Figure 5 shows raw IQ representation in the time-

domain for one device on different days and environments. The
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Fig. 5: Scatter representation of the received IQ samples of one device in dif-
ferent environments and spanning different days.
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Fig. 6: Logarithmic-Frequency power spectrogram representation. One LoRa
device in different environments and spanning different days.

scatter representation varies from day to day, even under the same

environment.

• Spectrogram representation: a Short-Time Fourier Transform

(STFT) is employed to convert the IQ raw dataset to a time-frequency

dataset. The generated dataset describes both the time and fre-

quency characteristics of the received signal. Equation 1 transforms

an IQ sequence X to 2D time-frequency S representation. Where

W is a window function, with a center that is located at the time

index 𝜏

𝑆 =

∫ ∞

−∞
𝑋𝑊 (𝑡 − 𝜏)𝑒−𝑗2𝜋 𝑓 𝑡 (1)

We generate this representation using scipy.signal python pack-

age. Figure 6 illustrates how the logarithmic spectrogram represen-

tation varies from day to day and in different environments.

•Amplitude-phase representation: (2), and (3) are used to convert

the received IQ samples to their amplitude and phase representa-

tions, respectively. Where A and 𝜙 represent the amplitude and

phase of the received signal, respectively.

𝐴 =

√
𝐼2 +𝑄2

(2)

𝜙 = arctan𝑄/𝐼 (3)

We analyzed the impact of these different representations in the

NN performance in subsection 5.1.

3.3 Data Augmentation Technique
Data augmentation techniques in the ML domain are used to syn-

thetically expand the training or testing datasets by applying trans-

formation on the existing samples. The newly generated dataset is

(i) identically distributed and (ii) not independent from the original

dataset. According to the statistical learning theory, data augmen-

tation regularizes the deep learning models and develops gener-

alizations [9]. There are few related works on data augmentation

for radio frequency fingerprinting in the literature. To the best of

our knowledge, we are the first to analyze the implementation of

data augmentation on LPWANs LoRa radios. We propose DeepLoRa
channel modeling as a novel data augmentation technique. A wide

variety of multipath channels are generated and used as complex-

valued FIR filter taps, then applied to the collected samples. Increas-

ing the diversity of the propagated channels during the training

phase, we expect the model to be more robust to channel varia-

tions by forcing it to learn transmitter impairments rather than

channel conditions. DeeploRa creates channel taps to transform

the original dataset using FIR filters. These taps are drawn from

distributions based on the ITU outdoor-to-indoor pedestrian, and

vehicular–high antenna channels. Indoor channel models are also

available, but the delay spread is too small to have much effect on

the data. Each channel realization is statistically independent, i.e.,

time correlation is removed to prevent correlated input sequences

during training. The data augmentation also includes the addition

of AWGN to produce augmented data with a variety of SNR; this

process enhances the model robustness to the SNR. Similarly, the

model is forced to learn transmitter impairments rather than SNR.

Design, Train, and Test NN 

ITU-R 
Channel Filter

AWGN NN Input (Original and 
Transformed datasets)

DeepLoRa

Train DL Model
Transformed 

Dataset

Extract 
Preamble Customize Dataset

Extract 
Payload 

Create dataset 
Payload or Preamble

IQ 
data 

Fig. 7: DeepLoRa Data augmentation with channel modeling technique.

Channel modeling is a technique to predict what will happen to

the transmitted signal as it propagates through the radio channel.

However, our DeepLoRa intention is not to estimate the receiver

performance in realistic environments but rather to impart further

propagation effects into signals collected under ‘good’ channel

conditions and high SNR to enhance the learning generalization.

Channel models specified in ITU-R recommendation M.1225

are commonly used as a set of empirical channel models. The rec-

ommendation defines three different test environments (i) indoor

office, (ii) outdoor-to-indoor pedestrian, and (iii) vehicular–high

antenna. In this work, we use (ii) and (iii). The recommendation

also specifies two different delay spreads for each test environment

(i) channel A-low delay spread and (ii) channel B-average delay

spread [16]. We use PA, PB (pedestrian channel A and channel B),

and VA, VB (vehicular–high antenna channel A and channel B).

These ITU channels are simple and reasonably realistic for Single-

Input and Single-Output (SISO) conditions. The channels consist of

a complex-valued FIR filter with up to 6 nonzero taps. Tables 1 and 2

describe the tap characteristics in time units with the first tap having

delay equals 0 and a normalized power such that the largest tap

average power is 0 dB. Each active tap is drawn from an independent

zero-mean complex Gaussian distribution (i.e., Rayleigh fading).

