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Abstract—Real-time encoding and error-resilient wireless
transmission of multimedia content require high processing and
transmission power. This paper investigates the rate-distortion
performance of video transmission over lossy wireless links for
low-complexity multimedia sensing devices with a limited budget
of available energy per video frame.

An analytical/empirical model is developed to determine the
received video quality when the overall energy allowed for both
encoding and transmitting each frame of a video is fixed and the
received data is affected by channel errors. The model is used to
compare the received video quality, computation time, and energy
consumption per frame of different wireless streaming systems.
Furthermore, it is used to determine the optimal allocation
of encoded video rate and channel encoding rate for a given
available energy budget.

The proposed model is then applied to compare the energy-
constrained wireless streaming performance of three encoders
suitable for a wireless multimedia sensor network environment;
H.264, motion JPEG (MJPEG) and our recently developed com-
pressed sensing video encoder (CSV). Extensive results show that
CSV, thanks to its low complexity, and to a video representation
that is inherently resilient to channel errors, is able to deliver
video at good quality (an SSIM value of 0.8) through lossy
wireless networks with lower energy consumption per frame than
competing encoders.

I. INTRODUCTION

Recent advances in sensing, computation, storage, and

wireless networking are driving an increasing interest in

multimedia [1] and people-centric [2] sensing applications.

Wireless Multimedia Sensor Networks (WMSN) are self-

organizing systems of embedded devices deployed to retrieve,

distributively process in real-time, store, correlate, and fuse

multimedia streams originated from heterogeneous sources [3].

WMSNs are enablers for applications including video surveil-

lance, storage and subsequent retrieval of potentially relevant

activities. In people-centric (also referred to as participatory)

sensing, sensing devices, in the form of the ubiquitous mobile

smart phones (e.g., Samsung Galaxy S, Iphone) are carried by

individuals, thus enabling sensing, learning, visualizing, and

sharing information about our daily activities.

The objective of this paper is to conduct an experiment-

driven analysis of the energy-rate-distortion performance of
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different streaming systems designed for embedded wirelessly

networked devices. Different from previous work on low-

complexity encoding [4] [5], we jointly consider the effects

of processing on resource-constrained devices and of wireless

transmission on the performance of wireless encoders. We

first develop an analytical model that can be manipulated

to determine, for a given total energy budget per frame

and channel condition, the optimal joint allocation of energy

for wireless transmission and energy to be used for video

encoding. Intuitively, for a fixed energy budget, as more energy

is allocated to the encoder (resulting in less compression and

a video of better quality), less energy is available to transmit

that video over a wireless link, which would potentially result

in an increased bit error rate and lower quality at the receiver.

Conversely, as more energy is allocated to transmission, less

energy is available to encode the video, resulting in a lower

quality video. The developed model is used to find, for a given

encoder, the optimal allocation between these two components,

along with the optimal channel coding rate, which results in

the optimal received video quality.

The model used in this paper is illustrated in Fig. 1. This

model evaluates the video quality at the receiver of a wireless

network for a given video encoder (and a specific encoding

rate), family of channel codes (and specific channel encoding

rate), and for a given energy budget per frame. The energy

budget per frame is split between the energy needed for

encoding the video and the energy required for transmitting the

video over the lossy channel. These choices affect the quality

of the received video at the multimedia sink. We present an

optimization procedure to choose the encoded video rate and

the channel coding rate that result in the optimal received

video quality for a given energy budget. We then present

a methodology, based on the model, to compare different

encoders in terms of the energy budget required to obtain a

target video quality at the receiver.

For our comparison, we focus on three video encoders with

different characteristics mainly in terms of their complexity

(and of the resulting rate-distortion performance). The first is

Motion JPEG (MJPEG), which is a simple low-complexity

encoder designed for low-power or portable devices. For this

paper we use the implementation in [6]. MJPEG is a video

encoder in which each frame is individually encoded according



Fig. 1: Energy-Aware Video Encoding and Transmission

to the JPEG standard. Because it does not exploit dependency

between frames, motion estimation between frames is not

necessary, resulting in much lower encoding complexity.

