
DeepRadioID: Real-Time Channel-Resilient Optimization of
Deep Learning-based Radio Fingerprinting Algorithms
Francesco Restuccia
Northeastern University

Boston, MA, USA
frestuc@northeastern.edu

Salvatore D’Oro
Northeastern University

Boston, MA, USA
s.doro@northeastern.edu

Amani Al-Shawabka
Northeastern University

Boston, MA, USA
amani@northeastern.edu

Mauro Belgiovine
Northeastern University

Boston, MA, USA
belgiovine@northeastern.edu

Luca Angioloni
Northeastern University

Boston, MA, USA
angioloni@northeastern.edu

Stratis Ioannidis
Northeastern University

Boston, MA, USA
ioannidis@northeastern.edu

Kaushik Chowdhury
Northeastern University

Boston, MA, USA
krc@northeastern.edu

Tommaso Melodia
Northeastern University

Boston, MA, USA
melodia@northeastern.edu

ABSTRACT
Radio fingerprinting provides a reliable and energy-efficient IoT
authentication strategy by leveraging the unique hardware-level
imperfections imposed on the received wireless signal by the trans-
mitter’s radio circuitry. Most of existing approaches utilize hand-
tailored protocol-specific feature extraction techniques, which can
identify devices operating under a pre-defined wireless protocol
only. Conversely, by mapping inputs onto a very large feature space,
deep learning algorithms can be trained to fingerprint large popu-
lations of devices operating under any wireless standard.

One of the most crucial challenges in radio fingerprinting is
to counteract the action of the wireless channel, which decreases
fingerprinting accuracy significantly by disrupting hardware im-
pairments. On the other hand, due to their sheer size, deep learning
algorithms are hardly re-trainable in real-time. Another aspect that
is yet to be investigated is whether an adversary can successfully
impersonate another device’s fingerprint. To address these key is-
sues, this paper proposes DeepRadioID, a system to optimize the
accuracy of deep-learning-based radio fingerprinting algorithms
without retraining the underlying deep learning model. The key intu-
ition is that through the application of a carefully-optimized digital
finite input response filter (FIR) at the transmitter’s side, we can ap-
ply tiny modifications to the waveform to strengthen its fingerprint
according to the current channel conditions. We mathematically
formulate the Waveform Optimization Problem (WOP) as the prob-
lem of finding, for a given trained neural network, the optimum FIR
to be used by the transmitter to improve its fingerprinting accuracy.
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We extensively evaluate DeepRadioID on a experimental testbed
of 20 nominally-identical software-defined radios, as well as on two
datasets made up by 500 ADS-B devices and by 500 WiFi devices
provided by the DARPA RFMLS program. Experimental results
show that DeepRadioID (i) increases fingerprinting accuracy by
about 35%, 50% and 58% on the three scenarios considered; (ii)
decreases an adversary’s accuracy by about 54% when trying to
imitate other device’s fingerprints by using their filters; (iii) achieves
27% improvement over the state of the art on a 100-device dataset.
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physical systems; • Security and privacy→Mobile and wire-
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1 INTRODUCTION
Thanks to its unprecedented pervasiveness, one the most crucial
issues in the Internet of Things (IoT) is designing scalable, reliable
and energy-efficient authentication mechanisms [13, 22]. However,
most of the existing authentication mechanisms are not well-suited
to the IoT since they are heavily based on cryptography-based algo-
rithms and protocols, which are often too computational expensive
to be run on tiny, energy-constrained IoT devices [16].

To address this key issue, a number of techniques based on
radio fingerprinting have been proposed over the last few years
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[1, 11, 12, 18–20]. The core intuition behind radio fingerprinting is
that wireless devices usually suffer from small-scale hardware-level
imperfections typically found in off-the-shelf RF circuitry, such
as phase noise, I/Q imbalance, frequency and sampling offset, and
harmonic distortions [9]. We can thus obtain a “fingerprint” of a
wireless device by estimating the RF impairments on the received
waveform and associating them to a given device [21].

Traditional techniques for radio fingerprinting (which are dis-
cussed in details in Section 2) rely on complex feature-extraction
techniques that leverage protocol-specific characteristics (such as
WiFi pilots/training symbols [1, 18] or ZigBee O-QPSK modula-
tion [12]) to extract hardware impairments. Therefore, they are
not general-purpose in nature and are hardly applicable to the IoT,
where a plethora of different wireless protocols are used [23]. To
overcome this limitation, in this paper we use techniques based on
deep learning [8] to design general-purpose, high-performance, and
optimizable radio fingerprinting algorithms. Thanks to the very
large number of parameters (i.e., in the order of 106 or more), deep
neural networks can analyze unprocessed I/Q samples without the
need of application-specific and computational-expensive feature
extraction and selection algorithms [14].

