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ABSTRACT Control and performance optimization of wireless networks of Unmanned Aerial Vehicles
(UAVs) require scalable approaches that go beyond architectures based on centralized network controllers.
At the same time, the performance of model-based optimization approaches is often limited by the accuracy
of the approximations and relaxations necessary to solve the UAV network control problem through
convex optimization or similar techniques, and by the accuracy of the channel network models used. To
address these challenges, this article introduces a new architectural framework to control and optimize
UAV networks based on Deep Reinforcement Learning (DRL). Furthermore, it proposes a virtualized,
‘ready-to-fly’ emulation environment to generate the extensive wireless data traces necessary to train
DRL algorithms, which are notoriously hard to generate and collect on battery-powered UAV networks.
The training environment integrates previously developed wireless protocol stacks for UAVs into the
CORE/EMANE emulation tool. Our ‘ready-to-fly’ virtual environment guarantees scalable collection of
high-fidelity wireless traces that can be used to train DRL agents. The proposed DRL architecture enables
distributed data-driven optimization (with up to 3.7x throughput improvement and 0.2x latency reduction
in reported experiments), facilitates network reconfiguration, and provides a scalable solution for large
UAV networks.

INDEX TERMS UAV networks, non-terrestrial netoworks, deep reinforcement learning, AI for wireless
networks, 6G.

I. INTRODUCTION

UNMANNED Aerial Vehicle (UAV) networks are
attracting the interest of the wireless community as

a ‘tool’ to provide flexible and on-demand network infras-
tructure [1], [2]. There are numerous applications for
networked UAVs, including providing airborne emergency
infrastructure in disaster scenarios [3], and off-the-grid,
on-demand network provisioning in civilian and military
scenarios [2], [4]–[8].
While fielding UAV networks can certainly enable

a broad range of new applications, operating a UAV
network and controlling (optimizing) its performance (e.g.,

throughput, latency, power consumption) presents sev-
eral fundamental challenges when compared to fixed
infrastructures.
Challenge (I) (Fully Wireless Access and Backhaul): UAV

networks are fully wireless (i.e., access and backhaul)
and their operations are extremely sensitive to spatially
and temporally varying topologies and dynamic RF envi-
ronments. Basic functionalities such as network formation
and point-to-point communications are often impaired by
unstable channel conditions and fragile network connectiv-
ity typical of infrastructure-less networked systems. This
problem is further exacerbated by interference conditions,
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spectrum availability, and routing operations, which sub-
ject multi-hop communications to high and unpredictable
delays.
Challenge (II) (Centralized Control Is Not Practical):

Traditional centralized network control approaches, which
are typical of fixed-backhaul Radio Access Networks
(RANs) applications, are in most cases unfeasible (or
unpractical) in fully wireless networked systems. Centralized
control approaches typically rely upon a centralized rep-
resentation of the network (often made possible by
collecting network state information over low-latency
optical fiber links) to solve a centralized optimization
problem and then distribute the solutions to the indi-
vidual network nodes over the same low-latency wires.
While centralized approaches have been applied with
some success to fixed wired infrastructure and fixed-
backhaul RAN systems [9], [10], they face two fundamental
challenges in infrastructure-less wireless networks (i.e.,
UAV networks, tactical ad hoc networks, mesh, sensor
networks, machine-to-machine, Internet-of-Things (IoT)), as
discussed below.
Challenge (II).i (NP-Hard Control Problems): Optimizing

a distributed wireless network where both access and back-
haul operate on the same frequency bands is non-trivial. The
centralized formulation of the control problem requires very
accurate modeling and, in most cases, is NP-hard because
of the non-linear coupling of the many variables involved.
The use of heuristics and approximation algorithms nec-
essary to solve the problem often results in sub-optimal
solutions. Furthermore, this optimality gap might grow fur-
ther in highly dynamic and unpredictable infrastructure-less
UAV networks, which may make model-based solutions too
inaccurate to be of practical relevance.
Challenge (II).ii (Stale Information, Ineffective Control):

Information retrieval in multi-hop infrastructures suffers from
inherent latency because of the need to relay information
over wireless links. The resulting latency may impact the
Age of Information (AoI) of the gathered data, which even-
tually results in stale network state information at the central
controller. Consequently, the centralized network state repre-
sentation might significantly differ from the actual network
state. This problem can negatively affect the control process
as the solutions computed are optimal with respect to the
stale collected information, and thus potentially inefficient
at actuation time. The latency also determines how quickly
solutions computed at the central controller are dispatched
to individual wireless nodes. By the time the computed
solutions are delivered to the wireless nodes, the network
state may have changed, thus making their implementation
ineffective.
To address Challenge (I) and Challenge (II), in this

paper, we propose the two following innovations: (1) We
envision Software-defined UAVs equipped with pro-
grammable radio front-ends and flight control units (FCU).
We leverage the real-time reconfigurability of motion, PHY,

and upper-layer operations to implement full-stack cross-
layer optimization. Reconfigurability of functionalities at
all layers of the protocol stack has already been demon-
strated to provide superior performance with respect to
systems based on inflexible hardware unable to adapt to
dynamic spectrum conditions [1]. (2) To control the oper-
ations of the network of UAVs, we propose a two-tier
architecture that addresses the challenges of distributed wire-
less system optimization mentioned above. We propose to
address the UAV network control problem via data-driven
optimization. We envision a multi-agent Deep Reinforcement
Learning (DRL) approach where multiple distributed agents
adapt their network parameters cooperatively to optimize
a chosen network utility function. With enough data and
training time, this approach guarantees optimal decision-
making of the agent’s networking and motion operation with
respect to the defined objective function, without requiring
explicit network modeling or a mathematical control problem
formulation.
Challenge (III) (UAV Network Data Trace Generation):

How to guarantee sufficient training data to the DRL agents
in UAV networks is the third challenge that we aim to
solve in this work. UAV networks are battery-powered
networks with time-constrained operations. Training a multi-
node UAV network through real-world experiments would
require excessive manpower and frequent battery charging,
ultimately reducing the benefits of data-driven optimization
approaches. While simulation environments are cost-effective
tools to produce large datasets, they often fail in capturing
typical real-time network dynamics or real-world systems
(e.g., retransmissions, fragmentation, and buffer delays) that
are hard or computationally expensive to model. On the other
hand, full-stack emulation tools (e.g., NS-3 [11]) provide a
more accurate representation of the real-time operations of
a UAV network. Unfortunately, these tools are so far mainly
focused on implementing a subset of common wireless stan-
dards (e.g., Wi-Fi, LTE, 5G NR), often abstracting a number
of low-level details, which make them still unsuitable to
accurately represent fully-reconfigurable wireless protocol
stacks for UAVs. Given these limitations, how to produce
training data that is representative of networked systems with
UAVs employing fully-reconfigurable wireless protocols
stacks is still an open problem. To address Challenge (III),
in this work we present (3) a DRL-based architecture that
integrates the Drone networking protocol stack we introduced
in [1] with the Common Open Research Emulator (CORE)
and the Extendable Mobile Ad-hoc Network Emulator
(EMANE) framework. This integration provides real-time
emulation capabilities for fully-configurable wireless (and
motion) protocol stacks for UAVs. We use this integrated
virtual environment to generate extensive data traces with
a high degree of realism and to scale up the training
process.
The main contributions of this work can be summarized

as follows:
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• A Two-Tier Architecture for UAV Network Control: We
propose a two-tier architecture consisting of a Control
Framework and a DRL Drone Programmable Protocol
Stack (DRL DPPS). The Network Operator (NO) uses
the Control Framework to dictate the desired behavior
of a distributed UAV network. Our solution automati-
cally generates a set of DRL agents (i.e., a set of policies
in the form of Neural Networks (NNs)) that are trained
in a virtual environment within the Control Framework.
Once trained, the NN configurations are tested and auto-
matically distributed to the individual network nodes,
where they will be used to control networking and
motion parameters in the DRL Drone Programmable
Protocol Stack (DRL DPPS). In this way, the individual
UAVs distributively implement the NO’s objective by
optimizing their network performance in real time. By
distributing the NN configuration once, and by enforc-
ing the desired network control policy at the edge nodes
of the network, this approach does not suffer from
stale information retrieval and delayed command typical
of centralized control systems. Moreover, the proposed
NN-based policies envision full-stack and cross-layer
optimization of flight and wireless networking param-
eters alike, thanks to the use of programmable motion
and RF front-ends.

