We in the ECE Department are happy to provide you with our Annual Scholarship Report. This report highlights the research and accomplishments of our esteemed faculty in the past year and serves as an introduction to some new faces joining our department.

ECE has added 4 new faculty for the 2016/17 academic year. We welcome Pau Closas in positioning and tracking systems, Hui Fang in nano- and bio-electronics, Xue (Shelley) Lin in low power and high performance computing systems, and Aatmesh Shrivastava in ultra-low power circuits.

The ECE Department, and the College of Engineering as a whole, looks forward to the upcoming year as we welcome new colleagues, and continue to serve the students of Northeastern by providing the best education and opportunities possible. ECE has added 3 new master’s concentrations in the area of Computer Engineering: Computer Systems and Software, Computer Networks and Security, and Computer Vision, Machine Learning, and Algorithms, and is proud to introduce a new undergraduate minor in Computational Data Analytics.

We hope you can come see for yourself the work being done in our wonderful college as we continue to work to improve all aspects of our department.

Sincerely,

Miriam Leeser
Interim Chair of Electrical and Computer Engineering
m.leeser@northeastern.edu
COVER IMAGE

This image shows the Valkyrie humanoid robot designed by NASA’s Johnson Space Center. NASA awarded Valkyrie to a Northeastern-led research team for research and development aimed at advancing its capabilities for future space exploration missions. It is envisioned that Valkyrie or similar robots will be critical for the pre-deployment missions in advance of NASA’s planned manned MARS mission in 2030s. Over the next two years, Northeastern ECE researchers, led by Associate Professor Taskin Padir, will work on new algorithms to enrich Valkyrie’s software libraries to perform tasks relevant to space exploration missions, such as searching for and collecting samples, repairing equipment, and exiting an airlock. In collaboration with the New England Robotics Validation and Experimentation Center, in Lowell MA, the research team will also validate tasks for 2017 NASA Space Robotics Centennial Challenge.

Learn more at robot.neu.edu
ELECTRICAL AND COMPUTER ENGINEERING

2015 | 2016

SCHOLARSHIP REPORT
QUICK FACTS — Electrical and Computer Engineering

291 masters students
18.5% FEMALE

242 doctoral students
23% FEMALE

16 YOUNG INVESTIGATOR Awards

11 NATIONAL SCIENCE FOUNDATION CAREER Awards

$15M ANNUAL FACULTY RESEARCH EXPENDITURES
(up 37% from FY14)

NSF 21%
DOD/DARPA 18%
DHS 27%
NIH 7%

DOE 4%
CORPORATE 12%
FEDERAL/OTHER 11%

The department offers 5 research concentrations and is either the lead or partner of seven federally-funded research centers.

QUICK FACTS — College of Engineering

12 MULTI-INSTITUTIONAL RESEARCH CENTERS
funded by six federal agencies

DOE NSF NIH NIST DHS NSA

169 TENURED/ TENURE-TRACK Faculty

54 TENURED/ TENURE-TRACK Faculty

5 NEW HIRES FOR 2015/2016

13 IEEE FELLOWS

$53 MILLION IN ACTIVE RESEARCH GRANTS

NEW FALL UNDERGRADUATE students
2015 — 2016
665 729

3550 UNDERGRADUATE students

NEW FALL MS students
2015 — 2016
939 1177

3210 GRADUATE students

12 ENGINEERING DEPARTMENTS
• Bio
• Chemical
• Civil and Environmental
• Electrical and Computer
• Mechanical and Industrial

54 TENURED/ TENURE-TRACK Faculty

64 YOUNG INVESTIGATOR Awards

36 NSF CAREER Awards
HONORS

ACHIEVEMENTS

* PhD student co-author

PATENTS

Assistant Professor Mahshid Amirabadi was awarded a patent for creating “DC Capacitors-less Power Converters.”

Professor Vincent Harris was awarded a patent for his designs of a “Cobalt Carbide-based Nanoparticle Permanent Magnet Materials.”

