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Abstract—Networks of Unmanned Aerial Vehicles (UAVs), com-
posed of hundreds, possibly thousands of highly mobile and wire-
lessly connected flying drones will play a vital role in future
Internet of Things (IoT) and 5G networks. However, how to
control UAV networks in an automated and scalable fashion in
distributed, interference-prone, and potentially adversarial envi-
ronments is still an open research problem. This article introduces
SwarmControl, a new software-defined control framework for
UAYV wireless networks based on distributed optimization princi-
ples. In essence, SwarmControl provides the Network Operator
(NO) with a unified centralized abstraction of the networking
and flight control functionalities. High-level control directives are
then automatically decomposed and converted into distributed
network control actions that are executed through programmable
software-radio protocol stacks. SwarmControl (i) constructs a
network control problem representation of the directives of the
NO:; (ii) decomposes it into a set of distributed sub-problems; and
(iii) automatically generates numerical solution algorithms to be
executed at individual UAVs.

We present a prototype of an SDR-based, fully reconfigurable
UAV network platform that implements the proposed control
framework, based on which we assess the effectiveness and flex-
ibility of SwarmControl with extensive flight experiments. Results
indicate that the SwarmControl framework enables swift reconfig-
uration of the network control functionalities, and it can achieve
an average throughput gain of 159% compared to the state-of-the-
art solutions.

Index Terms—Drone Networks, Software-Defined Networking,
Distributed Network Control.

I. INTRODUCTION

Intelligent unmanned aerial vehicles (UAVs, or “drones”)
are attracting the interest of the networking community as a
“tool” to provide new capabilities, to extend the infrastructure
of wireless networks and to make it more flexible [1]. Thanks
to their unique characteristics such as fast deployment, high
mobility, processing capabilities, and reduced size, UAVs are
an enabling technology for numerous future wireless applica-
tions [2—4]. Among these, increasing network coverage [1],
providing advanced network services such as location-aware
content delivery [5], and massive MIMO transmissions [6] are
notable. UAV-aided wireless networks will enable present and
future Internet of Things (IoT) and 5G applications, and be
a driver for new military and civilian applications spanning
battlefield inspection [7], border control and aerial surveillance
[8], precision agriculture [9], environmental monitoring [10],
transportation and delivery of goods [11-13].

This article is based upon work supported in part by the Air Force Research
Laboratory under Contract FA8750-18-C-0122.

While networks of UAV's can certainly enable a broad range
of new applications, UAV orchestration is often performed
through centralized control at the core of the infrastructure or
manual operations. How to design simple, elastic, and optimal
control strategies for infrastructure-independent UAV networks
is still a challenging and open issue. First, commercially avail-
able UAVs rely on inflexible wireless interfaces (e.g., RC or
Wi-Fi), which are sensitive to spatially and temporally varying
topologies, dynamic RF environments, and adversarial attacks.
Consequently, even basic functionalities such as network for-
mation and point-to-point communications are impaired by
unstable channel conditions and fragile network connectivity
typical of infrastructure-less aerial scenarios. Second, tradi-
tional network control schemes often rely on the assumption
that the network operator is aware of real-time network state
information and of low-level network infrastructure details and
protocol implementations (e.g., UAVs location, network topol-
ogy, spectrum availability, and modulation schemes); an as-
sumption that often does not hold in distributed aerial networks.
Finally, controlling the network behavior and flight operations
in a dynamic environment requires a deep understanding of the
interactions between the motion and networking functionalities
at all layers of the protocol stack. As of today, a widely accepted
framework distributively controlling the networking and motion
functionalities of large-scale UAV networks is still missing.

To address these challenges, in this paper we propose Swarm-
Control, a new software-defined principled framework to con-
trol the behavior of distributed UAV infrastructure-independent
wireless networks. SwarmControl provides a centralized ab-
straction of the UAV network hiding the low-level details of
the protocol stack and of the flight control functionalities, as
well as the distributed nature of the network control problem.
It also embraces the flexibility of the software defined radio
(SDR) paradigm to support UAV communications in dynamic,
time-varying, and potentially adversarial infrastructure-less en-
vironments. With SwarmControl, the network operator (NO)
can programmatically control the overall network behavior
without a-priori knowledge of the network topology, UAVs
mobility patterns, and the details of the distributed control
implementation. SwarmControl implements a self-organizing
and coordinated UAV network that dynamically adapts to lo-
cation and network state changes, and ultimately guarantees
reliable connectivity and optimized communication with min-
imal human intervention. In doing so, SwarmControl attempts
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to provide a software-defined principled approach to jointly and

seamlessly control networking and motion functionalities for

UAV networks. The main contributions of this article can be

summarized as follows:

« SwarmControl framework. We propose SwarmControl, a
novel software-defined networking control framework for
wireless swarms of UAVs endowed with software radios.
SwarmControl provides a unified abstraction of network-
ing and motion functionalities that enables the definition of
complex network control problems. SwarmControl employs
control decomposition theories to generate distributed control
problems that are then solved at each individual UAV;

