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Abstract

The unprecedented requirements of IoT have 
made fine-grained optimization of spectrum 
resources an urgent necessity. Thus, design-
ing techniques able to extract knowledge from 
the spectrum in real time and select the opti-
mal spectrum access strategy accordingly has 
become more important than ever. Moreover, 
5G networks will require complex management 
schemes to deal with problems such as adaptive 
beam management and rate selection. Although 
deep learning (DL) has been successful in mod-
eling complex phenomena, commercially avail-
able wireless devices are still very far from actually 
adopting learning-based techniques to optimize 
their spectrum usage. In this article, we first dis-
cuss the need for real-time DL at the physical 
layer, and then summarize the current state of the 
art and existing limitations. We conclude the arti-
cle by discussing an agenda of research challeng-
es and how DL can be applied to address crucial 
problems in 5G and beyond networks.

Introduction
The wireless spectrum is undeniably one of 
nature’s most complex phenomena. This is espe-
cially true in the highly dynamic context of the 
Internet of Things (IoT), where the widespread 
presence of tiny embedded wireless devices 
seamlessly connected to people and objects will 
make spectrum-related quantities such as fading, 
noise, interference, and traffic patterns hardly pre-
dictable with traditional mathematical models. 
Techniques able to perform real-time fine-grained 
spectrum optimization will thus become funda-
mental to squeeze out any spectrum resource 
available to wireless devices.

There are a number of key issues — summa-
rized in Fig. 1 — that make existing wireless opti-
mization approaches not completely suitable 
to address the spectrum challenges mentioned 
above. On one hand, model-driven approach-
es aim to mathematically formalize the entirety 
of the network and optimize an objective func-
tion. Although yielding optimal solutions, these 
approaches are usually NP-hard, and thus unable 
to be run in real time. Moreover, they rely on a 
series of modeling assumptions (fading/noise dis-
tribution, traffic and mobility patterns, etc.) that 

may not always be valid. On the other hand, pro-
tocol-driven approaches consider a specific wire-
less technology (e.g., WiFi, Bluetooth, or Zigbee) 
and attempt to heuristically change parameters 
including modulation scheme, coding level, pack-
et size, and so on, based on metrics computed in 
real time from pilots and/or training symbols. Pro-
tocol-driven approaches, being heuristic in nature, 
necessarily yield sub-optimal performance.

To obtain the best of both worlds, a new 
approach called spectrum-driven is being 
explored. In short, by using real-time machine 
learning (ML) techniques implemented in the 
hardware portion of the wireless platform, we can 
design wireless systems that can learn by them-
selves the optimal spectrum actions to take given 
the current spectrum state. Concretely speaking, 
the big picture is to realize systems able to distin-
guish on their own different spectrum states (e.g., 
based on noise, interference, channel occupation, 
and similar), and change their hardware and soft-
ware fabric in real time to implement the opti-
mal spectrum action [1, 2]. However, despite the 
numerous recent advances, so far truly self-adap-
tive and self-resilient cognitive radios have been 
elusive. On the other hand, the success of deep 
learning at the physical layer (PHY-DL) in address-
ing problems such as modulation recognition 
[3], radio fingerprinting [4], and medium access 
control (MAC) [5] has taken us many steps in the 
right direction [6]. Thanks to its unique advan-
tages, deep learning (DL) can really be a game 
changer, especially when cast in the context of a 
real-time hardware-based implementation.

Existing work has mostly focused on gener-
ating spectrum data and training models in the 
cloud. However, a number of key system-level 
issues still remain substantially unexplored. To this 
end, we notice that the most relevant survey work 
[7, 8] introduces research challenges from a learn-
ing perspective only. Moreover, [9] and similar 
survey work focuses on the application of DL to 
upper layers of the network stack. Since DL was 
not conceived having the constraints and require-
ments of wireless communications in mind, it is 
still unclear what the fundamental limitations of 
PHY-DL are. Moreover, existing work has still not 
explored how PHY-DL can be used to address 
problems in the context of 5G and beyond (5GB) 
networks. For this reason, the first key contribu-
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tion of this article is to discuss the research chal-
lenges of real-time PHY-DL without considering 
any particular frequency band or radio technolo-
gy. The second key contribution is the introduc-
tion of a series of practical problems that may 
be addressed by using PHY-DL techniques in the 
context of 5GB. Notice that 5GB networks are 
expected to be heavily based on millimeter-wave 
(mmWave) and ultra-wideband communications, 
hence our focus on these issues. Since an exhaus-
tive compendium of the existing work in PHY-DL 
is outside the scope of this manuscript, we refer 
the reader to [9] for an excellent survey.