Challenges. There are a number of critical issues in applying
deep learning techniques to RF fingerprinting. First, deep learning
models usually require a significant time to be re-trained, even with
modern GPUs [2]. Therefore, we cannot assume that the underlying
deep learning model can be retrained in real time. Second, a finger-
printing system must evaluate the impact of adversarial actions.
Specifically, to the best of our knowledge, existing work has not yet
evaluated if and when an adversary can imitate a legitimate device’s
fingerprint. Last, but not least, we need to address the (potentially
disruptive) action of the wireless channel on the system’s fingerprin-
ting accuracy. This is because, due to channel action, two identical
waveforms transmitted by the same RF interface at two different
moments in time are usually different from each other. This implies
that the models will operate on non-stationary input data [6], which
significantly decreases the model’s fingerprinting accuracy when
the classifier is used on data collected with a wireless channel that
is significantly different from the one used to train it.

To illustrate this crucial point, Figure 1 shows the confusion
matrices of a deep learning model trained to fingerprint 5 devices
through the experimental testbed that will be presented in Section
6. The confusion matrix (a) was computed on data collected ap-
proximately 5 minutes after the training data was collected, while
Figure 1(b) was obtained by testing the model on completely new
data collected 7 days after the model was trained. Figure 1 remarks
that the fingerprinting accuracy decreases significantly when data
collected under completely different channel conditions is fed to
the model, demonstrating that the channel’s action must indeed be
addressed through real-time optimization.

Novel Contributions. This paper addresses the above chal-
lenges by making the following novel contributions:
�We propose DeepRadioID, a system for real-time channel- and

adversary-resilient optimization of deep-learning-based radio fin-
gerprinting algorithms. The key innovation behind DeepRadioID
is to leverage a carefully-optimized digital finite input response
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Figure 1: Confusion matrices of 5-device bit-similar model
with (a) original dataset; (b) live-collected data. The figure
highlights that different wireless channel conditions imply
a loss in fingerprinting accuracy.

filter (FIR) at the transmitter’s side, which slightly modifies its base-
band signal to compensate for current channel conditions. The
optimal FIR is computed by the receiver and sent back as feedback
to the transmitter. We postulate theWaveform Optimization Prob-
lem (WOP) to find the optimal FIR, and derive a novel algorithm
based on the Nonlinear Conjugate Gradient (NCG) method to effi-
ciently solve it. We show in Section 5 that the FIR’s action can be
effectively compensated at the receiver’s side through the discrete
Fourier transform (DFT) of the received signal, thus causing a neg-
ligible throughput decrease (i.e., less than 0.2% in our experiments).
�We extensively evaluate the performance of DeepRadioID on an

experimental testbed made up of 20 bit-similar devices (i.e., trans-
mitting the same baseband signal through nominally-identical RF
interfaces and antennas). To evaluate the scalability of DeepRadioID
and to experiment with different wireless technologies and deeper
learning models, we also leverage two datasets of IEEE 802.11a/g
(WiFi) and Automatic Dependent Surveillance – Broadcast (ADS-B)
transmissions, each containing 500 devices. These transmissions
were collected “in the wild” by DARPA for the RFMLS program.
To the best of our knowledge, we are the first ever to evaluate
radio fingerprinting algorithms on datasets of such dimension. Ex-
perimental results indicate that (i) an adversary trying to imitate
a legitimate device’s fingerprint by using the same FIR filter de-
creases its fingerprinting accuracy by about 54% on the average; (ii)
DeepRadioID increases the fingerprinting accuracy by (a) 35% on
our bit-similar experimental testbed, and (b) by 50% and by 58%
on the 500-device ADS-B and WiFi datasets, respectively; (iii) by
comparing with the state of the art [18], DeepRadioID improves the
accuracy by about 27% on a reduced dataset of 100 WiFi devices.

2 RELATEDWORK
Radio fingerprinting has received significant attention over the last
few years – for an excellent survey paper on the topic, the reader
may refer to [21].