« Drone programmable protocol stack. We develop a new
Drone Programmable Protocol Stack (Drone PPS) spanning
all layers of the network protocol stack as well as the flight
control functionalities. The SwarmControl Drone PPS is
based on SDN principles and follows a three-plane structure:
(i) Decision Plane, (ii) Register Plane, and (iii) Data Plane.
The Drone PPS executes the distributed solution algorithms
generated by the SwarmControl framework, and enforces
optimal networking and motion strategies on each UAV;

« Prototyping and assessment. We implemented SwarmCon-
trol on a SDR-based UAV network platform prototype, and
we assessed its performance through an extensive experimen-
tal campaign in an indoor UAV Lab. Experiments demon-
strate that SwarmControl effectively improves the network
performance (up to 231% of throughput gain) and dynam-
ically adapts the networking strategies to different control
objectives, topologies, channels, and interference conditions.

The rest of this paper is organized as follows. In Section II we

present a design overview of SwarmControl architecture and

we discuss its network abstraction principles. We describe the

SwarmControl Drone Programmable Protocol Stack design in

Section IIT and present SwarmControl prototyping and exper-

imental evaluation in Section IV. We discuss related work in

Section V, and draw the main conclusions in Section VI.

II. CONTROL FRAMEWORK

The architecture of SwarmControl is illustrated in Fig. 1. It
includes two key components: a Control Framework interfacing
the network operator at a centralized location and Drone Pro-
grammable Protocol Stack (Drone PPS) executed at each UAV.
In this section, we describe in detail the procedures executed
within the control framework. As illustrated in Fig. 1, this
component is responsible for (i) providing the network operator
(NO) with a control interface to specify the desired network be-
havior (Section II-A); (ii) constructing a mathematical Network
Control Problem (NCP) representation of the NO directives
(Section II-B); and (iii) decomposing the NCP into a set of
independent sub-problems and distributing them to individual
UAVs (Section II-C). We conclude discussing a toy example to
showcase the application of the SwarmControl decomposition
approach in UAV networks (Section II-D).

A. Control Interface

The interaction with the network operator (NO) is imple-
mented through a Control Interface, which consists of a set of
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Fig. 1: SwarmControl Architecture.

high-level APIs and protocol libraries. The Control Interface
provides the network operator with an abstraction of the UAV
network hiding the low-layer network functionalities and de-
tails of the underlying network architecture, e.g., the number of
UAVs as well as their computing capabilities and battery level.

Through the control interface, the NO can express directives
defining: (i) the desired network behavior (ii) which layers of
the protocol stack to involve in the optimization process and
which protocols to implement at each layer; and (iii) node-
and layer-specific constraints and QoS requirements. Exam-
ples of high-level objectives include maximizing the end-to-
end network throughput, prolonging network lifetime by min-
imizing energy consumption and covering a particular aerial
space, among others. By selecting the network protocols and
the protocol layers to be optimized the NO can define the
desired optimization problem, for example opting out MAC
and transport protocols optimization while optimizing motion,
routing, and transmission power strategies. Node- and layer-
specific constraints can involve, for example, physical layer
transmission power, flight speed, ground distance, transmission
rate, or a combination of them. Finally, the NO can select
among a list of network control templates, or custom design
its own optimization problem through the provided APIs.

B. Network Control Problem Construction

The NCP construction is the first step toward distributed
control of a UAV network. Once the optimization problem has
been defined (e.g., maximizing the overall network throughput),
SwarmControl converts the network operator’s directives and
requirements into a set of mathematical expressions, which
are then rearranged in the form of a network control problem
(NCP). The resulting NCP is a centralized representation of the
high-level network behavior defined by the network operator
through the Control Interface spanning both the networking
(e.g., transmission power, routing policies, session rates) and
the flight control domains (e.g., mobility patterns, flight speed),
involving multiple nodes and all layers of the protocol stack.
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C. Distributed Algorithms Generation

The resulting NCP cannot be solved at a central controller
that has no access to the time-varying network state informa-
tion, (e.g., UAV locations, routing paths, interference levels).
The overhead and the delay to retrieve such information in
an infrastructure-less scenario might result in inefficient and
sub-optimal network solutions. On the other hand, the cross-
layer nature of the obtained NCP and the coupling among its
variables (e.g., end-to-end session rate with link capacities with
UAVs mobility) make it hard to compute a desirable solution
in a distributed fashion. To address this challenge, Swarm-
Control employs decomposition theories to “loosen” the cou-
pling among optimization variables and generate a separable-
variables version of the NCP to be decomposed. The outcome
of this procedure is a set of independent sub-problems that
can be solved at individual network nodes by exchanging local
information with the neighboring UAVs (e.g., intermediate-step
solutions and penalization terms). This procedure consists of
three fundamental steps, which are discussed in what follows.

1) Optimization variables and parameter detection: First,
SwarmControl parses the objective function and the constraints
of the constructed NCP and detects the optimization variables
and parameters involved in the optimization problem. In doing
so, it assigns variables to protocol layer functionalities to be
optimized (e.g., transmission power, UAV location, routing
tables), while network state parameters (e.g., channel gain
coefficients, noise level) and variables excluded from the NCP
optimization are treated as constants.

