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Abstract—Wireless underwater acoustic networking is a key
technology with many applications in military and commercial
settings. Unlike their radio-frequency (RF) counterpart, underwa-
ter acoustic communications are constrained by the limited band-
width, and impaired by stronger Doppler spread, interference, and
frequency selective fading. Furthermore, the underwater channel
is completely unregulated. To enable successful underwater spec-
trum access, spectrum sensing techniques are an important tool
to separate ambient interference and undesirable signals from
real, desired, transmitted signals. For these reasons, this article
introduces SonAIr (Sonar + AI), a real-time system that utilizes
Deep Learning (DL) techniques to classify and localize signals in
the underwater channel. We collected and curated a real-world
underwater acoustic signal dataset spanning 7 days in 2 different
locations and multiple transceiver configurations, which will be
made publicly available. Additionally, we designed and trained a
novel two-stage Convolutional Neural Network (CNN) to identify
signal modulations and bandwidths with an Intersection-Over-
Union (IOU) as high as 0.89 on days unseen during training.
Furthermore, we implemented and validated our classifier in real-
time with an underwater testbed, achieving a CNN processing
latency of 17 ms.

Index Terms—Deep Learning, Spectrum Sensing, Underwater

I. INTRODUCTION

Underwater acoustic networking is a crucial technology used

in both military and civilian sectors, enabling a wide range of

applications. These applications include monitoring offshore

equipment in wind farms and oil/gas fields [1], tracking global

ocean conditions through environmental monitoring [2], im-

proving the efficiency of aquaculture operations through data-

driven fish/shellfish ranches [3], and supporting the deployment

of autonomous unmanned underwater vehicles for surveillance

and monitoring [4]. As the number of these applications grows,

so does the demand for shared underwater channel resources

within acoustic networks

In contrast to terrestrial communication systems that utilize

radio frequency and offer bandwidths ranging from tens to

hundreds of MHz per user and tens of GHz in total, underwater

acoustic communication channels possess limited and scarce

spectrum resources. The available bandwidths range from a few

kHz for long-range links of 10 to 100 km, to approximately 10

kHz for medium-range links of 1 to 10 km, and a few tens of

kHz for short-range links of 0.1 to 1 km. Only very short-range

links of a few hundreds of meters or less may have access to

bandwidths exceeding 100 kHz [5].

The lack of regulation exacerbates the scarcity of the under-

water acoustic spectrum. Unlike the RF spectrum, underwater
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Fig. 1: The SonAIr System. High level overview of real-time underwa-
ter spectrum sensing and classification network.

devices do not require a license to function in specific underwa-

ter acoustic spectrum bands. There is no strategy for assigning

portions of the spectrum and no restrictions on the amount of

power that can be transmitted, allowing underwater systems to

utilize any part or all of the spectrum whenever they choose

with almost unrestricted transmission power levels. However,

the spectrum is utilized by other underwater systems used for

seismology, profiling, navigation, and marine biology, as well

as marine life, which can result in an unpredictable environment

for communication links where spectrum resources may experi-

ence strong interference both in frequency and time. Despite the

overcrowded underwater spectrum, most spectrum resources

are still underutilized temporally and spatially. The mobility

and low-duty cycles of both man-made and natural acoustic

sources can cause spectrum under-utilization temporally, while

directional acoustic sources and nonlinear sound propagation

can lead to spectrum under-utilization spatially.

Overall, it is evident that the scarce and underutilized spec-

trum resources, compounded by the lack of regulation and

the overcrowded spectrum, pose a significant limitation on

the widespread use of underwater communication and net-

working systems. Spectrum sensing and classification systems

have the potential to alleviate the aforementioned spectrum-

associated problems and enable the prevalent use of wireless

communication and networking underwater. By continuously

monitoring the acoustic spectrum and identifying the avail-

able frequency bands, such systems can enable underwater

devices to utilize the available spectrum more efficiently and

avoid interference with other systems that operate in the same

frequency bands. Additionally, by automatically sensing and

9

2023 19th International Conference on Distributed Computing in Smart Systems and the Internet of Things
(DCOSS-IoT)

2325-2944/23/$31.00 ©2023 IEEE
DOI 10.1109/DCOSS-IoT58021.2023.00011



classifying allocated bandwidths and communication protocols,

such systems can distinguish transmissions from interference

and noise, minimize the need for handshaking/signaling and

feedback overhead between transmitter and receiver pairs, and

allow for efficient communication in unregulated, possibly con-

tested environments where multiple acoustic sources coexist.