Director of the Kostas Nanoscale Research Center Sivasubramanian Somu, WL Smith Chair and University Distinguished Professor Ahmed Busnaina, Professor Nicol McGruer, Peter Ryan*, College of Engineering Distinguished Professor George G. Adams, Xugang Xiong*, and Taehoon Kim* were awarded a patent for “System and Method for Integrating a Single Nanowire Into a Nanocircuit.”

BEST PAPER AWARDS

Professor Jose Martinez-Lorenzo received the Burke/Yannas Bioengineering Best Paper Award at the 47th Annual Meeting of the American Burn Association.

Professor Yong-Bin Kim was selected for Best Paper Award at the IEEE MWSCAS conference for his paper entitled “Full Custom Implementation of a S-box Circuit Architecture Using Power Gated PLA Structure,” co-authored by Ho Joon Lee and Kyung Ki Kim.

Professor Mitch Kokar won a Best Paper Award at the Wireless Innovation Forum Conference on Communications Technologies and Software Defined Radio for his paper was entitled “Mapping Spectrum Consumption Models to Cognitive Radio Ontology for Automatic Inference,” co-authored by PhD candidates Yanji Chen* and Durga Suresh*.

College of Engineering Distinguished Professor Carey Rappaport won Best Antenna Design and Application Paper award at the 9th European Conference on Antennas and Propagation for the paper entitled “Multistatic Nearfield Imaging Radar for Portal Security Systems Using a High Gain Toroidal Reflector Antenna.” The paper was co-authored by former Northeastern Senior Research Engineer Borja Gonzalez Valdes.

Professor Bahram Shafai won the Best Paper Award at the 19th International Conference on System Theory, Control, and Computing for “Positive Unknown Input Observer Design for Positive Linear Systems.” This paper was co-authored by Sam Nazari and Amirreza Oghbaee.

Professor Edmund Yeh is the co-recipient of the Best Paper Award at the 2015 IEEE International Conference on Communications (ICC) Communication Theory Symposium for “Optimization-based Linear Network Coding for General Connections of Continuous Flows.” This paper was co-authored by Ying Cui (former Northeastern postdoc), Muriel Medard, Douglas Leith, and Ken Duffy.

FACULTY HONORS AND AWARDS

Associate Professor Stefano Basagni was named a Distinguished Scientist of the Association for Computing Machinery.

Associate Professor Kaushik Chowdhury was awarded a $489K NSF CAREER Award for his project, “IDEA: Integrated Data and Energy Access for Wireless Sensor Networks.”

Associate Professor Yun Raymond Fu was recognized by the IEEE Computational Intelligence Society as the awardee of 2016 IEEE CIS Outstanding Early Career Award, for contributions to neural computing, manifold learning, and visual intelligence.

Professor Brad Lehman was awarded the 2015 IEEE Power Electronics Society’s Modeling and Control Technical Achievement Award.

Associate Professor Ningfang Mi was awarded a $459K NSF CAREER Award for her project, “Capacity Planning Methodologies for Large Clusters with Heterogeneous Architectures and Diverse Applications.”

Assistant Professor Marvin Onabajo was awarded a $500K NSF CAREER Award to investigate “Low-power Transceiver Design Methods for Wireless Medical Monitoring.”

Assistant Professor Matteo Rinaldi was awarded the 2015 IEEE Sensors Council Early Career Award for outstanding contributions to novel multi-functional piezoelectric micro and nano electro mechanical resonant sensors

Robert D. Black Professor and COE Distinguished Professor Michael B. Silevitch, along with Director of the Gordon Engineering Leadership Program Simon Pitts received the 2015 National Academy of Engineering Gordon Prize.