Next, H.264/AVC [7], [8], [9] is considered, which repre-

sents the state of the art in video encoders. Though H.264

clearly offers the best video compression, it is a progressive

video encoder, for which there are two major disadvantages

in an energy constrained environment, i.e., encoder complexity

and low resiliency to channel errors.

• Encoder Complexity. Modern predictive encoding algo-

rithms were created with the goal of reducing the amount

of data required to represent the video while maintaining

the best possible video quality. Because of the need to

find motion vectors, the complexity of these algorithms

usually results in very high energy consumption and very

high time to encode [1].

• Limited Resiliency to Channel Errors. Predictive en-

coding, as the name suggests, relies on the prediction of

a frame based on previous frames. This allows for greatly

reduced image size. However, since errors can propagate

from one frame to the next, this also can result in

very poor performance in lossy channels. This is usually

combatted with forward error correction (FEC) which

can increase the overall transmission energy needed to

successfully deliver the video to the end receiver.

Finally, we consider a video encoder based on compressed

sensing (CS) [10], [11], [12], presented in [13]. Compressed

sensing (aka “compressive sampling”) is a new paradigm

that allows the faithful recovery of signals from M << N
measurements where N is the number of samples required

for the Nyquist sampling. Hence, CS can offer an alternative

to traditional video encoders by enabling imaging systems

that sense and compress data simultaneously at very low

computational complexity for the encoder. CS images and

video are also resilient to bit errors [14]. Based on the low-

complexity and high error resilience of CS signals, CSV was

designed to achieve an acceptable level of compression with

the lowest possible energy consumption at the video source.

The remainder of this paper is structured as follows. In

Section II we present the three video encoders studied in this

paper. In Section III we present the empirical models used to

characterize the video encoders, and in Section IV we present

the video quality model. Finally, the performance results of

the three encoders are presented in Section V, while Section

VI we draw the main conclusions and discuss future work.

II. BACKGROUND

In this paper, we compare three video encoders that repre-

sent three different approaches to encoding.

A. Motion-JPEG (MJPEG) Video Encoder

MJPEG video encoding is an intraframe encoding scheme

based directly on the JPEG image compression standard [15].

Though there is no official standardization of MJPEG, the

basic concepts of most implementations are the same. Each

frame is first divided into 8× 8 blocks which are transformed

to the frequency domain using the discrete cosine transform

(DCT) [16], creating an 8× 8 block of DCT coefficients.

From this point, the DCT coefficients of each macroblock

are quantized and entropy encoded, resulting in a much smaller

file than the original. The DCT transform naturally gives more

weight to the low frequency components and less to the high

frequency components. This corresponds well to the human

visual system, which allows the encoder to remove many of the

high frequency components with little effect on the perceived

quality of the resulting image.

In MJPEG, this process is done for each frame inde-

pendently. The resulting video has compression and quality

comparable to JPEG image compression and can be done

without significant complexity requirements at the encoder.

These factors have made this protocol very useful in low

complexity devices such as digital cameras.

B. H.264 Video Encoder

H.264 video compression represents the state of the art in

current video compression techniques. Though a full expla-

nation of H.264 is beyond the scope of this paper, we will

present some basic concepts.

The basic functionality of the H.264 [8] encoder is similar to

that of JPEG with a major addition, which is prediction. Along

with the frequency transform - quantization - entropy encoding

functionalities, the encoder will take an image block and

compare it to other macroblocks either within the same frame

(intra-prediction) or in a previous frame (inter-prediction). By

finding the difference between two macroblocks and encoding

that difference (which is generally very small), the encoder

can greatly reduce the amount of data necessary to represent

a video at a very good quality. For a full explanation of H.264

video encoding, the reader is referred to [7], [8], [9].

C. Compressed Sensed Video (CSV) Encoder

CSV [13] uses compressed sensing to take advantage of both

the spacial correlation within a frame (intra-frame) and the

temporal correlation between frames (inter-frame). For intra-

frame encoding, a frame is represented by a vector x ∈ RN .



