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A B S T R A C T

Deep learning techniques can classify spectrum phenomena (e.g., waveform modulation) with accuracy levels
that were once thought impossible. Although we have recently seen many advances in this field, extensive
work in computer vision has demonstrated that adversarial machine learning (AML) can seriously decrease the
accuracy of a classifier. This is done by designing inputs that are close to a legitimate one but interpreted by
the classifier as being of a completely different class. On the other hand, it is unclear if, when, and how AML is
concretely possible in practical wireless scenarios, where (i) the highly time-varying nature of the channel could
compromise adversarial attempts; and (ii) the received waveforms still need to be decodable and thus cannot
be extensively modified. This paper advances the state of the art by proposing the first comprehensive analysis
and experimental evaluation of adversarial learning attacks to wireless deep learning systems. We postulate
a series of adversarial attacks, and formulate a Generalized Wireless Adversarial Machine Learning Problem
(GWAP) where we analyze the combined effect of the wireless channel and the adversarial waveform on the
efficacy of the attacks. We propose a new neural network architecture called FIRNet, which can be trained to
‘‘hack’’ a classifier based only on its output. We extensively evaluate the performance on (i) a 1000-device radio
fingerprinting dataset, and (ii) a 24-class modulation dataset. Results obtained with several channel conditions
show that our algorithms can decrease the classifier accuracy up to 3x. We also experimentally evaluate FIRNet
on a radio testbed, and show that our data-driven blackbox approach can confuse the classifier up to 97%
while keeping the waveform distortion to a minimum.
1. Introduction

The Internet of Things (IoT) will bring 75.44B devices on the
market by 2025, a 5x increase in ten years [1]. Due to the sheer
number of IoT devices soon to be deployed worldwide, the design of
practical spectrum knowledge extraction techniques has now become a
compelling necessity — not only to understand in real time the wireless
environment, but also to design reactive, intelligent, and more secure
wireless protocols, systems, and architectures [2].

Arguably, the radio frequency (RF) spectrum is one of nature’s
most complex phenomena. For this reason, the wireless community has
started to move toward data-driven solutions based on deep learning
[3] — well-known to be exceptionally suited to solve classification
problems where a mathematical model is impossible to obtain. Exten-
sively applied since the 1980s, neural networks are now being used to
address notoriously hard problems such as radio fingerprinting [4,5],
signal/traffic classification [2,6,7] and resource allocation [8], among
many others [9].
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Recent advances in wireless deep learning have now clearly demon-
strated its great potential. For example, O’Shea et al. [6] has demon-
strated that models based on deep learning can achieve about 20%
higher modulation classification accuracy than legacy learning mod-
els under noisy channel conditions. However, it has been extensively
proven that neural networks are prone to be ‘‘hacked’’ by carefully
crafting small-scale perturbations to the input — which keep the input
similar to the original one, but are ultimately able to ‘‘steer’’ the neural
network away from the ground truth. This activity is known [10–14]
as adversarial machine learning (AML). The degree to which adversarial
examples can be found is strongly correlated to the applicability of
neural networks to the wireless domain [15].

Technical challenges

We believe the above reasons clearly show the timeliness and
urgency of a rigorous investigation into the robustness of wireless deep
learning systems. The key reason that sets wireless AML apart is that a
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Fig. 1. Fooling rate as a function of different AML attacks obtained through our
experimental testbed.

wireless deep learning system is affected by the stochastic nature of the
channel [5,16]. This implies that the channel action must be factored
into the crafting process of the AML attack.

To further confirm this critical aspect, Fig. 1 reports a series of
experiments results obtained with our software-defined radio testbed
(see Section 7.4). In our setup shown in Fig. 1(d), we collect a se-
ries of waveforms coming from 5 legitimate transmitters (L1 to L5)
through a legitimate receiver (R). Then, we train a neural network
(see Section 7.4) to recognize the legitimate devices by learning the
unique impairments imposed by the radio circuitry on the transmitted
waveforms, also called radio fingerprinting [4]. The neural network
obtains 59% accuracy, as shown in 1(a). We also use an adversarial
eavesdropper radio (AE) to record the waveforms transmitted by the
legitimate transmitters. We show the fooling rate (i.e., the percentage
of test inputs for which the crafted perturbations successfully alter the
predicted label) obtained by 5 adversarial devices A1 to A5 which
transmit RF waveforms trying to fool the classifier by imitating respec-
tively L1 to L5. A high fooling rate means that adversaries can generate
waveforms that are classified as belonging to legitimate devices. On the
contrary, a low fooling rate indicates that the attack is unsuccessful as
the classifier is not able to identify received waveforms. In this experi-
ment, we consider two substantially different attacks where adversaries
(i) transmit their own waveforms – shown in 1(b); and (ii) ‘‘replay’’
the recorded waveforms from L1 to L5 (i.e., by simply retransmitting
the I/Q samples recorder by the eavesdropper AE) – shown in 1(c).
Fig. 1(b) shows that when A1 to A5 transmit their own waveforms,
the fooling rate is 20%, way lower than the original accuracy of 59%.
In principle, we would expect the adversary to obtain a significant
increase in fooling rate by performing the replay attack. However,
1(c) indicates that the fooling rate is only 30% when A1 to A5 replay
the eavesdropped waveforms. This strongly suggests that even if the
adversary is successful in replaying the waveforms, the channel will
inevitably make the attack less effective. Thus, more complex attacks
have to be designed and tested to validate whether AML is effectively
a threat in the wireless domain.

Related work

Adversarial machine learning (AML) has been extensively investi-
gated in computer vision. Szegedy et al. [17] first pointed out the
existence of targeted adversarial examples: given a valid input 𝑥, a
classifier 𝐶 and a target 𝑡, it is possible to find 𝑥′ ∼ 𝑥 such that
𝐶(𝑥′) = 𝑡. More recently, Moosavi-Dezfooli et al. [12] have further
demonstrated the existence of so-called universal perturbation vectors,
such that for the majority of inputs 𝑥, it holds that 𝐶(𝑥 + 𝑣) ≠ 𝐶(𝑥).
Carlini and Kruger [14] evaluated a series of adversarial attacks that
are shown to be effective against defensive neural network distillation
[18]. Although the above papers have made significant advances in our
understanding of AML, they can only be applied to stationary learning
contexts such as computer vision. The presence of non-stationarity
makes wireless AML significantly more challenging and thus worth of
additional investigation.

Only very recently has AML been approached by the wireless com-
munity [19–21]. Bair et al. [22] propose to apply a variation of the
MI-FGSM attack [23] to create adversarial examples to modulation
2

classification systems. Conversely to this paper, no channel model is
included in the analysis. Shi et al. [24] propose the usage of a gener-
ative adversarial network (GAN) to spoof a targeted device. However,
the proposed solution generates the adversarial example from a noise
input. More realistic, we modify an existing (decodable) waveform to
hack the classifier. Moreover, the evaluation is only conducted through
simulation without real dataset. Sadeghi et al. [25] proposed two AML
algorithms based on a variation of the fast gradient methods (FGMs)
[11] and tested on the 11-class RadioML 2016.10A dataset [26] and
with the architecture in [27]. Similarly, Flowers et al. [28] utilize a
variation of FSGM to craft adversarial attacks. Sadeghi and Larrson [29]
consider a system where the transmitter is an encoder and the channel
is considered as random noise. On the other hand, in this paper we craft
examples out of decodable signals and we consider fading channels,
which are more realistic assumptions.

Novel contributions

Conversely from prior work, in this paper we set to study a com-
pletely different – and more realistic – problem: given a set of target
waveforms, how can an adversary modify them in such a way that (i)
the probability to ‘‘steer’’ the classifier away from the ground truth is
maximized over the set of chosen waveforms, yet (ii) the waveforms are
still decodable at the receiver’s side? To this end, we notice that FSGM or
similar algorithms employed in prior work cannot be used to compute
adversarial waveforms in this context, as they can compute adversarial
examples tailored for a specific input and a specific channel condition.
As explained in Section 4.1, under ‘‘Addressing non-stationarity’’, our
algorithms take into account multiple inputs to find a single FIR filter
that can synthesize adversarial inputs for multiple waveforms and channel
conditions.