Professor Milica Stojanovic was awarded the 2015 IEEE Oceanic Engineering Society’s Distinguished Technical Achievement Award.
FACULTY BY RESEARCH AREAS

<table>
<thead>
<tr>
<th>Area</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMUNICATIONS AND SIGNAL PROCESSING</td>
<td>11</td>
</tr>
<tr>
<td>Dana Brooks</td>
<td></td>
</tr>
<tr>
<td>Pau Closas</td>
<td></td>
</tr>
<tr>
<td>Jennifer Dy</td>
<td></td>
</tr>
<tr>
<td>Deniz Erdogmus</td>
<td></td>
</tr>
<tr>
<td>Vinay Ingle</td>
<td></td>
</tr>
<tr>
<td>Hanoch Lev-Ari</td>
<td></td>
</tr>
<tr>
<td>Sarah Ostadabas</td>
<td></td>
</tr>
<tr>
<td>Purnima Ratilal-Makris</td>
<td></td>
</tr>
<tr>
<td>Masoud Salehi</td>
<td></td>
</tr>
<tr>
<td>Dagmar Sternad</td>
<td></td>
</tr>
<tr>
<td>Milica Stojanovic</td>
<td></td>
</tr>
<tr>
<td>COMPUTER ENGINEERING, NETWORKS, AND ROBOTICS</td>
<td>20</td>
</tr>
<tr>
<td>Stefano Basagni</td>
<td></td>
</tr>
<tr>
<td>Octavia Camps</td>
<td></td>
</tr>
<tr>
<td>Kaushik Chowdhury</td>
<td></td>
</tr>
<tr>
<td>Yunsi Fei</td>
<td></td>
</tr>
<tr>
<td>Yun Raymond Fu</td>
<td></td>
</tr>
<tr>
<td>Stratis Ioannidis</td>
<td></td>
</tr>
<tr>
<td>David Kaeli</td>
<td></td>
</tr>
<tr>
<td>Engin Kirda</td>
<td></td>
</tr>
<tr>
<td>Mieczyslaw Kokar</td>
<td></td>
</tr>
<tr>
<td>Miriam Leeser</td>
<td></td>
</tr>
<tr>
<td>Xue Lin</td>
<td></td>
</tr>
<tr>
<td>Fabrizio Lombardi</td>
<td></td>
</tr>
<tr>
<td>Waleed Meleis</td>
<td></td>
</tr>
<tr>
<td>Tommaso Melodia</td>
<td></td>
</tr>
<tr>
<td>Ningfang Mi</td>
<td></td>
</tr>
<tr>
<td>Taskin Padir</td>
<td></td>
</tr>
<tr>
<td>Wil Robertson</td>
<td></td>
</tr>
<tr>
<td>Gunar Schirner</td>
<td></td>
</tr>
<tr>
<td>Hanumant Singh</td>
<td></td>
</tr>
<tr>
<td>Edmund Yeh</td>
<td></td>
</tr>
<tr>
<td>ELECTROMAGNETICS AND OPTICS</td>
<td>12</td>
</tr>
<tr>
<td>Anthony Devaney</td>
<td></td>
</tr>
<tr>
<td>Charles DiMarzio</td>
<td></td>
</tr>
<tr>
<td>Vincent Harris</td>
<td></td>
</tr>
<tr>
<td>Yongmin Liu</td>
<td></td>
</tr>
<tr>
<td>Edwin Marengo</td>
<td></td>
</tr>
<tr>
<td>Jose Martinez Lorenzo</td>
<td></td>
</tr>
<tr>
<td>Stephen McKnight</td>
<td></td>
</tr>
<tr>
<td>Hossein Mosallaei</td>
<td></td>
</tr>
<tr>
<td>Mark Niedre</td>
<td></td>
</tr>
<tr>
<td>Carey Rappaport</td>
<td></td>
</tr>
<tr>
<td>Michael B. Silevitch</td>
<td></td>
</tr>
<tr>
<td>Carmine Vittoria</td>
<td></td>
</tr>
<tr>
<td>MICROSYSTEMS AND DEVICES</td>
<td>7</td>
</tr>
<tr>
<td>Hui Fang</td>
<td></td>
</tr>
<tr>
<td>Yong-Bin Kim</td>
<td></td>
</tr>
<tr>
<td>Nicol McGruer</td>
<td></td>
</tr>
<tr>
<td>Marvin Onabajo</td>
<td></td>
</tr>
<tr>
<td>Matteo Rinaldi</td>
<td></td>
</tr>
<tr>
<td>Atmresh Shrivastava</td>
<td></td>
</tr>
<tr>
<td>Nian Sun</td>
<td></td>
</tr>
<tr>
<td>POWER ELECTRONICS, SYSTEMS AND CONTROL</td>
<td>6</td>
</tr>
<tr>
<td>Ali Abur</td>
<td></td>
</tr>
<tr>
<td>Mahshid Amirabadi</td>
<td></td>
</tr>
<tr>
<td>Bradley Lehman</td>
<td></td>
</tr>
<tr>
<td>Bahram Shafai</td>
<td></td>
</tr>
<tr>
<td>Mario Sznaier</td>
<td></td>
</tr>
<tr>
<td>Gilead Tadmor</td>
<td></td>
</tr>
<tr>
<td>MICROSYSTEMS AND DEVICES</td>
<td>7</td>
</tr>
<tr>
<td>Hui Fang</td>
<td></td>
</tr>
<tr>
<td>Yong-Bin Kim</td>
<td></td>
</tr>
<tr>
<td>Nicol McGruer</td>
<td></td>
</tr>
<tr>
<td>Marvin Onabajo</td>
<td></td>
</tr>
<tr>
<td>Matteo Rinaldi</td>
<td></td>
</tr>
<tr>
<td>Atmresh Shrivastava</td>
<td></td>
</tr>
<tr>
<td>Nian Sun</td>
<td></td>
</tr>
</tbody>
</table>
ALI ABUR
Professor, Electrical and Computer Engineering
PhD, Ohio State University, 1985
ece.neu.edu/people/abur-ali
Power system monitoring, estimation and optimization, fault location, and identification in power grids
Fellow, Institute of Electrical and Electronics Engineers