2) Problem decomposition: Given a set of protocol layer
functionalities to be optimized, the objective of the decompo-
sition is to loosen the coupling between optimization variables
of the NCP. To do so, SwarmControl identifies which network
nodes and network layers have control over which optimization
variables and generates a layered coupling graph G = (E, V).
In this abstract representation, vertexes V' are optimization
variables of the NCP and are associated to a specific layer
and a specific node (e.g., transmission power belongs to the
physical layer of transmitters and relays); while edges E are
coupling relationships between variables of the problem. The
layered coupling graph is used to classify dependencies into
horizontal (i.e., among variables controlled by different UAVs)
and vertical (i.e., among variables controlled by the same UAV
but belonging to different layers). We illustrate a portion of the
layered coupling graph for a small UAV network in Fig. 2,
which will be discussed in detail in Section II-D. Based on
this abstract representation of the NCP, SwarmControl uses
“tools” such as Decomposition by Partial Linearization [14] and
Lagrangian Duality [15] to relax the coupling among variables
into cross-layer penalization terms. The decomposition process
produces a separable-variable version of the NCP that can be
decomposed into independent sub-problems solved at individ-
ual UAVs through distributed control actions.

3) Distributed algorithm generation: The final step is the
generation and distribution of the numerical solution algorithms
to each node. For each of the decomposed sub-problems, an
algorithm (e.g., sequential quadratic programming) is automat-
ically generated to calculate the numerical solution associated
with a given network control variable. Each algorithm is then
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Fig. 2: The network scenario considered in Section II-D and a portion
of the corresponding layered coupling graph.

translated into an executable script where variables and param-
eters appear as keywords in text format. All keywords used in
SwarmControl are stored in a dedicated library installed at all
network nodes. Nodes employ the library to interpret keywords
(e.g., whether a specific keyword is a variable to be optimized,
a network parameter or a penalization term) and replace them
with real-time numerical values (if parameters) or computed
numerical solutions (if optimization variables). The resulting
scripts are executed to compute optimized numerical solutions
for the networking and flight control functionalities. When
needed, nodes distributively exchange the intermediate-step
computed solutions and penalization terms with other nodes
in close proximity over the wireless interface. A toy example
showcasing how SwarmControl first constructs a centralized
NCP and then generates distributed executable scripts for a
simple UAV network scenario is described below.

D. Example of UAV Network Control

We consider a simple network scenario as depicted in Fig. 2,
where two source nodes, A and B (e.g., exploration UAVs),
are in charge of collecting and delivering strategic data toward
a destination F (e.g., the sink UAV) employing relay nodes
C and D. We assume the transmission range of each node
i € N ={A, B,C, D, E} depends on its transmission power
p; and that the source nodes’ transmission range is not large
enough to reach the destination E. Based on routing polices,
source nodes independently employ relay nodes C' and D to
forward their traffic toward the destination. We consider a
scenario where the network operator (NO) aims at minimizing
the overall power consumption (min_power) by optimizing
the transmission power, routing tables and UAV locations. We
assume that the NO specifies QoS constraints such that each
data transmission enjoys a minimum SINR level v, and imposes
fixed flying locations to A and B, in charge of collecting
information over specific locations, and to F, to keep it close to
a target. Before going through the automated network control
process, let us introduce some notation. Let A/ be the set of
UAVs, zy,, € {0,1} be the routing strategy at node & such that
Ty = 1 if node k routes its traffic through relay node n, and
Trn = 0 otherwise, while 7; and p; represent the location and
transmission power of node ¢, respectively.

As mentioned in Section II-B, SwarmControl processes the
control directives of the network operator and, by relying on
a UAV network abstraction, constructs the following abstract
network control problem:

minimize Z Dis (D
©pm ieN
subject to SINR;(p, ™) > ziy, Vi,keN )
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where x = (Zir)iken, P = (Di)ien, ™ = (Ti)ien,
and SINR,;(p, 7) is the SINR experienced by node k& when
receiving useful signals from node i. Specifically, we have

— G(ﬂ'i-,ﬂ' ) i .
SINRx(p,7) = N+Zje/\/’\{i,k}ka(7rj’Trk)pj’ where N is the

ambient noise power and G(;, ) is the channel coefficient
between two nodes ¢ and k as a function of their position. For
the sake of illustration, we have deliberately omitted all upper
and lower bound constraints from Problem (1)-(2).

First, SwarmControl identifies the optimization variables and
classifies their coupling with the aid of the layered coupling
graph introduced in Section II-C. A portion of the layered
coupling graph generated by SwarmControl, with specific focus
on coupling introduced by Constraint (2), is illustrated in Fig.
2 (right). For example, the transmission power p; of node ¢ is
coupled with its own location (7;) and with the location of node
k (7)) through the SINR formulation term in constraint (2).

