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Abstract— Deep learning can be used to classify waveform
characteristics (e.g., modulation) with accuracy levels that are
hardly attainable with traditional techniques. Recent research
has demonstrated that one of the most crucial challenges in
wireless deep learning is to counteract the channel action, which
may significantly alter the waveform features. The problem is
further exacerbated by the fact that deep learning algorithms
are hardly re-trainable in real time due to their sheer size. This
paper proposes DeepFIR, a framework to counteract the channel
action in wireless deep learning algorithms without retraining
the underlying deep learning model. The key intuition is that
through the application of a carefully-optimized digital finite
input response filter (FIR) at the transmitter’s side, we can apply
tiny modifications to the waveform to strengthen its features
according to the current channel conditions. We mathematically
formulate the Waveform Optimization Problem (WOP) as the
problem of finding the optimum FIR to be used on a waveform to
improve the classifier’s accuracy. We also propose a data-driven
methodology to train the FIRs directly with dataset inputs.
We extensively evaluate DeepFIR on an experimental testbed
of 20 software-defined radios, as well as on two datasets made
up by 500 ADS-B devices and by 500 WiFi devices and a 24-class
modulation dataset. Experimental results show that our approach
(i) increases the accuracy of the radio fingerprinting models by
about 35%, 50% and 58%; (ii) decreases an adversary’s accuracy
by about 54% when trying to imitate other device’s fingerprints
by using their filters; (iii) achieves 27% improvement over the
state of the art on a 100-device dataset; (iv) increases by 2x the
accuracy of the modulation dataset.

Index Terms— Deep learning, wireless, security, testbed,
software-defined radio, datasets.

I. INTRODUCTION

THE sheer number of wireless devices that will soon join
the Internet of Things (IoT) will inevitably make the

radio spectrum an extremely dynamic environment, where
closed-form models will be difficult or impossible to for-
mulate [1]. To address the severely increased spectrum
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Fig. 1. The channel problem in wireless deep learning.

complexity, the community is using data-driven deep learn-
ing techniques directly spun off of the computer vision
domain [2].

Deep learning allows to capture relevant features in classi-
fication problems lacking tractable closed-form mathematical
formulations. These models are based on highly non-linear
neural networks and can address wireless problems such as
signal/traffic classification [3]–[5], radio fingerprinting [6], [7]
and resource allocation [8], among others [9].

Although wireless deep learning has proven to be effective,
recent research [10], [11] has demonstrated that the wireless
channel can seriously compromise the effectiveness of the
features learned by the classifier. The key issue in wireless
deep learning is that classifiers operating on waveforms are
by definition time-varying systems due to the ever-changing
nature of the channel [12]. Figure 1 shows a (simplified)
representation of the channel issue in wireless deep learning.

Addressing time variance is one of modern machine learn-
ing’s greatest issues [13], which makes the channel problem in
wireless deep learning significantly challenging. One possible
option is to periodically retrain the model; however, deep
learning networks usually require a significant time to be re-
trained, even with modern GPUs [14]. Therefore, we cannot
assume that the underlying deep learning model can be
retrained in real time before the channel has changed the
features again. Another key reason to avoid the re-training
of the model is the additional energetic burden imposed to
the overall wireless infrastructure, which has to continuously
(i) collect new waveforms, (ii) fine-tune the model with the
new data, and (iii) re-send the new weights to the wireless
platform. Thus, this approach is highly inefficient – and ulti-
mately ineffective since it is hardly scalable to IoT networks.
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In other words, a waveform x(t) transmitted at time t0
and t1 by the same device will necessarily be received with
different levels of distortion by the receiver. Since the training
process cannot include all the possible channel realizations and
distributions, the features learned by the classifier cannot be
entirely time-invariant [6], [7], [15]. The seriousness of this
problem has been recently exposed in the context of radio
fingerprinting [11], where the authors have demonstrated that
the accuracy of the classifier can drop down to almost zero
when tested on I/Q samples collected in days different than
the one when samples were collected for training.

To address this spinous issue, in our preliminary
work [10] we have introduced DeepRadioID, a framework
for channel-resilient optimization of deep learning-based radio
fingerprinting algorithms. The core intuition was to impose a
carefully-tailored modification of the waveform at the trans-
mitter’s side to “restore” the features compromised by the
channel. To achieve this goal, the transmitter applies a digital
finite input response filter (FIR) to the waveform before
transmission, which slightly modifies its baseband signal to
compensate for current channel conditions. The receiver is
tasked with computing the FIR through mathematical opti-
mization and then send it back to the transmitter as feedback,
which will use the FIR to filter its own I/Q samples. We also
demonstrated that an adversary cannot reuse the FIR computed
for another device to increase the probability to be identified
as that device.

This paper builds upon and extends our work [10] by
making the following novel contributions:

• We propose DeepFIR, a real-time channel- and
adversary-resilient optimization system to improve the
accuracy of a generic wireless deep learning model.
We postulate the Waveform Optimization Problem (WOP)
to find the optimal FIR, and derive a novel algorithm
based on the Nonlinear Conjugate Gradient (NCG)
method to efficiently solve it. We show in Section V
that the FIR’s action can be effectively compensated
at the receiver’s side through the discrete Fourier
transform (DFT) of the received signal, thus causing
a negligible throughput decrease (i.e., less than 0.2%
in our experiments). We further propose a data-driven
approach implemented in Keras to compute the optimal
FIR without the need of external optimization algorithms
(Section VI);

• We extensively evaluate the performance of DeepFIR on
an experimental testbed made up of 20 bit-similar devices
(i.e., transmitting the same baseband signal through
nominally-identical RF interfaces and antennas). Testbed
results (Section VII) indicate that (i) an adversary trying
to imitate a fingerprint by using the same FIR filter
decreases its fingerprinting accuracy by about 54% on
the average; (ii) DeepFIR increases the accuracy by 35%
on the average;

• To further evaluate the scalability of DeepFIR and
to experiment with different wireless technologies,
deeper learning models and learning problems we also
leverage (i) two datasets of IEEE 802.11a/g (WiFi) and
Automatic Dependent Surveillance – Broadcast (ADS-B)

transmissions, each containing 500 devices1

(Section VIII); and (ii) on a widely-available modulation
recognition model [3] trained on the RadioML 2018.01A
dataset (Section IX), which includes 24 different
analog and digital modulations with different levels of
signal-to-noise ratio (SNR);

• Results on the large-scale datasets show that DeepFIR
increases the accuracy by 50% and by 58% on the
500-device ADS-B and WiFi datasets, respectively, and
by comparing with the state of the art [16], DeepFIR
improves the accuracy by about 27% on a reduced dataset
of 100 WiFi devices. Finally, our data-driven DeepFIR
methodology improves the accuracy of the modulation
classifier of 2× on the average.