We assume that there exists an invertible N × N transform

matrix Ψ such that

x = Ψs (1)

where s is a K-sparse vector, i.e., ||s||0 = K with K < N ,

and where || · ||p represents p-norm. This means that the

image has a sparse representation in some transformed domain,

e.g., wavelet. The signal is measured by taking M < N
measurements from linear combinations of the element vectors

through a linear measurement operator Φ. Hence,

y = Φx = ΦΨs = Ψ̃s. (2)

Although, in general, x can not be recovered directly,

[11] shows that if the measurement matrix Φ is sufficiently

incoherent with respect to the sparsifying matrix Ψ, and K is

smaller than a given threshold (i.e., the sparse representation

s of the original signal x is “sparse enough”), then the

original s can be recovered by finding the sparsest solution

that “matches” the measurements in y.

To exploit this inter-frame redundancy within the framework

of compressed sensing, we take the algebraic difference be-

tween the CS samples. Then, this difference is again compres-

sively sampled and transmitted. If the image being encoded

and the reference image are very similar (i.e. have a very

high correlation coefficient), then this difference image will

be sparser and have less variance than either of the original

images, and can therefore be transmitted at the same quality

using fewer samples and fewer bits per pixel than the original

image.

For a full explanation of CSV video encoding, the reader is

referred to [13].

III. RATE DISTORTION OF VIDEO ENCODERS IN

UNRELIABLE CHANNELS

In this section, we develop a model of the video quality (in

SSIM [17]) after transmission over a noisy channel. We are

interested in modeling the received video quality as a function

of the encoded video rate rv , the channel coding rate rch, the

total energy budget EB per frame and the channel quality.

To analyze the rate distortion performance of video en-

coders, we must first develop a model that accurately predicts

the effect of compression and bit errors on the video quality.

In a lossless channel, video distortion can be modeled [18]

[19] as

α(rv) = D0 −
Θ

rv −R0

, (3)

where D0, Θ and R0 are video dependent constants deter-

mined through linear least squares estimation techniques.

Though this model works very well when there are no

errors, any bit errors can decrease the quality of the received

video. Unlike typical data networks, however, the video does

not have to be received perfectly for it to by acceptably

received by the user. This can be seen by observing a plot

of the received video quality as a function of the bit error rate

of the received video, as is shown in Fig. 2. For this plot,

the videos were encoded to an acceptable quality, transmitted
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Fig. 2: SSIM vs BER for H.264 and CSV Encoders

through a binary symmetric channel with varying bit error

rates (BER) and then decoded. For low BER, there is almost

no effect in the received SSIM. After the BER increases past a

certain level, however, the video quality drops off significantly.

Based on this observation, we have modeled the error

performance as a low pass filter using

U(rch, rv) =
α(rv)

√

1 + τ2(BER(rch, rv))2
(4)

where rch is the channel coding rate (in bits in
bits out

), rv is the

encoded video rate in kbit/s, U(rch, rv) is the quality of the

received video in SSIM as a function of rch and rv . The

encoder dependent constant τ is used to indicate where the

quality begins to decrease.

A. SNR Model

Consider the energy budget per frame EB as the energy

available to the system during each frame period tf = 1

fps

where fps represents the number of frames per second of the

video. We can then express the average energy available for

frame transmission as

EE(rv) = EE,max · te(rv), (5)

where EE,max is the maximum energy available to the encoder

during the frame period, and te(rv) is the processor load, i.e.,

the time fraction of a frame that the encoder needs to encode

video at rate rv . The transmitted energy per video frame ET

is defined as

ET = (EB − EE(rv)), (6)

i.e., the total energy available reduced by the energy needed

to encode the video.

For the encoders considered in this paper, the empirical

models

te(rv) = a rv + b, (7)

and

te(rv) = c −
T

rv + d
, (8)

accurately model the processor load as a function of the

encoded video rate, as shown in Fig. 3 where a, b, c, d and T
are platform dependent positive constants determined through

linear regression analysis of the encoder implementation.
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Fig. 3: Processor Load vs Encoded Video rate

To obtain these results, all three encoders are run at all

available encoded video rates on the same platform. For this

model, the platform is an Intel Core 2 Duo processor running

Ubuntu 10.10. The time tf = 1

fps
, defined as the inverse of

the framerate of the video, is used as the maximum allowed

encoding time, i.e. the mean encoding time per frame for a real

time video must be less than tf . The actual encoding time per

frame, tv is measured or estimated and compared to tf . We

can then find the value te = tv
tf

which represents the fraction

of time used to encode each frame.