Once the optimization variables and their dependencies have
been identified, SwarmControl performs the decoupling pro-
cess to generate a separable-variable version of the NCP. This
is done by leveraging decomposition tools such as partial
linearization [14], Taylor series linearization, and Lagrangian
duality [15]. To understand the basics of this procedure, we now
showcase the decoupling process for Constraint (2). Following
the definition of SINR,, we can redefine Constraint (2) as [16]

ei,k(xa p, 7T) = G(ﬂ-ia ﬂ-k)pi

—l’iw(N+Z]_€N\{i’k} G(Wjﬂfk)pj) >0 (3

Note that optimization variables at different UAVs and differ-
ent layers of the protocol stack are coupled together by the non-
linear relationships in (3). By applying Taylor series lineariza-
tion to (3), we first (i) generate a linearized constraint, and then
(ii) use Lagrangian duality to include the linearized constraint
into the objective function of Problem (1)-(2). Let éik(x, p, )
be the linearized — and thus with separable variables — version
of (3), we can generate the following Lagrangian dual function

LA\, x,p,m)= Zpi - Z Z /\ikéik(x, p, )

ieN €N keN\{i}
=Y pi+ LA %, piy i) “4)
ieN

where xX; = (Tix)rear{i}> A = (Nir)iken> Aix > 0 is
the Lagrangian multiplier associated to the linearized con-
straint (2), and [I; is a node-specific function such that
Zie/\/ Fi()‘a XiyPis 7Ti) Zie/\/ ZkeN\{i} AikOik (X7 P, 77)-
From (4), it is easy to see that I'; contains variables controlled
by node ¢ only, while the Lagrangian multipliers A keep track
of the previous coupling with other variables. Thus, for each
node ¢+ we can formulate the following node-specific iterative
optimization sub-problem

(x(t),p(t), w(t)) = argmin p; — (At —1), %, pi, ™) (5)

Xi,Pi T

where t represents the iteration index, and the Lagrangian
coefficients are updated as follows:

Ain(t) =i (t=1)-a ()8 (x(t=1), p(t=1), w(t=1))]* (6)

with a(t) being a decreasing step-size parameter at iteration ¢.

F O Optimization------- #
def optimize():
result = minimize( opt_var.phy

- MSG.lambdax*( getChannel((opt_var.net.nextHop ,@Et_jvﬁ?igg)*optfvar.phy

-iopt_var.net.nextHop.isRouteActive:*HW.min_snr+(MSR.noise + MSR.intf)
)), constraints)

Template Script

return result
imizati Constant
Hommmee Optimization------- # 3
def optimize(): parameter Script at @

result = minimize( opt_var.phy N
- MSG.lambda*( getChannel((opt_var.net.nextHop ,(HW.Iocj)*optﬁvar.phy

= sj_loptfvar.net.nextHop.isRouteAct\vé *HW.min_snr+(MSR.noise +MSR.intf)

)), constraints) \» Subset of X : {xac, Xap}

return result
Hommmmen Optimization- - - ---- # Constant Script at @
def optimize(): parameter

result = minimize( opt_var.phy e
G.lambda*( getChannel(NET destination ) {opt_var Ioc))*optfvar,phy
- 1 i*HW.min_snr«(MSR.noise+MSR.intf)

), cORstraints)
return result

Constant parameter

Fig. 3: Example of the script generated by the Control Framework.

Once the decomposition procedure has been completed,
SwarmControl automatically generates numerical solution al-
gorithms (based on interior-point methods) to solve the de-
composed optimization sub-problem. The numerical solution
algorithms are then turned into executable template scripts
where optimization variables and network parameters are rep-
resented through textual keywords, which in turn are replaced
by available information and exchanged penalization terms
at each UAV. For the sake of completeness, an illustrative
example of the numerical solution algorithm generated by
the Control Framework is presented in Fig. 3. The template
script reflects the optimization problem in (5). Due to space
limitations, we can report only a portion of the code generated
from (5). For example, MSG. lambda reflects penalty terms
defined in (6), HW.min_snr is the minimum SINR Ilevel
~in (3), and opt_var.net.nextHop.isRouteActive
identifies x;;. It is worth noting that the template gener-
ated by the framework and dispatched to the UAVs is node-
independent and does not contain any UAV-specific term. The
template instructs each UAV to optimize transmission power
(opt_var.phy), routing strategies (opt_var.net), and
location (opt_var.loc); and indicates which parameters to
exchange across UAVs (MSG. lambda). Upon receiving the
template, each UAV updates the script variables and parameters
according to its role in the network. This is illustrated in
Fig. 3, where we show how the script is handled differently
by nodes A and C'. As discussed above, sources are instructed
to hover over a specific location, accordingly, Fig. 3 shows
how A removes opt_var.location from the optimization
variable set and adopts the fixed location HW.location.
Similarly, relays are instructed to deliver data generated by the
two source nodes to the destination . Hence, C' fixes the next
hop equal to the destination £ (NET.destination) and
removes the routing strategies from the optimization variable
set ( opt_var.net.nextHop.isRouteActive = 1).
On the contrary, source node A must select the best relay
node between C and D. Consequently its routing strategy
space opt_var.net .nextHop.isRouteActive is rep-
resented by the subset {zac, Zap}-
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Fig. 4: Drone Programmable Protocol Stack Prototype.