II. RELATED WORK

Deep learning at the physical layer (PHY) of the wire-
less protocol stack has received significant attention over
the last few years [17]. Most of existing work focused on
developing techniques based on machine learning (ML) to
fingerprint wireless devices. One of the first papers to address
radio fingerprinting is due to Nguyen et al. [18], who used
device-dependent channel-invariant radio-metrics and propose
a non-parametric Bayesian method to detect the number of
devices. Recently, Vo-Huu et al. [16] proposed a series of
algorithms with features based on frequency offsets, transients
and the WiFi scrambling seed, and validated them with off-
the-shelf WiFi cards in a non-controlled RF environment,
achieving accuracy between 44 and 50% on 93 devices.
Peng et al. [19] proposed fingerprinting algorithms for Zig-
Bee devices based on modulation-specific features such as
differential constellation trace figure (DCTF), showing that
their features achieve almost 95% accuracy on a 54-radio
testbed. The usage of supervised machine learning techniques,
moreover, has received a lot of attention over the last years,
particularly the problem of modulation recognition [20]–[22].
Similar to radio fingerprinting, feature-based ML constitutes
the majority of existing work [23]–[27].

The key issue with legacy ML techniques is its inherent
feature extraction process, which involves the computation of
waveform characteristics such as kurtosis, high-order cyclic
moments, median, average and so on. Feature extraction is also
very application-specific in nature, which hinders flexibility
and adaptation. Thus, its applicability for real-time wireless
spectrum analysis presents substantial limitations. Recently,
deep learning [2] has been proposed as a viable solution [28]
to perform complex signal classification without incurring in
manual feature extraction. Among others, deep learning has
been extensively used to address modulation recognition [3],
[29]–[33]. For example, O’Shea et al. proposed in [3] several
modulation classifiers, while in [33] Szegedy et al. used deep
neural networks to classify modulation class and order. Portion
of the above work did consider the issue of signal-to-noise
(SNR) ratio and other waveform impairments when evaluating
the model performance. However, it did not propose any

1Due to contract obligations, we cannot release the datasets to the commu-
nity. We hope this will change in the future.
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systematic investigation of the role of the wireless channel
in the overall performance.

To the best of our knowledge, Al-Shawabka et al. [11] was
the first work to determining the impact of the wireless channel
on the performance of deep learning algorithms, by definitely
establishing through extensive performance evaluation that the
time-varying nature of the channel impacts significantly the
classification accuracy. In our previous work [10], we pro-
posed DeepRadioID, a framework to improve the channel
resilience of deep learning-based radio fingerprinting algo-
rithms through the application of carefully-optimized finite
response input (FIR) filters. This paper substantially extends
our prior work by proving that our FIR-based approach
is applicable to address general deep learning models and
not only radio fingerprinting models, by appling DeepFIR
to improve the performance of a modulation classifier pro-
posed in [3]. Moreover, we have designed and developed
a Keras-based version of our system, which is able to run
on GPU and thus reduce significantly the FIR computation
time.

III. DEEPFIR: AN OVERVIEW

We first discuss some key observations and motivations to
motivate our design choices in Section III-A. We then provide
an in-depth description and a walk-through of the main steps
involved in the fingerprinting process in Section III-B.

A. DeepFIR: Key Intuitions

The need to optimize the accuracy of wireless deep learning
systems arises from the fact that the wireless channel is
dynamic and almost unpredictable in nature. Moreover, hard-
ware impairments such as I/Q imbalances, DC offset, phase
noise, carrier/sampling offsets, and power amplifier distortions
are extremely time-varying and dependent on a number of
factors, such as local oscillator (LO) frequency [34] and cur-
rent temperature of the RF circuitry [35]. These considerations
imply that we cannot assume waveforms as perfectly stationary
– hence the need for real-time optimization.

To address the complex nature of the problem, our first
observation is that convolutional neural networks (CNNs)
have shown to be prodigiously suited to recognize complex
“patterns” in input data [2] – these patterns are, in our case,
the imperfections in the radio hardware. However, a major
challenge that still lingers is how do we optimize the CNN
output for a given device without retraining the CNN itself.
To answer this question, we devise a new approach based
on finite impulse response (FIR) filtering of the transmitter’s
baseband signal to “restore” the patterns that are disrupted
by the current channel conditions – thus making the signal
“more recognizable” to the CNN. We use FIRs because of
the following: (i) FIRs are very easy to implement in both
hardware and software on almost any wireless device; (ii) the
computation complexity of applying a FIR filter of length m
to a signal is O(m) – thus it is a very efficient algorithm; and
most importantly, (iii) its effect on the BER can be almost
perfectly compensated at the receiver’s side, as shown in
Section V.

Fig. 2. A high-level overview of the DeepFIR system. Since A’s FIR filter has
been tailored to match A’s unique channel conditions, we show in Section VII
that an adversary cannot leverage A’s filter. Notice that the transmitter does
not rely on the classifier to apply its FIR filter. Instead, the classifier is entirely
located at the receiver’s side.

However, this approach spurs another challenge, which is
how to set the FIR taps in such a way that the classification
accuracy for a given class is maximized. Our intuition here
is to find the FIR that modifies input x so that the resulting
x∗ signal maximizes the neuron activation correspondent to
a given class, as shown in Section IV-C. We are able to do
this efficiently since the layers inside CNNs, although non-
linear, are derivable, and thus we can compute the gradient of
the output with respect to the FIR taps according to a given
input. This way, we can design an optimization strategy that
is fundamentally general-purpose in nature.

