
462 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 1, JANUARY 2019

Generalized Compute-Compress-and-Forward
Hai Cheng, Xiaojun Yuan , Senior Member, IEEE, and Yihua Tan

Abstract— Compute-and-forward (CF) harnesses interference
in wireless communications by exploiting structured coding.
The key idea of CF is to compute integer combinations of
code words from multiple source nodes, rather than to decode
individual code words by treating others as noise. Compute-
compress-and-forward (CCF) can further enhance the network
performance by introducing compression operations at receivers.
In this paper, we develop a more general compression frame-
work, termed generalized CCF (GCCF), where the compression
function involves the selection of message segments over finite
fields. We show that GCCF achieves a broader compression rate
region than CCF. We also compare our compression rate region
with the fundamental Slepian–Wolf (SW) region. We show that
GCCF is optimal in the sense of achieving the minimum total
compression rate. We also establish the criteria under which
GCCF achieves the SW region. In addition, we consider a two-
hop relay network employing the GCCF scheme. We formulate
a sum-rate maximization problem and develop an approximate
algorithm to solve the problem. Numerical results are presented
to demonstrate the performance superiority of GCCF over CCF
and other schemes.

Index Terms— Compute-and-forward, nested lattice codes,
compute-compress-and-forward, distributed source coding.

I. INTRODUCTION

COMPUTE-AND-FORWARD (CF) is an advanced relay
technique that exploits structured coding to harness inter-

ference in wireless communications [1]. The key idea of
CF is to suppress interference by computing integer combi-
nations of source codewords, rather than decoding individual
source codewords. CF employs nested lattice coding [2] to
ensure that the computed integer combinations in CF are still
valid codewords. A nested lattice codebook is formed by the
set of lattice points of a coding lattice confined within the
fundamental Voronoi region of a coarser shaping lattice.

Manuscript received March 20, 2017; revised December 10, 2017; accepted
July 1, 2018. Date of publication August 10, 2018; date of current version
December 19, 2018. H. Cheng and X. Yuan are supported in part by the
National Nature Science Foundation of China under Grant 61471241 and in
part by the China Recruitment Program of Global Young Experts. This paper
was presented in part at the 2017 IEEE GLOBECOM.

H. Cheng is with the School of Information Science and Tech-
nology, ShanghaiTech University, Shanghai 201210, China (e-mail:
chenghai@shanghaitech.edu.cn).

X. Yuan is with the National Key Laboratory of Science and Technology
on Communication, Center for Intelligent Networking and Communications,
University of Electronic Science and Technology of China, Chengdu 611731,
China (e-mail: xjyuan@uestc.edu.cn).

Y. Tan was with the Department of Information Engineering, The Chinese
University of Hong Kong, Hong Kong. He is now with NetEase Inc.,
Hangzhou 310000, China (e-mail: tanyihua@cuhk.edu.hk).

Communicated by J.-F. Chamberland, Associate Editor for
Communications.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIT.2018.2864638

Since the advent of CF, many works followed up to enhance
the throughput of CF-based relay networks [3]–[16]. In the
original CF [1], all nested lattice codes share a common
shaping lattice, and all transmitters are constrained by a same
power budget. In [3]–[5], asymmetric CF allows asymmetric
construction of shaping lattices and unequal power allocation
across transmitters, so as to improve the computation perfor-
mance. Nazer et al. [6], [7] studied successive computation
of multiple codeword combinations to enlarge the achievable
rate region of a receiver. Niesen and Whiting [8] studied the
degrees of freedom of CF to characterize the behavior of CF
in the high signal-to-noise ratio (SNR) regime.

Recently, Tan and Yuan [9] pointed out that, as the com-
puted codewords in a CF-based multi-hop relay network are
in general correlated, the performance of the network can
be enhanced if the codewords computed at relays are further
compressed to reduce the information redundancy. The corre-
sponding relaying strategy is referred to as compute-compress-
and-forward (CCF). In CCF, each relay processes its computed
message by taking quantization and modulo (QM) operation
over a pair of carefully selected nested lattices. Significant
performance gains of CCF over CF have been demonstrated
by the numerical results in [9]. However, as QM-based CCF
is not necessarily optimal, it is desirable to push CCF towards
its fundamental performance limit.

In this paper, we consider the efficient transceiver design for
an interference channel with L transmitters and L receivers,
where L is an arbitrary integer. We generalize CCF by
allowing each receiver to compress its computed codeword by
selecting a portion of message segments. We follow the linear
labeling approach in [5] to realize the compression operation
over finite fields, which involves much lower computational
complexity than the QM operations in CCF. We show that
the generalized CCF (GCCF) scheme can achieve a broader
compression rate region than the original CCF in [9]. We also
show that the compression problem can be interpreted as a
distributed source-coding problem. Based on that, we compare
the compression rate region of GCCF with the Slepian-
Wolf region, where the latter is the optimal rate region for
distributed source coding [17]. We show that GCCF, though
in general cannot achieve the entire Slepian-Wolf region,
is optimal in the sense of minimizing the total compression
rate. Also, we prove that these two regions coincide in the
following two cases: (i) the channel consists of only two
transmitters and two receivers, i.e., L = 2; or (ii) all the
transmitters share a common shaping lattice.

The proposed GCCF scheme, similar to CCF, can serve
as a building block to construct a multi-hop relay network.
In particular, we consider a two-hop relay network in which

0018-9448 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Northeastern University. Downloaded on March 01,2020 at 22:27:03 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0433-6535

CHENG et al.: GENERALIZED COMPUTE-COMPRESS-AND-FORWARD 463

Fig. 1. An interference channel with L transmitters and L receivers.

a single destination node is required to recover all the mes-
sages from the sources. We establish an achievable rate region
of the relay network and then formulate a mixed-integer-
programing problem for sum-rate maximization. We show that
the problem can be approximately solved based on Lenstra-
Lenstra-Lovsz (LLL) lattice basis reduction [15], [16] and
differential evolution [18]. Numerical results are presented to
demonstrate the superiority of our proposed GCCF scheme
over the other benchmark schemes including CCF.

The remainder of this paper is organized as follows.
In Section II, we introduce the system model and the back-
ground of CCF. In Section III, we describe the proposed
GCCF scheme. In Section IV, we derive the compression rate
region of GCCF, and discuss its relation with the Slepian-Wolf
region. In Section V, we first establish an achievable rate region
of a multi-hop relay network based on GCCF, and then present
an approximate algorithm to solve the sum-rate maximization
problem of a two-hop GCCF network. Numerical results are
also provided to show the performance superiority of GCCF.
Finally, conclusions are presented in Section VI.

II. PRELIMINARIES

A. System Model

Consider an interference channel with L transmitters and
L receivers, as illustrated in Fig. 1. Each transmitter or receiver
node is equipped with a single antenna. The message of
transmitter l is a vector wl ∈ Z

bl
q , where q is a prime number,

and Zq = {0, 1, · · · , p − 1} is a prime field. Transmitter l
encodes message wl into xl ∈ R

n×1 and then transmits xl to
the receivers over an additive white Gaussian noise (AWGN)
channel. Each receiver m observes an output signal

ym =
L�

l=1

hml xl + zm, for m ∈ IL (1)

where hml ∈ N (0, 1) is the channel coefficient of the link
from source l to relay m, zm ∈ R

n×1 is a Gaussian noise
vector drawn from N (0, In) with In being the n-by-n identity
matrix, and Il denotes the index set of integers from 1 to l
and I0 = ∅. Denote by H = [h1, h2, · · · , hL]T the channel
matrix, where hm = [hm1, hm2, · · · , hmL]T is the channel
vector seen by receiver m. The average power of transmitter l
is pl = 1

n E�xl�2 satisfying pl ≤ Pl , where Pl is the
power budget of transmitter l. We assume full channel state

information, i.e., all the channel coefficients are perfectly
known.

The CCF scheme in [9] can be applied to the channel
model in (1). In CCF, each transmitter encodes its message
by a nested lattice code and then sends the codeword to the
receivers. Each receiver computes an integer linear combina-
tion of the nested lattice codewords from the received signal,
and then compresses the computed codeword. The goal of
the compression operation is to reduce the forwarding rates
of the receivers in relaying, so as to improve the spectrum
efficiency of the relay network. In this paper, we aim to
generalize the compression operation in CCF for more efficient
forwarding.

B. Nested Lattice Codes

We start with a brief introduction of nested lattice coding.
A lattice � ⊂ R

n is a discrete group with the following
property. If t1 ∈ � and t2 ∈ �, then t1 + t2 ∈ �; and
if t1 ∈ �, then −t1 ∈ �. A lattice can be represented as

� = {s = Gc : c ∈ Z
n×1} (2)

where G ∈ R
n×n is the generator matrix of �. The quantiza-

tion of x ∈ R
n on � is the nearest lattice point to x in �,

i.e.

Q�(x) = arg min
t∈��t − x� (3)

where �·� denotes the l2 norm of a vector. The quantization
error is given by

x mod � = x − Q�(x) (4)

where “mod” represents the modulo operation. The fundamen-
tal Voronoi region of � is defined by

V = {x ∈ R
n : Q�(x) = 0}. (5)

The second moment of � is defined by

σ 2
� = 1

n

�

V
�x�2

Vol(V)d x (6)

where Vol(V) is the volume of V . The normalized second
moment of � is defined by

G(�) = σ 2
�

(Vol(V)) 2
n

. (7)

If �1 ⊆ �2, we say that �1 is nested in �2 and that
�1 is coarser than �2 (or alternatively, �2 is finer than �1).
An example of a pair of nested lattices is given in Fig. 2.
We construct a lattice codebook C based on a nested lattice
pair (�s ,�c) satisfying �s ⊆ �c, where �s is the shaping
lattice and �c is the coding lattice. Denote by Vs and Vc the
fundamental Voronoi regions of �s and �c, respectively. The
lattice codebook C can be represented as

C = �c mod �s = �c ∩ Vs . (8)

The rate of C is given by

R = 1

n
log |C| = 1

n
log

Vol(Vs)

Vol(Vc)
(9)

where log denotes logarithm with base 2.

Authorized licensed use limited to: Northeastern University. Downloaded on March 01,2020 at 22:27:03 UTC from IEEE Xplore. Restrictions apply.

464 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 1, JANUARY 2019

Fig. 2. An illustration of a nested lattice pair (�s ,�c) satisfying �s ⊂
�c ⊂ R

2. Black points “•” are elements of the coding lattice �c and the
black circles “	” are elements of the shaping lattice �s . The Voronoi regions
of �c and �s are hexagons with thin and thick edges, respectively. The nested
lattice codebook consists of the set of all fine lattice points in the fundamental
Voronoi region of the coarse lattice.

C. Encoding at Transmitters

We now describe the encoding at the transmitters.
We employ the lattice construction method in [5] to construct
a chain of 2L nested lattices �1,�2, · · · ,�2L as follows.

Let i1, i2, · · · , i2L be integers satisfying 0 ≤ i1 ≤ i2 ≤
· · · ≤ i2L . Consider a matrix G ∈ Z

n×i2L
q with i.i.d elements

uniformly drawn over Zq . Let Gk be the matrix consisting of
the first ik columns of G, for k = 1, 2, · · · , 2L. Define Dk to
be the discrete codebook generated by Gk :

Dk =
�

x ∈ Z
n
q : x = (Gkw) mod q,w ∈ Z

ik
q

�
. (10)

Define the mapping φ : Zq → R as

φ(x) � γ q−1x, (11)

where γ ∈ R
++ is a constant coefficient. The corresponding

inverse map is given by

φ̄(x) = (γ−1qx) mod q (12)

where x ∈ γ q−1
Z. These mapping functions operate

elementwise when applied to vectors. Following lattice
Construction A [2], we create the lattice

�k =
�

t ∈ γ q−1
Z

n : φ̄(t) ∈ Dik

�
. (13)

We see that t ∈ �k if and only if φ̄(t) ∈ Dik . We refer
to φ̄(t) as the corresponding linear codeword of t . Since
Di1 ⊆ Di2 ⊆ · · · ⊆ Di2L , the constructed lattices are
nested as �1 ⊆ �2 ⊆ · · · ⊆ �2L . Following the settings
of n, p, γ , {ik} in [5], we construct the nested lattices chain
�1 ⊆ �2 ⊆ · · · ⊆ �2L , where {�k} satisfy any given second
moments {σ 2

�k
} and are simultaneously good for AWGN and

good for MSE quantization [19].
For each source l, we choose a lattice pair (�s,l ,�c,l) from

the nested lattice chain to construct a lattice codebook

Cl = �c,l ∩ Vs,l . (14)

Let πs(·) be a permutation satisfying �s,πs(1) ⊆ �s,πs(2) ⊆
· · · ⊆ �s,πs(L), which gives the nested order of L shaping
lattices. Denote by π(·) the lattice chain permutation that is a
bijective map from {1, · · · , 2L} to {1, · · · , 2L} satisfying

�π(2l−1) ⊆ �π(2l), l ∈ IL . (15)

With (15), we construct each Cl using the lattice pair
(�π(2l−1),�π(2l)), l ∈ IL . This implies the following rela-
tion:

l =
�π−1(k)

2

�
, 1 ≤ k ≤ 2L . (16)

From (16), if π−1(k) is even, then �k = �c,l with l = π−1(k)
2 ;

otherwise, �k = �s,l with l = π−1(k)+1
2 .