III. DRONE PROGRAMMABLE PROTOCOL STACK

The core contribution of SwarmControl is the implementa-
tion of automated and distributed control of UAVs’ networking
and flight functionalities through a new Drone Protocol Stack.
As shown in Fig. 1, the Drone PPS is installed at each individual
UAV to solve the numerical solution algorithms received from
the Control Framework in an automated and distributed fashion.
To compute a desirable network operating point, each individ-
ual UAV node executes the distributed optimization solution
algorithms generated by the Control Framework with up-to-
date and accurate network state information. The computed
numerical solutions are then implemented at the network pro-
tocol stack and the flight controller. This is accomplished by
the Drone PPS, organized in three tightly interacting planes,
namely Decision Plane, Register Plane, and Data Plane. The
design architecture of the three planes is illustrated in Fig. 4.

A. Decision plane

Upon receiving the distributed numerical solution algorithms
generated by the Control Framework (e.g., motion solution
algorithm, transport rate solution algorithm), the SwarmControl
Drone PPS runs them in its Decision Plane of each individual
UAV as shown in Fig. 4. This plane contains a Protocol Repos-
itory with the software implementations of different network
protocols and motion strategies (e.g., TCP, Bellman-Ford rout-
ing algorithm), together with the mathematical solvers to run
the dispatched scripts. The Decision Plane is in charge of run-
ning the distributed optimization algorithms in real-time based
on up-to-date network state and motion information as input
parameters (e.g., noise power, queue status, UAV locations).
Such information is retrieved from the Register Plane, which
is also employed to store the computed numerical solutions.

B. Data plane

The Data Plane is responsible for implementing the com-
puted optimal solutions by re-configuring the networking and
flight control operating parameters. To do so, this plane im-
plements a fully-programmable re-configurable protocol stack
spanning all the networking and motion layers. The protocol

stack provides the building blocks and primitives necessary
to prototype complex cross-layer and cross-domain network
protocols and motion strategies, allowing complete control of
the network, sensing, and motion parameters at all layers of
the protocol stack. The control interface between the proto-
col stack and the distributed solution algorithms is defined
so that (i) the solution algorithms can retrieve network state
information from the Data Plane through the Register Plane
(e.g., noise and interference power level, queue status, node
location, among others), and use it as input parameters of
the distributed optimization problems; and (ii) based on the
optimized solutions, the Drone PPS configures the networking
and motion parameters of the adopted protocol stack in the
Data Plane (e.g., change the current UAV location based on
the optimized motion pattern, configure the TCP window size
based on the optimized transport-layer rate). The lower layers
of the implemented protocol stack interface with the radio
and motion front-ends through the software defined radio (i.e.,
USRP hardware driver (UHD)) and the flight controller (i.e.,
PX4 flight control) drivers. Finally, the Data Plane controls
the external radio and motion hardware through its drivers on
the universal serial bus (USB 3.0) and electronic speed control
(ESC) interfaces, as illustrated in Fig. 4.

C. Register plane

As shown in Fig. 4, the Register Plane acts as a middleware
allowing the Decision Plane to retrieve fresh network state
information from the Data Plane and making the computed
optimal solutions available to the Data Plane through a set of
dedicated look up tables (LUTs). Each protocol stack layer has
a dedicated Network State LUT in the Register Plane, where
to store all the layer-related network state parameters, e.g., the
physical location and the obstacles vicinity in the motion layer
LUT_LO, the SINR and the link capacity in the physical layer
LUT_L1; the set of neighbors and their distances in the network
layer LUT_L3. Numerical solutions are stored in a similar way
in dedicated Numerical Solution LUTs, one per protocol stack
layer, e.g., the location for the physical layer LUT_S1; the
routing tables for the network layer LUT__S 3; the TCP window
size in the transport layer LUT_S4.
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IV. PROTOTYPE AND PERFORMANCE EVALUATION

In this section, we assess the performance of SwarmControl
as presented in Sections II and III by comparing it to other state-
of-the-art solutions on a variety of network configurations. We
first describe the Drone-SDR platform prototype we have devel-
oped for our experiments in Section IV-A and we summarize
the experimental setup in Section IV-B. Finally, experimental
results are discussed in Sections IV-C, IV-D and IV-E.

A. Drone-SDR Prototype

The first challenge toward the evaluation of SwarmControl is
the lack of commercial off-the-shelf UAV platforms featuring
SDRs. To address this, we designed and built a custom UAV
network node platform, referred to as Drone-SDR, by mount-
ing an Ettus Research Universal Software Radio Peripheral
(USRP) B205mini-i SDR on an Intel Aero Ready-to-Fly Drone,
as illustrated in Fig. 5. With a flight autonomy of over 20
minutes, a hub-to-hub diagonal length of 360 mm, and a base-
to-top height of 222 mm, Intel Aeros offer high portability
and maneuverability. Similarly, B205mini-i SDRs are the most
compact, lightweight and low-power SDR devices available
on the market. Intel Aero houses a Compute Board providing
sufficient computational power to run Ubuntu 16.04 and SDR
development frameworks such as GNU Radio. Flight manage-
ment, motors control, and sensors fusion are performed on an
Intel Aero Flight Controller Unit (FCU) directly connected
to the Compute Board. All FCU parameters and commands
(e.g., remote control and sensor readings) are accessed through
UDP communications via the MAVLink Router. Different from
legacy UAVs, SwarmControl UAV nodes are endowed with a
Drone PPS Motion Layer (LO: Motion in Fig. 6) that hosts a
Pymavlink-based control implementation, allowing each node
to execute flight control operations autonomously. It is worth
pointing out that SwarmControl fully relies on open-source
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Fig. 6: Drone-SDR prototype hardware design.