B. DeepFIR: A Walk-Through

Figure 2 provides a walk-through of the main building
blocks of DeepFIR and the main operations involved in the
classification process. We highlight with a shade of blue the
blocks that are added to the normal modulation/demodulation
chain as part of DeepFIR. The walk-through also shows how
an adversary may try to camouflage its waveform of being
of a different class (e.g., imitate the fingerpritint of another
device). The detailed explanation of DeepFIR’s main module
will be given in Section IV.

The first step for a device “A” that transmits a waveform to
a receiver “R” is to filter its baseband signal with FIR φA,i−1

(step 1), which was obtained at the previous optimization step.
FIR φA,0 is set to 1 (i.e., no filtering). The filtered signal is then
sent to A’s RF interface (step 2). By also accounting the effect
of the wireless channel, “R” will receive a baseband signal
zAR = xA � φA,i−1 � hAR + wAR, where xA is the trans-
mitted symbol sequence, hAR and wAR are the fading and
noise introduced by the channel, respectively. The I/Q samples
of zAR are then fed to a CNN to classify the waveform
(step 4). The fingerprinting result is then used to compensate
the FIR filter φA,i−1 (step 5, discussed in Section V), so that
the resulting signal is then sent to the symbol demodula-
tion logic to recover the application’s data (step 6). The
I/Q samples and the classification result are then fed to
the DeepFIR FIR Optimization module (step 7, presented in
Section IV). The optimal FIR filter φA,i is then sent back
to A (step 8).
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IV. DEEPFIR FIR OPTIMIZATION

In this section, we describe in details the DeepFIR FIR
Filter Optimization module. We first provide some back-
ground notions in Section IV-A, followed by our FIR-based
waveform modification approach in Section IV-B. We then
introduce the Waveform Optimization Problem (WOP)
in Section IV-C.

A. Background Notions and Definitions

Let us define as input a set of N consecutive I/Q samples.
Let us also define as slice a set of S inputs, and as batch a
set of B slices. Let us label the D devices being classified
with a label between 1 and D. We model the classifier as
a function f : X → Y , where X ⊆ CN and Y ⊆ RD

represent respectively the spaces of the classifier’s input (i.e.,
an example) and output (i.e., a probability distribution over
the set of D devices). Specifically, the output of the classifier
can be represented as a vector (f1, f2, . . . , fD) ∈ Y , where
the i-th component denote the probability that the input fed to
the CNN belongs to device i.

DeepFIR relies on discrete finite impulse response filters
(in short, FIRs) to achieve adaptive waveform modification.
FIRs have the advantage that causal filters do not depend on
future inputs, but only on past and present ones. Second, they
can be represented as a weighted and finite term sum, which
allows to accurately predict the output of the FIR for any
given input. More formally, a FIR is described by a finite
sequence φ of M filter taps, i.e., φ = (φ1, φ2, . . . , φM ). For
any input x ∈ X , the filtered n-th element x̂[n] ∈ x̂ can be
written as

x̂[n] =
M−1∑
j=0

φjx[n− j] (1)

Since the wireless channel operates in the complex domain
by rotating and amplifying/attenuating the amplitude of the
signal, we can manipulate the position in the complex plane
of the transmitted I/Q symbols. By using complex-valued filter
taps, i.e., φk ∈ C for all k = 0, 1, . . . , M − 1, we can rewrite
Eq. (1) as follows:

x̂[n] =
M−1∑
k=0

(φR
k + jφI

k)(xR[n− k] + jxI [n− k])

= x̂R[n] + jx̂I [n] (2)

where xR
k [n] = Re{xk[n]}, xI

k[n] = Im{xk[n]},
φR

k = Re{φk} and φI
k = Im{φk}. Eq. (2) clearly shows that it

is possible to manipulate the input sequence by filtering each
I/Q sample. For example, to rotate all I/Q samples by θ = π/4
radiants and halve their amplitude, we may set φ1 = 1

2 expj π
4

and φk = 0 for all k > 1.

B. FIR-Based Waveform Modification

Although channel equalization can effectively reduce the
effect of channel distortions on the position of the received
I/Q samples, the algorithms involved are generally not perfect
and only partially counteract phase and amplitude variations

Fig. 3. Waveform modification optimization loop.

caused by the channel. For this reason, we must devise
techniques to dynamically adapt to rapidly changing channel
conditions (e.g., fast-fading/multi-path) and thus improve the
accuracy for a given class.

Figure 3 shows a block diagram of the waveform modifi-
cation optimization loop performed by DeepFIR. Specifically,
we add a FIR filter before the first CNN layer. This additional
layer uses FIRs to manipulate the input example according
to Eq. (2). The corresponding output sequence is then fed to
the CNN.

As shown in Figure 2, let A be the target class for which
we want to improve the detection accuracy of the CNN, and
let φA,i be the filter taps associated to the target class at the
i-th optimization step. By using the filtering-based waveform
modification on the input sequence x, the output fA(x̂) ∈ Y
of the classifier with respect to the filtered sequence x̂ can
be written as a function of the filter taps φA,i. Specifically,
we have that

fA(x̂) = fA(x, φA,i) (3)

Eq. (3) clearly shows that the accuracy of the classifier
depends on the actual FIR tap vector φA,i. Thus, we are
interested in devising mechanisms to optimally manipulate
φA,i such that (i) the classification accuracy for the target
class is maximized (Section IV-C); and (ii) the waveform
modification does not negatively impact the BER of data
transmission activities (Section V). To simplify the notation,
henceforth we will remove the i subscript.

C. Waveform Optimization Problem (WOP)

We can now formally define the objective of DeepFIR
as follows: (i) maximize the accuracy of the classifier
for a specific target class A; and (ii) to guarantee that
the resulting BER does not exceed a given maximum
tolerable threshold BERmax. Since we aim at achieving
channel-resilient waveform modification, we need to com-
pute a FIR parameter configuration φA that can be used
for multiple consecutive transmissions. To compute dif-
ferent φA values for each single input x is inefficient
in many cases, i.e., if applied to another input sequence
x� �= x, the FIR might decrease the accuracy of the
classifier.