The vast majority of existing work has applied carefully-tailored
feature extraction techniques at the physical layer to fingerprint
wireless devices [1, 11, 12, 18–20]. Nguyen et al. [11] use device-
dependent channel-invariant radio-metrics and propose a non-
parametric Bayesian method to detect the number of devices. How-
ever, the effectiveness of the features is proven with a testbed made
up of only four ZigBee transmitters. Brik et al. [1] considered a
combination of frequency offset, transients, and constellation errors
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to �ngerprint 130 IEEE 802.11b cards with an accuracy of 99%. How-
ever, conversely from ours, the experiments in [1] were performed
in an RF-insulated environment (i.e., without any channel e�ect),
thus the algorithms' e�ectiveness in real-world environments has
yet to be established. More recently, Voet al.[18] proposed a series
of algorithms with features based on frequency o�sets, transients
and the WiFi scrambling seed, and validated them with o�-the-shelf
WiFi cards in a non-controlled RF environment, achieving accuracy
between 44 and 50% on 93 devices. In Section 6.4, we show that
DeepRadioIDimproves the acccuracy of 27% on a 100-device WiFi
testbed. Recently, Penget al. [12] proposed �ngerprinting algo-
rithms for ZigBee devices based on modulation-speci�c features
such as di�erential constellation trace �gure (DCTF), showing that
their features achieve almost 95% accuracy on a 54-radio testbed.

The key drawback of existing feature-based �ngerprinting tech-
niques is that they are inherently tailored for a speci�c wireless
technology (e.g., WiFi or ZigBee), which ultimately limits their ap-
plicability to IoT scenarios where devices operate under di�erent
standards [23]. Moreover, existing work on feature-based �ngerprin-
ting has not considered the problem of optimizing the algorithm's
accuracy in real-time. Thus, we considerdeep learningto design a
general-purpose and scalable �ngerprinting system. Although wa-
termarking has been proposed to identify devices in the IoT [5], it
requires the insertion of additional information, whichDeepRadioID
avoids.

The closest work to ours is [15], where the authors proposed the
usage of convolutional neural networks to �ngerprint nominally-
identical USRP X310 devices. They also show that by using ar-
ti�cially introduced hardware impairments at the transmitter's
side, the accuracy can be improved to 99%. However, [15] su�ers
from the following key limitations: (i) the arti�cial impairments
cannot be accurately compensated at the receiver's side; (ii) the
relationship between hardware impairment and accuracy is not
fully characterized; and (iii) adversarial action is not considered.
DeepRadioIDovercomes the above limitations by proposing a sys-
tem where we increase in real-time the �ngerprinting accuracy
through the application of a FIR �lter that (a) is obtained through
rigorous optimization (Section 4.3); (b) can be compensated at the
receiver's side (Section 5); (c) cannot be used by an adversary to
impersonate another device (Section 6).

3 DeepRadioID: AN OVERVIEW
We �rst discuss some key observations and motivations to motivate
our design choices in Section 3.1. We then provide an in-depth
description and a walk-through of the main steps involved in the
�ngerprinting process in Section 3.2.

3.1 DeepRadioID: Key Intuitions
The need to optimize the accuracy of �ngerprinting systems arises
from the fact that the wireless channel is dynamic and almost un-
predictable in nature. Thus, hardware impairments such as I/Q
imbalances, DC o�set, phase noise, carrier/sampling o�sets, and
power ampli�er distortions can be disrupted by the channel's action.
Moreover, these impairments are also time-varying and dependent
on a number of factors, such as local oscillator (LO) frequency

[17] and current temperature of the RF circuitry [9]. These consid-
erations imply that we cannot assume impairments as perfectly
stationary � hence the need for real-time optimization.

To address the non-stationary nature of the problem, our �rst
observation is that convolutional neural networks (CNNs) have
shown to be prodigiously suited to recognize complex �patterns� in
input data [10] � these patterns are, in our case, the imperfections
in the radio hardware. However, a major challenge that still lingers
is how do we optimize the CNN's output for a given device without
retraining the CNN itself.To answer this question, we devise a
new approach based on �nite impulse response (FIR) �ltering of
the transmitter's baseband signal to �restore� the patterns that are
disrupted by the current channel conditions � thus making the
signal �more recognizable� to the CNN. We use FIRs because of the
following: (i) FIRs are very easy to implement in both hardware
and software on almost any wireless device; (ii) the computation
complexity of applying a FIR �lter of lengthm to a signal isO¹mº
� thus it is a very e�cient algorithm; and most importantly, (iii)
its e�ect on the BER can be almost perfectly compensated at the
receiver's side, as shown in Section 5.

However, this approach spurs another challenge, which ishow
to set the FIR taps in such a way that the �ngerprinting accuracy for
a given device is maximized. Our intuition here is to �nd the FIR
that modi�es input x so that the resultingx � signal maximizes the
neuron activation correspondent to a given device, as shown in
Section 4.3. We are able to do this e�ciently since the layers inside
CNNs, although non-linear, are derivable, and thus we can compute
the gradient of the output with respect to the FIR taps according
to a given input. This way, we can design an optimization strategy
that is fundamentally general-purpose in nature.