For example, if a 30 fps video of 3000 frames takes 15

seconds to encode (i.e., 200 fps encoding time) at some rate

rv0 , we find that each frame takes tv = 1

200
of a second to

encode. In the video, each frame lasts tf = 1

30
of a second.

This means that on average, for each frame, te =
30

200
= 15%

of the frame time is needed to encode each frame. Taking the

maximum encoder energy use per frame as 0.5 J (the value

for the system used to test), then it will take on average 0.5×
15% = 75mJ to encode that video at rv0 .

We can then give the SNR model as

SNR(rch, rv) =
L · rch · dfree · (EB − EE(rv))

N0
rv

rch·fps

, (9)

where L is the path loss, N0 is the noise power and dfree
is the free distance of the channel code rch. As rv increases,

the energy needed to encode the video increases while the

transmission energy per bit decreases, causing the SNR to

decrease.

IV. ENERGY-RATE-DISTORTION OPTIMIZATION

In Section III, we developed a set of equations to model

the received video quality after transmission through a noisy

channel with a finite energy budget per frame. In this section,

we use this model to find the video encoder that results in

the highest received video quality as a function of the energy

budget EB . We must first seek to find the optimal allocation

of rch and rv for a fixed energy budget. By repeating this for

multiple values of EE , we can then develop a model of the

optimal received video quality as a function of EB . The goal

of this optimization is to determine i) which encoder requires

the lowest energy to achieve a target video quality, and ii) what

values of rch and rv should be chosen to obtain that quality.
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We begin by holding EB constant and finding the optimal

allocation of rch and rv . This problem can be modeled as the

optimization problem

maximize
rch,rv

U(rch, rv)

subject to EB ≥ EE(rv) + ET ,
(10)

where ET is the energy available for transmission. Based on

the analysis in Section III, we can formulate the problem as

maximize
rch,rv

D0 −
Θ

rv−R0
√

1 +
(

τ ·Q
(

√

SNR(rch, rv)
))2

subject to EB ≥ EE(rv) + ET .

(11)

The solution to this problem results in the optimal channel and

encoded video rates for a given energy budget and for a given

encoder. Plots of the objective function for H.264, CSV and

MJPEG are presented in Fig. 4, Fig. 5 and Fig. 6 showing the

optimal rates for the given energy values. These are plotted

for different values of ET

EE,max
, which is the ratio of the total

energy budget to the maximum energy per frame. For clarity,

the function as plotted is actually maxrchU(rch, rv, ) vs rv .

The maximum value of this objective function is the optimal

video quality, and the values of rv and rch that achieve that

point are the optimal encoding rates. However, because the Q

error function has no closed form solution, the problem must

be solved numerically (though the Q error function can be

approximated for some values of SNR, the resulting optimiza-

tion problem is still a non-linear, non-convex discrete program

without any obvious solution). To simplify the analysis, note

that in all cases, the quality of the received video follows the
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same pattern. The“filter-like” form of (4) results in a very

sharp decrease in the quality after the rate increases beyond a

certain point. It is safe to assume that this dramatic drop-off

is due to the BER at that rate increasing beyond the cutoff

point, driving the received video quality down.

Based on this, we assume that the optimal value would be

obtained by a video encoder and channel encoder rate that are

very close to that cutoff point. This leads to the much simpler

optimization problem

minimize
rch

∣

∣

∣

∣

Q
(

√

SNR(rch, rv)
)

−
1

2πτ

∣

∣

∣

∣

2

(12)

which states that the optimal point is the one that causes the

BER to be as close as possible to that cutoff. This analysis

reduces the original two dimensional optimization problem

(10) to an optimization problem over a single dimension. For

practical channel coders [20], the length of rch is generally

less than 10. In comparison, the length of rv can be 30

(MJPEG), 50 (H.264) or rv can be continuous (CSV). by

removing the search over rv , we are reducing the majority

of the search space of the problem, which will greatly reduce

the complexity.

Simple tests show that in all cases, the values obtained from

(12) are close to the optimal solution. The maximum error in

SSIM was 0.31% for CSV, 1.12% for MJPEG and 0.94% for

H.264.