To overcome the above problem, rather than maximizing the
accuracy of the classifier on an input-by-input basis, we com-
pute the FIR φA that maximizes the activation probability fA

over a set of S consecutive inputs, i.e., a slice.
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The Waveform Optimization Problem (WOP) can be then
defined as follows:

maximize
φ

1
S

S∑
s=1

fA(xs, φ) (WOP)

subject to BERA(xs, φ) ≤ BERmax, ∀s = 1, 2, . . . , S

(C1)

where the objective function represents the per-slice average
activation probability for device A, xs is the s-th input of
the slice, and the BERA(·) represents the BER function
corresponding to transmissions from target node A. The func-
tion fA(xs, φ) represents the CNN, and thus it outputs the
probability that the input I/Q samples x belong to device
A. Thus, we compute a FIR that maximizes the activation
probability of the neuron associated to A.

Problem (WOP) is significantly challenging because (i) the
function fA is CNN-specific and depends from a very high
number of parameters (generally in the order of millions),
it is highly non-linear and to the best of our knowledge,
there are no mathematical closed-form expressions for such
a function, even for relatively small CNNs; (ii) the maximum
BER constraint (C1) depends from numerous device-specific
parameters (e.g., modulation, coding, transmission power and
SNR) and it is generally non-linear.

Notwithstanding the above challenges, and as we will
discuss in detail in Section V, the impact of the waveform
modification procedure on the BER of communications among
the receiver and the target device A is negligible. Indeed,
as shown in Figure 2, DeepFIR embeds a FIR Filter Com-
pensation module that uses peculiar features of FIR filters,
e.g., their Fourier transform, to successfully reconstruct the
original transmitted unfiltered sequence of I/Q symbols. This
compensation procedure effectively removes any coupling
between waveform modification procedures and BER, i.e.,
BERA(x, φ) ≈ BERA(x). Accordingly, it is possible to
relax Constraint (C1) by removing it from the optimization
problem (WOP).

The relaxed WOP can be formulated as

maximize
φ

S∑
s=1

fA(xs, φ) (RWOP)

where we have also omitted the constant term 1/S.
1) Solving the RWOP: As already mentioned, fA is

non-linear and generally does not possess any useful property
in terms of monotonicity, concavity and existence of a global
maximizer. However, for any input x of the slice, by using
back-propagation and the chain rule of derivatives it is possible
to let the CNN compute the gradient ∇x̂fA(x̂) of the classifi-
cation function fA with respect to the filtered input sequence
x̂. It is worth noting that ∇x̂fA(x̂) shows how different input
sequences affect the accuracy of the classification function.
Nevertheless, we are interested in evaluating the gradients
∇φf(x̂) to predict how the accuracy of the classifier varies
as a function of the FIR filtering function. Hence, we need to
extend back-propagation to the waveform modification block.

From Eq. (2), x̂ is a function of φ, thus the gradient of fA

with respect to the filter taps φ can be computed as

∇φfA(x̂) = JfA(φ)� · ∇x̂fA(x̂) (4)

where JfA(φ) is the Jacobian matrix of fA(x, φ) with respect
to φ, 
 is the transposition operator, and · stands for matrix
dot product.

From Eq. (4) and Eq. (2), each element in ∇φfA(x̂) can
be written as

∂fA(x, φ)
∂φZ

k

=
N∑

n=1

(
∂fA(x, φ)
∂x̂R[n]

∂x̂R[n]
∂φZ

k

+
∂fA(x, φ)

∂x̂I [n]
∂x̂I [n]
∂φZ

k

)
(5)

where k = 0, 1, . . . , M − 1, N is the length of the input
sequence and Z ∈ {R, I}.

By using Eq. (2), ∂x̂R[n]

∂φZ
k

and ∂x̂I [n]

∂φZ
k

in Eq. (5) are computed
as follows:

∂x̂R[n]
∂φR

k

=
∂x̂I [n]
∂φI

k

= xR[M − 1 + n− k] (6)

∂x̂I [n]
∂φR

k

= −∂x̂R[n]
∂φI

k

= xI [M − 1 + n− k] (7)

The above analysis shows that the relationship between the
waveform modification and classification processes can be
described by a set of gradients. Most importantly, they can
be used to devise effective optimization algorithms that solve
Problem (RWOP).

In Section IV-C.2, we design an algorithm to solve
Problem (RWOP) and compute the optimal FIR filter para-
meters φ by using the Nonlinear Conjugate Gradient (NCG)
method and the gradients computed in Eq. (6) and Eq. (7).
While our simulation results have shown that NCG is more
accurate than other gradient-based optimization algorithms
(e.g., gradient descent algorithms), we remark that DeepFIR
is independent of the actual algorithm used to compute φ, and
other approaches can be used to solve Problem (RWOP).

2) Filter Taps Computation Through NCG: As shown
in Figure 2 and discussed in Section III, DeepFIR iteratively
adapts to channel fluctuations by periodically updating the
filter taps associated to any given target device A. For the
sake of generality, we refer to this periodic update as an
optimization epoch, and a new epoch is started as soon as one
or more triggering events are detected by DeepFIR. Triggering
events can be either cyclic, e.g., timer timeout, or occasional,
e.g., the accuracy for a target devices falls below a minimum
desired threshold.

For each epoch i, let t = 1, 2, . . . , T denote the iteration
counter of the optimization algorithm. At each iteration t of the
algorithm, the filter taps are updated according to the following
iterative rule: φ(t) = φ(t−1) + α(t)p(t), where p(t) and α(t)

represent the search direction and update step of the algorithm,
respectively. To put it simple, p(t) gives us information on
the direction to be explored, while α(t) tells us how large the
exploration step taken in that direction should be. More in
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detail, the two terms are computed as follows:

p(t) =
S∑

s=1

(
∇φfA(xs, φ

(t−1))
)

+ β(t)p(t−1) (8)

α(t) = argmaxα

S∑
s=1

fA(xs, φ
(t−1) + αp(t)) (9)

where gradients derive from Eq. (6) and Eq. (7), β(1) = 0 and
p(0) = 0. The parameter β(t) is defined as

β(t) =
||∑S

s=1

(
∇φfA(xs, φ

(t−1))
)
||22

||∑S
s=1

(
∇φfA(xs, φ

(t−2))
)
||22

(10)

and is generally referred to as the conjugate gradient (update)
parameter used in NCG methods to improve the space
exploration process by speeding up the convergence of the
algorithm [36].