software. Specifically, the Drone PPS is entirely implemented
in a high-level scripting language (i.e., Python) and runs on
native Linux OS, which directly interfaces with both the FCU
and GNU Radio. This makes SwarmControl compatible with
every MAVLink-based programmable drone interface (e.g.,
Pymavlink, DroneKit). Figures 5 and 6 show an overview of the
Drone-SDR prototype, its architecture, and its hardware design.

B. Experimental Setup

We test SwarmControl on a plethora of network control
problems and network deployments, such as fully aerial net-
works, where the goal is to transmit data from source UAVs
toward destination UAVs in a multi-hop fashion; and hybrid
ground/aerial networks, where a UAV network is employed
to relay data between ground nodes; varying the number of
nodes, number of sessions, topologies, and testing environ-
ments. Given the complexity of the network control problems,
we tested the effectiveness and flexibility of SwarmControl
in an incremental fashion, obtaining intermediate results to
highlight the impact of different features on the overall sys-
tem performance. We demonstrate how SwarmControl effi-
ciently handles cross-layer optimization by considering joint
optimization operations that span across four layers of the
prototyped drone programmable protocol stack (Drone PPS).
Specifically, we optimize the transport layer transmission rate,
routing decisions, transmission power, and flight control of the
UAVs. Furthermore, we compare the performance of the UAV
network under four different distributed control schemes: (i)
SwarmControl, which jointly optimizes networking and motion
parameters at all layers of the Drone PPS; (ii) Best Response
(BR), independently optimizing the parameters at different
layers of the Drone PPS; (iii) No Control (NC), which does
not use any network optimization mechanism and operates only
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NO Scenario 2
src2

—

Im #-=2

Fig. 7: Network average throughput and network scenarios for fully aerial experiments.
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Fig. 8: Network operations comparison under two different control
problems for Scenario 1.

with average networking parameters; and (iv) JOTP, Jointly
Optimal Transport and Physical layers.

In all our experiments, we assume that the NO selects
TCP as transport layer protocol, single-path routing scheme,
and frequency division multiplexing MAC. With respect to
the physical layer, wireless communication happens in the
2.4 GHz ISM band with operational bandwidth of 500 kHz,
packets are 1024-byte long, and modulation is GMSK at 2
samples/symbol. This setup is tailored to the limited processing
capabilities of the Intel Aero board and the small form-factor
SDRs employed, as so to have a more reliable, reproducible
experimental evaluation. In this consideration, we agree that
more powerful control hosts or a wider operational bandwidth
might lead to better performance. Ultimately, these parameters
can be in principle taken care by SwarmControl, and opted-in
the control tool we provided, as so to have them optimized not
for a specific scenario, but for any deployment that the network
might foresee. Lastly, in all figures, links connecting UAVs
represent a snapshot of the network state, which may evolve
throughout the experiment.

C. Fully Aerial Network

We first evaluate the performance of SwarmControl by de-
ploying 8 Drone-SDRs in three different scenarios, namely
Scenario 1, 2, and 3 (Fig. 7); comparing it to Best Response
(BR) and No Control (NC) schemes under the max-log-rate
control problem (i.e., maximize ) _,_ \ log(x;), with z; the end-
to-end session rate for source ¢). To highlight the performance
of SwarmControl in different network topologies, in these
three scenarios we keep the position of Drone-SDRs fixed,
thus emulating the case of drones in “hold mode”. Scenarios
1 and 2 feature dense indoor environments with obstacles,
non-line of sight conditions, strong multipath effect, and high
background interference. On the contrary, Scenario 3 presents
a large obstacle-free space with low signal refraction and negli-
gible multipath effect. Operating on the same spectrum bands,
the deployed Drone-SDRs mutually interfere with each other.
Therefore, the overall end-to-end network throughput depends
on transmission power, routing policies and TCP session rate.
The experiment includes two Drone-SDR source nodes opening
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Fig. 9: Performance and network scenario for two different control
problems in UAV relay network for disaster scenario.

two sessions toward two destinations and injecting traffic over
the multi-hop Drone-SDR network.