The message wl of transmitter l is uniformly drawn
from Z

bl
q with bl = iπ(2l)−iπ(2l−1). The message wl is encoded

into a lattice codeword tl ∈ Cl as follows. We zero-pad wl with
iπ(2l−1) leading zeros and i2L − iπ(2l) trailing zeros. The zero-
padded vector is mapped onto a lattice codeword tl in Cl :

tl =
�
γ q−1

��
G
	
0T

iπ(2l−1)
,wT

l , 0T
i2L −iπ(2l)

T
�

mod q

��

mod�s,l, l ∈ IL . (17)

By following the proof of [1, Lemma 5], it can be shown that
the mapping in (17) is an isomorphism between Z

bl
q and Cl .

Thus, tl is uniformly distributed over Cl . The rate of source l
is given by

rl = 1

n
log |Cl | = 1

n
log

Vol(Vs,l)

Vol(Vc,l)
. (18)

From the isomorphism between Z
bl
q and Cl , rl can be rewritten

by

rl = 1

n
log qbl = iπ(2l) − iπ(2l−1)

n
log q. (19)

Following the approach in [4], we construct the channel input
vector of transmitter l as

xl = (tl/βl − dl) mod �s,l/βl (20)

where βl ∈ R is a scaling factor, and dl is a random
dithering signal uniformly distributed over the scaled Voronoi
region Vs,l/βl . From the Crypto lemma [2], xl is independent
of tl and is uniformly distributed over Vs,l/βl [2]. We note
that {βl} are set as βl = 1, l ∈ IL in the original CCF scheme
in [9]. Here we treat {βl} as system variables to be optimized.

From (6) and (7), the average power of xl is given by

pl = 1

n
E�xl�2 = 1

n

�

Vs,l/βl

�x�2

Vol(Vs,l/βl)
d x

= G(�s,l/βl)
�
Vol(Vs,l/βl)

 2
n . (21)

As �s,l/βl is good for MSE quantization, we obtain
limn→∞ G(�s,l/βl) = 1

2πe [2]. Then, we have the following
relation:

Vol(Vs,l)=Vol(Vs,l/βl)β
n
l =

�
plβ

2
l

G(�s,l/βl)

� n
2

. (22)

This implies that σ 2
�s,l

= plβ
2
l and the nesting order of {�s,l}

is determined by the order of {plβ
2
l }.

Authorized licensed use limited to: Northeastern University. Downloaded on March 01,2020 at 22:27:03 UTC from IEEE Xplore. Restrictions apply.

CHENG et al.: GENERALIZED COMPUTE-COMPRESS-AND-FORWARD 465

D. Computation at Receivers

Upon receiving ym in (1), receiver m attempts to decodes
an integer-linear combination from ym , denoted by

vm =
�

L�

l=1

aml(tl − Q�s,l (tl − βl dl))

�
mod �1. (23)

The details of the decoding procedure follow the CF approach
in [1]. Receiver m first multiplies ym by αm and then cancels
the dithering signals, yielding

sm = αm ym +
L�

l=1

amlβl dl

(a)=
L�

l=1

amlβl(tl/βl − Q�s,l /βl (tl/βl − dl))+ z�
m

(b)=
L�

l=1

aml(tl − Q�s,l (tl − βl dl))+ z�
m (24)

where aml is an integer coefficient, and z�
m ��L

l=1 (αmhml − amlβl)xl + αm zm . In the above, step (a)
follows from (1) and (20), and step (b) follows by noting
Q�(β t) = βQ�/β(t) for β > 0. Then, receiver m quantizes
sm over � f,m and takes modulo over the coarsest lattice �1,
yielding

v̂m = Q� f,m (sm) mod �1

= Q� f,m

�
L�

l=1

aml
�
tl − Q�s,l (tl − βl dl)

+ z�
m

�
mod�1

(25)

where � f,m is the finest lattice among {�c,l}L
1 with aml
= 0.

We say that a rate tuple (r1, r2, · · · , rL) is achievable if

lim
n→∞ Pr{v̂m
= vm} = 0, for m ∈ IL . (26)

Based on the results in [4] and [9], the rate tuple
(r1, r2, · · · , rL) is achievable if for l ∈ IL ,

rl <
1

2
log+

⎧
⎪⎨

⎪⎩
min

m:aml
=0

plβ
2
l

�P
1
2 ãm�2 − (hT

m Pãm)2

1+�P
1
2 hm �2

⎫
⎪⎬

⎪⎭
� r̂l (27)

where P = diag{p1, p2, · · · , pL} and ãm = [β1 am1,
β2 am2, · · · , βLamL]T. Denote by A the integer coefficient
matrix with the (m, l)-th element given by aml . Following [1],
we always assume A is invertible over Z

L×L
q , so that

{tl}L
1 can be recovered from {vm}L

1 . An achievable rate region
is then given by

Rcpu =
�
(r1, r2, · · · , rL) ∈ R

L+|rl ≤ r̂l , l ∈ IL

�
. (28)

We refer to the rate region in (28) as the computation rate
region. Here we use shorthand “cpu” for computation.

TABLE I

FREQUENTLY USED NOTATION

E. Compression at Receivers

From (25), {v̂m} computed at receivers are generally corre-
lated, as they are constructed by the same set of {tl}. Recall
that each receiver in the channel model (1) serves as a relay
node. Forwarding {v̂m} directly at the receivers may lead
to spectral inefficiency. That is, each receiver m needs to
compress v̂m , so as to reduce the forwarding rate [9], [20].
Specifically, the compression at receiver m is to generate a
mapping from v̂m to δ̂m

δ̂m = ψm(v̂m) (29)

at a reduced rate Rm(≤ rm), where ψm(·) is referred to
as the compression function of receiver m. For the overall
scheme, the compression is required to be information lossless,
i.e., {v̂m}L

1 can be exactly recovered from {δ̂m}L
1 . We say

that a compression rate tuple (R1, R2, · · · , RL) is achievable
if {v̂m}L

1 can be recovered from {δ̂m}L
1 without distortion.

The convex hull of all achievable compression rate tuples
gives the compression rate region, denoted by Rcpr. For
convenience of discussion, we henceforth assume that there is
no error in receiver computations, i.e., v̂m = vm for m ∈ IL .
Correspondingly, the error-free version of δ̂m is denoted by δm .
Before proceeding to the next section, we list some frequently
used notations in Table I.

Authorized licensed use limited to: Northeastern University. Downloaded on March 01,2020 at 22:27:03 UTC from IEEE Xplore. Restrictions apply.

466 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 1, JANUARY 2019

III. PROPOSED COMPRESSION SCHEME

We first describe a technique termed linear
labeling [5], [21] which conveniently connects the nested
lattice codewords to messages over finite fields. The proposed
compression scheme can be viewed as a process of selecting
“useful” message segments. Finally, we discuss the relation
between the proposed scheme and the original CCF in [9].

A. Linear Labeling

We now introduce the concept of linear labeling [5], [21].
A mapping ϕ : �2L → Z

i2L −i1
q from lattice points in �2L

to message vectors in Z
i2L −i1
q is called a linear labeling if it

satisfies the following two conditions:

(i) The last i2L − ik elements of ϕ(t) are zeros if and only
if the lattice point t ∈ �k ;

(ii) For all al ∈ Z and tl ∈ �2L , we have ϕ
��L

l=1 al tl
�

=��L
l=1(al mod q)ϕ(tl)

�
mod q .

Lemma 1: Assume that G is full rank. Let ϕ : �2L →
Z

i2L −i1
q be a function that maps each t ∈ �2L to the vector
ϕ(t) which consists of the last i2L − i1 elements of vector c
satisfying φ̄(t) = (Gc) mod q . Then, ϕ(·) is a linear labeling.

Lemma 1 is proved in [5, Appendix G]. In the following,
we always assume that ϕ is the liner labeling function given
in Lemma 1. Note that the encoding function in (17) can be
rewritten as

tl =
�
φ

��
G
	
0T

i1 , w̃
T
l

T
�

mod q

��
mod �s,l , (30)

where

w̃l =
	
0T

iπ(2l−1)−i1 ,w
T
l , 0i2L −iπ(2l)

T ∈ Z
i2L −i1
q . (31)

Define an inverse operation ϕ̄(·) : Z
i2L −i1
q → �2L for ϕ(·):

ϕ̄(w) = φ

��
G
	
0T

i1 ,w
T

T

�
mod q

�
. (32)

Then,

ϕ (ϕ̄(w)) = w, (33)

and (17) can be rewritten as

tl = ϕ̄(w̃l) mod �s,l . (34)

Lemma 2: The linear labeling ϕ(·) given in Lemma 1 is a
bijection between �2L ∩ V1 and Z

i2L −i1
q .

The proof of Lemma 2 is given in Appendix A. With linear
labeling, it is convenient to analyze the correlation between
the computed codewords {vl} in the finite-field representation.

B. Label Splitting for Lattice Codeword

In this subsection, we consider splitting the label of each
computed codewords vm (a vector with length i2L − i1)
into shorter vectors, termed message segments. Our proposed
compression scheme is based on analyzing the correlation
between those message segments.

Rewrite vm in (23) as

vm =
�

L�

l=1

aml t̃l

�
mod �1 (35)

where

t̃l = tl − Q�s,l (tl − βl dl). (36)

From the definition of ϕ(·), the label of vm is given by

ϕ(vm) =
�
ϕ(

L�

l=1

am,l t̃l)− ϕ(Q�1(

L�

l=1

am,l t̃l))

�
mod q

(37a)

=
�

L�

l=1

(am,l mod q)ϕ(t̃l)

�
mod q (37b)

where ϕ(Q�1(
�L

l=1 am,l t̃l)) in (37a) is equal to 0 since it is the
label of a lattice point in �1. As ϕ(vm) is a linear combination
of ϕ(t̃l), to analyze the correlation between {ϕ(vm)}, it is
helpful to first look into the elements in {ϕ(t̃l)}.

From (36), ϕ(t̃l) can be rewritten as

ϕ(t̃l) = �
ϕ(tl)− ϕ(Q�s,l (tl − βl dl))

mod q, (38)

where Q�s,l (tl − βl dl) is termed the residual dither signal.
Since Q�s,l (tl − βl dl) is a lattice point in �s,l , the last i2L −
iπ(2l−1) elements of ϕ(Q�s,l (tl − βl dl)) are all zeros and the
non-zero elements locate at the first iπ(2l−1) − i1 positions.
Thus, ϕ(t̃l) coincides with w̃l in the last i2L−iπ(2l−1) elements.

To describe the message segments of ϕ(t̃l), we first consider
the message segments of ϕ(tl) and ϕ(Q�s,l (tl−βl dl)). The k-th

message segment of ϕ(tl) is defined as a vector over Z
ik+1−ik
q ,

consisting of the (ik − i1 + 1)-th to (ik+1 − i1)-th elements of
ϕ(tl). Thus, the label ϕ(tl) ∈ Z

i2L −i1
q can be generally split into

2L − 1 message segments. Denote by wl,k the k-th message
segment of ϕ(tl). Let the zero-padded wl,k be

w̃l,k =
	
0T

ik−i1 ,w
T
l,k, 0T

i2L −ik+1

T ∈ Z
i2L −i1
q . (39)

Then, ϕ(tl) can be represented as

ϕ(tl) =
�

2L−1�

k=1

w̃l,k

�
mod q. (40)

Further, by taking linear labeling on the both sides of (34),
we obtain

ϕ(tl) = ϕ
�
ϕ̄(w̃l)− Q�s,l (ϕ̄(w̃l))

(41a)

= �
ϕ (ϕ̄(w̃l))− ϕ

�
Q�s,l (ϕ̄(w̃l))

mod q (41b)

= �
w̃l − ϕ

�
Q�s,l (ϕ̄(w̃l))

mod q. (41c)

Since Q�s,l (ϕ̄(w̃l)) ∈ �s,l , the last i2L − iπ(2l−1) elements of
ϕ
�
Q�s,l (ϕ̄(w̃l))

are zeros. Then, ϕ(tl) coincides with w̃l in

the last i2L −iπ(2l−1) elements. Together with (31), we see that
the (iπ(2l−1) − i1 + 1)-th to (iπ(2l) − i1)-th elements of ϕ(tl)
are given by wl , and the (iπ(2l)− i1 +1)-th to (i2L − i1 +1)-th
elements of ϕ(tl) are given by 0. Then, we have

wl,k = 0 for k ≥ π(2l), (42)

Authorized licensed use limited to: Northeastern University. Downloaded on March 01,2020 at 22:27:03 UTC from IEEE Xplore. Restrictions apply.

CHENG et al.: GENERALIZED COMPUTE-COMPRESS-AND-FORWARD 467

and thus (40) can be represented as

ϕ(tl) =
⎛

⎝
π(2l)−1�

k=1

w̃l,k

⎞

⎠ mod q. (43)

Define

Kl = {k|iπ(2l−1) ≤ ik ≤ ik+1 ≤ iπ(2l)}, l ∈ IL . (44)

Lemma 3:

w̃l =
⎛

⎝
�

k∈Kl

w̃l,k

⎞

⎠ mod q. (45)

Proof: From the discussion below (41), iπ(2l−1) ≤ ik ≤
ik+1 ≤ iπ(2l) implies that the (ik − i1 + 1)-th to (ik+1 − i1)-
th elements of ϕ(tl), i.e., wl,k , are the (ik − i1 + 1)-th to
(ik+1 −i1)-th elements of w̃l . Together (31) with the definition
of Kl in (44), we have (45). �

Lemma 3 implies that source message wl only consists of
the message segments {wl,k |k ∈ Kl }, and thus we don’t care
the message segments {wl,k |1 ≤ k ≤ π(2l − 1) − 1} (which
are determined by {wl,k |k ∈ Kl}).