• A Data-Driven Control Approach: We propose to solve
the UAV network control problem via DRL. We envi-
sion a multi-agent DRL scenario where each UAV is
a different agent, and collectively train complex UAV
fielding in a virtual environment for a specific flight
mission. Upon training completion, we test and dis-
tribute mission-tailored NN configurations to individual
UAVs. These use them to compute networking and
motion policies to achieve the NO’s desired network
behavior by adapting to the dynamic network con-
ditions. Compared to model-based optimization, our
data-driven approach addresses inaccurate modeling
formulation and optimization approximations. Unlike
optimization approaches, the DRL agents do not suffer
from optimization solver latency and can derive policies
with O(1) complexity.

• A ‘Ready-to-Fly’ Virtual Environment: To collect
extensive performance data for battery-powered UAV
networks, we develop a highly representative emu-
lation virtual environment. We revisit the Drone
Programmable Protocol Stack (DPPS) employed in [1]
and integrate it with Deep Reinforcement Learning fea-
tures and refer to it as DRL DPPS. We integrate the
DRL DPPS with the CORE/EMANE emulation tools to
obtain a high-fidelity virtual environment that captures
the motion, wireless channel, and higher-layer proto-
col stack interactions alike. We systematically employ
our ‘ready-to-fly’ virtual environment to collect exten-
sive high-fidelity network performance data. Ultimately,
this integration effort produces a highly representative
emulation environment that allows us to scale up our

FIGURE 1. Two-tier DRL-based architecture.

learning time and to train our DRL agents with a high
degree of realism.

Through a series of well-crafted experiments, we prove
the effectiveness of our control approach in optimizing
the desired network performance objectives (up to 3.7x
throughput gains and 0.2x latency reduction), network
reconfigurability to different control problems through re-
distribution of NN configurations, and scalability to large
UAV networks.
The rest of this article is structured as follows: Section II

and Section III introduce the Control Framework and the
DRL Drone Programmable Protocol Stack, respectively.
These are the two building blocks of the proposed archi-
tecture. In Section IV, we present the integration of the
DRL DPPS with the CORE/EMANE emulation tools that
is at the base of our data-driven optimization, while we
use Section V to present our UAV network optimization
performance assessment. Finally, we review the related work
in Section VI and draw the main conclusions in Section VII.

II. THE CONTROL FRAMEWORK
Figure 1 provides a top-level view of the two-tier archi-
tecture we propose in this work. This includes the Control
Framework and the Deep Reinforcement Learning Drone
Programmable Protocol Stack (DRL DPPS). The first
interfaces with the Network Operator, whose goal is to define
a flight mission and dictate the desired control objective of
the UAV network. The Control Framework integrates Deep
Reinforcement Learning algorithms in its Learning Engine
to train a multi-agent UAV network in an emulated environ-
ment (without the burden of planning real flight operations).
Once the training terminates, the Control Framework tests
and dispatches the objective-specific Neural Network (NN)
configurations to the DRL DPPS. The latter implements a
complete wireless protocol stack for UAVs inclusive of radio
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front-end and motion layer. The DRL DPPS’s tasks are to
support motion and networking functionalities that are vital
to the UAV network operations and to optimize precise con-
trol parameters (determined by the NO in the first place) to
achieve the NO’s dictated control objective. This last task is
performed by executing the pre-trained NN on board, whose
configurations are received from the Control Framework.
We see these two architectural components in detail in the
following sections.

A. THE CONTROL INTERFACE
The Control Framework interfaces with the Network
Operator (NO) through the Control Interface. The latter is
used to specify the desired flight mission and a UAV network
control objective such as “maximize the end-to-end through-
put”, “maximize network capacity”, “minimize the power
consumption” (see Step I in Fig. 1). The Interface is also
useful to specify what control parameters the NO wants
to optimize, and which ones should be kept fixed. These
include functionalities at any layer of the protocol stack (if
programmable) as well as motion operations alike. Examples
of possible control parameters include: “nodes’ locations
in the 3D space”, “transmission power”, and “forwarding
decisions”. When UAVs are equipped with programmable
radio front-ends (e.g., Software-defined Radios) Physical
Layer parameters such as “transmission power” and “car-
rier frequency” can be selected as a control parameter.
Additionally, the NO can specify node- or layer-specific
constraints, such as fixing a UAV’s runtime location or
limiting the maximum transmission power across all nodes.
Ultimately, through the Control Interface, the NO can design
a UAV network fielding for a specific mission and dictate a
specific network behavior. An example of a possible directive
is the following:

“The UAV network consists of 6 nodes. Two
UAVs are location-constrained and hover close
to two sensitive targets (sensing tasks). Two
other UAVs are location-constrained and hover
close to two base camps (reporting tasks), while
the remaining two nodes can hover freely and
can operate as relays. All the nodes can recon-
figure their transmission power as well as their
location in case they are not constrained. The
network control objective of the mission is to
maximize the aggregate end-to-end throughput
of the traffic going from sensing target 1 to
base camp 1 and from sensing target 2 to base
camp 2.”

(A)

These directives can be specified through a few lines of
code via the Control Interface as illustrated in Listing 1.
The NO specifies the number of UAVs involved in the field-
ing (N_uavs, Line 2), as well as sensing and reporting
areas (Lines 8-13). For example, sensing areas could cor-
respond to sensitive targets on the ground to be monitored
or recorded. Reporting areas could correspond to locations

Listing 1. Control interface example for quote (A).

where to offload the data, such as a base camp. The Control
Interface handles these inputs and creates a UAV network
configuration where one UAV is assigned to each of these
areas. In this case, UAV 1 is instructed to hover on the sens-
ing area 1, while UAV 2, UAV 3, and UAV 4 are assigned
to sensing area 2, report area 1, and report area 2, respec-
tively. UAV 5 and UAV 6 are free to hover. The NO also
specifies which UAV parameters can be controlled (Line 16)
and the network control objective, specified as to maximize
the aggregate throughput at the report areas (Line 29). This
input altogether is handled by the Control Interface by cre-
ating UAV objects and assigning control variables to them
(Lines 19-26). The constructed network configuration is used
in the Learning Engine to instantiate a virtual UAV network
and optimize the UAVs’ policy making so as to match the
NO’s desired control objective.

B. THE LEARNING ENGINE
Previous work has focused on tackling this class of problems
by first mathematically formulating the underlying network
control problem, and then solving it through constraint relax-
ation, decomposition theory, and convex optimization [1],
[12]–[14]. Indeed, these approaches guarantee scalability,
ease of reconfigurability, and operate in a distributed fash-
ion. However, their performance is bound to the accuracy
of the employed (motion, channel, switching, etc.) models
and to the quality of the performed mathematical relax-
ations necessary to deem the problem solvable through
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convex optimization. A key drawback is that the model-based
approaches fail to capture network operations such as retrans-
missions, fragmentation, buffer delays, MAC accesses, failed
sensor readings, and all other network architecture dynam-
ics that are hard (or computationally expensive) to model.
While the differences and inaccuracies between the model
and the actual implementation can be safely neglected for
small network instances, the negative effect of such inac-
curacies on network performance (or the model complexity,
and thus the solver convergence time) might increase when
considering more complex and large network instances. For
these reasons, in this work, we select a data-driven approach
and aim to solve the UAV network control problem through
Deep Reinforcement Learning (DRL).
Deep Reinforcement Learning (DRL)-based approaches

have progressively gained the attention of the wireless
community to address a variety of critical spectrum access
challenges, such as handover and power management in cellu-
lar networks [15], [16], dynamic spectrum access [17]–[20],
resource allocation/slicing/caching [21]–[25], modula-
tion/coding scheme selection [26], among others [27]. The
driver of this success story lies in the ability of DRL to
optimize the performance of a system by solving partially-
observable Markov Decision processes (POMDP)-based
problems without explicitly providing any details on the
model, which is instead learned by observing and exploring
the environment. Complex wireless network control problems
are no exception. Therefore, DRL provides an effective tool
to design control policies that optimize wireless networked
systems: (i) that are hard-to-model and hard-to-solve, whose
network control problem’ representation might excessively
differ from the final fielding and whose formulations need
to go through several approximations before being deemed
solvable; (ii) whose control decisions involve a set of
known network actions (e.g., UAV locations, TX power,
modulation, coding, medium access, routing, and transport
parameters) according to the current wireless environment
and optimization objective; (iii) where DRL training can
leverage extensive and representative datasets with detailed
information on network performance and conditions.
However, collecting extensive and representative

performance data is hard, especially in battery-powered
UAV networks. Limited flight time, the need to recharge
and replace batteries frequently, and flight location reg-
ulations pose significant challenges to the collection of
experimental data for the DRL training of UAV networks.
To overcome this limitation, we developed a Learning
Engine architecture that integrates the Drone Programmable
Protocol Stack (DPPS) developed in [1] and employed
in real UAV networks fielding with the Common Open
Research Emulator (CORE) and the Extendable Mobile
Ad-hoc Network Emulator (EMANE), a framework that
provides detailed radio models and mobile networks sce-
narios [28]. This integration allows for extensive full-stack
data collection in a representative emulated environment
that captures the dynamics of real network implementations.