3.2 DeepRadioID: A Walk-Through
Figure 2 provides a walk-through of the main building blocks of
DeepRadioIDand the main operations involved in the �ngerprinting
process. We highlight with a shade of blue the blocks that are
added to the normal modulation/demodulation chain as part of
DeepRadioID. The walk-through also shows how an adversary may
try to imitate another device's �ngerprint. The detailed explanation
of DeepRadioID's main module will be given in Section 4.

The �rst step for a legitimate device �A" that wants to be au-
thenticated by a receiver �R� is to �lter its baseband signal with
FIR� A;i � 1 (step 1), which was obtained at the previous optimiza-
tion step. FIR� A;0 is set to 1 (i.e., no �ltering). The �ltered signal
is then sent to A's RF interface (step 2). By also accounting the
e�ect of the wireless channel, �R" will receive a baseband signal
zAR = xA ~ � A;i � 1 ~ hAR + wAR, wherexA is the transmitted sym-
bol sequence,hAR andwAR are the fading and noise introduced by
the channel, respectively. The I/Q samples ofzAR are then fed to a
CNN to �ngerprint the originating device (step 4). The �ngerprin-
ting result is then used to compensate the FIR �lter� A;i � 1 (step
5, discussed in Section 5), so that the resulting signal is then sent
to the symbol demodulation logic to recover the application's data
(step 6). The I/Q samples and the �ngerprinting result are then fed
to the DeepRadioIDFIR Optimization module (step 7, presented in
Section 4). The optimal FIR �lter� A;i is then sent back to A to
improve its �ngerprinting accuracy (step 8).
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Figure 2: A high-level overview of the DeepRadioIDsystem, where we also illustrate an adversary (T) trying to impersonate a
legitimate device (A) using an eavesdropped FIR �lter. Since A's FIR �lter has been tailored to match A's unique channel and
impairment conditions, we show in Section 6 that T does not improve its �ngerprinting accuracy by using A's �lter.

We now examine the case of adversarial action as follows. We
assume that an adversarial device �T" is capable of eavesdropping
A's FIR� A;i . T's target here is to impersonate A by spoo�ng A's
hardware �ngerprint (step 9). After T's baseband signal is transmit-
ted and goes through the wireless channel (step 10), the baseband
signal received by R will bezTR = xR ~ � A;i� 1 ~ hTR+ wTR, which
is then fed to the CNN as input. However, we show in Section 6
that, since A's FIR �lter has been optimized for A's unique hardware
impairments and A's current wireless channel, T will not be able to
imitate A's �ngerprint by using A's FIR �lter.

4 DeepRadioID FIR OPTIMIZATION
In this section, we describe in details theDeepRadioIDFIR Filter
Optimization module. We �rst provide some background notions
in Section 4.1, followed by our FIR-based waveform modi�cation
approach in Section 4.2. We then introduce the Waveform Opti-
mization Problem (WOP) in Section 4.3

4.1 Background Notions and De�nitions
Let us de�ne asinput a set ofN consecutive I/Q samples that
constitute an input to the classi�er. Let us also de�ne asslicea
set ofS inputs, and as batch a set ofB slices. Let us label theD
devices being classi�ed with a label between 1 andD. We model the
classi�er as as a functionf : X ! Y , whereX � CN andY � RD

represent respectively the spaces of the classi�er's input (i.e., an
example) and output (i.e., a probability distribution over the set ofD
devices). Speci�cally, the output of the classi�er can be represented
as a vector¹f1; f2; :::; fD º 2 Y , where thei -th component denote
the probability that the input fed to the CNN belongs to devicei .

DeepRadioIDrelies on discrete causal �nite impulse response
�lters (in short, FIRs) to achieve real-time adaptive waveform mod-
i�cation. FIRs present several advantages � �rst, causal �lters do
not depend on future inputs, but only on past and present ones.
Second, they can be represented as a weighted and �nite term sum,
which allows toaccurately predict the output of the FIR for any given

input. More formally, a FIR is described by a �nite sequence� of
M �lter taps, i.e.,� = ¹� 1; � 2; : : : ;� M º. For any inputx 2 X, the
�ltered n-th elementx̂»n¼ 2̂x can be written as

x̂»n¼=
M� 1Õ

j =0

� j x»n � j¼ (1)