Consider the entropy rate of wl,k . For k ∈ Kl , wl,k is
uniformly distributed over Z

ik+1−ik
q . Then, the normalized

entropy rate of wl,k is given by

rv,k = ik+1 − ik

n
log q, k ∈ Kl , l ∈ IL . (46)

Note that the entropy of w̃l,k is equal to the entropy of wl,k .
Then, the entropy rate of tl can be represented by

rl =
�

k∈Kl

rv,k . (47)

We now consider the message segments of θl � ϕ(Q�s,l (tl−
βl dl)). Denote by θl,k the k-th message segment of θl . Since
Q�s,l (tl − βl dl) ∈ �s,l(= �π(2l−1)), we obtain

θl,k = 0 for k satisfying k ≥ π(2l − 1). (48)

Let the zero-padded θl,k be

θ̃l,k =
	
0T

ik−i1 , θ
T
l,k , 0T

i2L −ik+1

T ∈ Z
i2L −i1
q . (49)

Then, we can rewrite θl as

θl =
�

2L�

k=1

θ̃l,k

�
mod q (50a)

=
⎛

⎝
π(2l−1)−1�

k=1

θ̃l,k

⎞

⎠ mod q, (50b)

where (50b) follows from (48).
Based on (43) and (50), we can represent ϕ(t̃l) in (38) as

follows:

ϕ(t̃l) =
⎛

⎝
π(2l)−1�

k=1

w̃l,k −
π(2l−1)−1�

k=1

θ̃l,k

⎞

⎠ mod q (51a)

=
⎛

⎝
�

k∈Kl

w̃l,k +
π(2l−1)−1�

k=1

(w̃l,k − θ̃)l,k

⎞

⎠ mod q. (51b)

Fig. 3. An illustration of label splitting for {ϕ(t̃l)} with the nested lattice chain
�1(�s,1) ⊆ �2(�s,3) ⊆ �3(�c,1) ⊆ �4(�s,2) ⊆ �5(�c,3) ⊆ �6(�c,2).
The source codewords are given by t1 ∈ �3 ∩ V1, t2 ∈ �6 ∩ V4, and t3 ∈
�5 ∩V2. Each solid rectangle represents the message segment wl,k satisfying
k ∈ Kl , i.e., being a segment of wl . For example, the message segment
w1,1 ∈ Z

i2−i1
q is the (i1 +1)-th to i2-th elements of w̃1. Each blank rectangle

represents the message segment being zero vectors (i.e., wl,k = 0).

We illustrate the label splitting of {ϕ(t̃l)}
in Fig. 3.

We are now ready to consider the label splitting of
um � ϕ(vm). Denote by um,k the k-th message segment of um .
Let the zero-padded um,k be

ũm,k =
	
0T

ik−i1 , uT
m,k, 0T

i2L −ik+1

T ∈ Z
i2L −i1
q . (52)

Then, um can be represented as

um =
2L−1�

k=1

ũm,k . (53)

Further, by taking the k-th message segmenmt on both
side of ϕ(vm) =

��L
l=1(am,l mod q)ϕ(t̃l)

�
mod q from (37),

we can rewrite um,k as

um,k =
⎛

⎝
�

l∈Lk

(aml mod q)wl,k

+
�

{l|k<π(2l−1)}
(aml mod q)(wl,k − θl,k)

⎞

⎠ mod q

(54)

where the right hand side of (54) follows from (51) and the
definition of Lk :

Lk = {l|iπ(2l−1) ≤ ik ≤ ik+1 ≤ iπ(2l)}, k ∈ I2L−1. (55)

Authorized licensed use limited to: Northeastern University. Downloaded on March 01,2020 at 22:27:03 UTC from IEEE Xplore. Restrictions apply.

468 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 1, JANUARY 2019

We see that um,k can be represented as a linear combination
of {wl,k|l ∈ Lk} plus a sum of the “don’t care" message seg-
ments of ϕ(tl) and the message segments of residual dithers.
If k ≥ π(2l −1) for l ∈ L, um,k can be represented as a linear
combination of wl,k :

um,k =
⎛

⎝
�

l∈Lk

(aml mod q)wl,k

⎞

⎠ mod q. (56)

Lemma 4: For any given k, if aml
= 0 for some l ∈ Lk

(or equivalently A(m,Lk)
= 0), then um,k is uniformly
distributed over Z

ik+1−ik
q and independent of um,k� for

any k � > k.
The proof of Lemma 4 is given in Appendix B.

C. Design of the Compression Function

In this subsection, we describe how to design the compres-
sion functions {ψm(·)} based on appropriate label splitting.
With the label splitting technique in Subsection A, we show
that the proposed scheme is information lossless. We refer to
our approach as generalized CCF (GCCF) to distinguish it
from the lattice-based CCF approach in [9].

To proceed, we map A ∈ R
L×L into A mod q ∈ Z

L×L
q .

With some abuse of notation, we replace A mod q simply
by A in circumstances without causing ambiguity. For any
S ⊆ IL ,S � ⊆ IL , denote by A(S,S �) the submatrix of A with
the rows indexed by S and the columns indexed by S �. Denote
by S the complement of S in IL . Let πα(·) be a permutation
of (1, 2, · · · , L). Denote �α(Im) = {πα(i)|i ∈ Im} and
�α(∅) = ∅. Define an index set Jm as

Jm �
�
k|rank(A(�α(Im−1),Lk))

= rank(A(�α(Im),Lk))+ 1

, (57)

where rank(A) is evaluated in Z
L×L
q . From (57), we see that

k ∈ Jm implies that the row A(πα(m),Lk) is linearly indepen-
dent of the rows of A(πα(Im),Lk). Note that πα(·) specifies
an order of counting the row index of A and that Jm is a
function of πα(·). We are now ready to present the following
important result, with the proof given in Appendix C.

Theorem 1: An information lossless compression scheme is
given by

δm = ψ(vm) = ψ̄(ϕ(vm))

=
⎛

⎜⎝
�

k∈J
π−1
α (m)

ũm,k

⎞

⎟⎠ mod q, m ∈ IL . (58)

We give intuitions of the compression scheme in (58).
The compression aims to reduce the redundant information
in {vm}. From (54), um,k is an integer-linear combination
of {wl,k, l ∈ Lk} by ignoring the residual dithers {θl,k} and
the “don’t care” message segments {wl,k}. Without dithers,
we see from (57) that uπα(m),k is linearly independent of
{uπα(m�),k,m� ∈ Im} if k ∈ Jm . Thus, the rationale of (58)
is to choose the independent message segments of vm to
construct δm . The compression operation in (58) is illustrated
in Fig. 4. A detailed example is given as follows.

Fig. 4. Computation and compression at relay m.

Fig. 5. Illustration of ϕ(t̃1) and ϕ(t̃2) in example 1.

Example 1. Consider the channel in (1) with two trans-
mitters and two receivers. The nested lattice chain is set to
�s,1(= �1) ⊆ �s,2(= �2) ⊆ �c,1(= �3) ⊆ �c,2(= �4).
The integer coefficient matrix is chosen as A = [1, 1; 1, 0].
The computed codewords are given by

v1 =
�

2�

l=1

a1l(tl − Q�s,l (tl − βl dl))

�
mod �1 (59)

v2 = �
a11(t1 − Q�s,1 (t1 − β1d1))

mod �1. (60)

Applying the linear labeling to v1 and v2, we have

u1 =
�

2�

l=1

a1lϕ(t̃l)

�
mod q (61)

u2 = �
a11ϕ(t̃1)

mod q. (62)

The illustration of ϕ(t̃1) and ϕ(t̃2) are given in Fig. 5.
By definitions in (44) and (55), we have the following index
sets:

K1 = {1, 2}, K2 = {2, 3}, L1 = {1},
L2 = {1, 2}, L3 = {2}. (63)

The prime number q is assumed to be large enough, so that
the rank of A and the rank of any submatrix of A can be
evaluated in the integer domain. Then, the rank functions
involved in (57) are given by

rank(A({1},L1)) = 1, rank(A({1},L2)) = 1,

rank(A({1},L3)) = 1
rank(A({2},L1)) = 1, rank(A({2},L2)) = 1,
rank(A({2},L3)) = 0
rank(A(I2,L1)) = 1, rank(A(I2,L2)) = 2,
rank(A(I2,L3)) = 1
rank(A(∅,L1)) = 0, rank(A(∅,L2)) = 0,

rank(A(∅,L3)) = 0. (64)

Authorized licensed use limited to: Northeastern University. Downloaded on March 01,2020 at 22:27:03 UTC from IEEE Xplore. Restrictions apply.

CHENG et al.: GENERALIZED COMPUTE-COMPRESS-AND-FORWARD 469

Let πα(1) = 1 and πα(2) = 2. From (57), (63), and (64),
we obtain

J1 = {2, 3} and J2 = {1, 2}. (65)

Then, following (58), the compression operation at receivers 1
and 2 are respectively given by

δ1 = �
ũ1,2 + ũ1,3

mod q

δ2 = �
ũ2,1 + ũ2,2

mod q. (66)

From (54) (or Fig. 5), we have

u1,1 = �
w1,1 + (w2,1 − θ2,1)

mod q (67a)

u1,2 = �
w1,2 + w2,2

mod q (67b)

u1,3 = w2,3 (67c)

u2,1 = w1,1 (67d)

u2,2 = w1,2 (67e)

u2,3 = 0. (67f)

We see that receiver 1 forwards u1,3 = w2,3 and u1,2 =�
w1,2 + w2,2

mod q to the next hop, and receiver 2 forwards

u2,2 = w1,2 (independent of u1,2) and u2,1 = w1,1 to the next
hop. After collecting these forwarded messages, the destina-
tion can decode w2,3 from u1,3, {w1,2,w2,2} from {u2,2, u1,2},
and w1,1 from u2,1. Thus, w1 and w2 can be successfully
recovered while no redundant message is forwarded. �

Theorem 2: The achievable compression rate tuple of (58)
is given by (R1, R2, · · · , RL), with Rm being the entropy rate
of δm :

Rm = 1

n
H (δm) =

�

k∈J
π−1
α (m)

rv,k, for m ∈ IL , (68)

where H (·) denotes the entropy function. Further, the sum of
the entropy rate of {δm} satisfies

1

n

L�

m=1

H (δm) =
L�

l=1

rl . (69)

Eqn. (69) implies that there is no redundancy in the
compressed message vectors (δ1, δ2, · · · , δL). The proof of
Theorem 2 is given in Appendix D.

D. Relation Between GCCF and CCF

The compression function in CCF [9] is given by

δm = Q�d,m (vm) mod �e,m , m ∈ IL , (70)

where the lattice pair (�e,m ,�d,m) are chosen from the lattice
chain �1 ⊆ �2 ⊆ · · · ⊆ �2L . Note that GCCF in (58)
is based on the selection of message bits over Z

i2L −i1
q while

CCF in (70) is based on the quantization and modulo (QM)
operations over R

n . The computation complexity of CCF is
much higher than that of GCCF since QM operations over
high-dimensional lattices are computationally challenging.

Moreover, redundancy may still exist after the single-QM
compression in (70). For example, consider the case given by
Fig. 3, where 3 transmitters communicate with 3 receivers.

Suppose A = [2, 3, 4; 2, 1, 3; 1, 2, 3], and πα(m) = m for
m ∈ IL . From (57), J2 = {2, 4}. From (58), we have

δ2 = �
ũ2,2 + ũ2,4

mod q. (71)

In CCF, the compression function is given by

δ�
2 = Q�5 (v2) mod �2. (72)

Note that δ�
2 ∈ Q�5 ∩ V2 and thus the rate of δ�

2 is given
by i5−i2

n log q while the rate of δ2 is i5−i4+i3−i2
n log q . Clearly,

the rate of δ�
2 is in general higher than the rate of δ2, which

implies redundancy.
In [22, Th. 1], an information lossless compression scheme

based on QM operations is shown to achieve the same com-
pression rate tuple given in Theorem 2. In the compression
scheme of [22, Th. 1], multiple QM operations are applied to
vm . The key technique in [22, Th. 1] is to split vm into a set
of lattice codeword components over R

n , which is similar to
the technique in Theorem 1 (i.e., splitting ϕ(vm) into a set of
message segments over Z

i2L −i1
q). The computation complexity

of the scheme in [22, Th. 1] is much higher than the pro-
posed scheme in Theorem 1, due to the high complexity of
QM operations.

IV. COMPRESSION RATE REGION

In this section, we present an achievable compression rate
region Rcpr of the proposed GCCF scheme. We also discuss
the relation of the well-known Slepian-Wolf theorem and
our GCCF scheme. Two examples are given to illustrate the
GCCF scheme and the corresponding rate region at the end.

A. Achievable Rate Region of GCCF

We now present an achievable compression rate region Rcpr
of GCCF.

Theorem 3: A compression rate region Rcpr of GCCF is
given by

�

m∈S
Rm ≥ f (S), for S ⊆ IL (73)

where

f (S)=
2L−1�

k=1

�
rank(A(IL,Lk))− rank(A(S,Lk))

rv,k . (74)

Proof: Note that Rcpr in (73) is a polytope. Then, to prove
Theorem 3, it suffices to show that GCCF can achieve all the
vertices of Rcpr (by noting that the other rate tuples in Rcpr
can be achieved by time sharing of vertices).