This integrated environment is employed in the Learning
Engine to emulate the UAV network configured through
the Control Interface and to measure its performance for a
wide range of configuration parameters. Most importantly,
this integrated environment allows us to perform high-
fidelity UAV network performance data collection at scale.
This architectural system is at the base of the proposed
data-driven UAV network optimization.
In a nutshell, the training phase works as follows. The

Learning Engine instantiates a virtual UAV network based on
the configuration expressed by the NO through the Control
Interface in the Virtual Training Environment. As shown in
Listing 1, this includes the exact number of UAVs, their
flight mission (sensing and report areas), a list of control
parameters we can leverage to optimize the performance of
the fielding, and the overall network control objective (e.g.,
‘maximize end-to-end throughput’). In the Virtual Training
Environment’s UAV network, each UAV is an independent
agent employing a DRL Drone Programmable Protocol Stack
(DRL DPPS) to carry on motion and wireless stack opera-
tions. During the training phase, the DRL DPPS is interfaced
with the CORE/EMANE emulation environment which is
where motion and physical layer functionalities are exe-
cuted. As we will see in detail in Section III, the individual
agents’ DRL DPPS features a Neural Network (NN) for
policy decision-making. The NN input and output layers
are dimensioned according to the problem inputs and the
control variables in play. The NN is used by the agents to
perform cross-layer optimization by jointly deriving wire-
less and motion policies at once. In the Learning Engine,
we train the agents’ NNs for the specific mission. Thanks to
our virtual environment, we perform extensive performance
data collection and derive optimal policy making strate-
gies that optimize the desired control objective dictated by
the Network Operator (see Step II in Fig. 1). Finally, the
performance of the trained NNs are tested in the Virtual
Testing Environment (see Step III in Fig. 1), which inter-
acts with the CORE/EMANE emulation tool, similarly to
how the Virtual Training Environment does (see Step IV in
Fig. 1). The testing phase’s main task is to verify the quality
of the just-concluded training in terms of control objective
optimization before sending the network configurations to
the UAVs. We use Section IV to outline the components of
this integration effort and explain in detail how our training
process operates.

C. NEURAL NETWORK CONFIGURATIONS
Once the Virtual Testing Environment has trained and
tested the NNs, the Control Framework distributes the NN
Configurations to the individual network nodes (the agents)
over the wireless interface (see V in Fig. 1). Specifically,
each UAV receives a different NN Configuration. These con-
figurations are employed at the individual UAVs’ DRL Drone
Programmable Protocol Stack (DRL DPPS) throughout the
mission to optimize the network parameters in real-time.
Once dispatched, and differently from the emulated DRL
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DPPS, the NNs interact with hardware radio and motion
front-ends. This way, the agents use the received NN con-
figurations to adapt to the dynamic network conditions and to
achieve the overall network behavior defined by the Network
Operator. The Neural Network Configurations consist of the
DRL NN to be executed by the DRL DPPS and a configu-
ration file. The configuration file provides information about
(i) the dimension of the DRL NN; (ii) a mapping between
the input neurons of the DRL NN and the UAV network
state information; (iii) a mapping between the output neu-
rons of the DRL NN and the UAV’s control parameters.
Last, the NNs’ internal layers are dimensioned according to
the state space and the action space, as we will see in detail
in Section IV.
An example of NN configuration file for UAV ‘5’ in

quote (A) is provided in Listing 2. According to the example
reported in quote (A), each NN has 12 inputs, which are
mapped to specific UAV network variables: the location of
the 6 UAVs and their TX power. The outputs of each NN
are instead 15 (the cartesian product between the possible
control actions) and are mapped to the control variables of
the UAV of interest.For instance, in the case of UAV ‘5’,
the 15 NN’s output correspond to the combinations of the 5
allowed control actions for the UAV’s location (move north,
move east, move south, move west, and keep fixed) and the
3 allowed actions for the UAV’s TX power (increase TX
power, decrease TX power, and keep TX power fixed). The
first UAV’s 5’s NN’s output corresponds to a movement of
UAV 5 one step north and to an increase of its TX power;
the second NN’s output corresponds to a movement of UAV
5 one step east and also increases its TX power, and so on.
The nodes use this file to feed the DRL NN the correct
network state information, and at the same time to interpret
the outcomes of the DRL NN and translate them into actions.
Although EMANE makes it possible to specify the three-

dimensional location of each UAV, as well as the velocity
at which each UAV navigates within the emulated area, for
the sake of illustration we assume that all UAVs move at
the same velocity and hover at the same altitude.
Different from central control approaches, this procedure

does not suffer from stale information retrieval and control
latency. This because the Neural Network Configurations
are dispatched once. Thus allowing nodes to optimize
performance directly at the edge of the network and in
a distributed fashion. The many hours of emulated flight
and networking experiments carried on by the Learning
Engine help reduce the performance gap between model
and implementation typical of model-based approaches. In
Section IV-D, we will show how training procedures can be
accelerated via environment parallelization.
This approach facilitates reconfigurability of the network

and objectives. Specifically, to change the behavior of a
network, it is sufficient to define a new control objective.
The Control Framework will take care of re-training and dis-
tributing new Neural Network Configurations. Moreover, it
is worth mentioning that previously trained Neural Network

Listing 2. DRL NN configuration file for UAV 5 in quote (A).

Configurations can be stored locally and fetched on-demand
for later uses, which eliminates the problem of re-training the
NNs for common and previously solved control problems.

III. THE DRL DRONE PROGRAMMABLE PROTOCOL
STACK
An overview of the DRL Drone Programmable Protocol
Stack (DRL DPPS) architecture is reported in Fig. 2. The
DRL DPPS is used at individual UAVs to carry our motion
and wireless operations at all layers of the protocol stack,
as well as in the Control Framework’s Learning Engine
to train and test the NN policy making for specific mis-
sion objectives. In the latter, the Physical layer and Motion
operations are performed by the virtualized CORE/EMANE
environment, while in the former these operations are imple-
mented through hardware motion and RF front-end. By
employing the whole DRL DPPS architecture in the Control
Framework’s Learning Engine (with the exclusion of the
hardware front-ends), we obtain a realistic emulation envi-
ronment which is key to our high-fidelity performance data
collection and effective DRL training. With this premise in
mind, in this section, we describe the DRL DPPS design
choices and implementation details. Furthermore, the details
on how the DRL DPPS is interfaced with CORE/EMANE
and employed in the Learning Engine are discussed in
Section IV.
To implement the wireless protocol stack of the UAV

nodes we start from the Drone Programmable Protocol Stack
presented in [1]. This architecture concerns three planes:
the Decision plane, the Register plane, and the Data plane.
We revisit [1]’s three-plane design by replacing the deci-
sion plane with the new DRL plane, yet maintaining its
architectural functionality; to optimize the networking and
motion control parameters at once in a cross-layer fashion.
We call this new architecture the DRL Drone Programmable
Protocol Stack (DRL DPPS). Here we summarize the three
planes’ functionalities and the interactions with one another,
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FIGURE 2. Three-plane DRL Drone Programmable Protocol Stack architectural design.

highlighting the main differences with the implementations
in [1].