In all three considered scenarios, SwarmControl - by jointly
and distributively optimizing TCP rate, routing strategies, and
transmission power - significantly outperforms the BR and NC
schemes in terms of overall network throughput. As shown in
Fig. 7 (left), the average performance gain of SwarmControl
with respect to the second-best performing scheme is 52%,
90%, and 208% for Scenarios 1, 2, and 3, respectively.
Modifying the network behavior. As discussed in Section II,
SwarmControl makes the operation of modifying the behavior
of a whole aerial network as simple as inputting a few char-
acters into the Control Interface. In the current implementa-
tion, automated decomposition and re-distribution of the new
optimization problems to all UAVs take less than 3 seconds,
which allows modifying the network behavior in real-time.
To illustrate how different control objectives lead to different
distributed control actions in SwarmControl, in Fig. 8 we
compare optimized PPS parameters for max-log-rate and min-
power (i.e., minimize Zz‘e A Pi» with p; being the transmission
power for node ¢) control problems for Scenario 1. max-log-
rate simultaneously maximizes fairness and overall network
application throughput, while min-power aims at minimizing
the overall consumed network power while maintaining the
minimum-session-rate QoS requirements. Figure 8 shows the
measured network throughput together with the physical layer
transmission power levels and TCP transport rates at individual
nodes for a single experiment realization under max-log-rate
and min-power network control problems. We terminated Ses-
sion 1 after 180 seconds in both experiments. Despite the fact
that stopping Session 1 causes a general throughput gain at Ses-
sion 2 because of the reduced interference, under the max-log-
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rate control problem the nodes increase the transmission power
and TCP transport rate to pursue overall network throughput
maximization. On the contrary, under the min-power control
problem, nodes belonging to Session 2 increase neither the
transmission power nor the session rate, which results in lower
power consumption, i.e., the objective of the min-power net-
work control problem.

D. Mixed Ground/Aerial network

Here, we consider a swarm of Drone-SDR nodes integrated
with a ground wireless infrastructure. In this experiment, we
show the use of SwarmControl aiming at improving the per-
formance of a mixed aerial-ground network. We demonstrate
the effectiveness of SwarmControl on a 6-UAV swarm used
to restore and optimize the network connectivity following a
ground infrastructure collapse. Scenario 4 in Fig. 9 presents two
ground nodes, source and destination, unable to communicate,
and a multi-hop aerial relay network of 6 Drone-SDRs deployed
to restore the connectivity.

Figure 9 reports the performance of the relay UAV network
for two different control problems, namely max-log-rate and
min-power. The bottom of the figure presents the single-run
individual optimal transmission power values of the 6 Drone-
SDRs for each control problem. The top of the figure instead
reports the individual forwarding rates contribution of the 6
Drone-SDRs achieving optimal traffic distribution across the
network, together with the overall recovered network through-
put for the considered single run and an average over ten
4-minute long experiments. It can be seen that Drone-SDRs use
higher transmission power implementing max-log-rate control
problem compared to min-power. Overall, the results prove that
the relay UAV network can successfully implement different
control objectives. For example, node E uses over 20 dBm
higher transmission power and accordingly relays over 20%
more packets per second in max-log-rate control problem re-
alization. These higher individual forwarding rates translate
into an overall network throughput improvement up to 100%
if compared to the min-power problem.

E. Open Sky Experiments

We conclude our evaluation section by reporting on extensive
flight experiments conducted in a state-of-the-art UAV lab built
to allow UAV flight testing in an indoor RF controlled environ-
ment. The facility isa 15m x 15m X 7 m anechoic chamber,
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Fig. 10: Snapshot of Scenario 5 flight experiment in the UAV lab.

entirely shielded outdoor and indoor (Fig. 10). The chamber
also contains 0.5 m hi-performance RF absorbing pyramidal
foam that covers all surfaces. The absorbers were removed
from the floor to simplify take off and landing operations
(see Fig. 10). The shielded enclosure provides > 100 dB
of isolation between 300 MHz and 18 GHz, while the foam
removes reflections from surrounding walls and reproduces a
free-space propagation environment, or open sky environment,
that can be used UAV network testing. Even though the absorb-
ing walls and the anechoic chamber create ideal conditions for
radio communications, the total absence of Global Positioning
System (GPS) signal and Earth magnetic field pose severe
challenges to UAV flight coordination. To mitigate the absence
of universal reference signals, we equip our Drone-SDR pro-
totypes with high frame-per-second optical flow cameras and
a sonar to determine local positioning and ground distance.
SwarmControl automatically detects the new hardware and set
the camera as the primary positioning system without requiring
any modification of the Drone PPS.

In this set of experiments, we evaluate the effectiveness and
flexibility of SwarmControl distributed optimization spanning
all layers of the prototyped Drone PPS: motion, physical,
network, and transport layers. To that end, we compare Swarm-
Control’s performance with three other control schemes: Best
Response (BR), No Control (NC), and Jointly Optimal Trans-
port and Physical layers (JOTP). We conduct our evaluation on
an 8-UAV swarm flying wireless network under the max-log-
rate control problem, in two different deployments scenarios,
Scenarios 5 and 6. The two scenarios represent two different
UAV network deployments where two source UAVs aim at
retrieving data at two specific locations and delivering it to
two destination UAVs located somewhere else by employing a
flying UAV network. Scenarios 5 and 6 differ for the location of
the source and destination Drone-SDRs, the initial positioning
of the four relay Drone-SDRs, and their relative distances,
which implies different initial SINR conditions and different
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Fig. 11: Network throughput and instantaneous UAVs trajectories for two network scenarios in UAV lab flight experiments.
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intermediate operational points. The mobility of sources and
destinations is constrained to the regions of interest by setting
them in “hold mode”, while other Drone-SDRs are let free to
move according to the network optimization results. Similar to
previous experiments, we consider two source nodes opening
two sessions toward two destinations, while the rest of the
network participates in multi-hop traffic forwarding.