To address the existing lack of real-time spectrum sensing

and classification systems, this paper proposes SonAIr (Sonar

+ AI), a real-time system that leverages Deep Learning (DL)

techniques, particularly convolutional neural networks (CNNs),

to sense, classify, and localize signals in the underwater chan-

nel. Traditional underwater spectrum sensing and classification

systems rely on protocol-specific feature extraction techniques,

which may be limited in terms of adaptability, generalizabil-

ity, accuracy, robustness, and real-time capability [6]–[8]. In

contrast, SonAIr performs sensing and classification on un-

processed in-phase and quadrature (I/Q) samples to classify

physical layer (PHY) protocols and localize them in frequency

without any prior knowledge, as shown in Fig. 1. It can offer

sensing and classification performance with an Intersection-

Over-Union (IOU) as high as 0.89 on days not seen during

training, with a processing latency of 17 ms.
We summarize our key technical contributions in this paper

as follows:

• We have created a real-world dataset1 of underwater

acoustic signals collected over a 7-day period in two differ-

ent locations and utilizing multiple radio configurations.

• We have designed and trained a two-stage signal classifier

based on Convolutional Neural Networks (CNNs) that is

capable of accurately localizing signals as narrow as 2.5

kHz and identifying up to 3 physical layer modulations,

achieving a mean Intersection-Over-Union of up to 0.89

on days not seen during training.

• We have implemented and validated the effectiveness of

our classifier in real-time, with a processing latency of

only 17 ms for the CNN component.

The rest of the paper is organized as follows: in Section II

we review the state of the art in underwater spectrum sensing,

in Section III we introduce the 7 day dataset we have curated

containing real underwater acoustic signals, in Section IV we

review our DL algorithm for underwater spectrum sensing, in

Section V we present our results, and finally in Section VI we

draw the main conclusions.

II. RELATED WORK

DL has been widely adopted and researched in wireless

communications in recent time for both inference and control

purposes, however predominantly in the RF domain [9], [10].

As mentioned before, due to the harsher conditions in the

underwater channel [11], DL for underwater communications

does not have the widespread adaptation of its RF counterpart.

While not a brand new idea in the underwater space, DL is still

in its infancy in this domain. Most works applying DL to aid

underwater communications are limited by simulated datasets

1https://github.com/wineslab/sonair-dataset

with assumed channel models [12], [13]. While this helps

validate the theoretical feasibility of such implementations it

does not translate well to real-world applications. There are

works that attempt at minimizing the translational challenge

to real world implementation with different techniques. These

works generally train their systems with simulated data using

novel algorithms, then validate with experimental data. [14]

develops a blind signal detector for underwater acoustic signals,

essentially distinguishing the signals from noise, and develop-

ing a transfer model reducing the reliance on simulated data

for online testing. [15]–[17] develop a modulation classifier for

underwater acoustic channels using DL techniques and validate

in data from real experimental scenarios. While the results of

many of these works are promising and are shown to perform

with data from real underwater scenarios, they are limited in

identification complexity. For example, none of them localize

the signals in addition to detecting it or classifying it. This is

generally the trend with works first trained on simulated data

that translate over to real underwater signals, as the capability

for more complex DL tasks is waning without an established

real-world dataset.

To the best of our knowledge, no work exists that aims

to perform classification on underwater acoustic signals with

abilities to identify and localize multiple signals. Furthermore,

no real-time testbeds exist that can perform such a task. Finally,

there does not exist a dataset that will help enable underwater

spectrum sensing to progress and ease the burden of data

scarcity. This work aims to bridge all of these gaps by providing

data to further the field of underwater modulation recognition

and spectrum sensing as well as implementing a state-of-the-art

working system.

III. DATASET

To develop and test SonAIr, we produced a dataset by record-

ing transmissions with varying modulation and frequency bands

using deployed underwater acoustic modems. Existing com-

mercial underwater acoustic modems [18], [19] typically utilize

non-coherent techniques such as frequency shift keying (FSK)

and chirp spread spectrum (CSS), which provide robust links

and have low-complexity design. Whereas research modems

[20] make use of multi-carrier coherent techniques such as or-

thogonal frequency division multiplexing (OFDM), as these can

achieve higher rates at a cost of higher complexity. The dataset

for SonAIr comprises packets utilizing FSK, CSS, and OFDM

to encompass the physical layer implementations commonly

used in underwater acoustic communication systems.