Since both wireless channel and hardware impairments operate
in the complex domain by rotating and amplifying/attenuating
the amplitude of the signal,we can manipulate the position in the
complex plane of the transmitted I/Q symbols. By using complex-
valued �lter taps, i.e., � k 2 C for all k = 0;1; : : : ;M � 1, we can
rewrite Eq. (1) as follows:

x̂»n¼=
M� 1Õ

k=0

¹� R
k + j� I

k º¹xR»n � k¼+ jx I »n � k¼º

= x̂R»n¼+ jx̂ I »n¼ (2)

wherexR
k »n¼= Refxk »n¼g, x I

k »n¼= Imfxk »n¼g, � R
k = Ref � k g and

� I
k = Imf � k g. Eq.(2)clearly shows that it is possible to manipulate

the input sequence by �ltering each I/Q sample. For example, to
rotate all I/Q samples by� = � •4radiants and halve their amplitude,
we may set� 1 = 1

2 expj �
4 and� k = 0 for all k > 1. Similarly, other

complex manipulations can be obtained by �ne-tuning �lter taps.

4.2 FIR-based Waveform Modi�cation
Although channel equalization can e�ectively reduce the e�ect of
channel distortions on the position of the received I/Q samples, the
algorithms involved are generally not perfect and onlypartially
counteract phase and amplitude variations caused by the channel.
For this reason, we must devise techniques to dynamically adapt to
rapidly changing channel conditions (e.g., fast-fading/multi-path)
and thus improve the �ngerprinting accuracy for a given device.

DeepRadioIDleverages FIR �lters to maximize the accuracy of
the classi�er by dynamically counterbalancing inaccurate channel
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Figure 3: Waveform modi�cation optimization loop.

equalization. Figure 3 shows a block diagram of the waveform mod-
i�cation optimization loop performed byDeepRadioID. Speci�cally,
we add a FIR �lter before the �rst CNN layer. This additional layer
uses FIRs to manipulate the input example according to Eq.(2). The
corresponding output sequence is then fed to the CNN.

As shown in Figure 2, letA be the target device for which we
want to improve the detection accuracy of the CNN, and let� A;i be
the �lter taps associated to the target device at thei -th optimization
step. By using the �ltering-based waveform modi�cation on the
input sequencex, the outputfA¹x̂º 2 Y of the classi�er with respect
to the �ltered sequencêx can be written as a function of the �lter
taps� A;i . Speci�cally, we have that

fA¹x̂º = fA¹x; � A;iº (3)

Eq.(3)clearly shows that the accuracy of the classi�er depends
on the actual FIR tap vector� A;i . Thus, we are interested in de-
vising mechanisms to optimally manipulate� A;i such that (i) the
classi�cation accuracy for the target device is maximized (Section
4.3); and (ii) the waveform modi�cation does not negatively impact
the BER of data transmission activities (Section 5). To simplify the
notation, henceforth we will remove thei subscript.

4.3 Waveform Optimization Problem (WOP)
We can now formally de�ne the objective ofDeepRadioIDas follows:
(i) maximize the accuracy of the classi�er for a speci�c target device
A; and (ii) to guarantee that the resulting BER does not exceed
a given maximum tolerable thresholdBERmax. Since we aim at
achieving channel-resilient waveform modi�cation, we need to
compute a FIR parameter con�guration� A that can be used for
multiple consecutive transmissions. It is worth mentioning that to
compute di�erent� A values for each single inputx is ine�cient
in many cases. Indeed, the obtained FIR would be e�ective for the
considered input only,i.e., if applied to another input sequence
x0 , x, the FIR might decrease the accuracy of the classi�er. Thus,
maximizing the accuracy with respect to a single inputx might
result in poor performance.

To overcome the above problem, rather than maximizing the
accuracy of the classi�er on an input-by-input basis, we compute
the the FIR� A that maximizes the activation probabilityfA over a
set ofSconsecutive inputs,i.e., a slice.

The Waveform Optimization Problem (WOP) can be then de�ned
as follows:

maximize
�

1
S

SÕ

s=1

fA¹xs; � º (WOP)

subject toBERA¹xs; � º � BERmax; 8s = 1;2; : : : ;S (C1)

where the objective function represents the per-slice average ac-
tivation probability for deviceA, xs is thes-th input of the slice,
and theBERA¹�º represents the BER function corresponding to
transmissions from target nodeA.

It is worth mentioning that the functionfA¹xs; � º represents the
CNN, and thus it outputs the probability that the input I/Q samples
x belong to deviceA. Thus, by solving the WOP, we compute a FIR
that maximizes the activation probability of the neuron associated
to A.