Once the channel selects parameters, the FIR filter is static for the

duration of a packet or multiple packets if there is more than one

packet in the given RF IQ sample stream.

We implement our DeepLoRa as a data augmentation technique

based on IUU-R channel models using Python-Pytorch joined with

MATLAB. We create a Python package to import MATLAB fading
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Table 1: ITU Channel Model for Outdoor to Indoor Pedestrian Environment.

TAP

Channel A Channel B

Relative

Delay (ns)

Average

Power (dB)

Relative

Delay (ns)

Average

Power (dB)

1 0 0 0 0

2 110 -9.7 200 -0.9

3 190 -19.2 800 -4.9

4 410 -22.8 1 200 -8.0

5 - - 2 300 -7.8

6 - - 3 700 -23.9

Table 2: ITU Channel Model for Vehicular Environment.

TAP

Channel A Channel B

Relative

Delay (ns)

Average

Power (dB)

Relative

Delay (ns)

Average

Power (dB)

1 0 0 0 -2.5

2 310 -1 300 0

3 710 -9 8 900 -12.8

4 1 090 -10 12 900 -10.0

5 1 730 -15 17 100 -25.2

6 2 510 -20 20 000 -16.0

channels during the deep learning process. This package will create

an FIR filter using one or more of the channel models illustrated in

Tables 1, and 2 to transform the original dataset.

The FIR is described by a finite sequence 𝜙 of 𝑀 filter taps, i.e.,
𝜙=(𝜙1,𝜙2,. . . ,𝜙𝑀 ). Given inputX ⊆ C𝑁 , where 𝑁 is a set of consec-

utive I/Q samples that constitute an input to the classifier, then for

any input x ∈ X, the filtered 𝑛-th element 𝑥 [𝑛] ∈ x̂ can be written

as

𝑥 [𝑛] =
𝑀−1∑
𝑗=0

𝜙 𝑗𝑥 [𝑛 − 𝑗] (4)

𝜙 𝑗 is the set of tap weights given by:

𝜙 𝑗 =

𝐾∑
𝑘=1

𝑎𝑘𝑠𝑖𝑛𝑐 ( [𝜏𝑘/𝑇𝑠 − 𝑗]) (5)

Where, 𝑇𝑠 is the period of input sample to the channel, 𝜏𝑘 is

the set of path relative delays 1 ⩽ 𝑘 ⩽ 𝐾 where, 𝐾 is the total

number of multipath fading channel, and 𝑎𝑘 is the set of complex

path gains of the multipath fading channel and calculated using

Sum-of-sinusoids technique.

Figure 7 shows a high-level overview of the implementation

process, it illustrates how we apply data augmentation using the

channel modeling technique. First, we process the collected data

using the sliding window technique described in [1] to generate the

training, validation, and testing datasets. The generated datasets

are then fed to the deep learning model. We fed the training dataset

to the customized DeepLoRa transform to filter the dataset using a

predefined channel model to agument the original dataset. We can

train our model using the original dataset, the new transformed

dataset, or both. Further, we can implement more than one trans-

formation at a time. We have flexibility in changing the designed

DeepLoRa channel characteristics by identifying various parameters

such as the fading type (e.g., Rayleigh or Rician), adding AWGN

with different SNR values, composing more than one channel, and

other parameters.

3.4 Performance Metrics
To assess the performance of our CNN and RNN models, we use

the following performance metrics:

• "Per-slice Training" Accuracy (PSTrain), defined as the number

of correctly predicted slices over the total number of trained slices

from the training dataset;

• "Per-slice Testing" Accuracy (PSTest), defined as the number of

the correctly predicted slices over the total number of tested slices

from the testing dataset;

• "Train-and-Test-Same-Day" Accuracy (TTSD), represents the

PSTestA over a testing dataset consists of slices collected during

the same day used to training model;

• "Train-and-Test-Other-Day" Accuracy (TTOD), represents the

PSTestA over a testing dataset consist of slices collected during a

day different than the day used to train the model;

4 EXPERIMENTAL CAMPAIGN
Section 4.1 summarizes the data collection methodology and the

datasets organization structure, while Section 4.2 briefly describes

the experimental setup and testbed layout.