The parameters of these classes are varied based on the

effective bandwidth of the sample. For FSK, symbols hop

between {−fBW/4, fBW/4}, and the rate parameter is adjusted

to cover total bandwidth. For CSS, chirp duration is set to 2 ms
and sweep frequencies coincide with the total bandwidth. For

OFDM, a subcarrier bandwidth of 19.5 Hz is selected, and the

number of subcarriers is scaled based on the total bandwidth.

To make the spectrum sensing problem more manageable, we

have divided the spectrum into equally spaced channels. We

further assume that each transmission is aligned with channels
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Fig. 2: Marina deployment with two underwater acoustic modems for
data collection

such that the center frequency of the transmitter is set to one

of the channel boundary frequencies while the receiver center

frequency is fixed. The transmission bandwidth is an integer

multiple of the channel bandwidth, but unintentional leakage to

adjacent channels is permissible and additional filtering is not

used on the transmitter or receiver.

In this work, we consider 20 channels with 2.5 kHz channel

bandwidth over a 50 kHz total bandwidth. A set of raw data

files for 5, 10, 15, 20, 25, and 50 kHz bandwidths for each

modulation class is generated offline. The bandwidth and trans-

mitter center frequency parameter pair determines the set of

occupied channels. The files have randomly generated payloads

to avoid any distinct patterns in the recordings and to limit peak

to average power ratio (PAPR) for OFDM recordings.

The dataset generation process is controlled by a server

that has access to both of the modems. A script running on

the server sequentially processes each recording. The main

tasks of this script are configuring transmitter and receiver

modems, starting the transmitter, and after the transmitter is

active, recording for the specified duration of time with the

receiver modem. On the modems, GNU Radio is used to play

and record the files. The configuration step on the transmitter

side consists of loading appropriate files based on modulation

and bandwidth, setting the center frequency to occupy given

channels, and setting the output level. The receiver modem is

always configured with the system center frequency. Record-

ing a dataset takes approximately 20 to 50 minutes including

background noise recordings. The dataset consists of binary

files of baseband interleaved 32-bit float I/Q samples. The

files are labeled with the corresponding class followed by an

array of ’1’ and ’0’ representing occupied and empty channels

respectively. For instance, a recording of CSS-modulated pack-

ets of 15kHz bandwidth occupying channels 7-12 is labeled

“css 00000001111110000000.dat”.

We have collected three sets of data on different days. Six

days were recorded at a marina and one set is from an open sea

experiment. The typical marina setup consists of two modems

attached to the dock with ropes and suspended next to each

other as illustrated in Fig. 2. The projector of the transmitter
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modem faces up whereas the hydrophone of the receiver mo-

dem faces down. The resulting vertical setup has a separation

of 5 to 7 meters. This setup resembles a typical topology in

which a sink node close to the surface receives information

from underwater nodes deployed below.

The recordings at sea were performed near Newport, Rhode

Island. The modems were attached to buoys and deployed far

from the shore. The initial placement and orientation were

similar to the marina setup, but the vertical separation of the

modems was approximately 20 meters and their horizontal

alignment was varying due to currents.

The total duration of recordings in this dataset is two hours,

twelve minutes, and two seconds including empty channel

recordings. The number of I/Q samples for each modulation

scheme in these recordings is given in Fig. 3. The channel usage

was not uniform across all frequency bins due to the generation

procedure described earlier, and the resulting distribution is

given in Fig. 4.

The center frequency of the receiver is set to 150 kHz which

is determined according to the optimum transmit frequency re-

sponse of the transducer. The resulting channel mapping spans

the 125kHz to 175kHz interval. A spectrogram of typical back-

ground noise levels from marina recordings is shown in Fig.
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Fig. 5: Spectrogram of empty channel
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OFDM
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(c) OFDM

Fig. 6: Spectrogram of different modulation classes with 20 kHz
bandwidth

5. Here, transmissions from various acoustic sources around

the marina are captured with the most prominent one around

200 kHz. Spectrograms of short sections from recordings of the

three classes from the same day are given in Fig. 6. In these

plots, various noise components are observed.