WhY deep leArnIng At the 
phYsIcAl lAYer?

DL is exceptionally suited to address problems 
where closed-form mathematical expressions are 
difficult to obtain [10]. For this reason, convolu-
tional neural networks (CNNs) are now being 
“borrowed” by wireless researchers to address 
handover and power management in cellular 
networks, dynamic spectrum access, resource 
allocation/slicing/caching, video streaming, and 
rate adaptation, just to name a few. Figure 2 sum-
marizes why traditional ML may not effectively 
address real-time physical-layer problems. Overall, 
DL relieves from the burden of finding the right 
“features” characterizing a given wireless phe-
nomenon. At the physical layer, this key advan-
tage becomes almost a necessity for at least three 
reasons, which are discussed below.

hIghlY dIMensIonAl feAture spAces

Classifying waveforms ultimately boils down 
to distinguishing small-scale patterns in the 
in-phase-quadrature (I/Q) plane, which may not 
be clearly separable in a low-dimensional fea-
ture space. For example, in radio fingerprinting 
we want to distinguish among hundreds (poten-
tially thousands) of devices based on the unique 
imperfections imposed by the hardware circuitry. 
While legacy low-dimensional techniques can cor-
rectly distinguish up to a few dozen devices [11], 
DL-based classifi ers can scale up to hundreds of 
devices by learning extremely complex features in 
the I/Q space [4]. Similarly, O’Shea et al. [3] have 
demonstrated that on the 24-modulation dataset 
considered, DL models achieve on the average 
about 20 percent higher classification accuracy 
than legacy learning models under noisy channel 
conditions.

All-In-one ApproAch

The second key advantage of DL is that automat-
ic feature extraction allows the system designer 
to reuse the same DL architecture — and thus, 
the same hardware circuit — to address diff erent 
learning problems. This is because, as we explain 
below, CNNs learn I/Q patterns in the I/Q plane, 
making them amenable to address diff erent clas-
sification problems. Existing work, indeed, has 
demonstrated that CNNs can be used for very 
diff erent problems, ranging from modulation rec-
ognition [3] to radio fi ngerprinting [4]. CNNs also 
keep latency and energy consumption constant, 
as explained above. Figure 2 shows an example 
where a learning system is trained to classify mod-
ulation, number of carriers, and fingerprinting. 

While DL can concurrently recognize the three 
parameters, traditional learning requires diff erent 
feature extraction processes for each of the classi-
fi cation outputs. This, in turn, increases hardware 
consumption and hinders fi ne-tuning of the learn-
ing model.

reAl-tIMe fIne tunIng

Model-driven optimization off ers predictable per-
formance only when the model actually match-
es the reality of the underlying phenomenon 
being captured. This implies that model-driven 
systems can yield sub-optimal performance when 
the model assumptions are different from what 
the network is actually experiencing. For exam-
ple, a model assuming a Rayleigh fading chan-
nel can yield incorrect solutions when placed in 
a Rician fading environment. By using a data-driv-
en approach, PHY-DL may easily be fine-tuned 
through the usage of fresh spectrum data, which 
can be used to find in real time a better set of 
parameters through gradient descent. Hand-tai-
lored model-driven systems may result in being 
hard to fi ne-tune, as they might depend on a set 
of parameters that are not easily adaptable in 
real time (e.g., channel model). While DL “easi-
ly” accomplishes this goal by performing batch 
gradient descent on fresh input data, the same is 
not true for traditional ML, where tuning can be 
extremely challenging since it would require com-
pletely changing the circuit itself.

deep leArnIng At the phYsIcAl lAYer: 
sYsteM reQuIreMents And chAllenges

The target of this section is to discuss existing 
system-level challenges in PHY-DL, as well as the 
state of the art in addressing these issues. For a 
more detailed compendium of the state of the 
art, the interested reader can take a look at the 
following comprehensive surveys [6–9]. 