4.1 Dataset Collection Methodology
As a first step, we performed an extensive data collection campaign,

where we employed 100 bit-similar Pysense sensors connected us-

ing 100 bit-similar FiPy radios; the top part of Figure 8 shows the

end device connection. The radios in our setup operate on a carrier

of 902.3MHz in the 915MHz ISM band. Each transmits ten consecu-

tive bursts of packets in each location. Each burst is separated by 1

second. The burst consists of 100 consecutive packets separated by

10 ms. Each packet contains the payload information carrying the

temperature, the humidity, and the device voltage readings. A USRP

N-210 equipped with a CBX 1200-6000 MHz daughterboard with

40 MHz instantaneous bandwidth is synchronized to receive the

transmitted packets in the data collection testbed. The data is stored

in two files (i) a dataset file, a binary file of the recorded digital

samples, and (ii) the SigMF metafile, which contains information

that describes the dataset in plain-text JSON format. Our binary

and meta format is an extension of, and compatible with the SigMF

specifications[10]. Moreover, we extend the SigMF meta format to

incorporate LoRa specific details.

4.2 Experimental Testbeds
Indoor testbed: This testbed, shown in the bottom part of Fig-

ure 8, is an open-access wireless testbed based on a grid of 8x8

VERT2450 antennas mounted on the ceiling of 2240 square ft in-

door office-space environment. Each of the 64 antennas is cabled

to a programmable SDR through low-attenuation coaxial cable en-

abling sub-6 GHz 5G-and-beyond spectrum research. This testbed

contains 24 SDRs controlled by 12 Dell Power Edge R340 running

Ubuntu 16.04 LTS computational servers[3]. In this initial dataset,

data is collected from only one of these antennas, as indicated in

Figure 8.

Outdoor testbed: To collect outdoor data, we repeated the indoor

experiment but move all LoRa devices outside the building and

replicate the indoor transmission scenario. The receiver and the
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Fig. 8: LoRa Experiment: Indoor setup.

gateway were kept inside the building. The outdoor experiment

was conducted in a residential area.

5 EXPERIMENT RESULTS
5.1 Performance Comparison
CNN vs. LSTM. Before training our models, we extracted the pre-

amble and the payload dataset.We sliced and partitioned our dataset

into three independent components (i) training, (ii) validation, and

(iii) testing datasets. This section evaluates both CNN and LSTM

models’ performance over this dataset; this part was completed

using the extracted IQ payload dataset collected in an outdoor

environment.

Table. 3 compares the training dataset performance of the CNN

and RNN-LSTM models described in section 3 for 10, 20, 50, and

100 devices. We elected the candidate devices for each model by

keeping a constant distance between these devices. e.g., for the
10 devices model, we utilized the dataset collected from devices

labeled as [10, 20, ..,100]. Table. 3 illustrates that increasing the

number of devices degrades the training accuracy for all but the 2D

CNN, especially for the RNN-LSTMmodels. The worst decrease was

from 92% to 45% when training with LSTM_1 model. To evaluate

Table 3: NNmodels PSTrain% performancewhile classifying the
payload IQ dataset of 10, 20, 50, and 100 LoRa devices.

Model 10 20 50 100

LSTM_1 92 75 58 45

LSTM_2 97 91 84 64

LSTM_3 89 84 70 77

1D CNN 99 97 89 82

2D CNN 99 99 99 99

the model, we used two methodologies (i) testing with dataset

collected on the same day of the training dataset (TTSD), and (ii)

testing with a dataset collected on a different day than the training

dataset (TTOD). TTOD can better judge the robustness of the model.

However, TTSD performs better than TTOD. The non-stationary
action of the wireless channel degrades the TTOD performance.

This section explains the NN architecture’s role in mitigating part

of the channel impact to enhance the model robustness using LoRa

IQ dataset representation in various setups. Results indicated in

Table 4 illustrate that the CNN models perform better than RNN-

LSTM models in both TTSD and TTOD matrices; Moreover, the 1D

CNN model outperforms the 2D CNN. Again raising the number

of devices decreases both metrics. We investigate the RFFP of the

worst-case scenario using bit-similar devices in a non-stationary

wireless channel condition and a dataset collected on different days.

However, increasing the number of the classified devices in such

a setup develops the chance of altering some radios impairments

and confuses the NN. Therefore, further investigations are subject

to future work.