IV. DEEP LEARNING AIDED SPECTRUM SENSING

A. System Architecture

The full system architecture of SonAIr can be seen in Fig.

7. The modems are the software-defined underwater acous-

tic modem described in [21], and the server is a Dell T440

configured with a Intel Xeon 4208 CPU and 32 GB RAM.

The signal received with the transducer is amplified with the

receiver hardware and passed to the digital downconverter on

the programmable logic section of the modem. The signal is

downmixed from center frequency to baseband and decimated

to 2.5 Msps. The output is then streamed into a GNURadio

flowgraph that is running on the processing system of the

modem. In this flowgraph, the received baseband signal is

further decimated to 50 ksamples/s. The decimation process

filters out the out-of-band noise and reduces the rate of data to

be streamed and processed at the following spectrum sensing

blocks. The resulting signal at the output of the decimation

block precisely occupies the total bandwidth considered for the

spectrum sensing blocks which work in parallel and will be

discussed in more detail in Section IV-B. Both spectrum sensing

blocks take 400 I/Qs at this new sampling rate as input.

Real-time inference for these spectrum sensing blocks is per-

formed with an existing GNU Radio Out of Tree (OOT) module

for CNN inference on GNU Radio [22]. This module utilizes

ONNX and ONNX runtime to run DL modules converted to

Server

GNURadio Flowgraph

Visualizer

Signal
Localizer

Modulation
Classifier

ZeroMQ
Source

Receiver Modem

FPGA GNURadio Flowgraph

Preamplifier Decimator ZeroMQ
SinkTransducer Digital

Downconverter

Fig. 7: SonAIr system architecture

the ONNX format, optimized for hardware acceleration and

interoperability. In our flowgraph we have used two of these

modules in parallel for the Modulation Classifier and the Signal

Localizer models. ONNX model files used to initialize these

blocks are produced from the network parameters obtained after

training. The networks output a vector of probabilities for each

set of 400 I/Q symbols that have been fed as input. The output

of the Modulation Classifier is a 1D vector of size 4, each index

corresponding to a different class (PHY modulation). This vec-

tor is fed into an argmax block that calculates the index of the

most probable class. The Signal Localizer output vector, on the

other hand, is a 1D vector of size 20 (each index corresponding

to a different 2.5kHz sub-band in the observable bandwidth)

that is passed through a threshold function that maps [0, 0.5)
to 0 and [0.5, 1] to 1. The resulting scalar and vector outputs

are multiplied to a compact form of vector of class indices. Fig.

8 shows the joint performance of both classifiers and how the

results are combined to create one cohesive label representing

the current state of the spectrum.

B. Two Stage Spectrum Classifier

Our primary vehicle for driving underwater spectrum sensing

are 1D CNNs, specifically we design two 1D CNNs that operate

in parallel. (i) The Modulation Classifier, classifies the modula-

tion used for the transmitted signal and (ii) the Signal Localizer,

finds the occupied frequencies of said signal. Both of these

CNNs take the exact same input and have the same structure,

but have different outputs and different amount of filters in

each CNN layer. From our experiments we received better

performance when dividing the tasks this way as opposed to one

network that performs both functions. Furthermore dividing the

task in this way does not allow classification errors to propagate

from one task to another, as the networks are not trained to

optimize both at the same time.

Both CNNs take a 2 channel (real and imaginary) input of

400 raw I/Qs sampled at 50kHz in the time domain. ”Channel”

reffering to the channels of a CNN and not the frequency chan-

nels in the wireless spectrum. This input size is chosen through

training iterations of sizes and is found to be the smallest size
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Fig. 8: Joint performance of Modulation Classifier and Signal Local-
izer on classifying wireless acoustic underwater signals

with the best performance for both networks. Before feeding

into the networks the I/Qs are normalized by setting their l2
norm to 1 or unit power as can be seen in Fig. 9. Although

this removes any information the magnitude of the constellation

vector may contain (as they are all unitary now), this will ensure

the network doesn’t rely on signal power or signal-to-noise ratio

(SNR) to make its distinctions. Rather, the network must learn

from the phase patterns of the constellations in the I/Q plane.

The intuition is that the received signal strength will play less

of a factor in classification and the network will generalize

better in more diverse scenarios or environments. The classifier

therefore should be adaptable.