We summarize our technical contributions as follows:
∙ We propose a novel AML threat model (Section 3) where we

consider (i) a ‘‘whitebox’’ scenario, where the adversary has complete
access to the neural network; and (ii) a ‘‘blackbox’’ scenario, where
the neural network is not available to the adversary. The primary
advance of our model is that our attacks are derived for arbitrary
channels, waveforms, and neural networks, and thus generalizable to
any state-of-the-art wireless deep learning system;

∙ Based on the proposed model, we formulate an AML Waveform
Jamming (Section 4.1) and an AML Waveform Synthesis (Section 4.2)
attack. Next, we propose a Generalized Wireless Adversarial Machine
Learning Problem (GWAP) where an adversary tries to steer the neural
network away from the ground truth while satisfying constraints such
as bit error rate, radiated power, and other relevant metrics below a
threshold (Section 5). Next, we propose in Section 5.2 a gradient-based
algorithm to solve the GWAP in a whitebox scenario. For the blackbox
scenario, we design a novel neural network architecture called FIRNet.
Our approach mixes together concepts from generative adversarial
learning and signal processing to train a neural network composed by
finite impulse response layers (FIRLayers), which are trained to impose
small-scale modifications to the input and at the same time decrease
the classifier’s accuracy;

∙ We extensively evaluate the proposed algorithms on (i) a deep
learning model for radio fingerprinting [4] trained on a 1000-device
dataset of WiFi and ADS-B transmissions collected in the wild; and (ii)
a modulation recognition model [6] trained on the widely-available
RadioML 2018.01A dataset, which includes 24 different analog and
digital modulations with different levels of signal-to-noise ratio (SNR).
Our algorithms are shown to decrease the accuracy of the models up to
3x in case of whitebox attacks, while keeping the waveform distortion
to a minimum. Moreover, we evaluate our FIRNet approach on the
software-defined radio testbed, and show that our approach confuses
the 5-device radio fingerprinting classifier up to 97%. To the best of
our knowledge, this is the first paper in the wireless adversarial ma-
chine learning domain presenting experimental results on a real-world
software-defined radio (SDR) testbed.
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Fig. 2. Wireless vs CV-based Adversarial Machine Learning.

2. A primer on adversarial learning

The key target of adversarial machine learning (AML) is to com-
promise the robustness of classifiers based on neural networks [12].
Broadly speaking, there are two types of AML attacks studied in the
literature, which are often referred to as targeted [17] and untargeted
[12]. The former type attempts to find perturbation vectors 𝐯 that, ap-
plied to a given input 𝐱, makes the classifier ‘‘steer’’ toward a different
class than the ground truth 𝑔. More formally, given a classifier 𝐶 and a
target 𝑡, the adversary tries to find 𝐱 + 𝐯 ∼ 𝐱 such that 𝐶(𝐱 + 𝐯) = 𝑡 ≠ 𝑔.
Conversely, untargeted AML attempts to find universal perturbation
vectors 𝐯, through which 𝐶(𝐱 + 𝐯) ≠ 𝐶(𝐱) for most inputs 𝐱. To keep
the notation consistent with previous work, we will keep the same
nomenclature throughout the paper.

Fig. 2 summarizes the differences between AML for Computer Vision
(CV) and wireless networking applications. Although very similar in
scope and target, there are unique characteristics that make AML in the
wireless domain fundamentally different than AML in CV systems. First,
CV-based algorithms assume that adversarial and legitimate inputs are
received ‘‘as-is’’ by the classifier. In other words, if 𝐱 is an image and
𝐱 + 𝐯 is the adversarial input, the classifier will always attempt to
classify 𝐱 + 𝐯 as input. However, due to the wireless channel, we cannot
make this assumption in the wireless domain. In short, any adversarial
waveform 𝐰 + 𝐯 will be subject to the additive and multiplicative
action of the channel, which can be expressed via a perturbation matrix
𝐂 = (𝐜𝑎, 𝐜𝑚) given by the wireless channel, which ultimately makes
the classifier attempt to classify the waveform 𝐜𝑚(𝐰 + 𝐯) + 𝐜𝑎 instead
of the 𝐰 + 𝐯 waveform. The second key difference is that wireless
AML has to assume that waveforms cannot be arbitrarily modified,
since they have to be decodable at the receiver’s side (i.e., if not
decodable, the receiver will discard received packets, thus making the
attack ineffective). Therefore, the adversary has a critical constraint on
the maximum distortion that the joint action 𝐂 of the channel and his
own perturbation 𝐯 can impose to a waveform. Meaning, 𝐜𝑚(𝐰+ 𝐯) + 𝐜𝑎
still has to be decodable. As we will show in the rest of the paper,
an adversary’s capability of launching a successful AML attack will
depend on the signal-to-noise ratio (SNR) between the adversary and
the receiver.

3. Modeling wireless AML

We use boldface upper and lower-case letters to denote matrices and
column vectors, respectively. For a vector 𝐱, 𝑥𝑖 denotes the 𝑖th element,
‖𝐱‖𝑝 indicates the 𝑙𝑝- norm of 𝐱, 𝐱⊤ its transpose, and 𝐱 ⋅ 𝐲 the inner
product of 𝐱 and 𝐲. For a matrix 𝐇, 𝐻𝑖𝑗 will indicate the (i,j)th element
of 𝐇. The notation R and C will indicate the set of real and complex
numbers, respectively.

System Model. The top portion of Fig. 3 summarizes our system
model, where we consider a receiving node 𝑅, an attacker node 𝐴, and
a set  of 𝑁 legitimate nodes communicating with 𝑅. We assume that 𝑅
hosts a target neural network (TNN) used to classify waveforms coming
from nodes in .
3

Fig. 3. Overview of AML Waveform Jamming (AWJ) and AML Waveform Synthesis
(AWS).

Let 𝛬 > 1 be the number of layers of the TNN, and  be the
set of its classes. We model the TNN as a function 𝐹 that maps the
relation between an input 𝐱 and an output 𝐲 through a 𝛬-layer mapping
𝐹 (𝐱; 𝜃) ∶ R𝑖 → R𝑜 of an input vector 𝐱 ∈ R𝑖 to an output vector 𝐲 ∈ R𝑜.
The mapping happens through 𝛬 transformations:

𝐫𝑗 = 𝐹𝑗 (𝐫𝑗−1, 𝜃𝑗 ) 0 ≤ 𝑗 ≤ 𝛬, (1)

where 𝐹𝑗 (𝐫𝑗−1, 𝜃𝑗 ) is the mapping carried out by the 𝑗th layer. The
vector 𝜽 = {𝜃1,… , 𝜃𝛬} defines the whole set of parameters of the
TNN. We assume the last layer of the TNN is dense, meaning that
𝐹𝛬−1(𝐫𝑗−1, 𝜃𝑗 ) = 𝜎(𝐖𝑗 ⋅ 𝐫𝑗−1 + 𝐛𝑗 ), where 𝜎 is a softmax activation
function, 𝐖𝑗 is the weight matrix and 𝐛𝑗 is the bias vector.

We evaluate the activation probabilities of the neurons at the last
layer of the TNN. Let 𝑐 ∈  be a generic class in the classification set
of the TNN. We denote 𝑓𝑐 (𝐱) as the activation probability of the neuron
corresponding to class 𝑐 at the output layer of the TNN when input 𝐱
is fed to the TNN. From (1), it follows that

𝑓𝑐 (𝐱) = 𝐹𝛬,𝑐 (𝐫𝛬−1, 𝜃𝛬). (2)

Notice that the mapping 𝐹 (𝐱; 𝜃) ∶ R𝑖 → R𝑜 can be any derivable
function, including recurrent networks. By taking as Ref. [6], we as-
sume that the input of the TNN is a series of I/Q samples received from
the radio interface. We assume that the I/Q samples may be processed
through a processing function 𝑃 () before feeding the I/Q samples to the
TNN. Common examples of processing functions 𝑃 () are equalization,
demodulation or packet detection.

Threat Model. We assume the adversary 𝐴 may or may not be part
of the legitimate set of nodes in . We call the adversary respectively
rogue and external in these cases. We further classify adversarial action
based on the knowledge that the adversary possesses regarding the TNN.
In the first, called in literature whitebox, the adversary 𝐴 has perfect
knowledge of the TNN activation functions 𝐹𝑗 , meaning that 𝐴 has
access not only to 𝐹𝛬 but also to the weight vector 𝜽 (and thus, its
gradient as a function of the input).