Table 4: CNN and RNN-LSTM TTSD and TTOD performance while clas-
sifying 10, 20, 50, and 100 LoRa devices using IQ payload datasets

Model
TTSD% TTOD%

10 20 50 100 10 20 50 100

LSTM_1 88 62 55 51 14 9 4 2

LSTM_2 91 72 66 55 15 11 5 2

LSTM_3 86 68 63 59 16 12 4 3

1D_CNN 99 99 99 99 28 19 8 5

2D_CNN 99 98 97 97 19 13 7 6

Preamble vs. Payload. Table 5 shows our CNN and RNN-LSTM

models TTSD and TTOD performance using the preamble dataset of

10, 20, 50, and 100 LoRa devices located in an outdoor environment,

analyzing Tables. 4 and 5 indicate that TTSD and TTOD perfor-

mance using payload dataset outperforms in almost all models.

TTOD results prove that channel conditions degrade the models’

performance significantly when testing the models with either pre-

amble or payload data collected on a day different from the data

used to train the model. Generally, CNN outperforms the LSTM;

however, the TTOD performance of the LSTM models show more

robustness using the preamble dataset of 10 and 20 devices although

other-day performance remains substantially worse than same-day.

The preamble TTOD results are not good in general, and in some

cases it is worse than random guessing. This can be justified by ex-

amining the characteristics of the preamble data in the LoRa packet

described in section 2.1; the preamble is composed of fixed-length

chirps with a fixed frame format structure for all bursts. The pream-

ble chirps are unmodulated up-chirps; were chirp frequency varies

linearly with time, and thus- this feature makes the chirp signals

resilient to noise, fading, and interference [26]. This feature might

cause a drift in some radios’ impairments to the point that they

begin to look more like another radio than themselves, especially

with large-scale testbeds, and decrease the preamble performance-

badly.. Medium-scale testbeds (10 and 20 devices) trained with IQ

preamble datasets using LSTM models show better robustness than

CNN models. This can be explained by (i) the preamble structure

fact discussed earlier in this subsection and (ii) the LSTM capabil-

ity in tracking the hardware impairments rather than the channel

impairments using their memory cells.

Indoor vs. Outdoor. Table 6 compares the TTSD performance

using preamble and payload datasets with IQ representations col-

lected in an indoor and outdoor environments. LSTM_2 model

performance outperforms all other LSTM models. Generally, LSTM

models perform better in an indoor environment using the payload

dataset, followed by the payload dataset collected in the outdoor en-

vironment, the preamble indoor dataset, and the preamble outdoor.
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Table 5: CNN and RNN-LSTM TTSD and TTOD performance while clas-
sifying 10, 20, 50, and 100 LoRa devices using IQ preamble datasets

Model
TTSD% TTOD%

10 20 50 100 10 20 50 100

LSTM_1 77 44 47 29 15 9 0.4 0.2

LSTM_2 75 60 41 34 16 5 4 0.1

LSTM_3 63 53 26 24 13 1 1 0.2

1D_CNN 98 97 86 60 4 2 2 1

2D_CNN 98 98 97 82 15 4 4 2

In most cases, the preamble dataset collected in an indoor environ-

ment provides better performance than preamble data collected in

an outdoor environment. In contrast, the payload and the preamble

data collected in the outdoor environment outperform the indoor

ones using the CNN models. Generally CNN models work better

than LSTM in all scenarios. LoRa preamble dataset is more resilient

to noise, and since we are analyzing TTSD performance, then the

channel impairments will serve the payload dataset more than the

preamble dataset during the classification phase.

Table 6: CNN andRNN-LSTMTTSD% performancewhile classifying
20 LoRa devices using IQ preamble and IQ payload datasets

Model
Preamble Payload

Outdoor Indoor Outdoor Indoor

LSTM_1 44 56 62 82

LSTM_2 60 62 72 88

LSTM_3 53 44 68 82

1D_CNN 97 88 99 99

2D_CNN 98 98 98 89

IQ vs. Amplitude-Phase vs. Spectrogram. We convert the IQ

samples to their amplitude-phase and spectrogram representations.

Each representation mirrors individual characteristics associated

with the received waveform. We aim to understand how each form

can motivate the neural network performance.

Figures 9 a, b, c, and d compare the three representations with

respect to the testbed size and the employed NN. By dividing our

experiment based on the testbed size into three categories: (i) small-

scale (less than 10 devices), (ii) medium-scale ( from 10- 49 de-

vices), and (iii) large-scale (50 and above). Then we can notice

that in the small-scale testbed, amplitude-phase and spectrogram

with LSTM models outperform all other combinations. In medium-

scale testbeds, the amplitude-phase representation exceeds in all

cases except one case where CNN 1 slightly outperforms using IQ

representation. Finally, all models and representations had poor

performance with the large-scale testbeds, but IQ representations

provided marginally better results.