SELECTED PUBLICATIONS
Y. Lin, A. Abur
A. Rouhani, A. Abur
Y. Lin, A. Abur
G. Feng, A. Abur
M. Göl, A. Abur
A Fast Decoupled State Estimator for Systems Measured by PMUs, IEEE Transactions on Power Systems, 30(5), 2015, 2766-2771
M. Göl, A. Abur
Hybrid State Estimator for Systems with Limited Number of PMUs, IEEE Transactions on Power Systems, 30(3), 2015, 1511-1517
A. Rouhani, A. Abur
Real-time Dynamic Parameter Estimation for an Exponential Dynamic Load Model, IEEE Transactions on Smart Grids, 7(3), 2015, 1530-1536
M. Göl, A. Abur
M. Göl, A. Abur
LAV Based Robust State Estimation for Systems Measured by PMUs, IEEE Transactions on Smart Grids, 5(4), 2014, 1808-1814

SELECTED RESEARCH PROJECTS
Identification and Correction of Network Parameter Errors
Principal Investigator, ISO-New England
Engineering Research Center for Ultra-wide Area Resilient Electric Energy Transmission Network
Site Principal Investigator, National Science Foundation

MAHSHID AMIRABADI
Assistant Professor, Electrical and Computer Engineering
PhD, Texas A&M University, 2013
ece.neu.edu/people/amirabadi-mahshid
Design, modeling and control of power converters, power electronics for renewable energy systems, microgrids, variable speed drives, and wireless power transfer

SELECTED PUBLICATIONS
S.A.KH. Mozaffari Niapour, M. Amirabadi
M. Amirabadi, H.A. Toliyat, J. Baek
M. Amirabadi, J. Baek, H.A. Toliyat, W.C. Alexander
Soft-switching AC-link three-phase AC-AC Buck-Boost Converter, IEEE Transactions on Industrial Electronics, 62, 2015, 3-14
M. Amirabadi
M. Amirabadi, A. Balakrishnan, H. Toliyat, W.C. Alexander
High Frequency AC-link PV Inverter, IEEE Transactions on Industrial Electronics, 61, 2014, 281-291
M. Amirabadi, J. Baek, H.A. Toliyat
Sparse AC-link Buck-boost Inverter, IEEE Transactions on Power Electronics, 29, 2014, 3942-3953
M. Amirabadi, H.A. Toliyat, W.C. Alexander
A Multi-port AC Link PV Inverter with Reduced Size and Weight for Stand-alone Application, IEEE Transactions on Industry Applications, 49, 2013, 2217-2228