In the second scenario, also called blackbox, the adversary does
not have full knowledge of the TNN, and therefore cannot access
gradients. We do assume, however, that the adversary can estimate the
successfulness of the attack by either accessing the output of the TNN,
or by eavesdropping communication-specific messages transmitted by
the TNN host. Specifically, in the first case, for any arbitrarily chosen
waveform 𝐱, the adversary can obtain its label 𝐶(𝐱) = 𝑦 by querying the
TNN. In the second case, the adversary could use ACKs or REQs as 1-bit
feedback. Specifically, for a given batch 𝐵 of size 𝑀 , the loss function
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𝐿(𝐵) can be approximated by observing the number of ACKs or REQs
received (𝐴) for the current batch and then assign 𝐿(𝐵) = 𝑀−𝐴

𝑀 . How to
ffectively leverage this information is an issue known as 1-bit feedback
earning, and was studied by Zhang et al. in [30].

The adversary then may choose different strategies to craft adver-
arial samples over tuples (𝐱, 𝑦) obtained from querying the TNN. By
eferring to prior work, we consider both targeted [17] and untargeted

[12] attacks.
Wireless Model. To be effective, the attacker must be within the

transmission range of 𝑅, meaning that 𝐴 should be sufficiently close
to 𝑅 to emit waveforms that compromise (to some extent) ongoing
transmissions between any node 𝑙 ∈  and 𝑅. This scenario is particu-
larly compelling, since not only can 𝐴 eavesdrop wireless transmissions
generated by 𝑅 (e.g., feedback information such as ACKs or REQs), but
also emit waveforms that can be received by 𝑅 — and thus, compromise
the TNN.

We illustrate the effect of channel action in Fig. 3, which can
be expressed through well-established models for wireless networks.
Specifically, the waveform transmitted by any legitimate node 𝐿 ∈ 
and received by 𝑅 can be modeled as

𝐳𝐿 = 𝐱𝐿 ⊛ 𝐡𝐿 + 𝐰𝐿, (3)

where 𝐱𝐿 represents the waveform transmitted by node 𝐿, ⊛ is the con-
volution operator; 𝐡𝐿 and 𝐰𝐿 are the fading and noise characterizing
the channel between node 𝐿 and the receiver 𝑅.

Similarly, let 𝐱𝐴 be the waveform transmitted by node 𝐴, and let
be an attack strategy of 𝐴. The attacker utilizes 𝝓 to transform

the waveform 𝐱𝐴 and its I/Q samples. For this reason, the waveform
transmitted by 𝐴 can be written as 𝐱𝐴(𝝓). For the sake of generality,
in this section we do not make any assumption on 𝝓. However, in
Section 4 we present two examples of practical relevance (i.e., jamming
and waveform synthesis) where closed-form expressions for the attack
strategy 𝝓 and 𝐱𝐴(𝝓) are derived. The waveform 𝐳𝐴 can be written as

𝐳𝐴 = 𝐱𝐴(𝝓)⊛ 𝐡𝐴 + 𝐰𝐴. (4)

Notice that (3) and (4) do not assume any particular channel model,
nor any particular attack strategy. Therefore, our formulation is very
general in nature and able to model a rich set of real-world wireless
scenarios.

In most wireless applications, noise 𝐰𝑖 can be modeled as additive
white Gaussian (AWGN). On the contrary, 𝐡𝑖 depends on mobility,
multi-path and interference. Although these aspects strongly depend on
the application and network scenarios, they are usually assumed to be
constant within the coherence time of the channel, thus allowing us to
model 𝐡𝑖 as a Finite Impulse Response (FIR) filter with 𝐾 > 0 complex-
valued taps. By leveraging the above properties, the 𝑛th component
𝑧𝑖[𝑛] of the waveform 𝐳𝑖 received from node 𝑖 can be written as
follows:

𝑧𝑖[𝑛] =
𝐾−1
∑

𝑘=0
ℎ𝑖𝑘 [𝑛]𝑥𝑖[𝑛 − 𝑘] +𝑤𝑖[𝑛] (5)

where 𝑥𝑖[𝑛] is the 𝑛th I/Q symbol transmitted by node 𝑖; ℎ𝑖𝑘 [𝑛] and 𝑤𝑖[𝑛]
are respectively the 𝑘th complex-valued FIR tap and noise coefficients
representing the channel effect at time 𝑛.

4. Wireless AML attacks

With the help of Fig. 3, we now introduce the AML Waveform
Jamming (Section 4.1), and AML Waveform Synthesis (Section 4.2).

4.1. AML Waveform Jamming (AWJ)

In AWJ, an adversary carefully jams the waveform of a legitimate
device to confuse the TNN. Since the TNN takes as input I/Q samples,
4

the adversary may craft a jamming waveform that, at the receiver f
side, causes a slight displacement of I/Q samples transmitted by the
legitimate device, thus pushing the TNN toward a misclassification.

As shown in Fig. 3, the waveform 𝐱𝐴 generated by the attacker
ode 𝐴 is aimed at jamming already ongoing transmissions between a
egitimate node 𝐿 and the receiver 𝑅. In this case, the signal received

by 𝑅 can be written as

= 𝐳𝐴 + 𝐳𝐿 (6)

here 𝐳𝐴 and 𝐳𝐿 are defined in (3) and (4), respectively.
Attack objectives and strategies. The attacker aims at computing

𝐴 so that 𝐶(𝐳) ≠ 𝐶(𝐳𝐿). Moreover, this attack can be either targeted
i.e., 𝐴 generates jamming waveforms whose superimposition with
egitimate signals produce 𝐶(𝐳) = 𝑐𝑇 , with 𝑐𝑇 being a specific target
lass in ), or untargeted (i.e., it is sufficient to obtain 𝐶(𝐳) ≠ 𝑐𝐿).

In this case, 𝐱𝐴(𝝓) = 𝝓. That is, the transmitted waveform corre-
ponds to the actual attack (jamming) strategy. Specifically, we have

𝐴(𝝓) = (𝜙ℜ
𝑛 + 𝑗𝜙ℑ

𝑛 )𝑛=1,…,𝑁𝐽
, (7)

here (i) 𝑎ℑ = Im(𝑎) and 𝑎ℜ = Re(𝑎) for any complex number 𝑎; and
ii) 𝑁𝐽 > 1 represents the length of the jamming signal in terms of
/Q samples. As mentioned before, since 𝑁𝐽 is generally smaller than
he TNN input 𝑁𝐼 – without losing in generality – we assume that
he adversary periodically transmits the sequence of 𝑁𝐽 I/Q samples
uch that it cover a large portion of the packets being transmitted
y the legitimate node (usually readily available and easy to derive
eing this regulated and defined by the specific wireless technology and
tandard being used by the transmitting legitimate node). This makes
t possible to generate a jamming waveform that completely overlaps
ith legitimate waveforms and have the same length. However, it is
orth to notice that we do not assume any synchronization or perfect

uperimposition of the jamming signal with the legitimate signal, and
hus, adversarial signals are not added in a precise way to the legitimate
aveform.

Undetectability aspects. Recall that any invasive attack might
eveal the presence of the adversary to the legitimate nodes, which
ill promptly implement defense strategies [31]. For this reason, the
dversary aims at generating misclassifications while masquerading the
ery existence of the attack by computing 𝝓 such that the signal 𝐳 can
till be decoded successfully by the receiver (e.g., by keeping the bit-
rror-rate (BER) lower than a desirable threshold) but yet misclassified.
his is because the attacker aims to conceal its presence. If exposed, the
eceiver might switch to another frequency, or change location, thus
aking attacks less effective. However, we remark that this constraint

an be relaxed if the jammer is not concerned about concealing its
resence. We further assume the attacker has no control over channel
onditions (i.e., 𝐡𝐴 and 𝐰𝐴) and legitimate signals (i.e., 𝐳𝐿), mean-
ng that the attacker can control 𝐱𝐴(𝝓) only by computing effective
trategies 𝝓.

Addressing non-stationarity. An adversary cannot evaluate the
hannel 𝐡𝐿 in (3) — which is node-specific and time-varying. Also,
aveforms transmitted by legitimate nodes vary according to the en-

oded information, the latter being usually a non-stationary process. It
ollows that jamming waveforms that work well for a given legitimate
aveform 𝐳𝐿, might not be equally effective for any other 𝐳′𝐿 ≠
𝐿. Thus, rather than computing the optimal jamming waveform for
ach 𝐳𝐿, we compute it over a set of consecutive 𝑆 legitimate input
aveforms, also called slices.