Algorithm 1 Nonlinear Conjugate Gradient (NCG) to Solve
Problem (RWOP)
1: Input Target class A ∈ {1, . . . , D}, Input slices

(xss=1,...,S), �;
2: Output A FIR filter φ;
3: Initialize β(1) = 0, p(0) = 0,
4: t← 1;
5: φ(t− 1)← random taps initialization with parameter �;
6: φ(t− 2)← φ(t− 1);
7: while Converge criterion not satisfied do

8: β(t) ← ||�S
s=1(∇φfA(xs,φ(t−1)))||22

||�S
s=1(∇φfA(xs,φ(t−2)))||22

;

9: p(t) ←∑S
s=1

(
∇φfA(xs, φ

(t−1))
)

+ β(t)p(t−1);

10: α(t) ← argmaxα

∑S
s=1 fA(xs, φ

(t−1) + αp(t));
11: φ(t) ← φ(t−1) + α(t)p(t)

12: t← t + 1;
13: end while
14: Return φ(t)

Interestingly enough, p(1) =
∑S

s=1

(
∇φfA(xs, φ

(0))
)

,
meaning that when t = 1 NCG is a classic gradient descent.
Also, α(t) in Eq. (9) is computed through line-search algo-
rithms. While both exact and approximated line search algo-
rithms can be considered, there are few aspects that need
to be considered when implementing Eq. (9). Indeed, since
the function fA is highly non-linear and has no closed-form
representation, to compute Eq. (9) requires the continuous
evaluation of

∑S
s=1 fA(xs, φ

(t−1) + αp(t)) and its first
and second order derivatives. For this reason, it might be
computationally expensive to run exact line search algorithms
on fA, and approximated line search algorithms are to be
preferred. For example, to speed-up the computation of α(t),
we can consider a secant method where the second derivatives
of fA are approximated by using the first order derivatives
computed in Eq. (6) and Eq. (7).

V. DEEPFIR FIR COMPENSATION

Although the waveform filtering process is beneficial to
the classification process as we can optimally modify the

waveform generated by a given target device, it may negatively
affect the quality of transmitted data. Furthermore, the expres-
sion of the BER in Constraint (C1) is non-linear and possesses
exact and/or approximated closed-form representations only in
a limited number of cases (e.g., fading channels with known
distributions and low-order modulations). To overcome the
above issues, we observe that our waveform modification relies
on Eq. (1), which clearly represents a discrete convolution
between the input sequence x and the filter taps φ. For the
sake of illustration, in the following we use the familiar model

z[n] = (h � x̂)[n] + w[n] (11)

where each received I/Q symbol z[n] is written as the sum
of a noise term w[n] (typically Additive white Gaussian
noise) and the n-th element of the discrete convolution h � x̂
between the channel h and the transmitted filtered sequence x̂.
From Eq. (1), we also have that x̂ = x�φ. Thus, the discrete
Fourier transform (DFT) of z and x̂ can be written as follows:

Z(ω) = H(ω)X̂(ω) + W (ω)
= H(ω)X(ω)Φ(ω) + W (ω) (12)

X(ω) =
Z(ω)−W (ω)

H(ω)Φ(ω)
(13)

where we have used capital letters to indicate DFTs.
Eq. (13) shows that to reconstruct the original unfiltered I/Q

sequence is possible by computing the inverse DFT of each
component of the received signal. Furthermore, FIR compen-
sation implies BERA(x, φ) = BERA(x). Since, the optimiza-
tion variable of Problem (WOP) is φ, Constraint (C1) does
not depend on φ anymore, and thus it can be removed from
Problem (WOP). Finally, note that the above FIR compen-
sation method is independent of the underlying modulation
and coding scheme. This means that FIR compensation is a
general approach, and it can be successfully used to tackle
Constraint (C1).

Despite the above properties, one might argue that in general
it is not possible to compute a perfect estimation of W (ω) and
H(ω). However, modern wireless networks embed estimation
mechanisms that are almost always able to compute fairly
accurate estimations H̃(ω) and Ñ(ω), e.g., through training
sequences and pilots [34], and the effect of the FIR filter can
thus be compensated to a significant extent. To validate this
crucial assumption, we ran a number of experiments on our
experimental testbed to evaluate the impact of DeepFIR’s FIR
filtering on the packet error rate (PER) and throughput (θ) of
a wireless transmission.

Figure 4 shows the received constellations of a
QPSK-modulated WiFi transmission where the payload
I/Q samples are multiplied in the frequency domain (i.e., FIR
filtering) with a random I/Q tap with I ∈ [1 − �, 1 + �] and
Q ∈ [0 − �, 0 + �]). The � parameter represents the relative
magnitude of the filter with respect to no filtering, i.e., � = 0.
The filtering is then compensated at the receiver’s side by
using Eq. (13).

We notice than some noise is indeed introduced by the FIR
filtering irrespective of our compensation. However, Figure 5
shows the PER and θ as a function of �, which respectively
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Fig. 4. The effect of FIR filtering at the receiver’s side for different values
of ε. Top and bottom sides show respectively the received constellations
with/without FIR compensation.

Fig. 5. Packet error rate (PER) and Throughput (θ) as a function of ε.

increase and decrease of about 6% and 0.5 kbit/s in the worst
case of � = 0.5. However, according to our experiments in
Section VII, the � value is typically below 0.2, meaning a
PER increase <1% and a θ loss <0.2 kbit/s (0.2%).

VI. DATA-DRIVEN FIR OPTIMIZATION

Although traditional optimization techniques can indeed be
leveraged to compute FIR taps for each individual class, these
techniques algorithms usually suffer from scalability issues,
primarily due to the complexity of computing an optimal solu-
tion. Although this might not be an issue when the number of
classes and/or the size of the dataset are small, the same does
not hold anymore when both the problem and the inputs grow
in size. Also, while trained models leverage well-established
machine learning software libraries (such as Keras, Tensor-
Flow and PyTorch) that take advantage of GPU processing to
speed-up computation, the majority of optimization numerical
solvers (e.g., Matlab, CPLEX) run on CPUs and do not directly
interface with neural network models. A direct consequence
of this latter aspect is that the numerical solver and the
training model run on separate environments, which inevitably
introduces computation delays especially when computing
gradients. To overcome the above limitations, in this section
we present a novel data-driven approach to compute FIR taps
for each class individually. The code repository is available
for download at https://github.com/frestuc/DeepFIR.