We first show how to determine the vertices of Rcpr.
To this end, let α1, · · · , αL be positive real numbers satisfying
απα(1) ≥ απα(2) ≥ · · · ≥ απα(L). Then, a vertex of Rcpr
can be found by solving the following weighted sum-rate
minimization problem:

minimize
�

m∈IL

αm Rm (75a)

subject to
�

m∈S
Rm ≥ f (S), for S ⊆ IL . (75b)

Authorized licensed use limited to: Northeastern University. Downloaded on March 01,2020 at 22:27:03 UTC from IEEE Xplore. Restrictions apply.

470 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 1, JANUARY 2019

It can be shown that − f (S) is a submodular function by noting
the rank function is submodular and the summation preserves
submodularity. From [23, pp. 70], the solution to (75) is given
by (R1, R2, · · · , RL) with

Rπα(m) = f (�α(Im))− f (�α(Im−1)), for m ∈ IL . (76)

That is, (76) gives the coordinates of the vertex corresponding
to the permutation πα(·). By enumerating all possible πα(·),
we obtain all the vertices of Rcpr . What remains is to show that
GCCF can achieve the rate tuple given by (76). By substituting
f (S) into (76), together with the definition of Jm in (57),
we obtain

Rπα(m) =
�

k∈Jm

rv,k, for m ∈ IL . (77)

From Theorem 2, we see that GCCF achieves the vertex
of Rcpr in (76), which concludes the proof. �

Remark 1: Since − f (S) is a submodular function, f (S) is
a supermodular function. The rate region Rcpr given by (73)
is a contra-polymatroid [24].

Remark 2: Each πα(·) determines a vertex of Rcpr. How-
ever, the map between {πα(·)} and vertices of Rcpr is not
necessarily a bijection. This implies that the total number of
vertices of Rcpr may be less than L!.

B. Distributed Source Coding

So far, we have established the compression rate region
Rcpr of GCCF. A natural question is whether the compression
rate region can be further enlarged or not. From Section II-E,
the compression operation is required to be information
lossless, i.e., the messages {vm}L

1 can be recovered from
the compressed messages {δm}L

1 without distortion. This
is a distributed source coding problem [25]–[27] with the
optimal compression rate region given by the Slepian-Wolf
theorem [17], [28]:

�

m∈S
Rm ≥ 1

n
H
�{vm |m ∈ S}|{vm |m ∈ S}
, forS ⊆IL . (78)

We henceforth refer to the rate region in (78) as the Slepian-
Wolf region RSW. Comparing (73) with (78), we see that
Rcpr = RSW if

f (S) = 1

n
H

�{vm |m ∈ S}|{vm |m ∈ S}
, for S ⊆ IL . (79)

The following theorem shows that (79) always holds
for S = IL .

Theorem 4: The equality in (79) always holds for S = IL ,
i.e., GCCF is optimal in terms of minimizing the total com-
pression rate.

Proof: From Theorems 2 and 3, the minimum total com-
pression rate of GCCF is achieved at a vertex of Rcpr in (73),
with the coordinates (R1, · · · , RL) given by (68). From (76),

we obtain

f (IL) = f (IL)− f (∅) (80a)

=
L�

m=1

f (�α(Im))− f (�α(Im−1)) (80b)

=
L�

m=1

Rπα(m) (80c)

=
L�

l=1

rl (80d)

where (80d) follows from (69). For S = IL , the right hand
side (RHS) of (79) is given by

1

n
H ({vm |m ∈ IL}) = 1

n
H ({tl |l ∈ IL}) (81a)

=
L�

l=1

rl . (81b)

where (81a) follows from the fact that the map from {tl |l ∈IL}
to {vm |m ∈IL} is a bijection. This concludes the proof. �

We can further show that (79) holds in the following three
situations. Note that the proofs of Theorems 5 and 6 are
respectively given in Appendices E and F.

Theorem 5: Consider the interference channel in Fig. 1 with
L = 2. The proposed GCCF scheme is optimal, i.e. Rcpr =
RSW, where Rcpr is given by (73) and RSW is given by (78).

Theorem 6: If all the transmitters share a common shaping
lattice, i.e., �s,1 = · · · = �s,L , then the proposed GCCF
scheme achieves the Slepian-Wolf region in (78).

Remark 3: It can be shown that for L ≥ 3, the existence of
dithers in general enables a compression rate region beyond
Rcpr in (73) (though the minimum total compression rate
remains the same, as stated in Theorem 4). An example
of Rcpr
= RSW will be presented in the next subsection.
It is also worth noting that to achieve a compression rate
region beyond Rcpr, complicated distributed source coding
techniques are required. Nevertheless, this is out of the scope
of the paper.

C. Examples

1) Example 2: Continue from Example 1. We now describe
the compression rate region Rcpr. From (47), the rate of t1
(or w1) is given by r1 = rv,1 + rv,2 and rate of t2 (or w2) is
given by r2 = rv,2 + rv,3. The sum rate is given by rsum =
rv,1 +2rv,2 +rv,3. From (64) and Theorem 3, the compression
rate region is given by the following three inequalities:

R1 ≥ (rank(A(I2,L1))− rank(A({2},L1)))rv,1

+ (rank(A(I2,L2))− rank(A({2},L2)))rv,2

+ (rank(A(I2,L3))− rank(A({2},L3)))rv,3

= rv,2 + rv,3 (82)

R2 ≥ (rank(A(I2,L1))− rank(A({1},L1)))rv,1

+ (rank(A(I2,L2))− rank(A({1},L2)))rv,2

+ (rank(A(I2,L3))− rank(A({1},L3)))rv,3

= rv,2 (83)

Authorized licensed use limited to: Northeastern University. Downloaded on March 01,2020 at 22:27:03 UTC from IEEE Xplore. Restrictions apply.

CHENG et al.: GENERALIZED COMPUTE-COMPRESS-AND-FORWARD 471

Fig. 6. The compression rate region given in (82), (83), and (84).

R1 + R2 ≥ (rank(A(I2,L1))− rank(A(∅,L1)))rv,1

+ (rank(A(I2,L2))− rank(A(∅,L2)))rv,2

+ (rank(A(I2,L3))− rank(A(∅,L3)))rv,3

= rsum. (84)

Fig. 6 illustrates the compression rate region given in (82),
(83), and (84). Recall the compression operation in (66). The
entropy rate of δ1 and δ2 are respectively given by

1

n
H (δ1) = rv,2 + rv,3

1

n
H (δ2) = rv,1 + rv,2.

The rate tuple (1
n H (δ1),

1
n H (δ2)) corresponds to vertex B

in Fig. 6, i.e., (R1, R2) = (H (δ1), H (δ2)).1 Note that v1 ∈
�4 ∩ V1 and v2 ∈ �3 ∩ V1, the rate of v1 is rv,1 + rv,2 + rv,3
and the rate of v2 is rv,1 + rv,2. Therefore, by compression,
the total rate is reduced from rv,1 + rsum to rsum , while rsum

is the minimum sum rate for lossless compression.
2) Example 3: We now give an example of Rcpr
= RSW

for L ≥ 3. It suffices to show that the vertex of Rcpr associated
with πα(·) is not equal to the corresponding vertex of RSW.
Recall that the coordinates of the vertex of Rcpr associated
with πα(·) is given by (68) in Theorem 2 and the coordinates
of the corresponding vertex of RSW is given by (147) in
Appendix F. Then, we need to show that there exists m and
πα(·) such that

H (δπα(m))
= H
�
vπα(m)|{vi , i ∈ πα(Im)}

. (85)

Consider the nested lattice chain �1(�s,3) ⊆ �2(�s,2) ⊆
�3(�s,1) ⊆ �4(�c,3) ⊆ �5(�c,2) ⊆ �6(�c,1). The label
{ϕ(t̃l)} are illustrated in Fig. 7. Let πα(m) = m for m ∈ IL .
We assume

#
u2
u3

$
=

⎛

⎝
#

1 3 3
2 2 3

$⎡

⎣
ϕ(t̃1)
ϕ(t̃2)
ϕ(t̃3)

⎤

⎦

⎞

⎠ mod q (86)

1Vertex A in Fig. 6 can be achieved by the permutation πα(·) with πα(1) =
2 and πα(2) = 1.

Fig. 7. The lable splitting structure for Example 3 with nested lattice chain
�1(�s,3) ⊆ �2(�s,2) ⊆ �3(�s,1) ⊆ �4(�c,3) ⊆ �5(�c,2) ⊆ �6(�c,1).

where modq is element-wise. We now show

H (δ2)
= H (u2|u3). (87)

From (58), we obtain

δ2 = �
ũ2,2 + ũ2,3 + ũ2,4

mod q. (88)

From (68), the entropy rate of δ2 is given by

H (δ2) =
4�

k=2

rv,k . (89)

By the chain rule, we have

H (u2|u3) = H
�

u2,1|u3, {u2,k� }5
k�=2

�

+ H
�

u2,2|u3, {u2,k� }5
k�=3

�

+ H
�

u2,3|u3, {u2,k� }5
k�=4

�

+ H
�
u2,4|u3, {u2,5}

 + H
�
u2,5|u3

. (90)

We calculate H
�

u2,k|u3, {u2,k� }5
k�=k+1

�
in a descending order

of k.
For k = 5,

H
�
u2,5|u3

 = H
�

u2,5|{u3,k�}5
k�=1

�
(91a)

= H
�
u2,5|u3,1, u3,2, u3,5

(91b)

where (91b) is from the fact that u2,,5 and u3,k� for
k � ≥ 3, k �
= 5 can be expressed by (56) and thus u2,5 is
independent of u3,k� for k � ≥ 3, k �
= 5. From (56), we obtain
u2,5 = w1,5 and u3,5 = w1,5) = u2,5. Thus,

H
�
v2,5|v3,1, v3,2, v3,5

 = 0. (92)

For k = 4,

H
�
u2,4|u3, u2,5

 = H
�

u2,4|{u3,k� }5
k�=1, u2,5

�
(93a)

= H
�
u2,4|u3,1, u3,2, u3,4

(93b)

Authorized licensed use limited to: Northeastern University. Downloaded on March 01,2020 at 22:27:03 UTC from IEEE Xplore. Restrictions apply.

472 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 1, JANUARY 2019

where (93b) follows from the fact that u2,4 is independent of
u2,5 and u3,3, u3,5. From (54), we obtain

u2,4 = �
w1,4 + 3w2,4

mod q, (94)

u3,1 = �
2(w1,1 − θ1,1)+ 2(w2,1 − θ2,1)+ 3w3,1

mod q,

(95)

u3,2 = �
2(w1,2 − θ1,2)+ 2w2,2 + 3w3,2

mod �2, (96)

u3,4 = �
2t1,4 + 2t2,4

mod �4. (97)

Since the coefficient vector [1, 3] is independent of [2, 2],
we see from Lemma 7 that u2,4 is independent of u3,4.
Folloiwng the proof of Lemma 4, we see that both u3,1 and
u3,2 are independent of w1 and w2. Thus, u3,1 and u3,2 are
independent of u2,4. Thus,

H
�
v2,4|v3,1, v3,2, v3,4

 = H
�
v2,4

(98a)

= rv,4. (98b)

Similarly, for k = 3,

H
�
u2,3|u3, u2,4, u2,5

 = H
�
u2,3|u3,3

(99a)

= H
�
u2,3

(99b)

= rv,3, (99c)

where

u2,3 = �
w1,3 + 3w2,3 + 3w3,3

mod q (100)

u3,3 = �
2w1,3 + 2w2,3 + 3w3,3

mod q. (101)

For k = 2,

H
�
u2,2|u3, {u2,k�}5

k�=3

�
= H

�
u2,2|{u3,k�}5

k�=1,{v2,k�}5
k�=3

�

= H
�
u2,2|u3,2, u3,1,{u2,k� , u3,k�}5

k�=3

�

where

u2,2 = �
(w1,2 − θ1,2)+ 3w2,2 + 3w3,2

mod q (102)

Following the discussion below (93), u3,1 is independent of
w1 and w2, and so is independent of u2,2. Also, u2,2 is
independent of {u2,k� , u3,k� }5

k�=3 for given (w1,2−θ1,2) mod q .
Thus,

H
�

u2,2|u3,2, u3,1, {u2,k� , u3,k� }5
k�=3

�
(103a)

= H
�

u2,2|u3,2, {u2,k� , u3,k� }5
k�=3

�
(103b)

≥ H
�

u2,2|u3,2, (w1,2 − θ1,2) mod q, {u2,k�, u3,k� }5
k�=3

�

(103c)

= H
�
u2,2|u3,2, (w1,2 − θ1,2) mod q

(103d)

= rv,2 (103e)

where (103e) follows from that u2,2 is independent of u3,2 for
given (w1,2−θ1,2) mod q (by noting Lemma 7 in Appendix F),
and v2,2 is uniformly distributed over Z

i3−i2
q and independent

of (w1,2 − θ1,2) mod q (by noting Lemma 4). At the same
time, we have

H
�

u2,2|u3, {u2,k� }5
k�=3

�
≤ H

�
u2,2

 = rv,2. (104)

Thus,

H
�

u2,2|u3, {u2,k� }5
k�=3

�
= rv,2. (105)

For k = 1, we have

H
�

u2,1|u3, {u2,k� }5
k�=2

�
(106a)

= H
�

u2,1|{u3,k� }5
k�=1, {u2,k� }5

k�=2

�
(106b)

= H
�

u2,1|u3,1, {u2,k�, u3,k� }5
k�=2

�
(106c)

where

u2,1 = �
(w1,1 − θ1,1)+ 3(w2,1 − θ2,1)+ 3w3,1

mod q.