Let 𝜌 ∈ {0, 1} be a binary variable to indicate whether or not the
ttacker node belongs to the legitimate node set  (i.e., a rogue node).
pecifically, 𝜌 = 1 if the attacker node is a rogue device and 𝐴 ∈ ,
= 0 if the attacker is external (i.e., 𝐴 ∉ ). Also, let 𝑐𝐿 and 𝑐𝐴 be

he correct classes of the waveforms transmitted by nodes 𝐿 and 𝐴,
espectively.

Untargeted AWJ. The adversary aims at jamming legitimate wave-
orms such that (i) these are misclassified by the TNN; (ii) malicious
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activities are not detected by the TNN; and (iii) attacks satisfy hard-
ware limitations (e.g., energy should be limited). These objectives and
constraints can be formulated through the following untargeted AWJ
problem (AWJ-U):

minimize
𝝓

1
𝑆

𝑆
∑

𝑠=1

[

𝑓𝑐𝐿 (𝐳𝑠) + 𝜌 ⋅ 𝑓𝑐𝐴 (𝐳𝑠)
]

(AWJ-U)

subject to BER𝐿(𝐳s) ≤ BERmax, 𝑠 = 1, 2,… , 𝑆 (C1)
‖

‖

𝐱𝐴(𝝓)‖‖
2
2 ≤ Emax, 𝑠 = 1, 2,… , 𝑆 (C2)

where 𝐳𝑠 = 𝐳𝐴 + 𝐳𝐿𝑠
, 𝐳𝐿𝑠

represents the 𝑠th slice (or input) of the TNN;
Constraint (C1) ensures that the BER experienced by the legitimate
node is lower than the maximum tolerable BER threshold BERmax;
while (C2) guarantees that the energy of the jamming waveform does
not exceed a maximum threshold Emax. In practice, Constraints (C1)
and (C2) ensure that jamming waveforms do not excessively alter the
position of legitimate I/Q samples. This is crucial to avoid anti-jamming
strategies such as modulation and frequency hopping, among others.
Although Problem (AWJ-U) takes into account Constraints (C1) and
(C2) only, in Section 5 we extend the formulation to larger set of
constraints.

Targeted AWJ. By defining 𝑐𝑇 ∈  as the target class, we formulate
the targeted AWJ as

maximize
𝝓

1
𝑆

𝑆
∑

𝑠=1

[

𝑓𝑐𝑇 (𝐳𝑠) −
(

𝑓𝑐𝐿 (𝐳𝑠) + 𝜌 ⋅ 𝑓𝑐𝐴 (𝐳𝑠)
)]

(AWJ-T)

subject to Constraints (C1), (C2)

When compared to Problem (AWJ-U), Problem (AWJ-T) differs in
terms of the objective function. One naive approach would see the
adversary maximize the term 1

𝑆
∑𝑆

𝑠=1 𝑓𝑐𝑇 (𝐳𝑠) only. However, the objec-
tive of the adversary is to produce misclassifications, so the adversary
should try to reduce the activation probability of the jammed class 𝑐𝐿
and adversarial class 𝑐𝐴, while maximizing the activation probability
for the target class 𝑐𝑇 . It is expected that the TNN has high accuracy and
by simply maximizing 1

𝑆
∑𝑆

𝑠=1 𝑓𝑐𝑇 (𝐳𝑠) does not necessarily mean that the
TNN would not be able to still correctly classify transmissions from the
legitimate device 𝐿 (i.e., the activation probability 𝑓𝑐𝐿 might still be
high).

Let us provide a simple yet effective example. Assume that the
attacker is external (𝜌 = 0), 1

𝑆
∑𝑆

𝑠=1 𝑓𝑐𝑇 (𝐳𝐿𝑠
) = 0.1 and 1

𝑆 𝑓𝑐𝐿 (𝐳𝐿𝑠
) =

.9. Let us consider the case where the adversary computes 𝝓 such
hat the term 1

𝑆
∑𝑆

𝑠=1 𝑓𝑐𝑇 (𝐳𝑠) only is maximized. A reasonable outcome
of this optimization problem is that 𝝓 is such that 1

𝑆
∑𝑆

𝑠=1 𝑓𝑐𝑇 (𝐳𝑠) =
0.4 and 1

𝑆
∑𝑆

𝑠=1 𝑓𝑐𝐿 (𝐳𝑠) = 0.6. In this case, it is easy to notice that
nput waveforms are still classified as belonging to class 𝑐𝐿. A similar
rgument can be made for term 𝜌𝑓𝐴(𝐳𝑠) when 𝜌 = 1 (i.e., the attacker

is a rogue node).
In other words, to effectively fool the TNN, the attacker must

generate waveforms that (i) suppress features of class 𝑐𝐿; (ii) mimic
hose of class 𝑐𝑇 ; and (iii) hide features of the attacker’s class 𝑐𝐴. These

objectives can be formulated via the objective function in Problem
(AWJ-T).

4.2. AML Waveform Synthesis (AWS)

In this attack – illustrated in the bottom-right side of Fig. 3 – an
adversary 𝐴 transmits synthetic waveforms trying to imitate features
belonging to a target class 𝑐𝑇 . In contrast to the AWJ, in this case 𝐳 = 𝐳𝐴
and synthetic waveforms 𝐱𝐴(𝝓) are generated so that 𝐶(𝐳) = 𝑐𝑇 and
the waveform received by node 𝑅 is still intelligible. By definition, this
attack is targeted only.

Let 𝑐𝑇 ∈  be the target class. The (targeted) AWS problem (AWS)
is formulated as

maximize 1
𝑆
∑

[

𝑓𝑐𝑇 (𝐳𝐴𝑠
) − 𝜌𝑓𝑐𝐴 (𝐳𝐴𝑠

)
]

(AWS)
5

𝝓 𝑆 𝑠=1
s

subject to Constraints (C1), (C2)

This attack maps well to scenarios such as radio fingerprinting,
where a malicious device aims at generating a waveform embedding
impairments that are unique to the target legitimate device [4]. In other
words, the attacker cannot generate random waveforms as in the AWJ,
but should transmit waveforms that contain decodable information. To
this end, FIR filters are uniquely positioned to address this issue. More
formally, an FIR is described by a finite sequence 𝝓 of 𝑀 filter taps,
.e., 𝝓 = (𝜙1, 𝜙2,… , 𝜙𝑀 ). For any input 𝐱 ∈  , the filtered 𝑛th element
̂[𝑛] ∈ �̂� can be written as

̂[𝑛] =
𝑀−1
∑

𝑚=0
𝜙𝑚𝑥[𝑛 − 𝑚] (8)

It is easy to observe that by using FIRs, the adversary can manipulate
he position in the complex plane of the transmitted I/Q symbols. By using
omplex-valued filter taps, i.e., 𝜙𝑚 ∈ C for all 𝑚 = 0, 1,… ,𝑀−1, Eq. (8)
ecomes:

̂[𝑛] =
𝑀−1
∑

𝑚=0
(𝜙ℜ

𝑚 + 𝑗𝜙ℑ
𝑚 )(𝑥

ℜ[𝑛 − 𝑚] + 𝑗𝑥ℑ[𝑛 − 𝑚])

= �̂�ℜ[𝑛] + 𝑗�̂�ℑ[𝑛] (9)

For example, to rotate all I/Q samples by 𝜃 = 𝜋∕2 radiants and halve
heir amplitude, we may set 𝜙1 = 1

2 exp
𝑗 𝜋
2 and 𝜙𝑘 = 0 for all 𝑘 > 1.

imilarly, other complex manipulations can be obtained by fine-tuning
ilter taps. It is clear that complex FIRs can be effectively used by the
ttacker node to fool the TNN through AWS attacks.