To ease the reader into the topic, we summa-
rize at a very high level the main components and 
operations of a learning-based wireless device in 
Fig. 3. The core feature that distinguishes learn-
ing-based devices is that digital signal process-
ing (DSP) decisions are driven by deep neural 
networks (DNNs). In particular, in the receiver 
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Figure 1. Key issues in today’s wireless optimization 
approaches.
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(RX) DSP chain, the incoming waveform is first 
received and placed in an I/Q buffer (step 1). 
Then a portion of the I/Q samples are forwarded 
to the RX DNN (step 2), which produces an infer-
ence that is used to reconfi gure the RX DSP logic 
(step 3). For example, if a quadrature phase shift 
keying (QPSK) modulation is detected instead of 
binary PSK (BPSK), the RX demodulation strategy 
is reconfi gured accordingly. Finally, the incoming 
waveform is released from the I/Q buff er and sent 
for demodulation (step 4). At the transmitter’s 
side, the I/Q samples are sent to the RX DNN 
and to the transmitter (TX) DNN to infer the cur-
rent spectrum state (e.g., spectrum-wide noise/
interference levels). As soon as the inference is 
produced and the TX DSP logic is changed (step 
6), the TX’s buff ered data is released (step 7), pro-
cessed by the TX DSP logic, and sent to the wire-
less interface (step 8).

We identify three core challenges in PHY-DL, 
which are discussed below.

AddressIng lAtencY And spAce constrAInts

Domains such as computer vision usually do not 
have extreme requirements in terms of maximum 
latency or number of weights of a DL model. This 
is also true when ML is applied to higher layers 
of the protocol stack. For example, when we are 
uploading a picture on a social network, we do 
not expect a face recognition algorithm that auto-
matically “tags” us and our friends to run under 
a given number of milliseconds. The same hap-
pens when running a routing protocol, where a 
few microseconds do not necessarily impact the 
protocol’s performance. Very different, howev-

er, is the case of PHY-DL, where DSP constraints 
and hardware limitations have to be heeded — in 
some cases, down to the clock cycle level.

System Challenges: First, the DNN must run 
quickly enough to avoid overflowing the I/Q 
buffer and/or the data buffer (Fig. 3). For exam-
ple, an incoming waveform sampled at 40 MHz 
(e.g., a WiFi channel) will generate a data stream 
of 160 MB/s, provided that each I/Q sample is 
stored in a 4-byte word. With an I/Q buff er of 1 
kB, the DNN must run with a latency less than 
6.25 s to avoid buff er overfl ow.

Moreover, the DNN must be fast enough to 
be (much) less than the channel’s coherence 
time and the transmitter’s frequency in changing 
parameters. For example, if the channel coher-
ence time is 10 ms, the DNN should run with 
latency much less than 10 ms to make meaning-
ful inference. However, if the transmitter switch-
es modulation every 1 ms, the DNN has to run 
with latency less than 1 ms if it wants to detect 
modulation changes. The examples clearly show 
that lower DNN latency implies higher admissible 
sampling rate of the waveform, and thus, higher 
bandwidth of the incoming signal as well as high-
er capability of analyzing fast-varying channels.

Hardware resource utilization is a spiny issue. 
Nowadays, DL models usually have tens of mil-
lions of parameters; for example, AlexNet has 
some 60M weights and VGG-16 about 138M. 
Obviously, it is hardly feasible to entirely fi t these 
models into the hardware fabric of even the most 
powerful embedded devices currently available. 
Moreover, it is not feasible to run them from the 
cloud and transfer the result to the platform due 
to the additional delay involved. Therefore, PHY-
DL also has to be relatively small to be feasibly 
implemented on embedded devices. Resource 
utilization also directly impacts energy consump-
tion, which is a critical resource in embedded sys-
tems. Indeed, the more area (i.e., lookup tables, 
block RAMs, etc.) the model occupies in the 
hardware, the higher the energy consumption. 
However, it has been shown [2] that thanks to 
the lower latency, implementing the model in a 
field-programmable gate array (FPGA) can lead 
to substantial energy reduction (up to 15) with 
respect to an implementation in the central pro-
cessing unit (CPU).