Problem(WOP)is signi�cantly challenging because (i) the func-
tion fA is CNN-speci�c and depends from a very high number of
parameters (generally in the order of millions), it is highly non-
linear and to the best of our knowledge, there are no mathemat-
ical closed-form expressions for such a function, even for rela-
tively small CNNs; (ii) the maximum BER constraint(C1)depends
from numerous device-speci�c parameters (e.g., modulation, coding,
transmission power and SNR) and it is generally non-linear.

Notwithstanding the above challenges, and as we will discuss
in detail in Section 5, the impact of the waveform modi�cation
procedure on the BER of communications among the receiver and
the target deviceA is negligible. In fact, as shown in Figure 2,
DeepRadioIDembeds a FIR Filter Compensation module that uses
peculiar features of FIR �lters,e.g., their Fourier transform, to suc-
cessfully reconstruct the original transmitted un�ltered sequence
of I/Q symbols. This compensation procedure e�ectively removes
any coupling between waveform modi�cation procedures and BER,
i.e., BERA¹x; � º � BERA¹xº. Accordingly, it is possible to relax Con-
straint (C1) by removing it from the optimization problem (WOP).

The relaxed WOP can be formulated as

maximize
�

SÕ

s=1

fA¹xs; � º (RWOP)

where we have also omitted the constant term1•S.

4.3.1 Solving the RWOP.As already mentioned,fA is non-linear
and generally does not possess any useful property in terms of
monotonicity, concavity and existence of a global maximizer. How-
ever, for any inputx of the slice, by usingback-propagationand
the chain rule of derivatives it is possible to let the CNN compute
the gradientr x̂ fA¹x̂º of the classi�cation functionfA with respect
to the �ltered input sequencêx. It is worth noting that r x̂ fA¹x̂º
shows how di�erent input sequences a�ect the accuracy of the clas-
si�cation function. Nevertheless, we are interested in evaluating
the gradientsr � f ¹x̂º to predict how the accuracy of the classi�er
varies as a function of the FIR �ltering function. Hence, we need to
extend back-propagation to the waveform modi�cation block.

From Eq.(2), x̂ is a function of� , thus the gradient offA with
respect to the �lter taps� can be computed as

r � fA¹x̂º = JfA ¹� º> � r x̂ fA¹x̂º (4)

whereJfA ¹� º is the Jacobian matrix offA¹x; � º with respect to� ,
> is the transposition operator, and� stands for matrix dot product.

From Eq.(4)and Eq.(2), each element inr � fA¹x̂º can be written
as

@fA¹x; � º

@� Z
k

=
NÕ

n=1

 
@fA¹x; � º

@̂xR»n¼
@̂xR»n¼

@� Z
k

+
@fA¹x; � º

@̂x I »n¼
@̂x I »n¼

@� Z
k

!

(5)
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wherek = 0;1; : : : ;M � 1, N is the length of the input sequence
andZ 2 fR; I g.

By using Eq.(2), @̂x R»n¼
@� Z

k
and @̂x I »n¼

@� Z
k

in Eq.(5)are computed as

follows:

@̂xR»n¼

@� R
k

=
@̂x I »n¼

@� I
k

= xR»M � 1+ n � k¼ (6)

@̂x I »n¼

@� R
k

= �
@̂xR»n¼

@� I
k

= x I »M � 1+ n � k¼ (7)

The above analysis shows that the relationship between the
waveform modi�cation and classi�cation processes can be described
by a set of gradients. Most importantly, they can be used to devise
e�ective optimization algorithms that solve Problem (RWOP).

In Section 4.3.2, we design an algorithm to solve Problem(RWOP)
and compute the optimal FIR �lter parameters� by using the Non-
linear Conjugate Gradient (NCG) method and the gradients com-
puted in Eq.(6)and Eq.(7). While our simulation results have shown
that NCG is more accurate than other gradient-based optimization
algorithms (e.g., gradient descent algorithms), we remark thatDeep-
RadioIDis independent of the actual algorithm used to compute� ,
and other approaches can be used to solve Problem (RWOP).

4.3.2 Filter taps computation through NCG.As shown in Figure 2
and discussed in Section 3,DeepRadioIDiteratively adapts to chan-
nel �uctuations by periodically updating the �lter taps associated
to any given target deviceA. For the sake of generality, we refer
to this periodic update as anoptimization epoch, and a new epoch
is started as soon as one or moretriggering eventsare detected
by DeepRadioID. Triggering events can be either cyclic,e.g., timer
timeout, or occasional,e.g., the accuracy for a target devices falls
below a minimum desired threshold.