A. DRL PLANE
Upon receiving the Neural Network configurations from
the Control Framework, each UAV (agent) stores it in the
DRL DPPS Decision Plane. The DRL Plane is in charge
of determining the optimal motion and networking poli-
cies in real time, by dynamically adapting to the changing
network conditions and making decisions on up-to-date UAV
network state information. To derive mission-tailored policy
optimization at every given time, the DRL plane executes
the NN by feeding its inputs and interpreting its outputs
according to the received configuration file. In this work,
we exploit the simplicity of a widely adopted DRL vari-
ant called Q-learning, which aims at optimizing an estimate
(called Q function) of the objective function we are trying to
maximize (i.e., the NO’s objective). The NN employed by
the DRL is a Deep Q-Network (DQN) which uses stochastic
gradient descent (SGD) to approximate the Q-function. We
cover these design choices in detail in Section IV. What is
most important from an architectural standpoint is that the
adopted DRL approach approximates a complex optimization
function by means of a relatively simple Neural Network
that can be ‘probed’ in real time with O(1) complexity.
This design allows for rapid calculation of new policies
which can be implemented at the Data Plane with negli-
gible latency which, instead, would be hard to avoid when
using traditional mathematical solvers.

B. DATA PLANE
Similar to [1], the Data Plane is responsible for imple-
menting the computed optimal policies by reconfiguring
motion control and networking stack parameters. To do
so, this plane implements a programmable protocol stack
spanning all networking layers with the addition of the
motion layer (‘Layer 0’.) The protocol stack is fully pro-
grammable in software and exposes control APIs to tune
key control parameters at all layers of the stack, including
MAC, Physical, and Motion. This is possible thanks to the
adoption of open-source flight control firmware (we here
use Ardupilot [29]) and Software-defined Radios (SDRs) as

radio front-end [30]. These are programmable hardware that
implements the Physical and MAC layer functionalities in
software, and make them controllable in real-time by the
OS [31]. In this way, the Data Plane provides the necessary
tools to prototype cross-layer control algorithms spanning
multiple (potentially all) layers of the protocols stack—plus
motion—all at once.
The control interface between the Data Plane and the

DRL Plane is dual-purpose and operates as follows: (i) the
DRL Plane’s NN can retrieve network state information from
the Data Plane through the Register Plane (e.g., UAVs’
locations, UAVs’ TX power, etc.) to determine the current
UAV network state within the DRL’s defined state space;
(ii) the Data Plane can configure the networking and motion
parameters of the programmable protocol stack following the
optimized policies suggested by the DRL Planes’ NN (e.g.,
adopt a new ‘UAV location’ in space, decrease the node’s
‘TX power’, etc.) The latest optimal policies are stored in
the Register Plane.

When the DRL DPPS is installed on the UAVs (see
Fig. 2), the lower layers of the programmable protocol
stack (Physical and Motion) interface with the radio and
motion front-ends hardware through the software-defined
radio (i.e., USRP hardware driver (UHD)) and the flight
controller (i.e., Ardupilot) drivers. These in turn control the
hardware through the universal serial bus (USB 3.0) and
electronic speed control (ESC) interfaces, as illustrated in
Fig. 2. When the DRL DPPS is instantiated in the Learning
Engine (which we will describe later in detail using Fig. 3),
these two layers do not drive external hardware but instead
interface with CORE/EMANE which takes care of emulat-
ing the motion and physical layer functionalities. Thanks
to this architectural design, the Data Plane guarantees the
use of the same programmable protocol stack architecture
(and its real-time operations) whether we interface the DRL
DPPS with real hardware or the CORE/EMANE emulation
environment. This is the architectural innovation at the core
of our extensive UAV network data collection.

C. REGISTER PLANE
The Register Plane acts as a middleware (i) allowing the
DRL Plane to retrieve fresh network state information from
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the Data Plane; and (ii) making the computed optimal poli-
cies available to the Data Plane through a set of dedicated
Look Up Tables (LUTs). Each protocol stack layer has a
dedicated Network State LUT in the Register Plane where
to store all the layer-related network state parameters that
are used to represent the DRL state space (e.g., the neighbor-
ing UAV locations, the neighboring nodes’ TX power, etc.).
Conversely, dynamically re-calculated at regular intervals,
optimal policies are stored in a similar way in dedicated
Policy LUTs, one per control variable of interest (e.g.,
optimal UAV location, optimal TX power, etc.)

IV. A READY-TO-FLY VIRTUAL ENVIRONMENT
Among the main contributions of this work is the integra-
tion of the DRL DPPS presented in Section III with the
CORE/EMANE emulation tools. The goal of this integration
effort is two-fold:

(i) to develop a high-fidelity emulation environment
capturing both real-time wireless channel phenom-
ena (e.g., path-loss, delay spread, interference) and
networking operations at all layers of the protocol stack
(e.g., packetization, segmentation, re-transmissions,
traffic bursts, processing delay) which are hard or
expensive to model and can only be approximated in
simulations;

(ii) to provide researchers with a reconfigurable emulation
tool to design different UAV network configurations
and topologies and collect high-fidelity UAV network
performance data at scale. This effort serves as an
effective alternative to the collection of experimental
performance data for battery-powered UAV networks
that is both time- and resource-expensive. Collecting
a high volume of UAV network performance data
is the foundation of the development of data-driven
optimization.

At the same time, this emulation tool can be employed to test
UAV network configurations before experimental implemen-
tation. These two operations are performed in the Control
Framework’s Learning Engine, in the Virtual Training
Environment and Virtual Testing Environment, respectively.
In the following sections, we provide a detailed descrip-
tion of the development of our ready-to-flight emulation
environment.

A. INTEGRATING THE DRL DPPS WITH CORE/EMANE
EMANE is an open-source wireless network emulator
developed and maintained by U.S. Naval Research Labs
(NRL) and Adjacent Link LLC [28]. EMANE provides a
complete and flexible emulation of both physical and MAC
layers network modules, as well as providing functionalities
to control network topology and node location. Additionally,
EMANE embeds an Over-The-Air (OTA) channel emula-
tor component, which allows the configuration of wireless
medium propagation characteristics such as fast and slow
fading, delay spread, and interference patterns among others.

CORE instead provides high-level functionalities like virtual-
ization, network bridge construction, and APIs to instantiate
EMANE nodes and conveniently setup Location and Physical
layer parameters in EMANE. Importantly, CORE exposes
controls to EMANE’s parameters (e.g., nodes’ location,
transmission powers) via a set of APIs configurable in real
time.
This way, CORE/EMANE represents a full-fledged and

comprehensive emulation environment for designing and
performing wireless network experiments with diverse
topologies, RF conditions, and mobility patterns. The
reader is referred to [28], [32] for further details on the
CORE/EMANE emulation environments architecture.
As introduced in Section III, the DRL DPPS implements

a full protocol stack for UAVs. This performs the wireless
stack operations from the Physical to the Application layer,
with the addition of flight control functionalities carried out
by the Motion layer. By integrating the DRL DPPS and
CORE/EMANE emulator, we obtain a full-stack emulation
environment that is representative not only of the channel
propagation dynamics, but also of the protocol stack opera-
tions internal to individual wireless UAVs. This integration
is extremely important as it provides a unique framework
where UAV networking functionalities are reconfigurable in
real time and their performance can be easily measured. This
innovation is systematically leveraged in this work to per-
form an extensive UAV network performance data collection
that is at the base of the proposed data-driven optimization.
The architectural integration between the DRL DPPS and

CORE/EMANE is illustrated in Fig. 3. The same architec-
ture is used in the Control Framework’s Learning Engine
both by the Virtual Training Environment and by the Virtual
Testing Environment. The integration between the DRL
DPPS and CORE/EMANE implements the following three
functionalities:

(i) Data Communication: The MAC layer (Layer 2)
implemented in the DRL DPPS’s Data plane com-
municates with the Physical Layer (Layer 1) emulated
in CORE/EMANE. This integration is bidirectional. It
guaranteed that the Data Plane’s MAC Layer’s data is
passed down to the Physical Layer module in transmis-
sion, and that the CORE/EMANE’s Physical Layer’s
data is passed up to the Data Plane’s MAC layer
in reception. These two operations are implemented
through Python sockets which guarantee in-time data
delivery and data integrity and happen simultaneously,
in a transceiver fashion.

(ii) Network State Observation: Similar to the other DRL
DPPS’s layers, the network state information associ-
ated with the Physical and Motion layers emulated
in CORE/EMANE is observable by the DRL DPPS’s
Register Plane. This information includes neighbor-
ing UAVs’ locations and their transmission powers,
for example. Different from the L2+ layers, L0, and
L1 layers do not execute in the same binary as the
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FIGURE 3. Learning Engine architecture.

FIGURE 4. OS Architecture of the Virtual Training Environment.

Register Plane, and the information passing is thus
implemented through CORE’s Python APIs.