By using a FIR 𝝓 with 𝑀 complex-valued taps, the waveform 𝐱𝐴(𝝓)
ransmitted by the attacker can be written as

𝐴(𝝓) = 𝐱𝐵𝐵 ⊛ 𝝓 (10)

here 𝐱𝐴(𝝓) = (𝑥𝐴[𝑛](𝝓))𝑛=1,…,𝑁𝐼
, 𝑥𝐴[𝑛](𝝓) is computed as in (9), 𝐱𝐵𝐵 =

𝑥𝐵𝐵[𝑛])𝑛=1,…,𝑁𝐼
is an intelligible signal and 𝝓 = (𝜙ℜ

𝑛 + 𝑗𝜙ℑ
𝑛 )𝑛=1,…,𝑁𝐼

s the FIR used to generate a synthetic waveform. We assume that
he adversary selects 𝐱𝐵𝐵 to match the wireless standard being used
y the legitimate nodes (e.g., WiFi, Bluetooth, LoRa, no name a few).
lthough out of the scope of this paper, this can be easily achieved
ia well-established techniques such as preamble detection or ML-based
aveform detection and classification

. Generalized WAML problem (GWAP)

Notice that Problems (AWJ-U), (AWS) and (AWJ-T) are similar
n target. Thus, we propose the following Generalized Wireless AML
roblem (GWAP) formulation

maximize
𝝓

𝑆
∑

𝑠=1

∑

𝑐∈
𝜔𝑐𝑓𝑐 (𝐳𝑠) (GWAP)

ubject to 𝐠(𝐳𝑠) ≤ 0, 𝑠 = 1,… , 𝑆 (11)

here 𝐠(𝐳) = (𝑔1(𝐳),… , 𝑔𝐺(𝐳))⊤ is a generic set of constraints that
eflect BER, energy and any other constraint that the attack strategy

must satisfy (e.g., upper and lower bounds); and 𝜔𝑐 takes values
n {−𝜌,−1, 0, 1, 𝜌} depending on the considered attack. As an example,
roblem (AWJ-T) has 𝜔𝑐𝑇 = 1, 𝜔𝑐𝐿 = −1, 𝜔𝑐𝐴 = −𝜌 and 𝜔𝑐 = 0 for all
≠ 𝑐𝐿, 𝑐𝑇 , 𝑐𝐴.

Problem (GWAP) is non trivial since (i) the functions 𝑓𝑐 have
o closed-form and depend on millions of parameters; (ii) both the
bjective and the constraints are highly non-linear and non-convex; (iii)
t is not possible to determine the convexity of the problem. Despite
he above challenges, in whitebox attacks the adversary has access to
he gradients of the TNN (Fig. 3). In the following, we show how
n attacker can effectively use gradients to efficiently compute AML
ttack strategies. It is worth mentioning that our whitebox algorithms,

imilar to the fast gradient sign method (FGSM) [32], use gradients



Computer Networks 216 (2022) 109264F. Restuccia et al.
to generate adversarial outputs. Despite being similar, FGSM can com-
pute adversarial examples tailored for a specific input and a specific
channel condition only. Conversely, as explained in Section 4.1, under
‘‘Addressing non-stationarity’’, our algorithms take into account multiple
inputs to find a single FIR filter that can synthesize adversarial inputs for
multiple channel conditions, thus resulting more general and practical
than FGSM-based approaches.

From (6), the input of the TNN is 𝐳 = 𝐳𝐴 + 𝐳𝐿. Since 𝐳𝐿 cannot be
controlled by the attacker node, we have 𝑓𝑐 (𝐳) = 𝑓𝑐 (𝐳𝐴). Fig. 3 shows
that the TNN provides the gradients ∇𝐳𝑓𝑐 (𝐳), hence the attacker can
compute the gradients ∇𝝓𝑓𝑐 (𝐳) of the activation probability correspond-
ing to the 𝑐th class of the TNN with respect to the attacker’s strategy
𝝓 by using the well-known chain rule of derivatives. Specifically, the
gradients are

∇𝝓𝑓𝑐 (𝐳) = 𝐽𝝓(𝐳)⊤ ⋅ ∇𝐳𝑓𝑐 (𝐳) (12)

where 𝐽𝝓(𝐳) is the 𝑁𝐼 ×𝑀 Jacobian matrix of the input 𝐳 with respect
to the attacker’s strategy 𝝓, ⊤ is the transposition operator, and ⋅ stands
for matrix dot product.

We define the input of the TNN as a set of 𝑁𝐼 consecutive I/Q
samples, i.e., 𝐳 = (𝑧[𝑛])𝑛=0,…,𝑁𝐼−1, where 𝑧𝑛 ∈ C for all 𝑛 = 0,… , 𝑁𝐼 −
1. The attacker’s waveform is defined as a sequence of 𝑀 complex
numbers, i.e., 𝐱𝐴(𝝓) = (𝑥𝐴[𝑚](𝝓))𝑚=0,…,𝑀−1 whose values depend on
the attack strategy 𝝓. With this information at hand, we observe the
gradient ∇𝝓𝑓𝑐 (𝐳) has dimension 2𝑀 × 1, while the gradients with
respect to real and imaginary parts of the 𝑚-component are respectively

𝜕𝑓𝑐 (𝐳)
𝜕𝜙ℜ

𝑚
=

𝑁𝐼
∑

𝑛=1

(

𝜕𝑓𝑐 (𝐳)
𝜕𝑧ℜ[𝑛]

𝜕𝑧ℜ[𝑛]
𝜕𝜙ℜ

𝑚
+

𝜕𝑓𝑐 (𝐳)
𝜕𝑧ℑ[𝑛]

𝜕𝑧ℑ[𝑛]
𝜕𝜙ℜ

𝑚

)

(13)

𝜕𝑓𝑐 (𝐳)
𝜕𝜙ℑ

𝑚
=

𝑁𝐼
∑

𝑛=1

(

𝜕𝑓𝑐 (𝐳)
𝜕𝑧ℜ[𝑛]

𝜕𝑧ℜ[𝑛]
𝜕𝜙ℑ

𝑚
+

𝜕𝑓𝑐 (𝐳)
𝜕𝑧ℑ[𝑛]

𝜕𝑧ℑ[𝑛]
𝜕𝜙ℑ

𝑚

)

. (14)

5.1. Gradients computation

We remark that while the AWJ generates waveforms that mimic
noise on the channel and target already ongoing transmissions between
legitimate nodes, the AWS aims at creating synthetic waveforms when
no other node is occupying the wireless channel. Therefore, the two
attacks require different attacks strategies 𝝓 which will inevitably result
in different values of (13) and (14). Thus, we discuss the implemen-
tation details of AWJ and AWS attacks and derive the corresponding
closed-form expressions for the partial derivatives in (13) and (14).

AML Waveform Jamming. Here, the adversary is not required
to transmit intelligible or standard-compliant waveforms. Therefore,
𝐱𝐴(𝝓) is defined in (10). Since 𝝓 is the only variable the attacker can

control, 𝜕𝑧𝑍′ [𝑛]
𝜕𝜙𝑍′′

𝑚
=

𝜕𝑧𝑍
′

𝐴 [𝑛]

𝜕𝜙𝑍′′
𝑚

, where 𝑍′ and 𝑍′′ can be either ℜ or ℑ to

identify real and imaginary part, respectively. Accordingly, from (5)
we have

𝜕𝑧𝑍′ [𝑛]
𝜕𝜙𝑍′′

𝑚
= ℎ𝐴𝑛−𝑚

[𝑛] (15)

By substituting (15) into (13) and (14), the attacker can calculate
gradients that will be used to compute an efficient jamming solution in
Section 5.2.

AML Waveform Synthesis. In this attack, the optimization vari-
ables are the FIR taps and the attacker’s waveform 𝐱𝐴(𝝓) is defined in
(10). For this reason, gradients can be computed as follows:

𝜕𝑧𝑍′ [𝑛]
𝑍′′ =

𝐾−1
∑

ℎ𝐴𝑘
[𝑛]

(𝑀−1
∑

𝑥𝐵𝐵[𝑛 − 𝑚 − 𝑘]

)

(16)
6

𝜕𝜙𝑚 𝑘=0 𝑚=0
Fig. 4. The FIRNet Architecture.

5.2. Gradient-based optimization algorithm

Now we present a general solution to Problem GWAP which lever-
ages the availability of gradients (13), (14), (15) and (16) to compute
an effective attack strategy 𝝓.