Existing Work: In [2], the authors propose 
RFLearn, a hardware/software framework to inte-
grate a Python-level CNN into the DSP chain 
of a radio receiver. The framework is based 
on high-level synthesis (HLS) and translates the 
software-based CNN to an FPGA-ready circuit. 
Through HLS, the system constraints on accu-
racy, latency, and power consumption can be 
tuned based on the application. As a practical 
case study, the authors train several models to 
address the problem of modulation recognition, 
and show that latency and power consumption 
can be reduced by 17 and 15 with respect 
to a model running in the CPU. Moreover, it is 
shown that accuracy of over 90 percent can be 
achieved  with a model of only about 30,000 
parameters. Deep reinforcement learning (DRL) 
techniques are integrated at the transmitter’s side 
with DeepWiERL [1], a hybrid software/hardware 
DRL framework to support the training and real-
time execution of state-of-the-art DRL algorithms 

Figure 2. Feature-based approaches vs. convolutional neural networks.
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on top of embedded devices. Moreover, Deep-
WiERL includes a novel supervised DRL model 
selection and bootstrap technique that leverages 
HLS and transfer learning to orchestrate a DNN 
architecture that decreases convergence time and 
satisfi es application and hardware constraints.

desIgnIng feAtures And AddressIng stochAstIcItY

In computer vision, DNNs are trained to detect 
small-scale “edges” (i.e., contours of eyes, lips, 
etc.), which become more and more complex 
as the network gets deeper (i.e., mouth, eyes, 
hair type, etc.). This is precisely the property that 
makes these networks excellent at detecting, for 
example, an object or a face in an image, irrespec-
tive of where it occurs. In the wireless domain, 
CNNs do not operate on images but on I/Q sam-
ples; thus, input tensors must be constructed out 
of I/Q samples.

To make an example, the left side of Fig. 4 
shows the approach based on two-dimensional 
(2D) convolution proposed in [2]. Specifically, 
input tensors are constructed by “stacking up” 
H rows of W consecutive I/Q samples. Figure 4 
shows examples of transitions in the I/Q com-
plex plane corresponding to QPSK, BPSK, and 
8PSK. The transitions corresponding to points (1) 
to (3) are shown in the upper left side of Fig. 4. 
The figure clearly shows that different modula-
tion waveforms present different I/Q transition 
patterns. For example, the transitions between (1, 
0) and (–1, 0) peculiar to BPSK do not appear 
in QPSK, which presents a substantially diff erent 
constellation. This can constitute a unique “signa-
ture” of the signal that can eventually be learned 
by the CNN fi lters. The right side of Fig. 4 shows 
an example of a 2  3 filter in the first layer of 
a CNN trained for BPSK vs. QPSK modulation 
recognition. Specifically, the first row of the fil-
ter (i.e., A, B, C) detects I/Q patterns where the 
waveform transitions from the first to the third 
quadrant (which correspond to the symbol “1” to 
“2” transition in our example), while the second 
row (i.e., D, E, F) detects transitions from the third 
to the second quadrant (which correspond to the 
symbol “2” to “3” transition).

However, the above and similar CNN-based 
approaches [3] do not fully take into account 
that a PHY-DL system is inherently stochastic in 
nature. The first one is the unavoidable noise 
and fading that is inherent to any wireless trans-
mission. Although channel statistics could be 
stationary in some cases, these statistics cannot 
be valid in every possible network situation; a 
CNN cannot be trained on all possible chan-
nel distributions and related realizations; and a 
CNN is hardly re-trainable in real time due to its 
sheer size. Recent research [4] has shown that 
the wireless channel makes it highly unlikely to 
deploy DL algorithms that will function without 
periodic fine-tuning of the weights [12]. Figure 
5 summarizes the main sources of randomness 
in PHY-DL.