Equation (2) shows that FIRs can be modeled as a discrete
convolution between FIR taps and the input data. Thus,
the same operation can be implemented as an FIR Layer,
whose weights represent FIR taps and whose output fol-
lows (2). Since each class requires an individual FIR tap
configuration, we can generate D distinct FIR Layers whose
weights, i.e., the FIR taps, are trained individually on a
per-class basis.

Fig. 6. FIR layer structure, filtering and training pipeline for data-driven FIR
computation.

Fig. 7. DeepFIR Experimental Testbed.

Figure 6 shows a simplified block scheme summarizing our
data-driven methodology to compute FIR filters. We generate
D FIR Layers, each consisting of M × 2 weights (i.e.,
real and imaginary part of the M FIR taps), i.e., φ =
(φR

k , φI
k)k=0,...,M−1. We also load DeepFIR CNN pre-trained

weights. As shown in Figure 6 (right), only FIR Layer
weights φ are trained, while DeepFIR CNN model’s weights
are frozen. We can think of each FIR Layer as additional
convolutional layer that is attached to the pre-trained DeepFIR
CNN model.

Each FIR layer is fed with I/Q samples belonging to a
specific class and it is trained such that filtered I/Q samples
generated by the corresponding FIR layer maximize the accu-
racy of the pre-trained frozen model. We remark that we do not
change the loss function L of the pre-trained DeepFIR CNN
model. Instead, and as shown in Figure 6, we train FIR Layer
φ, use them to manipulate the input x and fed the filtered input
x̂ (computed as in (2)) to DeepFIR CNN. Each class’s FIR
Layer weights φ are trained by minimizing the cross-entropy
loss function L:

L =
D∑

d=1

yd(x̂) log(fd(x̂)) =
D∑

d=1

yd(x) log(fd(x, φ)) (14)

where x represents the unfiltered input (i.e., a batch of S slices
as discussed in Section IV-C), x̂) is the filtered input sequence,
yd(x) is a binary indicator such that yd(x) = 1 if the input
x belongs to class d, and fd is the soft-max activation of the
last layer of the pre-trained DeepFIR CNN model.

Our approach, although it does not necessarily guarantee a
global optimum, enjoys several useful properties: (i) FIR taps
are computed on GPUs via machine learning libraries; and (ii)
there is no need to interface the trained model with external
numeric solvers. Together, these two features makes it possible
not only to speed-up FIR computation, but also to train FIR
layers over extremely large datasets (such as those presented
in Section VIII.

To avoid excessive distortion of input signals, FIR Layer
weights are initialized such that the first weight value φR

0 is
set to 1 and the remaining taps are set to 0. This initialization in
essence represents an identity vector, which returns unchanged
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Fig. 8. CNN used in our radio testbed experiments.

input values. To allow for learning and different gradient
updates, the 0’s are masked with small Gaussian noise. This
acts as a form of “personalization” of filters: a device-specific
filter is designed to enhance its detectability. This filter is
presumed to be attached to the device, and hence is used both
in the training and testing phases. This enables the filters to
learn channel effects in the scope of individual devices.

VII. RADIO TESTBED RESULTS

A. Wireless Testbed and Data Collection

Our experimental testbed is composed by twenty
software-defined USRP radios acting as transmitters and
one USRP acting as receiver. Each USRP has been
equipped with a CBX 1200-6000 MHz daughterboard
with 40 MHz instantaneous bandwidth [37] and one
VERT2450 antennas [38]. Therefore, the RF components of
each USRP are nominally-identical. Furthermore, each USRP
device sends the same baseband signal, i.e., an IEEE 802.11a/g
(WiFi) frame repeated over and over again, to make sure that
the deep learning model is learning the hardware impairments
and not data patterns.

The baseband signal is generated through Gnuradio and
then streamed to the selected SDR for over-the-air wireless
transmission. The receiver SDR samples the incoming signals
at 10 MS/s sampling rate at center frequency of 2.432 GHz.
The collected baseband signal is then channel-equalized using
IEEE 802.11 pilots and training sequences [34]. Next, the pay-
load I/Q samples are extracted and partitioned into a sample.
In our experiments, we fix the sample length to 48 · 6 = 288
I/Q values, corresponding to 6 OFDM symbols containing
48 payload I/Q values. Each of these samples are then used
for training and classification.

B. Deep Learning Architecture

We use the CNN architecture reported in [7] and depicted
in Figure 8. Specifically, each I/Q input sequence is repre-
sented as a two-dimensional real-valued tensor of size 2×288.
This is then fed to the first convolutional layer (ConvLayer),
which consists of 50 filters each of size 1 × 7. Each filter
learns a 7-sample variation in time over the I or Q dimension
separately, to generate 50 distinct feature maps over the
complete input sample. Similarly, the second ConvLayer has
50 filters each of size 2 × 7. Each ConvLayer is followed by
a Rectified Linear Unit (ReLU) activation and a maximum
pooling (MaxPool) layer with filters of size 2×2 and stride 1,
to perform a pre-determined non-linear transformation on each
element of the convolved output.

We use an 	2 regularization parameter λ = 0.0001. The
weights of the network are trained using Adam optimizer with

Fig. 9. PSA and PBA, Experimental Testbed.

a learning rate of l = 0.0001. We minimize the prediction error
through back-propagation, using categorical cross-entropy as
a loss function computed on the classifier output. To train our
CNN, we constructed a dataset by performing 10 different
transmissions of length 5 minutes for each of the 20 devices,
each transmission spaced approximately 5 minutes in time.

1) Performance Metrics: Hereafter, we will use the follow-
ing two metrics to assess the performance of our learning
system:

1) Per-Slice Accuracy (PSA). As in Section IV-C, a slice is
a set of S consecutive input. The PSA is thus defined
as the average CNN fingerprinting accuracy on the
S-sample slice. Since the FIR filter optimized by Deep-
FIR is computed on one slice, the PSA measures how
much DeepFIR is able to increase the short-term accuracy
of the CNN.