1

Original

I

Q

-1

Normalized

Fig. 9: I/Q constellation change after l2 normalization

To keep our network lightweight we employ a altered version

of a VGG16 [23] network as seen in Fig. 10. The VGG16

network is used widely for a variety of signal and spectrum

classification related tasks and has shown great performance.

Specifically this network performs very well as a general-

IQ
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(2xConv+SE+MaxPool)

3x
(3xConv+SE+MaxPool)

2xDense

Class(es)

Fig. 10: CNN used for feature extraction for both Modulation Classi-
fier and Signal Localizer. Inputs are the same for both but output varies
depending on module.
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r

Fig. 11: Squeeze and excitation network that calculates global weights
for each CNN channel and then scales each channel by these weights

ized feature extractor. However, we add a channel attention

mechanism inside each convolutional block via squeeze-and-

excitation (SE) networks [24]. SE networks provide channel

attention by multiplying each channel at a given layer by a

set of weights based on the global average of each channel

and some feature extraction as seen in Fig. 11. Here the global

average of each channel is calculated than put through a mini

encoder decoder dense network (the ”squeeze” and ”excitation”

aspect) where r controls the squeeze factor. The network is

then excited to have as many neurons as there are channels

of the initial feature map for scaling. Furthermore due to the

Sigmoid activation at the final dense layer of the SE network

before scaling, each channel is weighted based on importance

or impact on minimizing the loss function. This will allow the

model to adaptively choose which channel it deems better for

the classification. For our application this allows context aware-

ness where certain aspects of the constellation or I/Q plane

can be deemed more pertinent than others. This is especially

important as we have removed the magnitude information, so

we force the network to focus on other aspects. The SE network

is also a very computationally inexpensive way to add channel

attention as it is not made up of any layers not already used in

traditional CNNs.

Modulation Classifier. The Modulation Classifier’s sole

purpose is to identify the modulation scheme of the transmitted

signal. As discussed in Section III our signals are modulated

either using CSS, FSK, or OFDM. Furthermore we add an extra

class for noise and interference when no signal is present which

we call ”Empty”. This will allow for the network to account for
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(a) Same setup to training (b) Same environment but different radio setup (c) Different setup and environment

Fig. 12: Classification report of SonAIr in three different configurations on days unseen during training

(a) Same setup to training (b) Same environment but different radio setup (c) Different setup and environment

Fig. 13: Confusion matrices of SonAIr in three different configurations on days unseen during training

any undesirable signals, whether they be other modulations or

ambient noise/interference. This network outputs a single inte-

ger which is attributed to a modulation as follows: Empty = 0;

CSS = 1; FSK = 2; OFDM = 3. The network is trained in

the traditional single-label classification way with a categorical

cross-entropy loss function, as we assume only one modulation

can exist within the observable bandwidth. An Adam optimizer

is used for the gradient descent.

Signal Localizer. The Signal Localizer as a binary multi-

label classifier where each output neuron is attributed with a

different sub-band in the observable band. In this case we have

a 50kHz observable band and 20 output neurons, so each output

neuron dictates whether there is a signal present in 2.5kHz of

bandwidth. In a sense the Signal Localizer acts as a form of

adaptive energy detector without any kind of a threshold. The

benefits of using a DL network over a fixed threshold energy

detection algorithm has been shown in the literature before [25].

The network will ”fire” any neuron where it detects a signal of

interest. Therefore this network outputs a vector of size 20 filled

with ones and zeros, ones if there is a signal and zero if there

isn’t. An Adam optimizer is used for the gradient descent here

as well.

V. RESULTS

A. Classification

As mentioned previously we collect data for 7 days, three

for training and four for testing. Partitioning data in this way

allows us to prioritize testing the generalization capability of

our classifiers to different days. The four testing days have

different radio configurations and environments. We first report

the performance of the Signal Localizer as a binary multi-label

(multi-hot encoded) classifier, to show the classification capa-

bility on a sub-band level. We then report the joint performance

of the Signal Localizer and the Modulation Classifier.