For each epochi , let t = 1; 2; : : : ;T denote the iteration counter
of the optimization algorithm. At each iterationt of the algorithm,
the �lter taps are updated according to the following iterative rule

� ¹t º = � ¹t � 1º + � ¹t ºp¹tº (8)

In Eq.(8), p¹tº and� ¹t º represent the search direction and update
step of the algorithm, respectively. To put it simple,p¹tº gives us
information on the direction to be explored, while� ¹t º tells us how
large the exploration step taken in that direction should be. More
in detail, the two terms are computed as follows:

p¹tº =
SÕ

s=1

�
r � fA¹xs; � ¹t � 1ºº

�
+ � ¹t ºp¹t� 1º (9)

� ¹t º = argmax
�

SÕ

s=1

fA¹xs; � ¹t � 1º + � p¹tºº (10)

where gradients derive from Eq.(6)and Eq.(7), � ¹1º = 0andp¹0º = 0.
The parameter� ¹t º is de�ned as

� ¹t º =
jj

Í S
s=1

�
r � fA¹xs; � ¹t � 1ºº

�
j j22

j j
Í S

s=1

�
r � fA¹xs; � ¹t � 2ºº

�
j j22

(11)

and is generally referred to as theconjugate gradient(update) pa-
rameter used in NCG methods to improve the space exploration
process by speeding up the convergence of the algorithm [7].

Interestingly enough,p¹1º =
Í S

s=1

�
r � fA¹xs; � ¹0ºº

�
whent = 1.

That is, the �rst iteration of the NCG algorithm corresponds to a
classic gradient descent. Also,� ¹t º in Eq.(10)is computed through
line-search algorithms. While both exact and approximated line
search algorithms can be considered, there are few aspects that
need to be considered when implementing Eq.(10). Indeed, since
the function fA is highly non-linear and has no closed-form repre-
sentation, to compute Eq.(10)requires the continuous evaluation
of

Í S
s=1 fA¹xs; � ¹t � 1º + � p¹tºº and its �rst and second order deriva-

tives. For this reason, in some cases it might be computationally
expensive to run exact line search algorithms onfA , and approxi-
mated line search algorithms are to be preferred. For example, to
speed-up the computation of� ¹t º, we can consider a secant method
approximation where the second derivatives offA are approxi-
mated by using the �rst order derivatives computed in Eq.(6)and
Eq. (7).

5 DeepRadioID FIR COMPENSATION
Although the waveform �ltering process is bene�cial to the classi�-
cation process as we can optimally modify the waveform generated
by a given target device, it may negatively a�ect the quality of
transmitted data. Indeed, moving I/Q symbols within the complex
plane might impact the demodulation and decoding process, thus
increasing the BER associated to the received waveform. Further-
more, the expression of the BER in Constraint(C1)is non-linear and
possesses exact and/or approximated closed-form representations
only in a limited number of cases (e.g., fading channels with known
distributions and low-order modulations).

The above discussion shows that to tackle the BER constraint in
Problem(WOP)is challenging, since we need to devise mechanisms
that are generic enough to be used with any modulation, coding and
channel distributions. To overcome the above issues, we observe
that our waveform modi�cation relies on Eq.(1), which clearly
represents a discrete convolution between the input sequencex
and the �lter taps� . For the sake of illustration, in the following
we use the familiar model

z»n¼= ¹h ~ x̂º»n¼+ w»n¼ (12)

where each received I/Q symbolz»n¼is written as the sum of a noise
termw»n¼(typically Additive white Gaussian noise) and then-th
element of the discrete convolutionh ~ x̂ between the channelh
and the transmitted �ltered sequencêx. From Eq.(1), we also have
that x̂ = x ~ � . Thus, the discrete Fourier transform (DFT) ofz and
x̂ can be written as follows:

Z¹! º = H¹! ºX̂¹! º + W¹! º

= H¹! ºX¹! º� ¹! º + W¹! º (13)

X¹! º =
Z¹! º � W¹! º

H¹! º� ¹! º
(14)

where we have used capital letters to indicate DFTs.
Eq.(14)shows that to reconstruct the original un�ltered I/Q

sequence is possible by computing the inverse DFT of each compo-
nent of the received signal. Furthermore, FIR compensation implies
BERA¹x; � º = BERA¹xº. Since, the optimization variable of Problem
(WOP)is � , Constraint(C1)does not depend on� anymore, and
thus it can be removed from Problem(WOP). Finally, note that the
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above FIR compensation method is independent of the underlying
modulation and coding scheme. It means, that FIR compensation
is a general approach, and it can be successfully used to tackle
Constraint (C1).