2) Per-Batch Accuracy (PBA). We define as batch as a set
of B consecutive slices. The PBA is thus defined as
the average CNN fingerprinting accuracy on the B-slice
batch. The PBA measures the impact of the optimal FIR
filter on the long-term accuracy of the CNN.

In the following experiments, we use live-collected data
collected 7 days after the data used for training the dataset
was collected. To allow experiments’ repeatability, we record
a transmission from a given device for about one minute.
Then, we select the first slice from the recording and compute
the PSA with no FIR optimization. Next, we perform FIR
optimization on the slice, re-filter each sample in the slice,
and compute the PSA after FIR filtering. To compute the PBA,
we apply the same FIR filter to the B ·N − 1 slices collected
after the first one and then compute the average PSA on the
B-slice batch.

C. Results

Figure 9 shows the average PSA and PBA obtained by
optimizing three devices over ten different recordings PSA as a
function of the model size (i.e., 5 to 20 devices). We also show
95% confidence intervals. The results obtained in Figure 9
show that DeepFIR is significantly effective in improving
the PSA and PBA of our CNN-based fingerprinting system,
which are improved by an average of about 57% and 35%,
respectively. By accounting that the metrics are computed on
a testbed of nominally-identically radios, we consider these
results remarkable.

The intuition of why PBA is lower than the PSA is that
the FIR filter is optimized for a single slice only, thus its
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Fig. 10. Adversarial Action, Experimental Testbed.

Fig. 11. CNN used in our fingerprinting dataset experiments.

efficacy is expected to decrease as time passes and thus the
wireless channel changes accordingly. Figure 10 shows the
PSA and the PBA obtained by an adversary trying to imitate
another device’s fingerprint by applying the same FIR. In these
experiments, we fixed one device as adversary and used the
FIR from other three devices to compute its PSA and PBA
for each of its ten recordings. Figure 10 shows that by using
the legitimate device’s FIR, the adversary transitions from an
average PSA of 12% to an average PSA of about 6% (50%
decrease), corresponding to an average PBA of about 4%. This
ultimately confirms that since a FIR is optimized for a device’s
specific channel and impairments, an adversary cannot use a
legitimate device’s FIR to imitate its fingerprint.

VIII. FINGERPRINTING DATASET RESULTS

We consider (i) a 500-device dataset of IEEE 802.11a/g
(WiFi) transmissions; and (ii) a 500-airplane dataset of Auto-
matic Dependent Surveillance – Broadcast (ADS-B) bea-
cons, both obtained through the DARPA RFMLS program,
and (iii) the RadioML 2018.01A dataset. The dataset is pub-
licly available for download at http://deepsig.io/datasets.

ADS-B is a surveillance transmission where an aircraft
determines its position via satellite navigation and periodically
broadcasts it at center frequency 1.090 GHz with sampling
rate 1 MSPS and pulse position modulation. This makes
ADS-B ideal to evaluate DeepFIR’s performance on differ-
ent channel/modulation scenarios. For both the WiFi and
ADS-B datasets, data collection was performed “in the wild”
(i.e., no controlled environment) with a Tektronix RSA oper-
ating at 200 MSPS. For the WiFi dataset, as in Section VII-C
we demodulated the transmissions and trained our models
on the derived I/Q samples. To demonstrate the generality
of DeepFIR, the ADSB model was instead trained on the
unprocessed I/Q samples.

To handle the increased number of devices, we use the
CNN architecture shown in Figure 11. In the case of ADS-B
we train our CNN on examples containing 1024 consecutive
unprocessed I/Q samples. For WiFi, we only use 128 samples.
Unless stated otherwise, PSA and PBA are computed on
batches of 12 slices, each containing 25 inputs.

Fig. 12. PSA/PBA Improvement, WiFi-100.

Fig. 13. Per-Slice and Per-Batch Accuracy Improvement, ADSB-500, as a
function of the number of inputs per slice (100 and 25) and the number of
batches (3 and 12).

To compare our approach with the state of the art by
Vo-Huu et al. [16], which reports results on 93 devices,
we trained our model on a subset of 100 devices, achieving
PSA and PBA of.32 and.44, respectively. Figure 12 shows
the PSA and PBA improvement brought by DeepFIR FIR
filtering as function of the number of FIR taps. In particular,
the PBA improvement is around 30% when 10 FIR taps are
used, which brings the accuracy to about 74% on the average,
outperforming [16] which is 47%.

Figure 13 reports the PSA and PBA improvement
on the ADS-B-500 dataset (baseline PSA and PBA
of.5028 and.6193), which reach respectively about 10% and
50% in the case of 10 filter taps. Figure 13 also shows that,
although the ADSB-500 PSA improvement is about the same
experienced in the WiFi-100 model, the PBA improvement
is significantly higher in ADSB-500 (30% vs 50%). This is
thanks to the fact that a very small increase in PSA usually
corresponds to a significant increase in PBA when the number
of devices is higher. Also, ADS-B transmits in a less-crowded
channel than WiFi, thus we expect our model and DeepFIR to
perform better on ADSB-500 when the number of inputs per
slice increases.

This is also confirmed by Figure 14, where we show
the PSA and PBA improvement in the WiFi-500 dataset as
a function of the number of FIR taps and the number of
inputs in each slice (25 and 100). Indeed, Figure 14 shows
a similar PBA improvement when 10 FIR taps are considered.
Furthermore, Figure 14 shows that the number of inputs
per slice significantly impacts on the fingerprinting accuracy,
especially on the PBA, in both ADSB-500 and WiFi-500. This
is because (i) the FIR optimization increases in effectiveness
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Fig. 14. Per-Slice and Per-Batch Accuracy Improvement, WiFi-500, as a
function of the number of inputs per slice (100 and 25) and the number of
batches (3 and 12).

Fig. 15. PSA Improvement as a function of the number of FIR taps.
ADSB-500 converges slower than WiFi-500 given the FIR has to operate
on unprocessed I/Q samples.

as the number of inputs per slice increases, because the FIR is
averaged over more channel realizations; and (ii) the boosting
effect given by the PBA increases as the number of slices
increases.