In Fig. 11, we present single-run experiments for the two
scenarios. It can be seen that SwarmControl implements net-
work control directives by automatically optimizing network-
ing and flight control strategies at each Drone-SDR in a dis-
tributed fashion. More specifically, Fig. 11 shows how indi-
vidual Drone-SDRs distributively optimize their trajectories to
improve the SINR of the individual session links. For both
initial deployment scenarios, we can observe the trajectories
of the drones over time converging toward a reduced mutual
interference topology, which eventually results in increased
network capacity and overall network throughput improvement.
Figure 10 shows a snapshot of the multi-hop Drone-SDR net-
work flight experiments. For each control scheme and deploy-
ment scenario, we conduct ten independent 2-minute long flight
experiments. As it can be observed in Fig. 12, SwarmControl
obtained an average throughput gain of 87% and 231% over the
second-best performer for the two scenarios, 5 and 6, respec-
tively. This verifies the effectiveness of SwarmControl’s unique
joint networking and flight control optimization approach. A
demo video of the flight experiments showcasing the distributed
network control of SwarmControl is available at [17].

V. RELATED WORK

Works such as OpenFlow [18], OpenRadio [19], Soft-RAN
[20], CellISDN [21], OpenRoads [22] and SDN-WISE [23] have
pioneered software defined networking as an enabling technol-
ogy for both wired and wireless networks and for the next-
generation Internet. They are based on a few key principles:
(1) removing control decisions from hardware; (ii) enabling
the hardware decisions to be programmable through open and
standardized interfaces, and (iii) allowing a network operator to
define (in software) the behavior of the network infrastructure
on a centralized abstraction. These approaches have simplified
introducing and deploying new applications and services, as
well as configuring network policy and enhance the perfor-
mance of the system, e.g., improving network resource uti-
lization efficiency, simplifying network management, reducing
operating cost, and promoting innovation and evolution.

Compared to infrastructure-based SDN approaches, enabling
SDN in infrastructure-less wireless networks is much more

challenging and far from being well explored. There are only
a few prior research efforts in this field. In [24], Zhu et al.
proposed an SDN-based routing scheme for Vehicular Ad Hoc
Network (VANET), where a central controller collects network
information from switches and computes optimal routing strate-
gies. In [25], the authors discussed a hybrid SDN architec-
ture for wireless distributed networks (WDNSs) to alleviate the
multi-hop flooding operation of routing information. In this
way, the computational complexity of route discovery is split
between the SDN controller and the distributed forwarding
nodes, eliminating the need for collecting all the link-state
information to select routes. In [26], Wu et. al. propose a multi-
UAV wireless communication system to optimize the multi-
user communication scheduling and association, together with
the UAV trajectory and power control for cellular networks. In
this way, they maximize the downlink throughput to ground
users maintaining good fairness performance. [27] introduces
SkyCore, a new EPC design for UAV cellular networks pushing
the EPC functionality to the edge of the core network. The
proposed lightweight solution is co-located with the BS at the
UAV nodes, overcoming the limitations of traditional orches-
tration typical of wireless UAV environments. In WNOS [28],
the authors present an optimization-based SDN framework for
ad hoc networks. However, only static and ground-based ad
hoc networks are considered, which results in problems that
are significantly easier to solve given the pre-determined traffic
paths and the lack of mobility. Moreover, [28] only optimizes
transport and physical layer, while it does not consider the
dynamics of network formation and location-aware routing
operations; or the interdependencies between control of the
networking functionalities and flight control in a swarm of
drones. These and other papers are either designed for a single-
drone architecture [29—-32], employ centralized network control
[26, 33-36], focus only on one single protocol layer [37—
39], or limit their evaluation to simulation-based experiments
[40-43]. Differently, in this work, we focus on designing and
controlling infrastructure-less UAV networks, in a software-
defined, distributed, and cross-layer fashion, and evaluate our
performance on a swarm testbed with Drone-SDR prototypes.

VI. CONCLUSIONS

We presented SwarmControl, a software-defined and
optimization-based control framework for UAV networks.
SwarmControl leverages the reconfigurability and flexibility
of UAVs endowed with software defined radios to provide
the network operator with an abstraction of the motion and
networking functionalities. This centralized abstraction can be
used to define the desired network behavior through a few
lines of code. SwarmControl automatically transforms central-
ized control directives into distributed optimization problems
that are decoupled, dispatched to and solved distributively at
individual UAVs. We implemented SwarmControl on SDR-
based UAV network platform prototypes, and we assessed
its performance through an extensive experimental campaign.
Performance evaluation results demonstrate that SwarmControl
provides flexibility, fast adaptability, and throughput gains up to
230% when compared to state-of-the-art solutions.
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