SELECTED RESEARCH PROJECTS
A Novel Inverter for Wireless Charging
Principal Investigator, Korea Railroad Research Institute
A Reliable PV Inverter for Reducing the Overall Cost of Residential PV Systems
Principal Investigator, The Massachusetts Technology Transfer Center at UMass
STEFANO BASAGNI
Associate Professor, Electrical and Computer Engineering; affiliated faculty, Bioengineering
PhD, University of Texas, Dallas, 2001
PhD, University of Milan, Italy, 1998
ece.neu.edu/people/basagni-stefano
Wireless networks, ad hoc networks, underwater and terrestrial sensor networking, and protocol design and testing
Distinguished Scientist of the Association for Computing Machinery

SELECTED PUBLICATIONS
S. Basagni, C. Petrioli, D. Spenza
R.G. Cid-Fuentes, M.Y. Naderi, S. Basagni, K.R. Chowdhury, A. Cabellos-Aparicio, E. Alarcon
D. Spenza, M. Magni, S. Basagni, L. Benini, M. Paoli, et al.
Smart RF Energy Harvesting Communications: Challenges and Opportunities, Communications Magazine, IEEE, 53(4), 2015, 70-78
M.Y. Naderi, K.R. Chowdhury, S. Basagni
C. Petrioli, M. Nati, P. Casari, M. Zorzi, S. Basagni

SELECTED RESEARCH PROJECTS
Cross Layer Approach to 5G: Models and Protocols
Principal Investigator, MathWorks, Inc.
Development of the Northeastern University Marine Observatory NETwork
Principal Investigator, National Science Foundation

DANA BROOKS
Professor, Electrical and Computer Engineering; affiliated faculty, Bioengineering
PhD, Northeastern University, 1991
ece.neu.edu/people/brooks-dana
Biomedical signal and image processing, medical imaging, statistical signal processing, inverse problems, electrocardiography, bio-optical imaging, magnetic resonance imaging, transcranial neuromodulation, estimation of protein conformations from x-ray scattering, regularization, and optimization
Søren Buus Outstanding Research Award, College of Engineering; Outstanding Mentor Award, College of Engineering

SELECTED PUBLICATIONS
Optimization of Focality and Direction in Dense Electrode Array Transcranial Direct Current Stimulation (tDCS), Journal of Neural Engineering, 13(3), 2016, 36020-36033
Extensions to a Manifold Learning Framework for Time-series Analysis on Dynamic Manifolds in Bioelectric Signals, Physical Review E, 93, 2016, 042218
Constrained Maximum Likelihood Estimation of Relative Abundances of Protein Conformation in a Heterogeneous Mixture from Small Angle X-Ray Scattering Intensity Measurements, IEEE Transactions on Signal Processing, 63(20), 2015, 5383-5394
S. Kurugol, K. Kose, B. Park, J.G Dy, D.H. Brooks, M. Rajadhyaksha
B. Erem, J. Coll-Font, R. Martinez-Orellana, P. Stovicek, D. Brooks

SELECTED RESEARCH PROJECTS
Center for Integrative Biomedical Computing
Principal Investigator, National Institutes of Health
Automated Image Guidance for Diagnosing Skin Cancer with Confocal Microscopy
Co-Investigator, National Institutes of Health
Collaborative Research: US-German Research Proposal
Optimization of Human Cortical Stimulation
Principal Investigator, National Science Foundation
OCTAVIA CAMPS

Professor, Electrical and Computer Engineering; affiliated faculty, Bioengineering

PhD, University of Washington, 1992
ece.neu.edu/people/camps-octavia

Robust computer vision, image processing, and machine learning

SELECTED PUBLICATIONS

Y. Cheng, J.A. Lopez, O. Camps, M. Sznaier

S. Markovic, L. Siyuan, M. Sznaier, O. Camps, M. Niedre

C. Dicle, O. Camps, M. Sznaier
The Way They Move: Tracking Multiple Targets with Similar Appearance, IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, 2013

M. Ayazoglu, B. Yilmaz, M. Sznaier, O. Camps
Finding Causal Interactions in Video Sequences, IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, 2013