First, we relax the constraints 𝑔𝑖(⋅) through Lagrangian Relaxation
[33]. Specifically, we define the augmented Lagrangian

𝐿(𝝓,𝝀) =
𝑆
∑

𝑠=1

(

∑

𝑐∈
𝜔𝑐𝑓𝑐 (𝐳𝑠) − 𝝀⊤𝑠 𝐠(𝐳𝑠) −

𝜌
2
‖𝐠(𝐳𝑠)‖22

)

(17)

where 𝝀𝑠 = (𝜆0,𝑠,… , 𝜆𝐺,𝑠)⊤, 𝜆𝐺,𝑠 ≥ 0, 𝝀 = (𝝀1,… ,𝝀𝑆 ), and 𝜌 > 0 is a
fixed-step size to regulate the convergence speed of the algorithm [33].
By using Lagrangian duality, an approximated solution to Problem
(GWAP) can be found by the following iterative process

𝝓(𝑡) = argmax
𝝓

𝐿(𝝓,𝝀(𝑡−1)) (18)

𝝀(𝑡)𝑠 = max{0,𝝀(𝑡−1)𝑠 + 𝛾𝑡𝐠(𝐳𝑠)} (19)

where 𝑡 represents the iteration counter and 𝛾𝑡 is a decreasing step-size
such that ∑𝑡 𝛾𝑡 = ∞ and ∑

𝑡 𝛾
2
𝑡 < ∞ [33].

We solve (18) via the Non-linear Conjugate Gradient (NCG) method
[34]. To compute a solution at each iteration 𝑡, we define the gradient
of 𝐿(𝝓,𝝀(𝑡−1)) as a function of the attack strategy 𝜙:

∇𝜙𝐿(𝝓,𝝀(𝑡−1)) =
𝑆
∑

𝑠=1

∑

𝑐∈
𝜔𝑐∇𝝓𝑓𝑐 (𝐳𝑠)

− 𝝀(𝑡−1)⊤𝑠 ∇𝝓𝐠(𝐳𝑠) − 𝜌𝐽⊤
𝐠 (𝝓) ⋅ 𝐠(𝐳𝑠) (20)

with ∇𝝓𝑓𝑐 (𝐳𝑠) being computed in (12), ∇𝝓𝐠(𝐳𝑠) and 𝐽⊤
𝐠 (𝝓) being the

gradient and Jacobian matrix of the functions 𝐠 with respect to 𝝓,
respectively. We omit the NCG-based solution, and refer the interested
reader to [33,34] for a theoretical background of the algorithm.

6. Blackbox optimization: FIRNet

The core objective of FIRNet is to hack the TNN without requiring
to have a copy of the TNN. To this end, we leverage the feedback from
the TNN to carefully transform the input via a series of finite impulse
response (FIR) convolutional layers, which to the best of our knowledge
are conceived for the first time in this paper.

Fig. 4 shows at a high level the architecture of FIRNet. In a nutshell,
the ultimate target of FIRNet is to take as input a number of I/Q samples
generated by the adversary’s wireless application and a target class, and
‘‘perturbate’’ the I/Q samples through a series of consecutive FIRLayers.
The key intuition is that FIR operations are easily implementable in
software and in hardware, making the complexity of FIRNet scalable.
Moreover, an FIR can be implemented using one-dimensional (1D)
layers in Keras. Thus, FIRNet is fully GPU-trainable and applicable to
many different applications beside the ones described in this paper.
More formally, by defining 𝑥𝑅, 𝑥𝐼 the real and imaginary components
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of an I/Q signal, and 𝜙𝑅, 𝜙𝐼 the real and imaginary components of the
FIR, a FIRLayer manipulates an input as follows:

𝑦[𝑛] =
𝑀−1
∑

𝑖=0
(𝜙𝑅

𝑖 + 𝑗𝜙𝐼
𝑖 )(𝑥

𝑅[𝑛 − 𝑖] + 𝑗𝑥𝐼 [𝑛 − 𝑖]), (21)

Before training, the FIRLayer ’s weights are initialized such that
𝜙0 = 1 and 𝜙𝑖 = 0 for 𝑖 > 0, then we apply a small random
Gaussian noise perturbation. This initialization in essence resembles an
identity FIR filter which only minimally distorts the input waveform.
The reasons why we consider this particular initialization rule are (i)
to preserve the shape and content of input waveforms in the first few
training epochs; and (ii) avoid vanishing gradients with constant weight
initialization. This way FIRNet updates weights iteratively without
irremediably distorting input waveforms while still enabling training
of weights. Indeed, inappropriate weight initialization might result in
extremely high distortions that can prevent the decodability of the
transmitted waveforms. Similarly, if the Gaussian perturbation is too
small, it might slow down considerably the training phase. In our
experiments, we used a zero-mean Gaussian distribution with variance
equal to 0.001. However, it is worth noticing that other applications
might require a different initialization parameter setup.

6.1. FIRNet training process

We first provide a brief background on traditional adversarial net-
works, and then we formalize the FIRNet training.

Generative adversarial networks (GANs) are composed by a gener-
ator 𝐺 and a discriminator 𝐷. Both 𝐺 and 𝐷 are trained to respectively
learn (i) the data distribution and (ii) to distinguish samples that come
from the training data rather than 𝐺. To this end, the generator builds a
mapping function parametrized with 𝜃𝑔 from a prior noise distribution
𝑝𝑧 as 𝐺(𝑧; 𝜃𝑔), while the discriminator 𝐷(𝑥; 𝜃𝑑 ), parametrized with 𝜃𝑑
parameters, outputs a single scalar representing the probability that 𝑥
came from the training data distribution 𝑝𝑥 rather than the generator 𝐺.
Therefore, 𝐺 and 𝐷 are both trained simultaneously in a minmax prob-
lem, where the target is to find the 𝐺 that minimizes log 1 −𝐷(𝐺(𝑧))
and the 𝐷 that minimizes log𝐷(𝐱):

min
𝑮

max
𝑫

E𝐱∼𝑝𝑥 log(𝐷(𝐱)) + E𝐳∼𝑝𝑧 log(1 −𝐷(𝐺(𝐳))) (22)

Although FIRNet is at its core an adversarial network, there are a
number of key aspects that set FIRNet apart from existing GANs. First,
in our scenario 𝐷 has already been trained and thus is not subject to
any modification during the 𝐺 training process. Second, GANs assume
that 𝐷 is a binary discriminator (i.e., ‘‘fake’’ vs ‘‘authentic’’ response).
This is not the case in our problem, since 𝐷 has a softmax output (i.e.,
multiclass). Third, GANs take as input a noise vector, whereas here
we need to take baseband I/Q samples as inputs. Fourth, as shown
in Eq. (23), the minmax problem solved by GANs is unconstrained,
while the GWAP problem in Section 5 is instead constrained. Fifth,
GANs assume stationarity, which is not entirely the case in the wireless
domain. Finally, to really implement a ‘‘blackbox’’ attack, we cannot
assume that the waveform produced by FIRNet will be used by the
target network without further processing (e.g., demodulation), which
is instead assumed in traditional GANs.

For the above reasons, we devise a brand-new training strategy
shown in Fig. 5. In a nutshell, we aim to train a generator function
𝐺 able to imitate any device the target network 𝐷 has been trained
to discriminate and with any baseband waveform of interest. As in
previous work [4], to limit the FIR action to a given scope we model
the constraint (C1) in Problem (AWJ-U) as a box constraint where
each I/Q component of the FIR is constrained within [−𝜖, 𝜖]2, for any
small 𝜖 > 0. The advantages of this approach are twofold: (i) it
operates as a kernel regularizer that bounds the weights of FIRNet, thus
reducing the amount of distortion FIR filters can cause to transmitted
waveforms; and (ii) it makes it possible to keep the BER below a
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Fig. 5. The FIRNet Training Loop.

desired threshold. Indeed, FIR filtering impacts the SNR of received
waveforms, and thus affects the BER. For example, the BER of a QPSK

signal 𝐱 in the AWGN regime can be written as 1∕2erfc(
√

𝐸𝑠
2𝑁0

), where

𝐸𝑠 =
∑+∞

𝑛=−∞ |𝑥[𝑛]|2 is the energy of the received signal and 𝑁0 is
the noise spectral density. By filtering the signal 𝐱 with a 𝑀-tap
FIR filter 𝝓, we also impact the energy of received signals, as 𝐸𝑠 =
∑+∞

𝑛=−∞ |

∑𝑀−1
𝑖=0 (𝜙𝑅

𝑖 + 𝑗𝜙𝐼
𝑖 )(𝑥

𝑅[𝑛 − 𝑖] + 𝑗𝑥𝐼 [𝑛 − 𝑖])|
2
. As a consequence, by

introducing the box constraint we also ensure that the energy of the
manipulated signal does not fall below a desired threshold.