The second factor to consider is adversar-
ial action (i.e., jamming), which may change 
the received signal significantly and usually in a 
totally unpredictable way. The third factor is the 
unavoidable imperfections hidden inside the RF 
circuitry of off -the-shelf radios (i.e., I/Q imbalance, 
frequency/sampling off sets, etc.). This implies that 

signal features can (and probably will in most 
cases) change over time, in some cases in a very 
signifi cant way. 

Existing Work: The issue of PHY-DL stochas-
ticity has been mostly investigated in the con-
text of radio fi ngerprinting [13]. Specifi cally, the 
authors collected more than 7 TB of wireless 
data obtained from 20 bit-similar wireless devices 
over the course of 10 days in different environ-
ments. The authors show that the wireless chan-
nel decreases the accuracy from 85 percent to 
9 percent. However, another key insight is that 
waveform equalization can increase the accura-
cy by up to 23 percent. To address the issue of 
stochasticity, the DeepRadioID system [4] was 
recently proposed, where finite input response 
filters (FIRs) are computed at the receiver’s side 
to compensate for current channel conditions 
by being applied at the transmitter’s side. The 
authors formulated a Waveform Optimization 
Problem (WOP) to find the optimum FIR for a 
given CNN. Since the FIR is tailored to the specif-
ic device’s hardware, it is shown that an adversary 
is not able to use a stolen FIR to imitate a legiti-
mate device’s fingerprint. The DeepRadioID sys-
tem was evaluated with a testbed of 20 bit-similar 
software-defi ned radios (SDRs), as well as on two 
datasets containing transmissions from 500 ADS-B 
devices and by 500 WiFi devices. Experimental 
results show that DeepRadioID improves the fi n-
gerprinting accuracy by 27 percent with respect 
to the state of the art.

Figure 4. On the left, we show how to construct an input tensor of size (in 
this example, 10  10  2) from an I/Q waveform. In the center, we show 
various examples of how a waveform corresponds to transitions in the I/Q 
complex plane for QPSK, BPSK, and 8PSK modulations. On the right side, 
we show how a 2  3 fi lter of a CNN can distinguish the transition between 
the fi rst, second, and third symbol of a modulation.

Q

I

I

D

F

E

Q

A

B

C

Q

I

1

2

3

I

Q

I

Q

I

Q

1 2

2 3

Figure 5. Source of randomness in PHY-DL.

Wireless
Channel

Deep
Neural

Network

TXer RXer

Jammer
TXer

Imperfections

Network
RXer

Imperfections

RESTUCCIA_LAYOUT.indd   61RESTUCCIA_LAYOUT.indd   61 10/27/20   4:10 PM10/27/20   4:10 PMAuthorized licensed use limited to: Northeastern University. Downloaded on December 19,2022 at 00:46:52 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Communications Magazine • October 202062

deep leArnIng At the phYsIcAl lAYer:
the WAY AheAd

We now present an agenda of research opportu-
nities in PHY-DL. Figure 6 summarizes the chal-
lenges discussed below.

lArge-scAle eXperIMents And dAtA collectIon

So far, PHY-DL techniques have been validat-
ed in controlled, lab-scale environments and 
with a limited number of wireless technolo-
gies. Although large-scale datasets in the area 
of radio fingerprinting have been produced, 
other PHY-DL problems (e.g., modulation rec-
ognition) have been clearly left behind. For this 
reason, the research community desperately 
needs large-scale experimentation to really 
understand whether these techniques can be 
applied in realistic wireless ecosystems where 
hundreds of nodes, protocols, and channels 
will necessarily coexist. Moreover, due to the 
current lack of common datasets, today every 
article in the wireless ML domain can claim to 
be “better than the previous one” in terms of 
accuracy. For this reason, the creation of large-
scale datasets shared with the research com-
munity at large should also be considered as a 
priority.