F. Xiong, Y. Cheng, O. Camps, M. Sznaier, C. Lagoa

SELECTED RESEARCH PROJECTS

Robust Identification of a Class of Structured Systems with High Dimensional Outputs and Applications
Co-Principal Investigator, National Science Foundation

KAUSHIK CHOWDHURY

Associate Professor, Electrical and Computer Engineering

PhD, Georgia Institute of Technology, 2009
ece.neu.edu/people/chowdhury-kaushik

Dynamic spectrum access, energy harvesting sensor networks, 5G technology, intra-body communication, and protocol design for wireless

ONR Director of Research Early Career Award 2016; Chair of the IEEE Technical Committee on Simulation; National Science Foundation CAREER Award 2015

SELECTED PUBLICATIONS

R. Doost-Mohammady, M.Y. Naderi, K.R. Chowdhury

M. Swaminathan, F.S. Cabrera, J.S. Pujol, U. Muncuk, G. Schirner, K.R. Chowdhury
Multi-path Model and Sensitivity Analysis for Galvanic Coupled Intra-body Communication through Layered Tissue, IEEE Transactions on Biomedical Circuits and Systems, 10(2), 2016, 339-351

M. Swaminathan, U. Muncuk, K.R. Chowdhury

R.G. Cid-Fuentes, M.Y. Naderi, S. Basagni, K.R. Chowdhury, A. Cabellos-Aparicio, E. Alarcón
On Signaling Power: Communications over Wireless Energy, IEEE International Conference on Computer Communications (INFOCOM), San Francisco, 2016

S. De, D. Mishra, K.R. Chowdhury

SELECTED RESEARCH PROJECTS

Cross Layer Approach to 5G Communications
Co-Principal Investigator, MathWorks
End-to-end Protocol Designs that Address the Challenges of Distributed Dynamic Spectrum Access Networks
Principal Investigator, Office of Naval Research
Principal Investigator, National Science Foundation
PAU CLOSAS

Assistant Professor, Electrical and Computer Engineering
PhD, Universitat Politècnica de Catalunya, 2009
ece.neu.edu/people/closas-pau

Statistical and array signal processing; estimation and detection theory; Bayesian inference; stochastic filtering; robust statistics; and game theory, with applications to positioning systems; wireless communications, and mathematical biology

Duran Farell for Technological Research; EURASIP Best PhD Thesis Award; Senior Member, Institute of Electrical and Electronics Engineers

SELECTED PUBLICATIONS

M.G. Amin, P. Closas, A. Broumandan, J.L. Volakis
Vulnerabilities, Threats, and Authentication in Satellite-based Navigation Systems [scanning the issue], Proceedings of the IEEE, 104(6), 2016, 1169-1173

J. Vilà-Valls, P. Closas, C. Fernández-Prades, J.A. López-Salcedo, G. Seco-Granados
Adaptive GNSS Carrier Tracking under Ionospheric Scintillation: Estimation vs Mitigation, IEEE Communications Letters, 19(6), 2015, 961-964

D. Dardari, P. Closas, P. Djuric
Indoor Tracking: Theory, Methods, and Technologies, IEEE Transactions on Vehicular Technology, 64(4), 2015, 1263-1278

J. Dampf, T. Pany, W. Bär, J. Winkel, C. Stöber, K. Fürlinger, P. Closas, J.A. García-Molina
More Than We Ever Dreamed Possible: Processor Technology for GNSS Software Receivers in the Year 2015, Inside GNSS, 10(4), 2015, 62-72

X. Liu, M. Liang, Y. Morton, P. Closas, T. Zhang, Z. Hong
Performance Evaluation of MSK and OFDM modulations for Future GNSS signals, GPS Solutions, 18(2), 2014, 13

A. Fernández, M. Wis, P. Closas, C. Fernández-Prades, J.A. García, F. Zanier, M. Crisci
Analysis of Signal Tracking Techniques for Multipath Mitigation, GPS World, 24(11), 2013, 44-50

A. Moragrega, P. Closas, C. Ibars

P. Closas, C. Fernández-Prades, J. Vilà-Valls
Multiple Quadrature Kalman Filtering, IEEE Transactions on Signal Processing, 60(12), 2012, 6125-6137