(iii) Motion and Network Parameters Control: Similarly,
the control actions operated by the DRL DPPS’s DRL
Plane must be relayed to the Physical and Motion layer
emulated in EMANE. We employ CORE’s Python
APIs between the two environments for this task as
well.

From an Operating System (OS) architectural stand-
point, we employ Linux containers to instantiate our virtual
Training (and Testing) Environment, as well as the individ-
ual UAVs residing within the environment. An illustration
of the OS architectural organization of our virtual UAV
network is provided in Fig. 4. In our implementation, we use
a nested container architecture where the Virtual Training
Environment is instantiated in a Linux docker container.
This, in turn, hosts a set of Linux containers, i.e., the CORE
containers (one per UAV). Each CORE container operates
both the EMANE Motion and Physical layers and the DRL
DPPS implementing MAC’s and higher layers’ functionali-
ties. Once instantiated, nodes communicate with each other
at the CORE level through the CORE Control Bridge and
their CORE CTRL interface [28], [32]. At the EMANE level,
nodes interact via the over the air (OTA) wireless channel

through the NET EMANE interface as reported in Fig. 3.
As per the individual UAVs, each CORE container creates
one EMANE process and one DRL DPPS process. The
two intra-container processes communicate with each other
through Python sockets. Specifically, the data-flow stream-
ing between MAC and Physical layer is handled through
low-latency UDP sockets, while control and network state
information are sent and retrieved through dedicated CORE’s
Python APIs to EMANE functionalities.

B. BACKGROUND ON DEEP REINFORCEMENT
LEARNING
The objective of this section is to provide useful background
knowledge on the specific data-driven approach that we use
in this work to solve the problem of controlling a distributed
UAV network.
DRL is a well-established data-driven approach with foun-

dations in Reinforcement Learning (RL). The latter is a class
of machine learning algorithms where an agent iteratively
interacts with an environment to learn the optimal control
policy that maximizes the desired reward. Different from
supervised learning approaches, in RL the agent has no ini-
tial knowledge of which actions are more beneficial. Instead,
this one explores the environment, tries several actions in
different environment states, and eventually learns the best
policy through experience. Let us here introduce some con-
cepts and RL notations that we will use in the following
sections.

• Agent: The entity that observes the environment and
takes actions accordingly, aiming at maximizing a given
reward function;

• Environment: The physical (or emulated) world with
which the agent interacts;

• State space S: Representing all of the possible states
s ∈ S of the environment;

• Action space A: All feasible actions a ∈ A that can be
taken by the agent;
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• Reward r: A metric that measures the effectiveness
and/or success of an action.

In RL, the goal of the agent is to maximize the discounted
future reward in (1) by selecting actions according to the
observed states from the environment.

Rt =
T∑

t′=t
γ t

′−trt′ . (1)

where γ ∈ [0, 1] is a discount factor used to weigh instan-
taneous and future rewards. One effective algorithm to
maximize the discounted future reward and solve the pol-
icy optimization problem is Q-learning, where the agent is
trained to compute a policy that results in the selection of
the optimal action-value pairs that maximize the so-called
Q-values. These represent the expected discounted future
reward and are computed by using the following equation

Q∗(s, a) = max
π

E[Rt|st = s, at = a, π ], (2)

where π : S → A is the policy that maps the observed state
st to selected action at. The optimal Q-values are computed
by solving the Bellman’s equation, and can be represented
as

Q∗(s, a) = Es′∼S
[
r + γ max

a′ Q∗(s′, a′)|s, a
]
, (3)

where s′ and a′ are the state and action in the next time-step.
Although in several cases it is possible to solve (3) directly,
the same task becomes challenging when dealing with a
large number of states which usually leads to the so-called
state explosion. That is, the state space S is so large that
the agent cannot explore all of it, and solving (3) becomes
time-consuming. To overcome this issue, a typical approach
consists of approximating the Q-values rather than comput-
ing them directly. In DRL, this approximation is achieved
by using a Deep Neural Network (DNN) (well-known for
being a universal function approximator) with weights θ .
Specifically, the Q-values in (3) are estimated as

Q(s, a; θ) ≈ Q∗(s, a). (4)

and the DNN used to approximate the Q-vales Q∗ is referred
to as the Deep Q-network (DQN) [33].
In this paper, we will focus on the use of double-DQNs

for autonomous control of UAV networks. Specifically, we
consider this specific class of DQNs as they demonstrated
to be effective in stabilizing the training phase and avoid
over-estimations of the Q-values in the first stages of the
training process. As we will discuss in Section IV-D, this is a
critical aspect in data-driven optimization of UAV networks.
To optimize its policy making, an agent stores experiences in
the form of tuples (s, a, r, s′) in a replay buffer. The buffer is
used during the training phase to randomly extract batches of
past experiences and use them to compute the DQN weights
θM by minimizing the loss function (5) via SGD.

L(θM) =
[
r + γ max

a′ Q
(
s′, a′; θT

)] − Q
(
s′, a′; θM

)
(5)

In double-DQN, the decision making and the policy
optimization are performed by two separate networks
to prevent over- (or under-) estimations of Q-values.
Specifically, a first DQN, called main network, is in charge
of learning the Q-values at every iteration by updating the
weights θM via SGD. A second DQN, called target network,
is instead used to compute the actions to take, while its
weights θT are periodically copied from the main network
every τ training epochs (copy period). Moreover, we con-
sider an ε-greedy strategy where the action taken by the DRL
agent depends on the ε ∈ [0, 1] parameter. Specifically, with
probability ε, the action taken by the agent corresponds to
that computed by the DQN. Otherwise, it is randomly drawn
from the action space A with probability 1 − ε.

One of the possible extensions of DRL consists of con-
sidering multiple agents cooperating and interacting with
each other to maximize a shared reward function. This
class of problems is often referred to as multi-agent DRL
and involves several agents independently interacting with a
shared environment. In multi-agent DRL, each agent has
a dedicated double-DQN which is updated according to
their own experience of the environment. Although this
class of problems has several variations (e.g., competitive
agents, partial observability of the environment, heteroge-
neous rewards), in this work we focus on the case where all
agents cooperate to maximize a shared reward in a distributed
fashion. The reader is referred to [34] and [35] for a com-
prehensive survey on multi-agent DRL and its applications,
and on cooperative wireless networks of UAVs, respectively.

C. UAV NETWORK CONTROL PROBLEM AS
MULTI-AGENT DRL
In this work, we model the control problem of a Network
Operator (NO) willing to dictate the behavior of a dis-
tributed network of UAVs as a multi-agent DRL employing
the Q-learning techniques introduced in the previous sec-
tion. As discussed in the previous sections, DRL provides a
framework where a set of agents learn to react to changing
environmental conditions by exchanging information, identi-
fying the state of the environment, and adapting their policies
to the current environment state. Similarly, the nodes of a dis-
tributed UAV network learn to react to the changing network
conditions by recognizing the network state, exchanging
information with their neighbors, and adapting their wireless
networking and motion policies accordingly. As each UAV
has full control of its motion and on-board wireless stack
operations, we model each UAV as an independent agent in
our DRL problem definition.
From a DRL perspective, the Control Framework’s

Learning Engine constructs the Virtual Training Environment
based on the NO’s input where:

(i) each UAV is represented as an independent agent fea-
turing the DRL DPPS introduced in Section III, and
interacting with the CORE/EMANE virtual environ-
ment as explained in Section IV;
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FIGURE 5. Multi-agent DRL representation of the UAV network control problem.

(ii) the environment is represented by the multi-hop UAV
network operations where source nodes generate data
to be delivered to destination nodes while the rest of
the network operates traffic forwarding tasks;

(iii) the agent’s action space involves the control param-
eters specified by the NO spanning both networking
and mobility domains. It is also worth noticing that in
the considered multi-agent scenarios, different agents
have different action spaces according to their role in
the mission. For example, location-constrained UAVs
feature a smaller action space as they can only adapt
their networking parameters.

(iv) the state space is also discrete and defined as the set
of values of the control parameters of the UAVs in the
network (e.g., if this is the UAV’s location only, the
set of all UAV locations);

(v) the reward is UAV network-wide and defined accord-
ing to the network control objective specified by the
NO. The agents are collaborative and all work to obtain
the highest reward possible.