As shown in Fig. 5, first the adversary generates a waveform training
batch 𝐵 (step 1), where waveforms are generated according to the wire-
less protocol being used. For example, if WiFi is the wireless protocol
of choice, each waveform could be the baseband I/Q samples of a WiFi
packet that the adversary wants to transmit. To each waveform 𝑧 in
the batch, the adversary assigns an embedded label 𝑦, which is selected
randomly among the set of devices that the adversary wants to imitate.
Notice that the adversary does not need to know the exact number of
devices in the network. This set is then fed to FIRNet which generates a
training output 𝐺(𝑧, 𝑦, 𝜖) (step 2), where 𝜖 is the constraint of the weight
of the FIRLayers as explained earlier.

The waveform produced by FIRNet is then transmitted over the air
and then received as a waveform 𝐻(𝐺(𝑧, 𝑦, 𝜖)) (step 3). It is realistic to
assume that the device could pre-process the waveform before feeding
it to the target network, e.g., to extract features in the frequency domain
[4,35]. Thus, the softmax output of the target network is modeled as
𝑂(𝑧, 𝑦) = 𝐷(𝑃 (𝐻(𝐺(𝑧, 𝑦, 𝜖)))). We assume that the adversary does not
have access in any way to 𝐷 and 𝑃 , but only to the softmax output.
The adversary can thus minimize the following loss:

𝐿(𝐵) = −
∑

(𝑧,𝑦)∈𝐵

𝑀
∑

𝑡=1
I{𝑡 = 𝑦} ⋅ log(𝑂𝑡(𝑧, 𝑦)) (23)

where 𝑀 is the number of devices, I{⋅} is a binary indicator function,
and 𝑂𝑡 is the softmax output for target class 𝑡. The adversary can then
minimize 𝐿(𝐵) using stochastic gradient descent (SGD) or similar algo-
rithms such as Adam. In case the softmax output is not available, the
adversary could use ACKs or REQs as 1-bit feedback [30]. Specifically,
the loss function 𝐿(𝐵) can be approximated for a given batch 𝐵 of
size 𝑀 by observing the number of ACKs or REQs received (𝐴) for the
current batch and then assign 𝐿(𝐵) = 𝑀−𝐴

𝑀 .
It is worth noticing that the proposed black-box attack does not

require perfect knowledge about the exact set of labels (or even their
number) of the TNN. As a matter of fact, the loss function in (23) can
also encapsulate the case of 1-bit feedback where the only information
available is whether the adversary succeeded or not.

7. Experimental results

We first describe the datasets and learning architectures in Sec-
tion 7.1, followed by the results for AWJ (Section 7.2), AWS (Sec-
tion 7.3) and FIRNet (Section 7.4).
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7.1. Datasets and learning architectures

Radio Fingerprinting. We consider (i) a dataset of 500 devices
emitting IEEE 802.11a/g (WiFi) transmissions; and (ii) a dataset of 500
airplanes emitting Automatic Dependent Surveillance-Broadcast (ADS-
B) beacons.1 ADS-B is a surveillance transmission where an aircraft
determines its position via satellite navigation. For the WiFi dataset, we
demodulated the transmissions and trained our models on the derived
I/Q samples. To demonstrate the generality of our AML algorithms, the
ADS-B model was instead trained on the unprocessed I/Q samples. We
use the CNN architecture in [36], where the input is an I/Q sequence of
length 288, followed by two convolutional layers (with ReLu and 2 × 2
MaxPool) and two dense layers of size 256 and 80. We refer to the
above CNN models as RF-W (WiFi) and RF-A (ADS-B) TNN.

Modulation Classification (MC). We use the RadioML 2018.01A
dataset, publicly available for download at http://deepsig.io/datase
ts. The dataset is to the best of our knowledge the largest modulation
dataset available, and includes 24 different analog and digital modu-
lations generated with different levels of signal-to-noise ratio (SNR).
Details can be found in [6]. For the sake of consistency, we also con-
sider the neural network introduced in Table III of [6], which presents
7 convolutional layers each followed by a MaxPool-2 layer, finally
followed by 2 dense layers and 1 softmax layer. The dataset contains
2M examples, each 1024 I/Q samples long. In the following, this model
will be referred to as the MC TNN architecture. We considered the
same classes shown in Fig. 13 of [6]. Confusing classes in Fig. 7 (𝜖 =
0.2) of our paper and Figure [6] in are the same (i.e., mostly M-QAM
modulations). Notice that 𝜖 = 0 corresponds to zero transmission power
(i.e., no attack).

In all cases, the input of the TNNs being trained consists of IQ
samples, but the output classes differ in that each class in the RF
fingerprinting case refers to the identity of the emitter, while each class
in the MC task refers to the specific modulation being used.

7.1.1. Data and model setup
For each architecture and experiment, we have extracted two dis-

tinct datasets for testing and optimization purposes. The optimization
set is used to compute the attack strategies 𝝓 as shown in Sections 4
and 5. The computed 𝝓 are then applied to the testing set and then
fed to the TNN. To understand the impact of channel conditions, we
simulate a Rayleigh fading channel with AWGN noise 𝐡𝐴 that affects
all waveforms that node 𝐴 transmits to node 𝑅. We consider high and
low SNR scenarios with path loss equal to 0 dB and 20 dB, respectively.
Moreover, we also consider a baseline case with no fading.

7.1.2. Model training
To train our neural networks, we use an 𝓁2 regularization parameter

𝜆 = 0.0001. We also use an Adam optimizer with a learning rate
of 𝑙 = 10−4 and categorical cross-entropy as a loss function. All
architectures are implemented in Keras. The source code used to train
the models is free and available to the community for download
at https://github.com/neu-spiral/RFMLS-NEU. Training times vary
for each attack strategy and go from 6 h of training time of FIRNet on
a GPU-enabled computer (results reported in Section 7.4), to approx-
imately 26 h to optimize the white-box attack strategies presented in
Sections 7.2 and 7.3.

7.2. AML Waveform Jamming (AWJ) results

In AWJ, the adversary aims at disrupting the accuracy of the TNN
by transmitting waveforms of length 𝑁𝐽 and of maximum amplitude
𝜖 > 0, to satisfy Constraint (C2) and keep the energy of the waveform
limited.

1 Due to stringent contract obligations, we cannot release these datasets to
the community. We hope this will change in the future.
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Fig. 6. Accuracy of (a) MC TNN (originally 60%) and (b) RF-W TNN (originally 40%)
under the AWJ-U attack for different jamming lengths and 𝜖 values.

Fig. 7. Confusion matrix of MC TNN under the AWJ-U attack in low SNR regime for
different 𝜖 values. Classes represent modulation schemes.

Fig. 8. Accuracy of MC TNN in Fig. 7 (originally 60%).

7.2.1. Untargeted AWJ (U-AWJ)
Fig. 6(a) shows the accuracy of the MC TNN (original accuracy of

60%) under the AWJ-U attack, for different channel conditions 𝐡𝐴,
jamming waveform length 𝑁𝐽 and 𝜖 values. Fig. 6 shows that the
adversary always reduces the accuracy of the TNN even when 𝑁𝐽
and 𝜖 are small. We notice that high SNR fading conditions allow the
adversary to halve the accuracy of the TNN, while the best performance
is achieved in no-fading conditions where the attacker can reduce the
accuracy of the TNN by a 3x factor.

Figs. 7 and 8 show the confusion matrices and the corresponding
accuracy levels of the AWJ-U attack to the MC TNN model in the low
SNR regime. Here, increasing 𝜖 also increases the effectiveness of the
attack, demonstrated by the presence of high values outside the main
diagonal of the confusion matrix.

Fig. 6(b) shows the accuracy of the RF-W TNN for different attack
strategies, constraints and fading conditions. To better understand the
impact of AWJ-U, we have extracted the 10 least (i.e., Bottom 10) and
most (i.e., Top 10) classified devices out of the 500 devices included in
the WiFi dataset. Interestingly, AWJ-U attacks are extremely effective
when targeting the top devices. In some cases, the attacker can drop
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Fig. 9. (top) Fooling matrix of MC TNN under AWJ-T for 𝑁𝐽 and 𝜖 values. Classes
represent modulation schemes; (bottom) Fooling matrix of RF-W TNN under AWJ-T for
different 𝜖 values and no fading. Classes represent emitters identity.

the accuracy of these devices from 70% to a mere 20% in the high
SNR regime. Since the bottom 10 devices are classified with a low
accuracy already, it takes minimal effort to alter legitimate waveforms
and activate other classes.