V. PERFORMANCE EVALUATION

The objective of the optimization problem (10) or the

simplified optimization problem (12) is two-fold. First, it

allows comparing the performance of different video encoders.

Second, once the optimal encoder is found, it finds the optimal

values for the encoded video rate and the channel encoder rate

that result in the optimal performance.

A. Analyzing Different Encoders

A major advantage of the analysis presented in the previous

sections is that it is independent of any specific platform or

encoder. To compare the performance of different encoders, we

need to explore the design space varying the values for noise

power, path loss, and EE,max of the system. To determine the

optimal encoder for a specific platform, we need to empirically

determine the energy-rate performance for the platform, and
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Fig. 8: SSIM vs Total Energy Budget for EE,max = 2.2mJ

the rate distortion performance for the type of video being

encoded.

Below we give example plots with different processors

resulting in different values for EE,max. First, we consider the

case where the video is originating at a relatively high powered

system with a maximum encoding energy cost of 0.5 J (i.e. the

energy to encode a frame on a desktop or laptop computer),

and is shown in Fig. 7. Even though the higher power system

is able to encode video faster, the limiting factor in this system

is the energy required to encode at any quality. Once encoding

is possible, the SNR required to achieve a “good” quality

received video is easily achieved. The second two situations

are shown in Fig. 8 and Fig. 9. These two plots are generated

with maximum encoding cost of 2.2 mJ (the energy to encode

a frame on a small sensor node) and 0.167 mJ respectively.

These values were chosen to represent smaller platforms that

have significantly lower processor energy requirements.

In all of these simulations, there is a tradeoff between energy

and received video quality. The CSV encoder results in a lower

maximum received video quality, but can generally achieve

that max quality at a much lower energy requirement than

either MJPEG or H.264. For example say we want to achieve

a 0.8 SSIM (“good” quality) with a maximum encoding cost

of 2.2 mJ, as shown in Fig. 8. We can see that the CSV

encoder crosses the 0.8 SSIM level very close to 0 mJ. The

MJPEG encoder crosses around 0.15 mJ while the H.264

encoder crosses at 1.25 mJ. This means that we can achieve

the same quality for much lower energy cost using CSV.

Clearly, the analysis is dependent on the noise power, path

loss, encoder implementation and other application specific

factors. For example, if the path loss is increased (or the noise



0 5 10 15 20 25 30 0 5 10 15
0.5

0.6

0.7

0.8

0.9

1

Energy Budget (mJ)

S
tr

u
c
tu

ra
l 
S

im
ila

ri
ty

 (
S

S
IM

)

SSIM vs Energy Budget for E
E,max

 = 0.167 mJ

 

 

H.264
CSV
MJPEG

Fig. 9: SSIM vs Total Energy Budget for EE,max = 0.167mJ

0 .25 0.5 .75 1 1.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Energy Budget (J)

S
tr

u
c
tu

ra
l 
S

im
ila

ri
ty

 (
S

S
IM

)

SSIM vs Power Budget with High Noise

 

 

H.264
CSV
MJPEG

Fig. 10: SSIM vs Total Energy Budget for EE,max = 0.5J
with 20dB Higher Noise Power

power is decreased) by 20 dB for the high power system shown

in Fig. 7, the results are reversed, as shown in Fig. 10.

To get a more general comparison, Fig. 11 shows the

achievable received video quality as the relative ratio of

maximum encoder energy to total energy budget is increased.

This allows us to view the optimal received video quality

without the dependency on a specific platform. Because of its

low encoding cost, CSV is able to achieve good video quality

even when the cost of encoding the video increases. Since

H.264 needs more energy to encode the video, it is unable to

produce a video when the relative cost of encoding becomes

too high.

VI. CONCLUSIONS AND FUTURE WORK

We have introduced a rate-energy-distortion analysis of

video transmission over wireless links with a limited energy

budget for low-complexity sensing devices. Three video en-
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ET

coders; H.264, MJPEG and CSV are modeled and compared in

realistic situations. It can be seen that CSV outperforms H.264

and MJPEG when the encoding energy is high compared to

the video transmission energy. However, when energy is not

as restricted, H.264 can achieve better performance because

of its better rate distortion performance.
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