P. Closas, C. Fernández-Prades, J.A. Fernández-Rubio

CHARLES DIMARZIO

Associate Professor, Electrical and Computer Engineering; affiliated faculty, Bioengineering, Mechanical and Industrial Engineering
PhD, Northeastern University, 1996
ece.neu.edu/people/dimarzio-charles

Optics, microscopy, coherent detection, interaction of light and sound waves, hyperspectral imaging, diffusive optical tomography and ultrasound, landmine detection, magneto-optic sensors, multi-model imaging, and activities include: computer modeling, designing, building and testing of hardware, and processing the resulting data

SELECTED PUBLICATIONS

J.L. Hollmann, R. Horstmeyer, C. Yang, C.A DiMarzio

J.L. Hollmann, R. Horstmeyer, C. Yang, C.A. DiMarzio

Z. Lai, J. Kerimo, Y. Mega, C.A. DiMarzio
Stepwise Multiphoton Activation Fluorescence Reveals a New Method of Melanin Detection, Journal of Biomedical Optics, 18(6), 2013, 061225

SELECTED RESEARCH PROJECTS

Coded-illumination Fourier Ptychography for High-content Multimodal Imaging
Principal Investigator, National Science Foundation
JENNIFER DY
Professor, Electrical and Computer Engineering; affiliated faculty, Bioengineering
PhD, Purdue University, 2001
ece.neu.edu/people/dy-jennifer

Machine learning, data mining, statistical pattern recognition, computer vision, and image processing

National Science Foundation CAREER Award

SELECTED PUBLICATIONS
S.M. Brown, A. Webb, R.S. Mangoubi, J.G. Dy
A Sparse Combined Regression-classification Formulation for Learning a Physiological Alternative to Clinical Post-Traumatic Stress Disorder Scores, Twenty-ninth AAAI Conference on Artificial Intelligence, 2015

J. Ross, P. Castaldi, M. Cho, J.G. Dy
Dual Beta Process Priors for Latent Cluster Discovery in Chronic Obstructive Pulmonary Disease, ACM SIGKDD Knowledge Discovery and Data Mining, 2014

D. Niu, J.G. Dy, M.I. Jordan
Iterative Discovery of Multiple Alternative Clustering Views, IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(7), 2014, 1340-1353

Y. Yan, R. Rosales, G. Fung, J.G. Dy
Active Learning from Crowds, Proceedings of the 28th International Conference on Machine Learning (ICML), 2011, 1161-1168

Y. Guan, J.G. Dy, M.I. Jordan

M. Masaeli, G. Fung, J.G. Dy
From Transformation-based Dimensionality Reduction to Feature Selection, Proceedings of the 27th International Conference on Machine Learning (ICML), 2010, 751-758

Modeling Annotator Expertise: Learning When Everybody Knows a Bit of Something, Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS), 9, 2010, 932-939

SELECTED RESEARCH PROJECTS
Automated Image Guidance for Diagnosing Skin Cancer With Confocal Microscopy
Principal Investigator, National Institutes of Health

Genetic Epidemiology of COPD
Co-Principal Investigator, National Institutes of Health

Spatio-temporal Extremes and Associations Marine Adaptation and Survivorship under Climate Change and Rising Ocean Temperatures
Principal Investigator, National Science Foundation

DENIZ ERDOGMUS
Assistant Professor, Electrical and Computer Engineering; affiliated faculty, Bioengineering
PhD, University of Florida, 2002
ece.neu.edu/people/erdogmus-deniz

Brain computer interfaces, cognitive and interactive systems, nonlinear and statistical signal processing, information theory, and machine learning

National Science Foundation CAREER Award; Søren Buus Outstanding Research Award, College of Engineering; College of Engineering Faculty Fellow

SELECTED PUBLICATIONS
BrainComputer Interface with Language ModelEEG Fusion for Lockedin Syndrome, Neurorehabilitation and Neural Repair, 28(4), 2014, 387-394

A. Fowler, B. Roark, U. Orhan, D. Erdogmus, M. Fried-Oken
Improved Inference and Autotyping in EEGbased BCI Typing Systems, ASSETS 2013, Bellevue, WA, Oct 2013