7.2.2. Targeted AWJ (AWJ-T)
Compared to untargeted jamming, AWJ-T requires smarter attack

strategies as the adversary needs to (i) jam an already transmitted
waveform, (ii) hide the underlying features of the jammed waveform
and (iii) mimic those of another class. The top portion of Fig. 9 show
the fooling matrices of AWJ-T attacks against MC TNN. Notice that the
higher the fooling rate, the more successful the attack is. We notice
that the adversary is able to effectively target a large set of modulations
from 1 to 17 and 24 (i.e., OOK, M-QAM, M-PSK, ASK). However classes
from 18–23 (i.e., AM, FM and GMSK) are hard to be targeted and
show low fooling rate values. The bottom of Fig. 9 shows the results
concerning the AWJ-T attack against RF-W TNN. In this case, the
adversary achieves higher fooling rates with higher energy. Intuitively,
high energy attacks, i.e., those with higher values of 𝜖, are the ones that
maximize the effectiveness of the jamming attack. However, these are
also well-known to be easily detectable by legitimate nodes via either
energy-detectors [31] or by monitoring the BER of the system. Indeed,
large values of 𝜖 refer to the case where Constraint (C1) is relaxed and
the attacker does not consider disclosing its position a problem.

7.3. AML Waveform Synthesis (AWS) results

Let us now evaluate the performance of AWS attacks in the case of
rogue nodes. In this case, the attacker strategy 𝝓 consists of 𝑀 complex-
valued FIR taps (Section 4.2) that are convoluted with a baseband
waveform 𝐱𝐵𝐵 . To simulate a rogue device, we extract 𝐱𝐵𝐵 from the
optimization set of the rogue class. This way we can effectively emulate
a rogue class that needs to hide its own features and imitate those of
the target classes.

Fig. 10 shows the fooling matrix of AWS attacks against the MC TNN
for different channel conditions and values of 𝑀 when 𝜖 = 0.2. First,
note that the main diagonal shows close-to-zero accuracy, meaning that
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Fig. 10. Fooling matrix of MC TNN under AWS with different 𝑀 (𝑀 = 4: top; 𝑀 = 8:
bottom). Classes represent modulation schemes.

Fig. 11. Fooling matrix of RF-W TNN under AWS for different values of 𝑀 (𝑀 = 4:
top; 𝑀 = 8: bottom). Classes represent emitters identity.

the attacker can successfully hide its own features. Second, in the no-
fading regime, rogue classes can effectively imitate a large set of target
classes. Fig. 11 depicts the fooling matrices of AWS attacks against
the RF-W TNN. We notice that (i) increasing the number of FIR taps
increases the fooling rate; and (ii) the bottom classes (1–10) are the
ones that the attacker is not able to imitate. However, the same does
not hold for the top 10 classes (11 to 20), which can be imitated with
high probability (i.e., 28%, 35%, 62% for classes 11,15,20, respectively).
Fig. 11 gives us an interesting insight on AWS attacks as it shows that
the attacker is unlikely to attack those classes that are misclassified by
the TNN.

The same behavior is also exhibited by the RF-A TNN. Fig. 12 shows
the fooling matrix when 𝜖 = 0.5 and 𝑀 = 4. Our results clearly show
that the attacker is not able to properly imitate classes 1–10 (i.e., the
bottom classes). Classes 11–20 (i.e., the top classes) can instead be
imitated to some extent, because it is unlikely that a unique setup
of 𝜖 and 𝑀 will work for all classes (both rogue and target).

To further demonstrate this critical point, Fig. 13 shows how rogue
classes can actually imitate other classes by utilizing different values of
𝑀 and 𝜖. We define two cases: Case A, where A = 11 and T = 14, and
Case B, where A = 15 and T = 17. As shown in Fig. 12, Case A and B
both yield low fooling rate when 𝑀 = 4 and 𝜖 = 0.5. Fig. 13 shows two
ADS-B waveforms generated through AWS attacks in Case A and Case B,
where solid lines show the original waveform transmitted by the rogue
node without any modification in Case A and B. At first, the unmodified
blue waveforms are classified by the RF-A TNN as belonging to the
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Fig. 12. Fooling matrix of RF-A (original accuracy 60%) TNN under AWS with 𝑀 = 4
and 𝜖 = 0.5. Classes represent emitters identity.

Fig. 13. Waveforms from AWS attacks to RF-A TNN. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

rogue class (11 and 15, respectively) with probabilities 97% and 88%.
However, by applying AWS with different M and 𝜖 parameters than the
ones in Fig. 12, the adversary is successful in imitating the target class
in both Case A and B by increasing the activation probability to 20%
and 28%, which are considerably larger than the activation probability of all
other 500 classes in the dataset. Thus, M and 𝜖 are critical to the success
of the AWS.

Finally, the waveforms in Fig. 13 give precious insights on how
AWS actually operates. Interestingly, we notice that the phase of the
waveforms does not change significantly, conversely from the ampli-
tude. Since ADS-B uses an on–off keying (OOK) modulation, we verified
that – despite SNR was impacted by FIR filtering procedures – the
modifications made to the waveform did not increase the BER of those
transmissions. Moreover, Fig. 13 shows that AWS attempts to change
the path loss between A and R, as the amplitude respectively increases
and decreases in Case A and B.

7.4. FIRNet testbed results

We evaluated FIRNet on a software-defined radio (SDR) testbed
composed by 64 omni-directional antennas through 100 f t coaxial
cables. Antennas are hung off the ceiling of a 2240 f t2 office space and
operate in the 2.4–2.5 and 4.9–5.9 GHz frequency bands. We pledge
to share the collected waveform data and trained models with the
community upon paper acceptance.

To evaluate the performance of FIRNet in a challenging blackbox
scenario, we implemented the targeted external Adversarial Waveform
Synthesis (AWS) attack to a neural network used to fingerprint 5
10
Fig. 14. FIRNet fooling matrices with 1 FIRLayer and different number of taps and 𝜖
value. Classes represent emitters identity.

Fig. 15. I/Q displacement and average FIR taps.

nominally-identical USRP N210 radios transmitting an identical WiFi
baseband signal. This is the worst-case scenario for an adversary since
FIRNet has to learn the impairments to fool the neural network. The
receiver SDR samples the incoming signals at 20 MS/s and equalizes
it using WiFi pilots and training sequences. The resulting data is used
to train a TNN (see Fig. 7 of [4]) which takes as input 6 equalized
OFDM symbols, thus 48*6 = 288 I/Q samples. It is composed by two
1D Conv/ReLU with dropout rate of 0.5 and 50 filters of size 1 × 7
and 2 × 7, respectively. The output is then fed to two dense layers
of 256, and 80 neurons, respectively. We trained our network using
the procedure in Section 7.1.2. The resulting confusion matrix of the
classifier, which obtains 59% accuracy, is shown in Fig. 1(a).

We trained FIRNet using baseband WiFi I/Q samples, thus without
any impairment, with 1 FIRLayer and with a batch of 100 slices.
Fig. 14(a) shows that when 𝜖 has a low value of 0.1, FIRNet -generated
I/Q sequences always collapse onto a single class, therefore are not able
to hack the TNNs. However, Fig. 14(b) shows that when 𝜖 increases to
1 the fooling rate jumps to 79%, which further increases to 97% with
20 FIR taps and 𝜖 = 10, improving by over 60% with respect to the
replay attack that could achieve only 30% fooling rate (see Fig. 1(c)).

Finally, Fig. 15(a) and (b) show respectively the displacement
caused by FIRNet on an input slice with 𝜖 = 10 and the average values
of the 5 FIR taps obtained after training. We do not plot the remaining
15 taps since they are very close to zero. We notice that the distortion
imposed to the I/Q samples is kept to a minimum, confirmed by the
average FIR tap value which remains always below one.

8. Conclusions

In this paper, we have provided a comprehensive, general-purpose
modeling, analysis and experimental evaluation of wireless adversar-
ial deep learning. First, we have formulated a Generalized Wireless
Adversarial Machine Learning Problem (GWAP) to address AML in
the wireless domain. Then, we have proposed algorithms to solve the
GWAP in whitebox and blackbox settings. Finally, we have extensively
evaluated the performance of our algorithms on existing state-of-the-art
neural networks and datasets. Results demonstrate that our algorithms
are effective in confusing the classifiers to a significant extent.
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