Train Outdoor Test Indoor. This part analyzes our NN models’

performance using different signal representations of data collected

in different environments. We train a small-scale model with IQ,

amplitude-phase, and spectrogram representations of the dataset

collected in an outdoor environment. To test the models, we use a

dataset collected on other day in an indoor environments.

LSTM 1 LSTM 2 CNN 1 CNN 2

36 37 29 21
48 42 40 42
15 45 40 38

LSTM 1 LSTM 2 CNN 1 CNN 2

14 15 28 19
19 22 24 27
8 5 16 8

9 11 19 13
11 12 17 22
5 4 4 4

4 5 8 7
3 3 4 6
1 1 2 2

(a) TTOD% of 5 Devices  (b)    TTOD% of 10 Devices

 (c)    TTOD% of 20 Devices  (d)    TTOD% of 50 Devices

IQ
Amplitude- 

Phase
Spectrogram

IQ
Amplitude- 

Phase
Spectrogram

Fig. 9: IQ, amplitude-phase, and spectrogram TTOD% performance per NN
model and using (a) small-scale, (b),(c) medium-scale, and (d) large-scale
testbeds. The models trained with an outdoor samples while each model is
tested using samples collected in an outdoor environment in a day different
than the training day.

The result in Table 7 illustrates that amplitude-phase and spectro-

gram representations outperform the IQ representation in almost

all cases. Testing with a dataset collected in a different environment

impacted the NN performance badly, especially using IQ represen-

tation with the best performance of 8% using LSTM 3 model. While

the performance increased using the other representations, and the

most remarkable accuracy was 36% using spectrogram with LSTM

3 model.

Table 7: TTOD% of classifying 5 devices using IQ, amplitude-
phase, and spectrogram dataset. Themodels trained with out-
door samples, while tested with indoor samples.

Model IQ Amplitude Phase Spectrogram

LSTM_1 5 24 22
LSTM_2 4 20 36
LSTM_3 8 16 26

1D_CNN 0 0 23
2D_CNN 0 7 20

Train on two days, Test with the third.We investigate training

NN using LoRa dataset collected on two different days; while test-

ing these models using data collected on the third day. The data

collected from 10 devices in an outdoor environment in this ex-

periment. To train and test the model, we used the whole received

frame without extracting preamble or payload data. We employed

IQ, amplitude-phase, and spectrogram representations to train 1D

CNN, 2D CNN, and LSTM_2 models. All results show a similar

TTOD classification accuracy of 10%, which is the random guess

probability of 10—mixing the training dataset using data collected

on different days did not improve the training accuracy while test-

ing with data collected on the third day.We repeated the experiment

by training the model with samples collected in one day only while

keeping the testing samples as-is from the third day; however, we

got the same results, 10% for TTOD accuracy. It is important to

mention that training NN model with payload dataset enhances

the NN robustness, especially when testing with data collected in a

day different than the training day as shown in Table 4.

5.2 DeepLoRa data Augmentation Performance
DeepLoRa data augmentation technique has a flexible structure,

allowing us to design several channel conditions to augment our

datasets. We can define the statistics of the augmented data by

identifying the (i) channel model environment: pedestrian (ITU-P)

or vehicular (ITU-V), (ii) delay spreads: Channel A with low delay
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spread or Channel B with average delay spread, (iii) multipath

fading type: Rayleigh or Rician, and (iv) AWGN SNR level.

We extensively assessed DeepLoRa by conducting several experi-

ments to understand these parameters’ impact on DL performance

under several circumstances. In this section, we report some of

them. The first experiment was carried out to analyze DeepLoRa
performance with different ITU channel models. We utilized PA,

PB, VA, VB, and a composition of all of them. For each ITU channel

model, we used (i) Rayleigh fading, (ii) several values of AWGN

SNR 10, 20, and 30, (iii) 2D CNN PyTorch model trained with both

the training and the transformed dataset using IQ representations.
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Fig. 10: TTOD% (i) without data augmentation, and (ii) with DeepLoRa using
PA, PB (outdoor-to-indoor pedestrian environments with channels A and B)
and VA, VB (vehicular–high antenna environments with channels A and B)
and a combination of all (PA, PB, VA, and VB) . Rayleigh fading with three
AWGN SNR values 10, 20, and 30dB.
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Fig. 11: DeepLoRa TTOD%. Rayleigh vs. Rician fading with outdoor-to-indoor
pedestrian environments with channels A and B) and VA, VB (vehicular–high
antenna environments with channels A and B), and a combination of all (PA,
PB, VA, and VB). AWGN SNR = 30dB..