(107)

We next show that u2,1 is deterministic for given
u3,1, {u2,k� , u3,k� }5

k�=2, and w1,3. Recall that the value of
w1,5 can be determined for given u2,5. Similarly, from
(94) and (97), w1,4 and w2,4 can be determined for given u2,4
and u3,4. Also, from (100) and (101), w2,3 and w3,3 can be
determined for given u2,3, u3,3, and w1,3. This further implies
that w̃1 = �

w̃1,3 + w̃1,4 + w̃1,5

mod q is deterministic, and
so are the “don’t care” message segments (w1,1 − θ1,1) mod q
and (w1,2 − θ1,2) mod q . Consequently, from (96) and (102),
w2,2 and w3,2 are deterministic by noting that u2,2 and
u3,2 are given. Then, w̃2 = �

w̃2,2 + w̃2,3 + w̃2,4

mod q
is deterministic, and so is the “don’t care” message seg-
ment (w2,1 − θ2,1) mod q . From (95), w3,1 is deterministic,
and so u2,1 in (107) is also deterministic. Thus, for given
u3,1, {u2,k� , u3,k� }5

k�=2, the randomness of u2,1 is completely
determined by w1,3. In general, the value of u2,1 varies with
the choice of w1,3. Therefore, we obtain

H
�

u2,1|u3,1, {u2,k� , u3,k� }5
k�=2

�
> 0. (108)

Combining (90), (92), (98), (99), (105), and (108), we obtain

H (u2|u3) >

4�

k=2

rv,k . (109)

Thus, together with (89), we obtain (87). This example implies
that, with random dithering, the optimal distributed source
coding can achieve a rate region beyond Rcpr, though the
minimum sum rate remains the same.

V. PERFORMANCE OPTIMIZATION FOR

MULTI-HOP RELAY NETWORKS

In this section, we consider a multi-hop relay network
employing our GCCF relaying scheme. We first describe the
GCCF scheme for a N-hop relay network and then present the
achievable rates of the network. Then, we formulate the sum-
rate maximization problem for a two hop relay network and
present an algorithm to solve the problem. Finally, numerical
results for the two hop relay network are provided for com-
parison.

Authorized licensed use limited to: Northeastern University. Downloaded on March 01,2020 at 22:27:03 UTC from IEEE Xplore. Restrictions apply.

CHENG et al.: GENERALIZED COMPUTE-COMPRESS-AND-FORWARD 473

Fig. 8. A multi-hop relay network with a single destination node.

A. Achievable Rates

An N-hop relay network is illustrated in Fig 8. Each of
the first (N − 1) hop is modeled by the interference channel
in Fig. 1. The last hop has a unique destination node required
to recover all the source messages.

We use superscript (n) to represent variables associated with
the n-th hop. Specifically, denote by t(n)l the codeword of
transmitter l in the n-th hop, and by r (n)l the corresponding
transmission rate. Denote by �(n)1 ⊆ �

(n)
2 ⊆ · · · ⊆ �

(n)
2L the

nested lattice chain used to encode t(n)l in the n-th hop and
by r (n)v,k the rate of the k-th message segment in the n-th hop.
Denote by π(n)(·) the lattice chain permutation in the n-th hop.
Denote by A(n) the corresponding coefficient matrix. Note that
the receivers in the n-th hop are the transmitters in the (n+1)-
th hop. Each receiver in the n-th hop needs to re-encode the
compressed message, denoted by δ

(n)
m , into

t(n+1)
m = �(n)m (δ(n)m) ∈ �(n+1)

c,m ∩ V (n+1)
s,m (110)

where �
(n+1)
c,m is the coding lattice of m-th transmitter in

(n + 1)-th hop and V (n+1)
s,m is the Voronoi region of the

shaping lattice �(n+1)
s,m . Denote by r (n+1)

m the rate of t(n+1)
m .

The computation rate region and the compression rate region
in the n-th hop are respectively denoted by R(n)

cpu and R(n)
cpr,

where 1 ≤ n ≤ N − 1. Denote by R(N) the capacity region of
the N-th hop. Then, an achievable transmission rate tuples of
the multi-hop relay network are given in the theorem below.

Theorem 7: Consider the N-hop relay network in Fig. 8.
For any given lattice chain permutations {πn(·)|n =
1, · · · , N − 1}, a transmission rate tuple (r (1)1 , r (1)2 , · · · , r (1)L)
is achievable when the following conditions are satisfied:

(i) (r (n)1 , r (n)2 , · · · , r (n)L)∈R(n)
cpu, n ∈ {1, 2, · · · , N − 1},

(ii) (r (n+1)
1 , r (n+1)

2 , · · · , r (n+1)
L)∈R(n)

cpr, n ∈{1, · · · , N −1},
(iii) rank(A(n)) = L, n ∈ {1, 2, · · · , N − 1} ,
(iv) (r (n)1 , r (n)2 , · · · , r (n)L) ∈ R(n), n = N .

Proof: Condition 7 ensures the error-free computation at
the n-th hop; condition 7 ensures that the coefficient matrix
is invertible and so the source messages can be recovered
from the computed messages; condition 7 ensures that the
computed messages can be recovered from the compressed
messages. With conditions (i)-(iii), {t(n)l }L

1 can be recovered
from {t(n+1)

l }L
1 (or {δ(n)m }L

1) successfully. Besides, condition 7

Fig. 9. A two-hop relay network with L transmitter nodes, L receiver nodes,
and one destination node. Function
l(·) represents the decoding steps given
by (24) and (25).

ensures the successful recovery of {t(N)l }L
1 at the destination

node. This concludes the proof. �
Remark 4: In Theorem 7, (r (n)1 , r (n)2 , · · · , r (n)L) is related

to (r (n+1)
1 , r (n+1)

2 , · · · , r (n+1)
L) as follows. From Theorem 3,

for any given πn(·), R(n)
cpr can be represented as a function

of {r (n)v,k }. From (47), r (n)l is also a function of {r (n)v,k }. Thus,

condition 7 gives a constraint that relates (r (n)1 , r (n)2 , · · · , r (n)L)

to (r (n+1)
1 , r (n+1)

2 , · · · , r (n+1)
L).

Remark 5: The network configuration of N = 2 is illus-
trated in Fig. 9. This configuration is of particular importance
due to its connection to the cloud radio access network (C-
RAN) [29]. In C-RAN, baseband signal processing is carried
out in a central processor (CP), rather than in base stations
as in a conventional cellular network. More specifically, in an
uplink C-RAN, the function of a base station is reduced to
receive radio signals from mobile users and then forward
the signal to the CP after simple processing, while the
CP collects signals from all the base stations and jointly
decodes the messages of mobile users. Zhou and Yu [30] and
Park et al. [31] proposed to quantize the received signal at base
stations and forward the quantized signal to the CP. It was
shown that with optimized quantization, C-RAN achieves a
much higher sum rate than a conventional cellular network
does. Interestingly, C-RAN can be modelled by the two-hop
relay network described in Fig. 9, where the receivers serve
as the base stations in C-RAN, and the single destination
node serves as the CP. With this analogy, the achievable rate
region developed in Theorem 7 can be used to characterize
the performance limits for the uplink C-RAN.

B. Sum-Rate Maximization

In this subsection, we consider the sum-rate maximization
of the network in Fig. 8. We focus on the case of N = 2
illustrated in Fig. 9. Based on Theorem 7 and some other
encoding constraints, we can formulate the sum-rate maxi-
mization problem as

maximize
O

L�

l=1

r (1)l (111a)

subject to pl ≤ Pl , βl > 0, (111b)

Authorized licensed use limited to: Northeastern University. Downloaded on March 01,2020 at 22:27:03 UTC from IEEE Xplore. Restrictions apply.

474 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 1, JANUARY 2019

π(2l − 1) < π(2l), (111c)

r (1)l =
�

k∈Kl

r (1)v,k, for l ∈ IL , (111d)

�

k∈Pl

r (1)v,k = 1

2
log

(β
(1)
πs (l)

)
2
p(1)πs(l)

(β
(1)
πs(l+1))

2
p(1)πs(l+1)

, for l ∈IL−1,

(111e)

r (1)v,k ≥ 0, for k ∈ I2L−1, (111f)

(r (1)1 , r (1)2 , · · · , r (1)L) ∈ R(1)
cpu, (111g)

(r (2)1 , r (2)2 , · · · , r (2)L) ∈ R(1)
cpr, (111h)

(r (2)1 , r (2)2 , · · · , r (2)L) ∈ R(2), (111i)

rank(A(1)) = L, (111j)

where O =
�
{β(1)l }L

1,{p(1)l }L
1,{r (1)v,k}2L−1

1 ,{r (2)m }L
1,π(·)(1),A(1)

�
,

and Pl = {k|i (1)π(2πs(l)−1) ≤ i (1)k < i (1)k+1 ≤ i (1)π(2πs(l+1)−1)}.
In the above formulation, (111c) is from (15); (111d) is

from (47); (111g)-(111j) are from Theorem 7. Eqn. (111e)
establishes the relations between the rates of the message
segments and the source powers {p(1)l }. More specifically,
consider a message w uniformly distributed over the finite

field Z
i(1)π(2πs (l+1)−1)−i(1)π(2πs (l)−1)
q . The entropy rate of the message

w is equal to the rate of a nested lattice code with code-
book �

(1)
s,πs(l+1) ∩ V (1)s,πs(l)

. From (18) and (22), the entropy

rate is given by 1
2 log

(β
(1)
πs (l)

)
2

p(1)πs (l)

(β
(1)
πs (l+1))

2
p(1)πs (l+1)

. Note that w ∈

Z
i(1)π(2πs (l+1)−1)−i(1)π(2πs (l)−1)
q can be split into a set of message

segments indexed given by Pl . Therefore, the rate of w can
be represented by the LHS of (111e).

C. Approximate Solution

The maximization problem in (111) is an NP-hard mixed
integer programming problem. We now present an approxi-
mate algorithm to solve (111). For any given {β(1)l }, {p(1)l },
and π(·)(1) satisfying (111c) and (111b), we can solve (111)
by the following steps:

• Following [9], find a suboptimal coefficient matrix A by
using the LLL algorithm in [15];

• Determine R(1)
cpu by (27) and R(1)

cpr by (73);
• Optimize {r (1)v,k} and {r (2)m } using linear programming.

The above procedures are summarized in Algorithm 1.
What remains is to optimize π(·)(1), {β(1)l }, and {p(1)l }. Here
we employ the brute-force method to optimize π(·)(1) and
the differential evolution algorithm [18] to optimize {β(1)l }
and {p(1)l }.

The exhaustive search over π(·)(1) needs to consider (2L)!
different permutations, and is time-consuming even for a
moderate L. In what follows, we describe a method to reduce
the complexity when the separability condition in (114) is
satisfied. With (114), the nested lattice chain can be repre-
sented by �(1)s,πs(1)

⊆ �
(1)
s,πs(2)

⊆ · · · ⊆ �
(1)
s,πs(L)

⊆ �
(1)
c,πc(1)

⊆
�
(1)
c,πc(2)

⊆ · · · ⊆ �
(1)
c,πc(L)

. From (22), the permutation πs(·)

satisfies the inequality:

(β
(1)
πs(1)

)2 p(1)πs(1)
≥ · · · ≥ (β

(1)
πs(L)

)2 p(1)πs(L)
. (112)

For given {β(1)l }L
l=1 and {p(1)l }L

l=1, πs(·)(1) is uniquely deter-
mined by (112). Thus, the search space of π(·)(1) reduces to
the set of all possible πc(·)(1) with complexity L!. In general,
imposing the separability condition may incur a certain perfor-
mance loss by reducing the search space. However, we will see
from numerical results that such a performance loss is usually
marginal.

Algorithm 1 Approximate Algorithm

Require: H(1), H(2), π(·)(1), {β(1)l }L
l=1, {p(1)l }L

l=1, {p(2)l }M
m=1.

Ensure:
�L

l=1 r (1)l .
1: Reorder {β(1)l }L

l=1, {p(1)l }L
l=1 to satisfy (112).

2: Apply LLL algorithm [15] to find a full rank A.
3: With {p(1)l }L

l=1, {β(1)l }L
l=1, H(1), and A(1), compute R(1)

cpu in
(27) and (28).

4: With A(1) and π(·)(1), compute R(1)
cpr in (73).

5: With H(2) and {p(2)l }M
m=1, compute R(2).

6: Solve (111) by linear programming.

D. Numerical Results

In simulation, we assume that the second hop channel of
Fig. 9 is a parallel channel. That is, the destination observes
y�

m = hm x �
m + z�

m from relay m, where hm is the channel
gain, x �

m ∈ R
n×1 is the signal forwarded by relay m with

power p(2)m = 1
n �x �

m�2, and z�
m is independently drawn from

N (0, 1). Therefore, the capacity region of the second hop is
given by

R(2)=
)
(r (2)1 , r (2)2 , · · · , r (2)L)|r (2)m <

1

2
log(1+h2

m p(2)m),m ∈IL

*
.