In our modeling, we do not assume the distributed agents
have global knowledge about the environment and the state
space. On the contrary, the agents (UAVs) can commu-
nicate with their neighbors or other UAVs belonging to
the same multi-hop session. Therefore, UAVs can observe
and share local state information only. In this way, we
model our distributed UAV network control problem as a
partially-observable multi-agent DRL problem.
An illustration of the multi-agent DRL problem formula-

tion is reported in Fig. 5. Upon receiving NO’s input, the
Learning Engine instantiates a virtual representation of the
UAV network scenario as described in Section IV where dif-
ferent UAVs interact with each other via the EMANE OTA
Wireless Channel. This representation is used for the multi-
agent DRL Training. In this phase, the agents iteratively

explore the environment, and at each iteration t ∈ T they
learn to adapt their policies to the environment to maximize
the common utility function. At each given training step t,
each DRL agent i observes the state sti and uses the target
DQN in its DRL Plane (Step I) to independently take an
action ati. These decisions are made following the ε-greedy
strategy we described in Section IV-B and are based on
the observed network state at time t, i.e., sti. It is worth
recalling that each action can involve multiple control vari-
ables at several layers of the wireless stack and include the
UAV’s motion capabilities (e.g., change location and increase
transmission power).
Upon taking action ati, node i measures the network

performance rti and the new network state st+1
i (Step II).

After each iteration, the tuple (sti, a
t
i, r

t
i, s

t+1
i ) is added to the

replay buffer of agent i which is used to train the main DQN
(Step III). Then, the weights of the main network are copied
to the target DQN every τ iterations (Step IV). Within the
DRL DPPS, the actions, observations, and rewards follow
the logical flow described in Section III, while agents shar-
ing traffic or operating close-by share policy information at
every step t.
In conclusion, by training our multi-agent DRL represen-

tation of the UAV network, the agents learn how to adapt
their policies to maximize the UAV network performance
dictated by the NO in a distributed fashion. The training
procedure terminates when the DQN converges and the loss
function plateaus to a constant value (or no further improve-
ments are observed). Finally, the trained Neural Network
Configurations are evaluated in Virtual Testing Environment
to assess their performance and are ready to be dispatched.
We now provide an example of how the NO’s directives

introduced earlier in the paper (see Section II, quote (A))
are formulated into a multi-agent DRL problem by the
Training Engine. Six agents (i = 1, 2, . . . , 6) are instantiated
in our virtual environment which also implements the field-
ing location and wireless scenario in EMANE. Each agent
features a DRL DPPS and interacts with the other agents
over EMANE’s OTA wireless channel. Following the NO’s
directive, the agents control each UAV’s location in space
and Physical layer TX power. We consider a discrete action
space A = L0 ×L1, where L1 = {N,E, S,W,U,D, _} rep-
resents the six possible directions (i.e., the cardinal points,
up, and down) each UAV can select as well as a ‘stay put’
action, and L1 = {−1, _, 1} represents a step decrease, main-
tain, and a step increase of the wireless transmission power,
respectively. Four of the agents are location-constrained,
which means that their NN will not perform location policy
optimization (i.e., A = ∅ × L1 = L1) and the two traffic
patterns are specified as flowing from node 1 to node 3
and from node 4 to node 6. Accordingly, the state space
of the environment is defined as S = S1 × S2 × · · · × S6,
where Si represents the location and transmission power of
agent i. At each step t of the training, the agents operate as
follows: (i) the DRL Plane’s NN of each agent i operates
policy optimization for the UAV’s location in space and
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transmission power by taking action ati = {LOCti,TX_POWti}
if location unconstrained, ati = {TX_POWti} otherwise; (ii) the
DRL DPPS’s Register Plane collects observations from the
virtual environment in the form of state and reward; (iii) the
agent measures the received reward rti and observes the new
state st+1

i ; (iv) the experience (sti, a
t
i, r

t
i, s

t+1
i ) is stored in the

Replay Buffer and will be used to minimize the loss function
in (5) of the main DQN via SGD; (v) the new state st+1

i is
used by the target DQN to compute the next action at+1

i ;
(vi) every τ training iterations, the knowledge of the main
DQN gets transferred to the target DQN.

D. SCALABILITY AND ROBUSTNESS AGAINST
STOCHASTIC EFFECTS
Different from other wireless applications (RAN, Wi-
Fi, etc.), measuring the network-wide performance of an
infrastructure-less wireless network presents some unique
challenges.

I) Slow Start: Due to the multi-hop nature of UAV
networks, the first time instants after instantiating the
network might be characterized by the lack of trans-
mission activities in some parts of the network. Indeed,
to relay data to the next hop, some nodes must first wait
to receive packets from previous hops. However, due
to transmission and processing latency introduced by
multi-hop relaying, packets generated at source nodes
are not immediately available at intermediate nodes.
This generates a transient phase where not all nodes
of the network are operative at once and performance
measurements might fluctuate significantly. Thus, test-
ing the performance of a multi-hop wireless network
at regime asks for a measurement period longer than
the transient phase;

II) Slow Transitions: Differently from fixed-backhaul
wireless networks and single-hop wireless systems,
infrastructure-less wireless networks maintain memory
of previous states and network parameters’ configu-
rations. For example, the effect of a single control
action (e.g., a change in UAV’s location and TX
power) on a high-level network performance metric
(e.g., end-to-end network throughput) is not immedi-
ately measurable. Similar to the previous point the
traffic needs to propagate through the whole network
before the performance can stabilize to the new
network configuration. Accordingly, performance mea-
surements need to be long enough to allow the network
performance to stabilize to the new configuration.

III) Stochastic Performance Metrics: when measuring
high-layer performance metrics such as end-to-end
throughput on a multi-hop wireless network, one
might notice a stochastic behavior of the measured
performance. This is caused by the stochastic nature
of the wireless channel, medium access techniques,
data availability, and—more generally—lower layer
protocol stack operations. This effect is exacerbated
by the number of wireless hops the end-to-end data

FIGURE 6. Performance data distribution for 50 experiments on a 6-UAV network.

flow traverses. The data distribution of the end-to-end
throughput (measured in packets per second) for a 6-
UAV network and 50 identical-configuration runs is
reported in Fig. 6. It reports an average of 40 pkts/s
with variance equal to 68 as well as large outliers (in
the order of 200 pkts/s). To obtain a representative
performance measure of a given network configura-
tion, it is therefore important to perform measures in
batch and average out the outliers.

These aspects combined pose severe challenges to the collec-
tion of extensive and representative performance data which
is at the foundation of any data-driven approach. If left
unaddressed, these issues result in excessively long data col-
lection periods, even when performed in a virtual training
environment.
To overcome the above issues, we have developed a

training pipeline that implements parallelization and out-
lier suppression. To collect the performance metric of a
given network configuration, issue I) imposes a measurement
time long enough to allow nodes relaying traffic to receive
data. Indeed, such measurement time can be evaluated in
our virtual environment per individual network fielding. For
example, we have measured that the duration of such an
interval is 5 seconds for network instances with less than
20 UAVs. As mentioned before, our emulation environment
aims at mimicking an actual UAV fielding and, thus, exe-
cutes in real time. This means that 1 second in the emulated
environment corresponds to 1 second in the real world. To
address the long training time resulting from this feature, we
designed our ’ready-to-fly virtual environment to execute a
set of K emulated environments in parallel, each running on
a dedicated Linux docker container. By instantiating K inde-
pendent parallel environments, our agents perform K actions.
Therefore, they collect K rewards and K observations, this
way generating K times more performance data than single-
container executions effectively cutting the exploration time
by a factor K. These parallel environments are non-identical
and evolve independently over the iterations T , thus repre-
senting K independent learning threads for the agents. To
tackle issue II), we leveraged the reconfiguration capabilities
of our virtual emulation environment and reset the network
state upon any action. In this way, we remove any residual
memory of previous network configurations, and are able to
assess uniquely the performance of the actions taken at a
given time instant with no memory of the previous ones.
While parallel executions speed up the training time by a

factor K they are not sufficient to address issue III) which
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FIGURE 7. Architectural design of parallel training.

causes metric outliers that could result in overestimation
(or underestimation) of Q-values and affect the learning
performance of the DRL agents. To alleviate this problem,
we leverage again parallel virtual executions by instantiating
clusters of NS environments for each of the K containers,
for a total of NS × K parallel environments as shown in
Fig. 7. Within each cluster, the instantiated environments
are identical copies of each other (i.e., they share the same
RF conditions, topology, and network parameters), and are
used to compute average performance metrics that mitigate
the impact of outliers. As shown in Fig. 7, our framework is
designed to combine the rewards coming from each cluster
and to remove outliers which stabilizes the training procedure
(i.e., the approximation of the Q-values). Architecturally,
each environment is instantiated through a Linux docker con-
tainer. Our ’ready-to-fly virtual environment implementation
thus employs NS × K × |agents| Linux containers executing
in parallel. This feature is paramount to ensure scalability
with respect to the number of agents, states, and actions,
which could severely prolong the training phase. Indeed,
our parallel training architecture allows the exploration of K
environment instances at once. This results in faster explo-
ration time, and provides a scalable training approach for
DRL-based solutions.
In conclusion, the presented ‘ready-to-fly’ virtual envi-

ronment architecture allows us to perform an extensive and
representative experimental data collection for multi-hop
UAV networks without compromising the duration of our
training.