To bring PHY-DL to the next level, we need 
“wireless data factories” able to generate I/Q 
data at an unseen scale. The newly developed 
Platforms for Advanced Wireless Research 
(PAWR) will be fundamental in addressing the 
above challenge (https://advancedwireless.org). 
The PAWR program will develop four platforms 
to be shared among the wireless research com-
munity. The platforms will enable sub-6 GHz, 
millimeter-wave, and drone experimentation 
capabilities in a multitude of real-world scenar-
ios. Alongside PAWR, the Colosseum network 
emulator (http://experiments.colosseum.net) 
will soon be open to the research community 
and provide us with unprecedented data col-
lection opportunities. Originally developed to 
support the Defense Advanced Research Proj-
ect Agency’s (DARPA’s) spectrum collaboration 
challenge in 2019, Colosseum can emulate up to 
256  256 4-tap wireless channels among 128 
software-defined radios. Users can create their 
own wireless scenarios and thus create “virtual 
worlds” where learning algorithms can be truly 
stressed to their full capacity.

AddressIng WIreless AdVersArIAl leArnIng

Up until now, researchers have focused on 
improving the accuracy of the PHY-DL model, 
without heeding security concerns. However, we 
know the accuracy of a DL model can be signifi -
cantly compromised by crafting adversarial inputs. 
The first kind of attack is called targeted, where 
given a valid input, a classifi er, and a target class, 
it is possible to find an input close to the valid 
one such that the classifier is “steered” toward 
the target class. More recently, researchers have 
demonstrated the existence of universal perturba-
tion vectors, such that when applied to the majori-
ty of inputs, the classifi er steers to a class diff erent 
than the original one. On the other hand, the 
time-varying nature of the channel could compro-
mise adversarial attempts. Moreover, the received 
waveforms still need to be decodable and thus 
cannot be extensively modifi ed. Therefore, addi-
tional research is needed to fi ll the gap between 
adversarial machine learning (AML) and the wire-
less domain, and demonstrate if, when, and how
AML is concretely possible in practical wireless 
scenarios.

ApplIcAtIons to 5g And beYond

Below, we discuss a series of applications of DL at 
the PHY layer to 5GB, and provide a roadmap of 
possible research avenues in the fi eld.

Analyzing Ultra-Wide Spectrum Bands: The 
millimeter-wave (mmWave) and Terahertz (THz) 
spectrum bands have become the de facto can-
didates for 5GB communications. To fully unleash 
the power of these bands, mmWave/THz systems 
will operate with ultra-wide spectrum bands — on 
the order of several, perhaps tens of gigahertz 
(GHz). Thus, pilot-based channel estimation could 
not wind up being the best strategy. Indeed, fre-
quently transmitting pilots for the whole band-
width can lead to severe loss of throughput. A 
neural network could be trained to infer the chan-
nel directly based on the I/Q samples, without 
requiring additional pilots. One possible strategy 
could be to leverage the packet headers or trail-
ers as source of reference I/Q date to train the 
learning model. 

Protocol Stack Identification: Next-genera-
tion networks will necessarily require fast and 
fi ne-grained optimization of parameters at all the 
layers of the protocol stack. Radios will thus need 
to be extremely spectrum-agile, meaning that 

Figure 6. Summary of the main research challenges in PHY-DL and applications to 5GB networks.
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wireless protocols should be used interchange-
ably and according to the current spectrum cir-
cumstances. To demodulate incoming waveforms 
transmitted with different strategies, it becomes 
necessary to infer the waveform type — and thus, 
the wireless protocol stack being used — before 
feeding it to the DSP logic. To the best of our 
knowledge, this problem remains open. Addition-
al research should shed light on whether PHY-lay-
er I/Q samples can be used to infer the whole 
stack of a wireless protocol. One possible avenue 
could be to extend the input size of the model 
and learn more complex features. However, this 
could increase latency to unacceptable levels. 
An alternative could be to utilize an ensemble 
model where smaller submodels are trained to 
analyze different portions of the waveform. This 
would ultimately help the model generalize while 
remaining under acceptable latency levels. 