In our simulation, we use the toolbox Scipy [32] to realize the
differential evolution and the linear programming algorithm.
We average the numerical results over 1000 channel realiza-
tions. The following settings are employed: Pl = P, 0.1 ≤
βl ≤ 4, l ∈ IL , and p(2)m = 0.25P,m ∈ IL .

1) Comparison of Various Relaying Schemes: We compare
the following five relaying schemes and the cut-set upper
bound in a 3 × 3 network:

• AF: amplify-and-forward
• DF: decode-and-forward
• CF: the asymmetric CF scheme [3]
• CCF: the original CCF scheme [9]
• GCCF: generalized compute-compress-and-forward
• Cut-set bound: a cut-set upper bound given by

min

)
1

2
log det(I + SNRH(1)H(1)T),

L�

m=1

1

2
log(1 + h2

m p(2)m)

*
(113)

Authorized licensed use limited to: Northeastern University. Downloaded on March 01,2020 at 22:27:03 UTC from IEEE Xplore. Restrictions apply.

CHENG et al.: GENERALIZED COMPUTE-COMPRESS-AND-FORWARD 475

Fig. 10. The performance comparison of various relaying schemes in the
two-hop relay network in Fig. 9.

• GCCF-S: generalized compute-compress-and-forward
under the separability condition 2

�s,l ⊆ ��
c,l , for l, l � ∈ IL . (114)

The numerical results are presented in Fig. 10. We see that
the GCCF scheme performs better than the other relaying
schemes, especially at relatively high SNR. GCCF-S performs
close to GCCF in the high SNR regime (SNR > 10dB).
This implies that GCCF-S is an attractive low-complexity
alternative to GCCF in the high SNR regime.

It is interesting to compare the complexity and overhead of
CF, CCF, and GCCF. Compared with CF and CCF, the only
difference of GCCF is in the compression operation. CF does
not perform compression, and thus does not require any extra
complexity or overhead. As for CCF and GCCF, the compres-
sion of GCCF is more general and can achieve a broader rate
region. The complexity of GCCF can be lower than that of
CCF since the compression of GCCF is operated over finite
fields (which generally requries much lower complexity than
the QM operations over lattices). In terms of extra overhead
for compression, both CCF and GCCF need to inform each
relay how to conduct compression. Thus, the extra overheads
for compression are comparable.

2) Comparison in Various Network Sizes: The numerical
results for the considered relay network with sizes 2 × 2 and
4 × 4 are presented in Fig. 11. Note that the performance of
GCCF is replaced by its low-complexity alternative GCCF-S.
From Fig. 11, we see that GCCF-S achieves a much higher
sum rate than CCF and CF does. More importantly, the rate
slop of GCCF-S is higher than that of CF. The gap between
GCCF-S and the cut-set bound is only 1 bit per channel use
in the 4 × 4 network with SNR = 20 dB, and the gap reduces
as the decrease of SNR.

2Intuitively, the separability condition says that, in the nested lattice chain,
the finest shaping lattice is coarser than the coarsest coding lattice. With the
constraint, we can decrease the complexity in optimization.

Fig. 11. The performance comparison of various schemes in the two-hop
relay network in Fig. 9 with different network sizes.

VI. CONCLUSION

In this paper, we developed a general compression frame-
work, termed GCCF, for CF-based relay networks. In contrast
to the QM operation in the original CCF, our proposed GCCF
scheme allows each relay to select message segments over
finite fields, so as to reduce the information redundancy as
well as the computational complexity. We showed that the
compression rate region of GCCF is a contra-polymatroid and
is broader than that of CCF. We also showed that GCCF
is optimal in the sense of minimizing the total compression
rate, and established sufficient conditions for GCCF to achieve
the optimal SW region. Based on that, we studied the sum-
rate maximization of the GCCF-based two-hop relay network,
and demonstrated the superior performance of GCCF over the
other relaying schemes.

With GCCF, there are a number of future research directions
worth pursuing. First, recall that a connection between the two-
hop relay network and C-RAN was established in Section V-A.
This inspires us to utilize the analytical results in this
paper to characterize the fundamental performance limits
of C-RAN. Some initial results on the incorporation of
CF techniques into C-RAN can be found, e.g., in [12]. Second,
the GCCF scheme can be potentially combined with other
relaying strategies, such as decode-and-forward and amplify-
and-forward, to enhance the network performance. How to
analyze and optimize these hybrid-relaying schemes is an
interesting research topic. Third, the GCCF scheme considered
in this paper assumes single-antenna transmitters and single-
antenna receivers. It is known that multi-antenna techniques
can be employed to dramatically increase the system capacity.
As such, how to extend the results in this paper to multi-
antenna relay networks is an interesting topic worth of future
research effort.

APPENDIX A
PROOF OF LEMMA 2

To show that ϕ(·) is a bijection between �2L ∩ V1 and
Z

i2L −i1
q , it suffices to show

|�2L ∩ V1| = |Zi2L −i1
q |, (115)

Authorized licensed use limited to: Northeastern University. Downloaded on March 01,2020 at 22:27:03 UTC from IEEE Xplore. Restrictions apply.

476 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 1, JANUARY 2019

and for t1, t2 ∈ �2L ∩ V1

ϕ(t1) = ϕ(t2) if and only if t1 = t2. (116)

We first show (115). Recall that the mapping in (17) is
an isomorphism between Z

bl
q and Cl . By letting π(2l −

1) = 1 and π(2l) = 2L, we obtain bl = i2L − i1 and
|�2L ∩ V1| = |Zi2L −i1

q |.
We then show (116). If t1 = t2, it is clear that ϕ(t1) =

ϕ(t2). What remains is to show the only if part. From (34),
for t1, t2 ∈ �2L ∩ V1, we have

t1 = ϕ̄(w̃1) mod �1 (117)

t2 = ϕ̄(w̃2) mod �1. (118)

Further, by taking linear labeling on the both sides of (117),
we have

ϕ(t1) = ϕ
�
ϕ̄(w̃1)− Q�1 (ϕ̄(w̃1))

(119a)

= (w̃1 − 0) mod q (119b)

= w̃1 (119c)

where in (119b) ϕ (ϕ̄(w̃1)) = w̃1 is from (32) and
ϕ
�
Q�1 (ϕ̄(w̃1))

 = 0 is from the fact of Q�1 (ϕ̄(w̃1)) ∈ �1.
Similarly, we have ϕ(t2) = w̃2. Thus, if ϕ(t1) = ϕ(t2),
i.e., w̃1 = w̃2, we obtain t1 = t2 from (34). This concludes
the proof.

APPENDIX B
PROOF OF LEMMA 4

We first show that um,k is uniformly distributed over
Z

ik+1−ik
q . Represent um,k in (54) as

um,k = �
wk + w�

k

mod q (120)

where wk = (
�

l∈Lk
(aml mod q)wl,k) mod q and w�

k =��
{l|k<π(2l−1)}(aml mod q)(wl,k − θl,k)

�
mod q . Since there

exists non-zero coefficient aml for l ∈ Lk , wk is uniformly
distributed over Z

ik+1−ik
q (by noting that {wl,k |l ∈ Lk} are all

uniformly distributed over Z
ik+1−ik
q). For any given w�

k , um,k

is uniformly distributed over Z
ik+1−ik
q . Thus, um,k is uniformly

distributed over Z
ik+1−ik
q and is independent of w�

k .
We now show that um,k is independent of um,k� for any

k � > k. Since wl,k is independent of wl,k� for k, k � ∈ Kl ,
then wk in (120) is independent of wk� . Since w�

k� in um,k�
is also independent of wk , together with the fact that um,k is
independent of w�

k , we see that um,k is independent of um,k� .
This concludes the proof.

APPENDIX C
PROOF OF THEOREM 1

Since A is invertible, there is a bijection between {vm}L
1 and

{tl}L
1 . Thus, to prove that {vm}L

1 can be recovered from {δm}L
1 ,

it suffices to show that {wl}L
1 can be recovered from {δm}L

1 .
From (45), for any given l, wl can be recovered from {wl,k |k ∈
Kl}. Thus, we only need to show that {wl,k |l ∈ IL , k ∈ Kl}
can be recovered from {δm}L

1 , or equivalently, {wl,k |l ∈ Lk} for
each k ∈ I2L−1 can be recovered from {δm}L

1 . In the following,

we show that {wl,k|l ∈ Lk} can be recovered recursively in a
descending order of k.

To start with, we establish a relation between {δm} and
{um,k} as follows. From (58) in Theorem 1, we see that δm

contains um,k for k ∈ Jπ−1
α (m). For any given k, define

Mk =
�

all m satisfying k ∈ Jπ−1
α (m)

�
. (121)

Following the label splitting in Section III-A, we define δm,k

to be the (ik + 1)-th to (ik+1)-th elements of δm . For any
m ∈ Mk , we have

δm,k = um,k . (122)

If m /∈ Mk , we have δm,k = 0.
We first consider the recovery of {wl,k |l ∈ Lk} for k

satisfying ik ≥ iπ(2l−1), l ∈ L (i.e., um,k can be represented
as (56)). Without loss of generality, we henceforth assume
�s,L ⊆ �s,L−1 ⊆ · · · ⊆ �s,1. Note that �s,l = �π(2l−1)
in (16). We see that the largest iπ(2l−1) is iπ(1). Therefore,
the range of k considered in this step is given by π(1) ≤ k ≤
2L − 1.3

Thus, for any k satisfying π(1) ≤ k ≤ 2L −1 and m ∈ Mk ,
δm,k can be represented as

δm,k = um,k (123a)

=
⎛

⎝
�

l∈Lk

amlwl,k

⎞

⎠ mod q (123b)

where (123a) is from (122), and (123b) follows from the (56).
By taking transpose on the both sides of (123) and then

stacking row by row for m ∈ Mk , we obtain

�k = A(Mk,Lk)Wk (124)

where the i -th rows of �k is given by the transpose of
δmi ,k with mi being the i -th element of Mk (ordered in an
ascending manner), and the i -th row of Wk is given by the
transpose of wli ,k with li being the i -th element of Lk (ordered
in an ascending manner). The following lemma states that
A(Mk

πα
,Lk) is invertible.

Lemma 5: The two sets defined in (55) and (121) have the
same cardinality, i.e., |Lk | = |Mk |. Further, the submatrix
A(Mk,Lk) is invertible over Z

|Lk |×|Lk |
q .

Proof: From the definition of Mk in (121), we can construct
Mk as follows. For each m, we consider the πα(m)-th row
of the submatrix A(:,Lk). If the πα(m)-th row is independent
of the πα(m + 1)-th, · · · , πα(L)-th rows of A(:,Lk), we have
m ∈ Mk . As A is invertible, the columns of A are inde-
pendent. Thus, rank(A(:,Lk)) = |Lk |, and so there are |Lk |
independent rows in A(:,Lk). Thus, |Mk | = |Lk |. Also, as the
|Mk| selected rows are linearly independent, we obtain that
A(Mk,Lk) is invertible. �

From Lemma 5, we recover Wk by

Wk = (A(Mk,Lk))
−1 �k, (125)

3For the example in Fig. 7, the finest shaping lattice is �3. Thus, we have
π(1) = 3, and so the considered range of k is 3 ≤ k ≤ 5. Clearly, um,k is
solely a linear combination of {wl,k |l ∈ Lk} for k = 3, 4, and 5.

Authorized licensed use limited to: Northeastern University. Downloaded on March 01,2020 at 22:27:03 UTC from IEEE Xplore. Restrictions apply.

CHENG et al.: GENERALIZED COMPUTE-COMPRESS-AND-FORWARD 477

which implies that {wl,k |l ∈ Lk} can be recovered for π(1) ≤
k ≤ 2L − 1. Recall from (16) that �c,l = �π(2l) for l ∈ IL .
Thus, from (44), we obtain K1 = {k|π(1) ≤ k ≤ π(2)} ⊆
{k|π(1) ≤ k ≤ 2L − 1}. Therefore, {w1,k|k ∈ K1} are all
recoverable and so w1 can be recovered by using (45).

We now consider the recovery of {wl,k} for 1 ≤ k ≤ π(1)−1
(i.e., the range of k such that um,k given by (54)). We first
show the recovery of {wl,k} for k = π(1)− 1.4 From �s,2 ⊆
�s,1 = �π(1) and the fact that �k is the finest lattice which
is coarser than �π(1), we have

iπ(2∗2−1) ≤ ik < iπ(2∗1−1). (126)

Then, from (54), δm,k is given by

δm,k =
⎛

⎝
�

l∈Lk

amlwl,k + am1(θ1,k − w1,k)

⎞

⎠ mod q. (127)

Note that w1,k and θ1,k (the label segment of Q�s,1 (t1−β1d1))
is known since β1 and d1 are known, and w1 is just recovered.
Thus, θ1,k and w1,k can be pre-cancelled from δm,k as follows.
Let tl = (ϕ̄(w1)) mod �s,1. Then, θ1,k can be obtained from
ϕ(t1 − β1d1)) and w1,k can be obtained from ϕ(t1). Then, for
m ∈ Mk ,
�
δm,k + am1(θ1,k − w1,k)

mod q (128a)

= �
um,k + am1(θ1,k − w1,k)

mod q (128b)

=
⎛

⎝
�

l∈Lk

amlwl,k −am1(θ1,k −w1,k)+am1(θ1,k −w1,k)

⎞

⎠mod q

(128c)

=
⎛

⎝
�

l∈Lk

amlwl,k

⎞

⎠ mod �k (128d)

where (128b) is from (122), (128c) is from (127). Then,
following the approach in (124) and (125), we can recover
{wl,k |l ∈ Lk} for k = π(1)− 1.