V. EVALUATION
In this section, we test the performance of our DRL-based
optimization on a series of fielding scenarios and control
objectives. Here, we report the testing performance of the
trained DRL agents as measured in the Control Framework’s

Virtual Testing Environment. Specifically, we consider the
following three control schemes:

• No Control (NC): In this case, all UAVs operate
under static network and motion parameters. They use
the initial fielding location and wireless networking
parameters without optimizing them throughout the
experiments. No Control is a non-optimized control
scheme and serves as a baseline for our evaluation.

• Best Response (BR): UAVs optimize their motion and
wireless networking parameters individually with nei-
ther cooperation with other nodes nor considering the
cross-layer coupling between protocol stack variables.
For example, under this control scheme, UAV loca-
tion and transmission power are optimized individually
without considering the effects of these decisions on
the performance of other protocol layers or nodes on
the channel. This approach has proved to be limiting
in wireless networked systems and serves as a second
baseline in our evaluation.

• Deep-Reinforcement Learning (DRL): This is our
proposed approach. In DRL, each UAV is controlled
by an individual DRL agent that uses a pre-trained NN
to implement cross-layer motion and networking policy
optimization. Furthermore, different agents exchange
information with one another in a coordinated yet
distributed fashion.

For each UAV network configuration, we evaluate the
performance of the aforementioned three control schemes
over 100 different initial UAV fielding configurations.
Moreover, for each fielding, we perform 10 independent runs,
and report the average performance results upon convergence
of the agents to a stable operational point.
Experimental Configuration: In all of our experiments, we

consider UDP transport layer protocol with 256 Byte long
packets, single-path routing scheme, and frequency division
multiplexing MAC. At the Physical layer, wireless commu-
nications occur in the 2.4 GHz ISM band with operational
bandwidth of 1MHz. From a DRL optimization perspective,
we consider optimization intervals t of 5 seconds, Physical
layer’s TX power step size of 5 dBm, and we constrain the
UAVs’ relocation range to a 40 000 m2 box with step size
equal to 20 meters, unless otherwise specified. As RF anten-
nas employed for UAV communications are usually dipole
modules mounted on the upper side of the main frame, in
this work we only consider UAV mobility on the latitude
and longitude planes. This allows us to simplify the emulated
signal propagation patterns and avoid modeling frame shad-
owing, blockage, and reflection effects which incur when
wireless UAV fly at different altitudes.

A. EFFECTIVENESS
We start our analysis by assessing the effectiveness of our
DRL-based control scheme in addressing the control problem
defined in quote A. First, we assess the performance of
the network when the two relays are allowed to control
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FIGURE 8. Average performance results for Max-sum-throughput and different
control schemes (100 experiments) under 6 UAVs network.

their location only. The average performance results for NC,
BR, and DRL when employing only UAV’s location control
(DRL LOC) are reported in Fig. 8. At the top of the figure,
we show the cumulative distribution function (CDF) of the
measured end-to-end network throughput, i.e., the objective
function specified by the NO, for different control schemes.
The box-plots in the bottom part of the figure instead report
the average values of those experiments. The proposed DRL-
based control outperforms NC and BR, achieving 1.8x and
3.3x better performance.

B. FLEXIBILITY
Now, we analyze how the optimization performance changes
when we increase the degrees of freedom of the DRL
agent by extending the control action space. Thanks to the
flexibility of our framework, the NO can select among a
wide number of UAV control parameters and we can easily
carry out this evaluation. We extend the control parame-
ters to include UAVs’ Physical layer TX power together
with UAVs’ location. The performance of this new control
problem is reported in Fig. 8. Over 100 testing experiments,
the proposed DRL-based control overcomes NC and BR,
achieving 3.2x and 5.5x end-to-end network throughput. By
extending the range of controls each agent can leverage, we
add a degree of freedom to the solution space. This results
in a better optimal operational point for the UAV network
which reports an increase in performance of 1.7x on the case
with location control only.
Figure 9 illustrates the DRL optimization convergence

dynamics for a single experiment for the network scenario
in Quote (A) processed in Listing 1. The top and bottom-left
parts of the figure show the UAVs’ location and UAVs’ TX
power over time, respectively. The bottom-right part of the
figure reports the performance metric for this experiment,
that is, the sum of the two end-to-end sessions’ throughput.
From the top part of the figure, we notice how the UAVs’
locations are optimized by the DRL agents and go unchanged
after the 10-th iteration, while, from the bottom-left part of

FIGURE 9. A single-run experiment for Max-sum-throughput with 6 UAVs.

FIGURE 10. Average performance results for Max-sum-throughput and different
control schemes (100 experiments) under 8 UAVs network.

the figure, we notice that the TX Powers already stabilized
at the 4-th iteration. When the UAVs’ parameters operational
points stabilize, the UAV network can be deemed to have
reached convergence and have achieved the NO’s desired
behavior (apart from small fluctuations at regime due to the
stochastic nature of the wireless environment).

C. SCALABILITY
Here we assess the scalability performance of our data-
driven optimization approach on larger-scale scenarios than
that considered in Quote (A). In Fig. 10, we report the
optimization performance for an 8-UAV network with 2 sens-
ing areas and 2 report areas (control objective is again to
maximize the sum of the two end-to-end sessions’ throughput
and the controls are again UAVs’ locations and TX power).
For this mission, 4 UAVs are tied to sensing and reporting
tasks and are location-constrained, while the remaining 4
UAVs are free to move and operate as traffic relays to support
multi-hop communications. Over 100 testing experiments,
DRL outperforms NC and BR by 5.6x and 8.4x.

We assess the performance of our optimization on another
test experiment with 12 UAVs, 3 sensing areas, and 3 report
areas; keeping control objective and controls unchanged.
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FIGURE 11. Average performance results for Max-sum-throughput and different
control schemes (100 experiments) under 12 UAVs network.

FIGURE 12. Average performance results for Max-sum-throughput and different
control schemes (100 experiments) under 20 UAVs network.

This time, 6 nodes are location-constrained while the remain-
ing 6 operate as relays. For this experiment we constrain the
UAVs’ relocation range to a 90 000m2 box. The performance
results are reported in Fig. 11. In this test, DRL performs
9.9x and 2.1x better than NC and BR, respectively (measures
averaged over 100 experiments).

Last, we test our solution on a complex scenario with 5
sensing areas, 5 report areas, and a total of 20 UAVs. This
larger-scale scenario is characterized by strong interference
due to the higher number of nodes. Therefore, to achieve
the NO’s intent, combating interference via efficient network
control becomes a paramount task. The results reported
in Fig. 12 indicate that, without optimization, the harsh
interference conditions impair basic communication pro-
cedures. Indeed, under NC and BR control schemes,
the network operates at less than a packet per second.
Nonetheless, the proposed DRL-based optimization proves
its effectiveness even in complex, interference-prone scenar-
ios that are hard to optimize. DRL reports throughput of 3
packets per second with gains of 4.1x and 5.3x over NC
and BR, respectively.
In conclusion, DRL improves the performance of the UAV

network by an average 3.7x with respect to the second-best
performer.

D. RECONFIGURABILITY
As discussed in Section II, the presented control architecture
facilitates network reconfigurability and can be employed to
reconfigure the UAV network to achieve several network

FIGURE 13. Average performance results for Min-average-latency and different
control schemes (100 experiments) under 6 UAVs network.