To validate and test the models, we use the validation and testing

datasets without applying any augmentation. Figure 10 shows the

DeepLoRa TTOD performance using 10 LoRa bit-similar devices.

TTOD test our models with data collected in a day different from

the data used during the training and validation phases. DeepLoRa
succeeded in improving the model’s generalization performance,

despite employing different channel characteristics in each ITU

model. The best results occurred using PB channel and AWGN with

30 dB, where the TTOD accuracy increased from 19% to 36%, with

an 86% percent increase. Figure. 10 illustrates that the AWGN SNR

level impacts the channel generalization performance; however,

according to the results, all three AWGN SNR values enhanced the

TTOD performance.

In the second experiment, we assessed DeepLoRa performance

by implementing different fading types. We evaluated DeepLoRa
using both Rician and Rayleigh fading channels. This scenario’s

result shown in Figure 13, indicating that DeepLoRa improved the

TTOD accuracy using Rayleigh and Rician fading. However, the

Rayleigh fading provides more benefit than Rician fading in all

tested cases. Rician fading introduces less variation in the channel

due to the line-of-sight component. Figure 12 shows an experiment

conducted to examine the impact of applying PA, PB, VA, and VB

Rayleigh channel models to augment a 2D CNN PyTorch model

using the payload dataset of 20bit-similar LoRa devices. The results

indicate that applying data augmentation using these diverse chan-

nels succeeded in enhancing the TTOD accuracy from 13% without

augmentation to 22%, 20%, 18%, and 21% with PA, PB, VA, and VB

channels augmentation, respectively. Finally, our data augmenta-
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(b) TTOD = 22% with PA augmenta-
tion, 7 devices classified correctly
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(c) TTOD = 20% with PB augmenta-
tion, 5 devices classified correctly
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(d) TTOD = 18% with VA augmenta-
tion, 5 devices classified correctly
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(e) TTOD = 21% with VB augmenta-
tion, 5 devices classified correctly

Fig. 12:TTOD%of IQ payload data collected in outdoor environment. 12awith-
out data augmentation; 12b, 12c, 12d, and 12e with DeepLoRa using outdoor-
to-indoor pedestrian environments with channels A and B) and VA, VB (ve-
hicular–high antenna environments with channels A and B). Rayleigh fading,
and AWGN SNR 30 dB.
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Rayleigh fading and AWGN SNR = 30 dB
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Fig. 13: TTSD performance using the preamble dataset of 100 LoRa devices.
Without data augmentation and with DeepLoRa data augmentation using
PA, PB (outdoor-to-indoor pedestrian channel A and channel B test environ-
ments) and VA, VB (vehicular–high antenna channel A and channel B test
environments), with Rayleigh fading, and AWGN SNR 30 dB.

tion model succeeded in enhancing the TTSD performance of a 2D

CNN model trained, validated, and tested using a preamble dataset

collected from 100 devices in an outdoor environment. Figure 13

illustrates the increase of the TTSD performance from 82% to 91%,

88%, 89%, and 90% after augmenting the training dataset using the

PA, PB, VA, and VB channel models, respectively.

6 CONCLUSIONS
This paper has presented a large and growing dataset for IoT finger-

printing using 100bit-similar LoRa radios collected in indoor and

outdoor environments over several days. We study DL RFFP perfor-

mance using the preamble only and the payload only dataset. We

employed different representations for the received signal (i) IQ, (ii)

amplitude-phase, and (iii) spectrogram; each representation shows

different behavior depending on the testbed size and the adopted

NN. We experimented with various CNN and RNN-LSTM deep

learning architectures. We propose a novel data augmentation tech-

nique DeepLoRa that can mitigate part of the classification accuracy

drop when training and testing on different days. To the best of

our knowledge, we are the first to improve the TTOD performance

in RFFP using data augmentation. The best-case scenario showed

an increase from 19% to 36%. The augmentation technique also

improves TTSD performance from 82%to 91% using 100bit-similar

devices. Data augmentation technique proposed in this paper im-

proved the TTOD accuracy for the worst-case scenario significantly.

However, further enhancements to this case are crucial for the prac-

tical IoT Fingerprinting applications that rely on deep learning,

which will be subject to future work.
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