Despite the above properties, one might argue that in general it
is not possible to compute a perfect estimation ofW¹! º andH¹! º.
However, modern wireless networks embed estimation mechanisms
that are almost always able to compute fairly accurate estimations
~H¹! º and ~N¹! º, e.g., through training sequences and pilots [17], and

the e�ect of the FIR �lter can thus be compensated to a signi�cant
extent. To validate this crucial assumption, we ran a number of
experiments on our experimental testbed to evaluate the impact
of DeepRadioID's FIR �ltering on the packet error rate (PER) and
throughput (� ) of a wireless transmission.

Figure 4: The e�ect of FIR �ltering at the receiver's side for
di�erent values of � . Top and bottom sides show respectively
the received constellations with/without FIR compensation.

Figure 5: Packet error rate (PER) and Throughput ( � ) as a
function of � .

Figure 4 shows the received constellations of a QPSK-modulated
WiFi transmission where the payload I/Q samples are multiplied in
the frequency domain (i.e., FIR �ltering) with a random I/Q tap with
I 2 »1� � ; 1+ � ¼andQ 2 »0� � ; 0+ � ¼º. The� parameter represents
the relative magnitude of the �lter with respect to no �ltering,i.e.,
� = 0. The �ltering is then compensated at the receiver's side by
using Eq. (14).

Due to the imperfection in channel compensation, we notice than
some noise is indeed introduced by the FIR �ltering irrespective of
our compensation. However, these imperfections do not translate
in a signi�cant PER increase. Figure 5 shows the PER and� as a
function of � , which respectively increase and decrease of about
6% and 0.5 kbit/s in the worst case of� = 0:5. However, according
to our experiments in Section 6, the� value is typically below 0.2,
meaning a PER increase <1% and a� loss <0.2 kbit/s (0.2%).

6 EXPERIMENTAL RESULTS
In this section, we report the results obtained through extensive ex-
perimentation on a practical software-de�ned radio testbed (Section
6.1), as well as on three datasets of WiFi and ADS-B transmissions
obtained through the DARPA RFMLS program (Section 6.4).

6.1 Radio Testbed Setup
Our experimental testbed is composed by twenty software-de�ned
USRP radios acting as transmitters and one USRP acting as re-
ceiver. Each USRP has been equipped with a CBX 1200-6000 MHz
daughterboard with 40 MHz instantaneous bandwidth [4] and one
VERT2450 antennas [3]. Therefore, the RF components of each
USRP are nominally-identical. Furthermore, each USRP device sends
the same baseband signal ,i.e., an IEEE 802.11a/g (WiFi) frame re-
peated over and over again, to make sure that the deep learning
model is learning the hardware impairments and not data patterns.

Figure 6: DeepRadioID Experimental Testbed.

The baseband signal is generated through Gnuradio and then
streamed to the selected SDR for over-the-air wireless transmission.
The receiver SDR samples the incoming signals at10MS/ssampling
rate at center frequency of2:432GHz. The collected baseband signal
is then channel-equalized using IEEE 802.11 pilots and training
sequences [17]. Next, the payload I/Q samples are extracted and
partitioned into asample. In our experiments, we �x the sample
length to48� 6 = 288I/Q values, corresponding to 6 OFDM symbols
containing 48 payload I/Q values. Each of these samples are then
used for training and classi�cation.

6.2 Deep Learning Architecture
We use the CNN architecture reported in [15] and depicted in Figure
7. Speci�cally, each I/Q input sequence is represented as a two-
dimensional real-valued tensor of size2 � 288. This is then fed to
the �rst convolutional layer (ConvLayer), which consists of 50 �lters
each of size1� 7. Each �lter learns a 7-sample variation in time over
the I or Q dimension separately, to generate 50 distinct feature maps
over the complete input sample. Similarly, the second ConvLayer
has 50 �lters each of size2 � 7. Each ConvLayer is followed by a
Recti�ed Linear Unit (ReLU) activation and a maximum pooling
(MaxPool) layer with �lters of size2 � 2 and stride1, to perform a
pre-determined non-linear transformation on each element of the
convolved output.

The output of the second convolution layer is then provided
as input to the �rst fully connected layer, which has 256 neurons.
A second fully connected layer of 80 neurons is added to extract
higher level non-linear combinations of the features extracted from
previous layers, which are �nally passed to a classi�er layer. To
overcome over�tting, we set the dropout rate to 50% at the dense
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