Note that �s,2 = �π(3). Then, (126) still holds for π(3) ≤
k ≤ π(1) − 2. Thus, following the approach in (127)-(128),
we can recover {wl,k |l ∈ Lk} for π(3) ≤ k ≤ π(1)− 2 in the
same way. Recall from (44) that K2 = {k|π(3) ≤ k ≤ π(5)} ⊆
{k|π(3) ≤ k ≤ 2L − 1}. Therefore, we can also recover w2
by (45).

By induction, we can recover {wl}L
1 recursively. This com-

pletes the proof.

APPENDIX D
PROOF OF THEOREM 2

We first show (68). The compression function in (58) gives
a bijection between δm and {um,k|k ∈ Jπ−1

α (m)}. Thus,

H (δm) = H (um,k|k ∈ Jπ−1
α (m)). (129)

To prove (68), it suffices to show that

1

n
H (um,k) = rv,k (130)

4For the example in Fig. 7, π(1)− 1 = 2.

and um,k is independent of um,k� for any k
= k � and k, k � ∈
Jπ−1

α (m), i.e.,

H (um,k|k ∈ Jπ−1
α (m)) =

�

k∈J
π−1
α (m)

H (um,k). (131)

Recall that um,k is given by (54). Note that {am,l |l ∈ Lk}
defines A(m,Lk). Also note that the submatrix A(Im−1,Lk)
has one more row (i.e. A(m,Lk)) than the submatrix
A(Im,Lk). Then, from the definition in (57), for k ∈ Jπ−1

α (m),
A(m,Lk) can not be a zero vector, and so {am,l |l ∈ Lk} are
not all zeros. From Lemma 4, um,k is uniformly distributed
over Z

ik+1−ik
q and is also independent of um,k� for k
= k � and

k, k � ∈ Jπ−1
α (m). Therefore, we have

1

n
H (um,k) = rv,k, (132)

and

1

n
H (δm) = 1

n
H (um,k|k ∈ Jπ−1

α (m)) (133a)

= 1

n

�

k∈J
π−1
α (m)

H (um,k) (133b)

=
�

k∈J
π−1
α (m)

rv,k . (133c)

We then show (69). The left hand side (LHS) of (69) can
be represented as

1

n

L�

m=1

H (δm) = 1

n

L�

m=1

�

k∈J
π−1
α (m)

H (δm,k) (134a)

= 1

n

2L−1�

k=1

�

m∈Mk

H (δm,k) (134b)

=
2L−1�

k=1

|Mk |rv,k (134c)

=
2L−1�

k=1

|Lk |rv,k (134d)

where (134a) is from (133b) together with δπα(m),k = uπα(m),k
for k ∈ Jπα(m) and δπα(m),k = 0 for k /∈ Jπα(m), (134b) is
from the definition of Mk in (121). The RHS of (69) can be
represented as

L�

l=1

rl = 1

n
H ({wl|l ∈ IL}) (135a)

= 1

n
H ({wl,k|l ∈ IL , k ∈ Kl}) (135b)

= 1

n
H ({wl,k|l ∈ Lk, k ∈ I2L−1}) (135c)

=
2L−1�

k=1

|Lk |rv,k . (135d)

By combining (134) and (135), we obtain (69).

Authorized licensed use limited to: Northeastern University. Downloaded on March 01,2020 at 22:27:03 UTC from IEEE Xplore. Restrictions apply.

478 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 1, JANUARY 2019

APPENDIX E
PROOF OF THEOREM 5

To prove Theorem 5, we need to show that (79) holds for
L = 2. The RHS of (79) can be represented as

H
�{vm |m ∈S}|{vm |m ∈S}
= H (vm |m ∈IL)−H

�
vm |m ∈S
.

(136)

Thus, we need to show that

1

n
H ({vm |m ∈ S}) =

2L−1�

k=1

rank(A(S,Lk))rv,k, for S ∈ I2.

(137)

From the fact vm ∈ �2L∩V1 and Lemma 2, H ({vm |m ∈ S}) =
H ({um |m ∈ S}). Thus, to show (137), it suffices to show

1

n
H ({um |m ∈ S}) =

2L−1�

k=1

rank(A(S,Lk))rv,k, for S ∈ I2.

(138)

The non-empty subsets of I2 are given by {1}, {2},I2. For
S = I2, we have

1

n
H ({um |m ∈ S}) = 1

n
H (t1, t2) (139a)

=
2L−1�

k=1

|Lk |rv,k (139b)

where (139a) follows from the fact that {t1, t2} can be recov-
ered from {u1, u2}, and (139b) from (135). Note that for
S = I2, rank(A(S,Lk)) = |Lk |. Thus, (137) holds for
S = I2.

We now prove (137) for S = {1}. The proof for S = {2} is
similar and thus omitted. By the chain rule of the entropy,

H (u1) = H (u1,1, u1,2, u1,3)

= H (u1,3)+ H (u1,2|u1,3)+ H (u1,1|u1,2, u1,3).

(140)

With (140), to prove (138), it suffices to show

1

n
H (u1,k|{u1,k� }3

k�=k+1) = rank(A(1,Lk))rv,k, for k ∈ I3.

(141)

where {u1,k� }3
k�=k+1 = ∅ if k + 1 > 3. If A(1,Lk)
= 0, from

Lemma 4, we have u1,k is independent of {u1,k� for k � > k,
and thus

1

n
H (u1,k|{u1,k� }3

k�=k+1) = 1

n
H (u1,k) (142a)

= rv,k (142b)

= rank(A(1,Lk))rv,k . (142c)

If A(1,Lk) = 0, we have [a1l] � A(1,I2/Lk)
= 0 since A
is invertible, where {l} = I2/Lk . From (55) and (44), since
l /∈ Lk , we have k /∈ Kl . In the following, we show (141) for
k = 3, 2, 1 with A(1,Lk) = 0 holding.

For k = 3, then k > max{Kl}. From (56), we have u1,3 =
a1lwl,3. From (42), we have wl,3 = 0. Thus,

1

n
H (u1,3) = 1

n
H (0) = 0 = rank(A(1,Lk))rv,k . (143)

For k = 2, then k > max{Kl} or k < min{Kl}. If k >
max{Kl}, following the derivation in the case of k = 3,
we obtain

1

n
H (u1,2|u1,3) = rank(A(1,Lk))rv,k . (144)

If k < min{Kl}, then Kl = {3}. From Lemma 3, w̃l = w̃l,3.
Thus,

1

n
H (u1,2|u1,3) = 1

n
H (a1l(wl,2 − θl,2)|a1lwl,3) (145a)

= 1

n
H (wl,2 − θl,2|wl) (145b)

= 0 (145c)

= rank(A(1,Lk))rv,k, (145d)

where (145c) follows from the fact that tl is determined by
w̃l and thus wl,2 and θl,2 are determined by tl .

For k = 1, then k < min{Kl}. Following the derivation in
the case of k = 2, we have

1

n
H (u1,1|u1,2, u1,3) = rank(A(1,Lk))rv,k . (146)

This concludes the proof.

APPENDIX F
PROOF OF THEOREM 6

We prove Theorem 6 by showing that if all the transmitters
share a common shaping lattice, i.e. �s,1 = · · · = �s,L , GCCF
achieves the vertices of RSW . The following lemma gives the
vertices of RSW.

Lemma 6: The vertex of RSW specified by πα(·) is given
by (R1, R2, · · · , RL) with

Rπα(m) = 1

n
H

�
vπα(m)|{vi , i ∈ �α(Im)}

, for m ∈ IL .

(147)

Proof: We follow the proof of Theorem 3. Note that the
vertices of RSW is also given by the weighted sum-rate
minimization problem given in (75) with f (S) replaced by

h(S) � 1

n
H

�{vm |m ∈ S}|{vm |m ∈ S}
 , for S ⊆ IL .

(148)

Also note that −h(S) is a submodular function since the
entropy function is submodular [33, pp. 31]. Thus, similar
to (76), we have

Rπα(m) = h(�α(Im))− h(�α(Im−1)) (149a)

= 1

n
H
�{vm |m ∈ �α(Im−1)}

− 1

n
H
�{vm |m ∈ �α(Im)}

(149b)

= 1

n
H

�
vπα(m)|{vi , i ∈ �α(Im)}

(149c)

where (149b) follows from (148) and the chain rule of the
entropy. �

Authorized licensed use limited to: Northeastern University. Downloaded on March 01,2020 at 22:27:03 UTC from IEEE Xplore. Restrictions apply.

CHENG et al.: GENERALIZED COMPUTE-COMPRESS-AND-FORWARD 479

Fig. 12. The label splitting for {ϕ(tl)}3
l=1 under the assumption of �s,1 =

· · · = �s,L .

By assumption, vm in (23) reduces to

vm =
�

L�

l=1

aml(tl − Q�s,l (tl − βl dl))

�
mod �1 (150)

=
�

L�

l=1

aml(tl − Q�s,l (tl − βl dl) mod �1)

�
mod �1

(151)

=
�

L�

l=1

aml tl

�
mod �1. (152)

Then, um and the k-th message segment of um reduces to

um =
�

L�

l=1

amlϕ(tl)

�
mod q. (153)

Following (56), the k-th message segment of um is given by

um,k =
⎛

⎝
�

l∈Lk

amlwl,k

⎞

⎠ mod q. (154)

Note that under the assumption, the nested lattice chain is
given by

�1 ⊆ �2 ⊆ · · · ⊆ �L+1 (155)

where �1 serves as the common shaping lattice and {�k}L+1
k=2

serve as the L coding lattices. Then, there are L message
segments in ϕ(tl) and um (not 2L −1 anymore). A illustration
of label splitting for {ϕ(tl)} is given by Fig. 12.

From Theorem 2, the achievable rate tuples of GCCF
are given by (68). Thus, together with Lemma 6, to prove
Theorem 6, it suffices to show that

H (δπα(m)) = H
�
vπα(m)|{vi , i ∈ �α(Im)}

, for m ∈ IL .

(156)

From the fact vm ∈ �2L∩V1 and Lemma 2, H ({vm |m ∈ S}) =
H ({um |m ∈ S}), to show (156), it suffices to show

H (δπα(m)) = H
�
uπα(m)|{ui , i ∈ �α(Im)}

, for m ∈ IL .

(157)

From (133b), the LHS of (157) can be represented as

H (δπα(m)) =
�

k∈Jm

H (uπα(m),k). (158)

The RHS of (157) can be written as

H
�
uπα(m)|{ui , i ∈ �α(Im)}

(159a)

= H
�
{uπα(m),k}2L−1

k=1 |{ui , i ∈ �α(Im)}
�

(159b)

= H
�

uπα(m),1|{ui , i ∈ �α(Im)}, {uπα(m),k}L
k=2

�

+ H
�

uπα(m),2|{ui , i ∈ �α(Im)}, {uπα(m),k}L
k=3

�

+ · · · + H
�
uπα(m),L |{ui , i ∈ �α(Im)}

(159c)

where (159b) is from the bijection between um and {um,k}L
k=1,

and (159c) is from the chain rule of the entropy. To ensure
(157), it suffices to show

H
�

uπα(m),k|{ui , i ∈ �α(Im)}, {uπα(m),k� }L
k�=k+1

�

= 0, for k /∈ Jm (160a)

H
�

uπα(m),k|{ui , i ∈ �α(Im)}, {uπα(m),k� }L
k�=k+1

�

= H (uπα(m),k), for k ∈ Jm (160b)

where {vπα(m),k� }L
k�=k+1 = ∅ for k + 1 > L. In the following,

we show (160) according to the case A(πα(m),Lk) = 0 and
the case A(πα(m),Lk)
= 0.

If A(πα(m),Lk) = 0, from (154), we have uπα(m),k = 0.
Then, (160a) and (160b) hold.

If A(πα(m),Lk)
= 0, um,k is independent of {um�,k� |m� ∈
IL , k � ∈ IL\{k}} (since um,k is a linear combination of {wl,k}
and wl,k is independent of wl,k� for k
= k �). Then, the LHS
of (160a) can be represented as

H
�

uπα(m),k|{ui , i ∈ �α(Im)}, {uπα(m),k� }L
k�=k+1

�

= H
�
uπα(m),k|{{ui,k� , i ∈�α(Im)}}2L−1

k�=1 ,{uπα(m),k�}L
k�=k+1

�

= H
�
uπα(m),k|{ui,k , i ∈ �α(Im)}

.

Thus, (160) reduces to

H
�
uπα(m),k|{ui,k, i ∈�α(Im)}

 = 0, for k /∈ Jm , (161a)

H
�
uπα(m),k|{ui,k, i ∈�α(Im)}

 = H (uπα(m),k), for k ∈ Jm .

(161b)

To show (161), it suffices to show that vπα(m),k is deter-
ministic given {vi,k , i ∈ �α(Im)} for k /∈ Jm and vπα(m),k is
independent of {vi,k , i ∈ �α(Im)} for k ∈ Jm .

Note that k /∈ Jm can be interpreted as : A(πα(m),Lk) is
linear dependent of the rows of A(πα(Im),Lk) and k ∈ Jm

can be interpreted as : A(πα(m),Lk) is linear independent of
the rows of A(πα(Im),Lk). Therefore, the proof of Theorem 6
concludes by the following Lemma.