FIGURE 14. Average performance results for Min-average-latency and different
control schemes (100 experiments) under 8 UAVs network.

control objectives. To achieve different desired network
behaviors, the NO only needs to change the desired con-
trol objective through the Control Interface (e.g., modify the
objective on Line 26 in Listing 1) while the presented Control
Framework takes care of generating and dispatching the new
Neural Network configurations over the wireless interface.
In the following, we demonstrate the programmability fea-
tures of the presented control approach by measuring the
performance of our data-driven optimization for a new con-
trol objective. We assess the performance of the 6-UAV
and 8-UAV networks presented above for the min-average-
latency control objective, which aims at minimizing the
average end-to-end latency across the UAV network’s ses-
sions (i.e., from sources to destinations). The average testing
results for 100 experiments are reported in Fig. 13 and
Fig. 14 for the two UAV networks, respectively.
For this new control objective, our DRL-based

optimization reports an average end-to-end latency reduc-
tion of 0.4x, and 0.2x over the second-best performer for
the two UAV networks, respectively.

E. DATA-DRIVEN OPTIMIZATION VS CONVEX
OPTIMIZATION
We conclude our evaluation by presenting the performance
comparison between the convex optimization-based con-
trol approach presented in [1] and the data-driven control
approach presented in this article. Specifically, we compare
the performance of the two control solutions on Scenario
6 considered in [1], which involves 8 UAVs, two sensing
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FIGURE 15. Average performance results for Max-sum-throughput and different
control schemes, included the convex optimization-based control scheme employed
in [1] (100 experiments) under 8 UAVs network.

FIGURE 16. Left: average reward versus training iterations for 6 UAVs network
discussed in Section V-A; Right: number of training iterations to train DRL agents for
different UAV network size.

areas, and two reporting areas. The controls are again UAVs’
locations and TX power. For both schemes, we consider
the same experimental configuration described at the begin-
ning of this section. As shown in Fig. 15, the proposed
data-driven optimization control scheme (DRL) outperforms
the convex optimization-based control schemes (SC) in [1],
achieving 1.7x better performance. The reason behind this
performance gap is that the performance of the model-based
optimization proposed in [1] is tightly coupled to the accu-
racy of the models employed in the problem formulation
and to the quality of the approximation and relaxation nec-
essary to solve the UAV network control problem via convex
optimization. On complex UAV networks, which require a
conspicuous modeling and approximation effort, these effects
combined can result in sub-optimal solutions that result
in a performance gap between modeling and performance
assessment. On the contrary, the performance of the data-
driven optimization proposed in this work is driven by the
performance data itself. In conclusion, data-driven solutions
such as the one proposed in this paper have the potential to
bridge the gap between UAV network control and network
performance optimization.
The complexity of the proposed data-driven control

approach is reported in Fig. 16. The left of Fig. 16 illustrates
the reward function trend over the training iterations for the
two DRL control schemes and the 6 UAV network discussed
in Section V-A. When the DRL agents can only control the
UAV’s location, they require a fewer number of training iter-
ations to reach convergence, that is when the reward function

cannot be further improved and the system can be deemed
‘trained’. The DRL agents require 60k iterations to converge
in this case, with respect to the 80k iterations necessary
when the agents add the UAV’s transmission power to the
range of their control parameters. However, it is important
to notice that despite requiring a longer number of iterations
to reach convergence, a wider range of control parameters
corresponds to a higher reward, both at convergence and at
every previous iteration. This trend suggests that augmenting
the degrees of freedom of the DRL agents always results in
improved performance. The right of Fig. 16 reports the num-
ber of iteration required to deem the DRL agents ‘trained’
in the networks with 6, 8, 12, and 20 UAVs presented earlier
in this section. As shown in the figure, the required number
of iterations to reach convergence grows with the number of
UAVs. This is motivated by the fact that the presence of more
agents corresponds to a larger solution space to be explored
in order to find the optimal network configuration. As men-
tioned in Section IV-D, each training iteration requires 5
seconds of emulated execution time to allow the agent to
gather statistically relevant performance measurements. For
these UAV networks, the simulation time required to reach
training convergence is approximately 166, 332, 830, and
1660 hours, respectively. Even though such training times
might be excessively long for experimental performance data
collection, in Section IV-D we explained in detail how to
leverage parallelism in our Virtual Training Environment to
collect extensive performance data. Thanks to this feature of
the proposed Virtual Training Environment, the total train-
ing time cost can be efficiently reduced by running multiple
containers in parallel.

VI. RELATED WORK
Recent years have seen a surge in interest toward the integra-
tion of UAVs and the wireless infrastructure for a variety of
applications such as 5G-and-beyond cellular networks [2],
[7], millimeter-wave and terahertz networks [5], [6], [36],
Wi-Fi [37], and ad-hoc tactical networks [1], [4], [38],
[39], to name a few. In this context, AI-based control
approaches are on the rise thanks to their effectiveness
and applicability to motion-controllable UAV-based wire-
less nodes [40]–[51]. For example, [44]–[47] investigate the
placement optimization of multiple UAV-based aerial base
stations to maximize the coverage rate of ground users.
The latter also optimizes for the energy consumption of
the UAVs’ recharging and landing operations, while [47]
tailors its RL approach to emergency response scenar-
ios. Reference [48] utilized DRL for UAV-based BSs path
planning so as to minimize the interference with ground
infrastructure and optimize the BS-to-user latency.
Other works, instead, mainly focus on wireless networking

operations optimization via machine learning. Machine learn-
ing and its flavors are employed to predict the data size of
computing tasks for efficient UAV-based MEC [52]; to com-
bat adversarial attacks for cellular-connected UAVs [41]; to
optimize content caching on UAV-based BS [42]; or a mix
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of those [43]. The works in the literature that are the clos-
est to the one presented in this paper are those focusing on
the joint optimization of motion and wireless operations.
Specifically, [40], [50], and [53] use DRL to optimize
the trajectory and the power control for UAV-assisted ser-
vice networks. Reference [51] proposes a DRL technique
to optimize UAVs’ trajectory and time resource allocation
in UAV wireless-powered IoT networks. The readers are
referred to [54] for an extensive survey on AI-based control
and optimization for wireless networks.
Different from the above works, which mainly rely on an

abstraction of the underlying communication infrastructure
and limit their contribution to a mix of analytical results and
simulation, we propose a novel two-tier architecture that pro-
vides the communication infrastructure and the architectural
innovations to design and implement data-driven control and
optimization for real UAV network fieldings. With respect to
our previous work [1], we extended the Drone Programmable
Protocol Stack with data-driven functionalities (DRL DPPS).
We integrated the new DRL DPPS into a new full-fledged
emulation environment for UAV networks that we systemat-
ically employed to train and assess the performance of our
DRL-based solution with a high degree of realism.

VII. CONCLUSION
In this article, we presented a novel two-tier architec-
ture to control and optimize UAV networks based on
Deep-reinforcement learning (DRL). The presented architec-
ture features a new ‘ready-to-fly’ virtual environment that
integrates fully-reconfigurable wireless protocol stacks for
software-defined UAVs with the CORE/EMANE emulation
tools. Our ‘ready-to-fly’ virtual environment allows us to
collect extensive high-fidelity UAV network performance
data without the burden of carrying out time- and energy-
consuming flight experiments thus simplifying the modeling
and training procedures for data-driven control solutions. In
this work, we showed how our system can be employed
to model different UAV network control problems as multi-
agent DRL problems, collect extensive performance data,
and use the data collected to train a set of DRL agents
for mission-specific goals. The proposed DRL architecture
implements distributed data-driven optimization (with up to
3.7x throughput gains and 0.2x latency reduction if compared
to other approaches), facilitates network reconfigurability,
and provides a scalable solution for large UAV networks
(up to 20 nodes).
As future work, we will take these research directions:
Experimental Assessment: We intend to assess our

DRL-based optimization on real-world UAVs and validate
the performance we have tested in our Virtual Testing
Environment. Thanks to our ‘ready-to-fly’ framework design,
the trained DRL agents can be easily instantiated on real
hardware, a procedure that is straightforward and only
involves enabling the hardware drivers in the DRL DPPS. We
will carefully analyze the performance of future experimental

fieldings to identify discrepancies with the simulation envi-
ronment [55] and employ techniques of transfer learning to
further reduce the emulation-experimental performance gap.
On-Line Learning: We will also focus on how to optimize

the performance of the distributed DRL agents in the case of
compromised nodes and outages. Future research threads in
this context include hybrid off- and on-line training to inves-
tigate the flexibility and adaptability of multi-agent learning
in the case of previously unseen network conditions.
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