The three plots in Fig. 12 report the precision, recall and F1-

score of the Signal Localizer in each 2.5kHz sub-band, showing

its ability to identify any signal present for a sub-band irrespec-

tive of others. Each plot represents a different environment and

physical radio setup on a day different than used for training

or ”unseen” to the classifier. Specifically Fig. 12a reports the

classification performance when the radios are in the exact same

setup and environment (testing day 1 and 2), Fig. 12b reports a

different setup but in the same environment (testing day 3), and

Fig. 12c reports a different setup and environment (testing day

4). We can see the Signal Localizer shows high performance
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Fig. 14: Real-time inference on GNU Radio

when tested on days in the same environment as seen in Fig 12a

and 12b regardless of the radio setup or the day, showing that

as long as we are in a relatively similar body of water as used

for training, we can attain high generalization regardless of the

day or radio locations. We can also see that class imbalance

plays less of an effect in these two cases, as seen by fairly

consistent performance at the edge bands despite having fewer

occurrences or presence in the dataset. Class imbalance plays

more of an effect on performance as the environment becomes

more foreign to the classifier. This is prevalent in Fig. 12c as

the center sub-bands with more occurrences during training and

testing perform very well, while the edges suffer.
Fig. 13 shows the confusion matrices of the joint perfor-

mance of the Modulation Classifer and the Signal Localizer

or the full system performance. As before each confusion

matrix corresponds to different testing days. When comparing

the overall performance across different testing days we see

a similar trend as before, where SonAIr has better perfor-

mance when tested in similar bodies of water. Looking at

the performance across modulations, we can see that OFDM

classification becomes difficult as the radio setup is changed

within the same environment, where some of the sub-bands

are confused for an empty channel. We observe this more for

the edge sub-carriers. As the location becomes more foreign

however, OFDM performance stops degrading and CSS and

FSK becomes harder to classify. This is due to the fact that these

signals generally take up less of the spectrum and can be easily

confused for noise.
To give a holistic understanding of our two-stage classifier’s

performance we report the mean Intersection-Over-Union or

IOU in Table I. IOU represents the amount of overlap that the

classified signal has with the true signal in frequency as defined

by,

Mean IOU =
1

N

N∑

n=1

Area Of Intersectionn

Area Of Unionn
. (1)

where n is one of the modulation classes and N is the total

number of modulation classes. For our purposes this represents

the amount of overlap in frequency and is used widely in

semantic segmentation and object detection tasks in computer

vision. We can see, again, that in the same body of water, we

have very high sensing performance and strong degradation in

more foreign bodies.

TABLE I: Mean IOU of two stage classifier on different days unseen
during training

Day Mean IOU

Same setup to training 0.89
Same environment but different radio setup 0.83

Different setup and environment 0.40

B. Real-Time Performance

The real-time operation of the SonAIr system is implemented

as described in Section IV-A and demonstrated in Fig. 14. This

experiment was performed when modems were deployed at

the marina, on a different day than dataset recording. From

the transmitter side, a predefined sequence of input signals is

transmitted. On the receiver side both the combined output from

the DL blocks and the received signal is recorded at the server.

In Fig. 14a, the spectrogram of the downsampled input signal

is shown with bounding boxes showing the true signal labels.

The output of the Visualizer block indicating classification

result is given in Fig. 14b. For the Visualizer output, the x-

axis indicates time, the y-axis denotes channel indices, and

the color axis indicates classifier output for a channel index.

Three discrete colors of red, green, and blue can be displayed

which correspond to FSK, CSS, and OFDM classes as well as

the white background which corresponds to Empty. It is easy

to see that the classifier output directly corresponds with the

real spectrogram bounding box labels and is able to accurately
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localize the signal as well as identify the modulation. The

latency incurred by the CNN inference block is 17ms with a

standard deviation of 16ms when run on a CPU.

VI. CONCLUSIONS

We have presented SonAIr, a DL enabled spectrum sensing

system that is able to identify and localize underwater acoustic

signals with a IOU as high as 0.89. SonAIr has also been

implemented in a real-time testbed and can classify signals

with an average latency of 17 ms. Furthermore, SonAIr shows

good generalization performance within a similar body of water

to that used for training, even when the radio locations and

setup is different. However, in entirely new bodies of water,

performance starts to degrade and we hope that future work

will address this shortcoming in creating environment-invariant

spectrum awareness when using DL. To enable future research,

we have curated a 7-day dataset with real underwater acoustic

signals that we have used to train, test, and validate SonAIr and

pledge to make this dataset publicly available to help aid future

research in underwater spectrum sensing.
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