Lemma 7: For the message segment vm,k in (154), um,k

is deterministic given {um�,k |m� ∈ S} if A(m,Lk) is linearly

Authorized licensed use limited to: Northeastern University. Downloaded on March 01,2020 at 22:27:03 UTC from IEEE Xplore. Restrictions apply.

480 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 1, JANUARY 2019

dependent of the row vectors of A(S,Lk); otherwise, vm,k

is independent of {um�,k |m� ∈ S} if A(m,Lk) is linearly
independent of the row vectors of A(S,Lk).

Proof: Following the approach in Appendix C, we take
transpose on the both sides of (154) and then stacking the
result row by row for m� ∈ �α(Im−1), we obtain

⎡

⎢⎢⎢⎢⎢⎣

uT
πα(m),k

uT
πα(m+1),k
...

uT
πα(L),k

⎤

⎥⎥⎥⎥⎥⎦
=

-
A(πα(m),Lk)

A(�α(Im),Lk)

.

⎡

⎢⎢⎢⎢⎢⎣

wT
l1,k

wT
l2,k
...

wT
l|Lk |,k .

⎤

⎥⎥⎥⎥⎥⎦
(162)

where v̄πα(m�),k � (φ−1
v,k

�
vm�,k

).

We first consider the case that A(πα(m),Lk) is linearly
dependent of A(�α(Im),Lk). Then, A(πα(m),Lk) can be
represented by a linear combination of A(πα(Im),Lk). Thus,
uπα(m),k can also be represented by a linear combination of
{ui,k , i ∈ πα(Im)}. Therefore, v̄πα(m),k is deterministic for
given {v̄i,k , i ∈ πα(Im)} and so vπα(m),k is deterministic for
given {vi,k , i ∈ πα(Im)}.

We next consider the case that A(πα(m),Lk) is linearly
independent of A(�α(Im),Lk). By reducing A(�α(Im),Lk)
into row reducing echelon form, we obtain

⎡
⎢⎢⎢⎢⎢⎣

u�T
πα(m+1),k

u�T
πα(m+2),k
...

u�T
πα(L),k

⎤
⎥⎥⎥⎥⎥⎦

=
-

Iλ F

0 0

.

⎡
⎢⎢⎢⎢⎢⎣

wT
l1,k

wT
l2,k
...

wT
l|Lk |,k

⎤
⎥⎥⎥⎥⎥⎦
. (163)

where λ is the rank of A(�α(Im),Lk), F is the free matrix,
and u�T

πα(m�),k are obtained from uT
πα(m�),k by the row operations

that transforms A(�α(Im),Lk) into [Iλ, F; 0, 0]. Note that
the linear transform from {v̄T

πα(m�),k} to {v̄�T
πα(m�),k} is invertible.

From (163), we have
⎡

⎢⎢⎢⎢⎢⎣

wT
l1,k

wT
l2,k
...

wT
lλ,k
.

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

u�T
πα(m+1),k

u�T
πα(m+2),k

...

u�T
πα(m+λ),k

⎤

⎥⎥⎥⎥⎥⎦
− F

⎡

⎢⎢⎢⎢⎢⎣

wT
lλ+1,k

wT
l2,k
...

wT
l|Lk |,k

⎤

⎥⎥⎥⎥⎥⎦
. (164)

Thus, we can represent uπα(m),k as a linear combination of
{uπα(m�),k,m� ∈ �α(Im)} and {wli ,k, li ∈ {lλ+1, · · · , l|Lk |}}.

From the assumption that A(πα(m),Lk) is linearly inde-
pendent of the rows of A(�α(Im),Lk), the coefficients of
{wli ,k, li ∈ {lλ+1, · · · , l|Lk |}} are not all-zero; otherwise,
uπα(m),k is a linear combination of {u�

πα(m�),k,m� ∈ �α(Im)},
which contradicts to the assumption. By following the proof
in Lemma 4, it can be shown that uπα(m),k is independent of
{ui,k , i ∈ �α(Im)}, which concludes the proof of Lemma 7.

�

REFERENCES

[1] B. Nazer and M. Gastpar, “Compute-and-forward: Harnessing interfer-
ence through structured codes,” IEEE Trans. Inf. Theory, vol. 57, no. 10,
pp. 6463–6486, Oct. 2011.

[2] U. Erez and R. Zamir, “Achieving 1/2 log (1+SNR) on the AWGN
channel with lattice encoding and decoding,” IEEE Trans. Inf. Theory,
vol. 50, no. 10, pp. 2293–2314, Oct. 2004.

[3] V. Ntranos, V. R. Cadambe, B. Nazer, and G. Caire, “Asymmet-
ric compute-and-forward,” in Proc. 51st Annu. Allerton Conf. Com-
mun., Control, Comput. (Allerton), Monticello, IL, USA, Oct. 2013,
pp. 1174–1181.

[4] J. Zhu and M. Gastpar, “Lattice codes for many-to-one interference
channels with and without cognitive messages,” IEEE Trans. Inf. Theory,
vol. 61, no. 3, pp. 1309–1324, Mar. 2015.

[5] B. Nazer, V. R. Cadambe, V. Ntranos, and G. Caire, “Expanding the
compute-and-forward framework: Unequal powers, signal levels, and
multiple linear combinations,” IEEE Trans. Inf. Theory, vol. 62, no. 9,
pp. 4879–4909, Sep. 2016.

[6] B. Nazer, “Successive compute-and-forward,” in Proc. 22nd Int.
Zürich Seminar Commun. (IZS), Zürich, Switzerland, Mar. 2012,
pp. 103–106.

[7] O. Ordentlich, U. Erez, and B. Nazer, “Successive integer-forcing and
its sum-rate optimality,” in Proc. 51st Annu. Allerton Conf. Commun.,
Control, Comput., Allerton, IL, USA, 2013, pp. 282–292.

[8] U. Niesen and P. Whiting, “The degrees of freedom of compute-and-
forward,” IEEE Trans. Inf. Theory, vol. 58, no. 8, pp. 5214–5232,
Aug. 2012.

[9] Y. Tan and X. Yuan, “Compute-compress-and-forward: Exploiting asym-
metry of wireless relay networks,” IEEE Trans. Signal Process., vol. 64,
no. 2, pp. 511–524, Jan. 2016.

[10] Y. Tan, X. Yuan, S. C. Liew, and A. Kavcic, “Asymmetric compute-
and-forward: Going beyond one hop,” in Proc. 52nd Annu. Allerton
Conf. Commun., Control, Comput., Allerton, IL, USA, Sep./Oct. 2014,
pp. 667–674.

[11] J. Zhan, B. Nazer, U. Erez, and M. Gastpar, “Integer-forcing linear
receivers,” IEEE Trans. Inf. Theory, vol. 60, no. 12, pp. 7661–7685,
Dec. 2014.

[12] T. Yang, X. Yuan, and Q. T. Sun, “A signal-space aligned network coding
approach to distributed MIMO,” IEEE Trans. Signal Process., vol. 65,
no. 1, pp. 27–40, Jan. 2017.

[13] W. Nam, S.-Y. Chung, and Y. H. Lee, “Capacity of the Gaussian two-
way relay channel to within 1/2 bit,” IEEE Trans. Inf. Theory, vol. 56,
no. 11, pp. 5488–5494, Nov. 2010.

[14] W. Nam, S.-Y. Chung, and Y. H. Lee, “Nested lattice codes for Gaussian
relay networks with interference,” IEEE Trans. Inf. Theory, vol. 57,
no. 12, pp. 7733–7745, Dec. 2011.

[15] A. Osmane and J.-C. Belfiore. (2011). “The compute-and-forward
protocol: Implementation and practical aspects.” [Online]. Available:
https://arxiv.org/abs/1107.0300

[16] A. Sakzad, J. Harshan, and V. Emanuele, “Integer-forcing MIMO linear
receivers based on lattice reduction,” IEEE Trans. Wireless Commun.,
vol. 12, no. 10, pp. 4905–4915, Oct. 2013.

[17] D. Slepian and J. K. Wolf, “Noiseless coding of correlated information
sources,” IEEE Trans. Inf. Theory, vol. IT-19, no. 4, pp. 471–480,
Jul. 1973.

[18] R. Storn and K. Price, “Differential evolution—A simple and efficient
heuristic for global optimization over continuous spaces,” J. Global
Optim., vol. 11, no. 4, pp. 341–359, 1997.

[19] O. Ordentlich and U. Erez, “A simple proof for the existence of ‘good’
pairs of nested lattices,” IEEE Trans. Inf. Theory, vol. 62, no. 8,
pp. 4439–4453, Aug. 2016.

[20] A. S. Avestimehr, S. N. Diggavi, and D. N. C. Tse, “Wireless network
information flow: A deterministic approach,” IEEE Trans. Inf. Theory,
vol. 57, no. 4, pp. 1872–1905, Apr. 2011.

[21] C. Feng, D. Silva, and F. Kschischang, “An algebraic approach to
physical-layer network coding,” IEEE Trans. Inf. Theory, vol. 59, no. 11,
pp. 7576–7596, Nov. 2013.

[22] H. Cheng, X. Yuan, and Y. Tan, “Compute-compress-and-forward: New
results,” in Proc. IEEE Globecom, Singapore, Dec. 2017, pp. 1–6.

[23] J. Lee, A First Course in Combinatorial Optimization (Cambridge
Texts in Applied Mathematics), vol. 36. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[24] P. Gupta, G. Kramer, and A. J. V. Wijngaarden, Advances in Network
Information Theory. Boston, MA, USA: AMS, 2004.

[25] R. Zamir, S. Shamai (Shitz), and U. Erez, “Nested linear/lattice codes
for structured multiterminal binning,” IEEE Trans. Inf. Theory, vol. 48,
no. 6, pp. 1250–1276, Jun. 2002.

[26] T. M. Cover and J. A. Thomas, Elements of Information Theory, vol. 2,
2nd ed. Hoboken, NJ, USA: Wiley, Jul. 2006.

Authorized licensed use limited to: Northeastern University. Downloaded on March 01,2020 at 22:27:03 UTC from IEEE Xplore. Restrictions apply.

CHENG et al.: GENERALIZED COMPUTE-COMPRESS-AND-FORWARD 481

[27] Z. Liu, S. Cheng, A. D. Liveris, and Z. Xiong, “Slepian-wolf coded
nested lattice quantization for Wyner–Ziv coding: High-rate performance
analysis and code design,” IEEE Trans. Inf. Theory, vol. 52, no. 10,
pp. 4358–4379, Oct. 2006.

[28] T. M. Cover, “A proof of the data compression theorem of Slepian and
Wolf for ergodic sources (Corresp.),” IEEE Trans. Inf. Theory, vol. 21,
no. 2, pp. 226–228, Mar. 1975.

[29] C. Mobile, “C-RAN: The road towards green RAN,” ver. 2.5, China
Mobile Res. Inst., White Paper, Oct. 2011.

[30] Y. Zhou and W. Yu, “Optimized backhaul compression for uplink cloud
radio access network,” IEEE J. Sel. Areas Commun., vol. 32, no. 6,
pp. 1295–1307, Jun. 2014.

[31] S.-H. Park, O. Simeone, O. Sahin, and S. Shamai (Shitz), “Joint
decompression and decoding for cloud radio access networks,” IEEE
Signal Process. Lett., vol. 20, no. 5, pp. 503–506, May 2013.

[32] E. Jones et al., SciPy: Open Source Scientific Tools for Python.
Accessed: Nov. 23, 2016. [Online]. Available: http://www.scipy.org/

[33] S. Fujishige, Submodular Functions and Optimization (Annals of Dis-
crete Mathematics). New York, NY, USA: Elsevier, 2005.

Hai Cheng received his B.Eng degree in 2015 from Xidian University,
China, and master degree in 2018 from ShanghaiTech University, China.
He will pursue his Ph.D. degree in Department of Electrical and Computer
Engineering at Northeastern University. His research interests include wireless
communication, physical-layer network coding, and optimization.

Xiaojun Yuan received the Ph.D. degree in electrical engineering from the
City University of Hong Kong in 2008. From 2009 to 2011, he was a Research
Fellow with the Department of Electronic Engineering, City University of
Hong Kong. He was also a Visiting Scholar with the Department of Electrical
Engineering, the University of Hawaii at Manoa, from 2009 to 2010. From
2011 to 2014, he was a Research Assistant Professor with the Institute of
Network Coding, The Chinese University of Hong Kong. From 2014 to 2017,
he was an Assistant Professor with the School of Information Science and
Technology, ShanghaiTech University. He is currently a Professor with the
National Key Laboratory of Science and Technology on Communications,
University of Electronic Science and Technology of China, supported by
the Thousand Youth Talents Plan in China. His research interests cover
a broad range of wireless communications, statistical signal processing,
and information theory including multi-antenna techniques, network cod-
ing, cooperative communications, and compressed sensing. He has authored
over 100 peer-reviewed research papers in the leading international journals
and conferences, and has served on a number of technical programs for
international conferences. He was a co-recipient of the Best Paper Award
of the IEEE ICC 2014. He is an Editor of the IEEE TRANSACTIONS ON

COMMUNICATIONS.

Yihua Tan received the B.Eng. degree in 2013 from Zhejiang Univer-
sity, China, and the Ph.D. degree in 2017 from The Chinese University
of Hong Kong (CUHK). His research interests include wireless networks,
physical-layer network coding, signal processing, software-defined radio,
Internet of things, etc.

Authorized licensed use limited to: Northeastern University. Downloaded on March 01,2020 at 22:27:03 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