Blockage Prediction and Beam Alignment: 
Another major challenge of mmWave and THz 
communications is the severe path and absorp-
tion loss (e.g., oxygen at 60 GHz). Moreover, 
mmWave and THz carriers cannot penetrate 
physical obstacles such as dust, rain, snow, and 
other opaque objects (people, building, transpor-
tation vehicles), making them highly susceptible 
to blockage. This key aspect will require high 
directionality of antenna radiations (i.e., beam-
forming), which will increase the transmission 
range but also introduce the compelling need for 
proactive beam steering and rate adaptation tech-
niques. Deep learning could be utilized to design 
prediction techniques that can infer, in real time, 
an incoming blockage in a beam direction and 
thus proactively “steer” the beam toward another 
direction. In this spirit, Alrabeiah and Alkhateeb 
[14] have recently proven that under some con-
ditions, we can leverage sub-6 GHz channels to 
predict the optimal mmWave beam and blockage 
status. Then the authors developed a DL model 
and tested it using a publicly available data-
set called DeepMIMO. However, DeepMIMO 
is obtained through simulations based on a ray 
tracer, and sub-6 GHz channels may not always 
be available. Therefore, further research is need-
ed to validate whether these approaches can be 
generalized to different channel conditions and 
obstacles.

Regardless of obstacles, transmitter (TX) and 
receiver (RX) beams have to be perfectly aligned 
to maximize the signal-to-noise ratio (SNR) during 
the transmission. Usually, through pilot sequenc-
es, the RX is then able to compute the SNR for 
each of the possible TX-RX beam combinations. 
The complexity of these beam alignment tech-
niques is thus quadratic in the number of beams. 
A possible approach we are currently exploring 
is PHY-DL of ongoing transmissions between the 
TX and other receivers to infer the current TX’s 
beam and thus align the RX’s beam with the TX’s 
to avoid explicit beam scanning. We obtained 
some preliminary results through our mmWave 
testbed, where we train a CNN to identify the 
TX’s beam. We experimented with two 24-ele-
ment phased array antennas, and with 12-beam 
and 24-beam codebooks. The results indicate that 
we are able to achieve accuracy close to 90 per-
cent in both cases, with a CNN constituted by 7 
convolutional layers (each with 64 kernels of size 

1  7) and 2 dense layers of 128 neurons, with a 
total of 848,472 parameters.

PHY Virtualization and Optimization: To deliv-
er the required services, 5GB will strongly depend 
on virtualization techniques, where PHY resources 
such as spectrum, transmission time, base stations, 
and so on will become shared among different 
virtual network operators (VNOs). This will allow 
seamless delivery of stringent quality of experi-
ence (QoE) requirements, such as real-time sur-
veillance, web browsing, and high-quality video 
content delivery, among others. However, as the 
network size increases, the relationship between 
computing, storage and radio resources will be 
hard to model in explicit mathematical terms. To 
establish the resources, DRL could be utilized to 
learn representations of the current state of the 
system and tie them to optimal actions. Recently, 
the research community has started to move in 
this direction. Ayala-Romero et al. [15] presented 
a system where an autoencoder is used to project 
high-dimensional context data (e.g., traffic and 
signal quality patterns) into a lower-dimensional 
representation. Then an actor-critic neural net-
work structure is used to map (encoded) contexts 
into resource control decisions. However, the pro-
posed system is single-agent only, and the only 
PHY layer decision is related to the modulation 
and coding scheme used. It is unclear yet whether 
DRL can be extended to more complex problems 
and to multi-agents in realistic scenarios.

Conclusions
The unprecedented scale and complexity of 
today’s wireless systems will necessarily require 
protocols and architectures to rely on data-driv-
en techniques. In this article, we have provided 
an overview of PHY-DL and the state of the art 
on this topic. We have also introduced a road-
map of exciting research opportunities, which 
are definitely not easy to tackle but, if addressed, 
will take PHY-DL to the next level. We hope that 
this article will inspire and spur significant wireless 
research efforts in this exciting field in the years 
to come.
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