Figure 15 shows the PSA improvement for ADSB-500 and
WiFi-500 as a function of the number of FIR taps. As we can
see, the PSA improvement converges to approximately.15 as
more FIR taps are used, in both cases. Very interestingly,
Figure 15 also shows that WiFi-500 converges more rapidly
than ADSB-500. This is due to the fact that our ADSB-
500 model was trained on unprocessed I/Q samples (i.e.,
without any channel equalization). Therefore, the number of
FIR taps than DeepFIR needs to obtain the same performance
as in WiFi-500 increases, as the FIR has to compensate for
a significant channel action in WiFi-500. Finally, Figure 16
depicts the average FIR �-value (defined in Section V) as a
function of the number of taps and the model considered.
As anticipated in Section V, Figure 16 concludes that the
maximum �-value is below.2, which allows us to achieve low
BER even when the FIR is applied. Interestingly enough,
we notice that ADSB-500 requires taps that are on average
higher than WiFi-100 and WiFi-500. This is due to the longer
input (1024 vs 128 I/Q samples).

IX. MODULATION DATASET RESULTS

In the following, we show the experimental results obtained
on the RadioML 2018.01A dataset, which presents 24 dif-
ferent analog and digital modulations with different levels
of signal-to-noise ratio (SNR) [3]. For comparison purposes,

Fig. 16. Average FIR Epsilon (ε) values as a function of the number of FIR
taps.

Fig. 17. PSA and PBA as a function of ε for different number of FIR taps.

we consider the neural network in [3], Table III. This network
is composed by 7 convolutional layers each followed by
a MaxPool-2 layer, finally followed by 2 dense layers and
1 softmax layer. The dataset contains 2M examples, each
1024 I/Q samples long.

Figure 17 shows the PBA and PSA with and without Deep-
FIR for a variety of different configurations of � and number
of FIR taps M . As expected, DeepFIR always improves both
PBA and PSA in any configuration of � and M . Similarly to
prior results, the accuracy increases as the number of FIR taps
increases until it reaches a plateau. We notice that both PSA
and PBA increase when large values of � are considered (e.g.,
the BER constraint is relaxed). In this case, DeepFIR focuses
on maximizing the accuracy only disregarding the impact of
FIR taps on the BER of the communications. However, even
when � = 0.1, the PBA obtained via DeepFIR is doubled when
compared to the baseline model.

To understand the impact of DeepFIR on the accuracy
of the model, in Figure 18 we show the confusion matri-
ces for different DeepFIR configurations. While the baseline
model misclassifies the majority of modulations, DeepFIR
considerably improves the accuracy of the network. This is
demonstrated by the presence of high values in the main
diagonal of the confusion matrix. Although the best results
are obtained when both � and M are large, the configuration
with � = 0.1 (i.e., DeepFIR computes FIR taps that can be
successfully compensated at the receiver side, thus effectively
limiting the impact of FIR filtering on the BER of the system),
already achieves high accuracy (approximately 65% PBA from
Figure 17 when compared to 33% PBA of the baseline model).

To better understand how DeepFIR impacts wave-
forms and displaces I/Q samples in the complex space,
in Figs. 19, 20 and 21 we show waveforms before and after
filtering for BPSK, QPSK and 64QAM modulations (i.e.,
classes 4,5 and 15), respectively. Unless otherwise stated,
we consider � = 0.1 and M = 10.
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Fig. 18. Confusion matrices for different ε values and number of FIR taps.

Fig. 19. Impact of FIR filtering on waveforms and statistical distribution of
I/Q samples for BPSK (Class 4) modulation.

Fig. 20. Impact of FIR filtering on waveforms and statistical distribution of
I/Q samples for QPSK (Class 5) modulation.

Fig. 21. Impact of FIR filtering on waveforms and statistical distribution of
I/Q samples for 64QAM (Class 15) modulation.

Figure 19 shows that FIR taps computed by DeepFIR
are leaving the phase of the signal unchanged and are only
minimally varying their amplitude. This is an interesting result
as BPSK signals are demodulated by determining the phase of
received I/Q samples. This way, a receiver would still be able
to demodulate received BPSK waveforms properly without
errors. The same also holds for QPSK modulated signals.
As an example Figure 20 shows that DeepFIR only affects the
amplitude of transmitted I/Q samples while leaving the phase
untouched (note the characteristic step CDF of the phase).

Figure 21, instead, shows the waveform for a 64QAM signal
before and after DeepFIR filtering with � = 1 and M = 10.
In this particular configuration, the two CDFs show that the
impact of DeepFIR on the phase is slightly more relevant than
in the case of PSK modulations, while the amplitude of the
signal is reduce for most I/Q samples. Despite this reduction
might seem destructive, recall that we can always compensate

Fig. 22. Statistical analysis of data-driven FIR taps.

waveform alterations, especially for the considered setup with
� = 1 and M = 10, meaning that the impact of DeepFIR on
the demodulation procedure is negligible.

Finally, in Figure 22 we present results on the statistical
distribution of computed FIR taps. Recall that � represents
the maximum distance between FIR taps and the ideal FIR
(i.e., φ = (1, 0, . . . , 0)). Figure 22 shows that the data-driven
approach (i) always satisfies the maximum distance constraint;
and (ii) on average, the majority of taps shows a maximum
distance from the ideal FIR less than 0.2. This is an important
result because, as we have discussed in Section V, the receiver
can effectively compensate FIR action and recover the original
transmitted waveform.

X. CONCLUSION

In this paper, we have proposed DeepFIR, a methodology to
make deep-learning-based waveform classification algorithms
channel-resilient. DeepFIR leverages a finite input response
filter (FIR) at the transmitter’s side to compensate for current
channel conditions, which is computed by the receiver through
optimization and sent back as feedback to the transmitter.
We have extensively evaluated DeepFIR on a experimen-
tal testbed of 20 nominally-identical software-defined radios,
as well as on datasets made up by WiFi and ADS-B trans-
missions and a 24-class modulation dataset. Experimental
results have shown that DeepFIR is significantly effective
in increasing the classification accuracy of existing state-of-
the-art deep learning models.
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