H. Nezamfar, U. Orhan, S. Purwar, K. Hild, B. Oken, D. Erdogmus
Decoding of Multichannel EEG Activity from the Visual Cortex in Response to Pseudorandom Binary Sequences of Visual Stimuli, International Journal of Imaging Systems and Technology, 21(2), 2011, 139-147

Y. Huang, D. Erdogmus, M. Pavel, S. Mathan, K.E. Hild II

D. Erdogmus
BCI: A Timely Opportunity for Projectbased Learning, National Academy of Engineering Frontiers in Engineering Education Workshop, Irvine, California, Dec 2010

SELECTED RESEARCH PROJECTS
CAREER: Signal Models, Channel Capacity, and Information Rate for Noninvasive Brain Interfaces
Principal Investigator, National Science Foundation

Automated Classification of Retinopathy of Prematurity using Machine Learning
Investigator, National Institutes of Health

Strengthening Human Adaptive Reasoning and Problem Solving (SHARP)
Co-Principal Investigator, Intelligence Advanced Research Projects Activity

The Rehabilitation Engineering Research Center on Augmentative and Alternative Communication
Co-Principal Investigator, U.S. Department of Education

HUI FANG
Assistant Professor, Electrical and Computer Engineering
PhD, University of California, Berkeley, 2014
eece.neu.edu/people/fang-hui
Nano-electronics, bio-integrated electronics, and nano-physics

SELECTED PUBLICATIONS
Biorecorborable Silicon Electronics for Transient Spatiotemporal Mapping of Electrical Activity from the Cerebral Cortex, Nature Materials, 15, 2016, 782-791
Strong Interlayer Coupling In Van Der Waals Heterostructures Built From Single-layer Chalcogenides, IEEE Proceedings of the National Academy of Sciences, 111, 2014, 6198-6202
H. Fang, H.A. Bechtel, E. Plis, M. C. Martin, S. Krishna, E. Yablonovitch, A. Javey
Quantum of Optical Absorption in Two-dimensional Semiconductors, Proceedings of the National Academy of Sciences,110, 2013, 11688-11691
H. Fang, M. Tosun, G. Seol, T-C. Chang, K. Takei, J. Guo, A. Javey
H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, A. Javey
High-performance Single Layered WSe2 p-FETs with Chemically Doped Contacts, Nano Letters, 12, 2012, 3788-3792
Ultrathin-body, High-mobility InAsSb-on-insulator Field-effect Transistors, IEEE Electron Device Letters, 33, 2012, 504-506
Quantum Confinement Effects in Nanoscale-thickness InAs Membranes, Nano Letters, 11, 2011, 5008–5012

YUNSI FEI
Associate Professor, Electrical and Computer Engineering
PhD, Princeton University, 2004
eece.neu.edu/people/fei-yunsi
Computer architecture, embedded systems, hardware-oriented security, design automation, mobile computing, and underwater sensor networks

SELECTED PUBLICATIONS
Y. Han, Y. Fei
P. Luo, C. Li, Y. Fei
Concurrent Error Detection for Reliable SHA-3 Design, Association for Computing Machinery Great Lake Symposium on VLSI (GLSVLSI), 2016
Z. Jiang, Y. Fei, D.R. Kaeli
L. Zhang, A.A. Ding, Y. Fei, P. Luo
A Unified Metric for Quantifying Information Leakage of Cryptographic Devices Under Power Analysis Attacks, Asiacrypt, 2015
C. Luo, Y. Fei, P. Luo, S. Mukherjee, D. Kaeli
Side-channel Power Analysis of a GPU AES Implementation, International Conference on Computer Design (ICCD), 2015
B. Jiang, Y. Fei
Smart Home in Smart Microgrid: A Cost-effective Energy Ecosystem with Intelligent Hierarchical Agents, IEEE Transactions on Smart Grid (TSG), 6(1), 2015, 3-13

SELECTED RESEARCH PROJECTS
TWC: Medium: Automating Countermeasures and Security Evaluation Against Software Side-channel Attacks
Principal Investigator, National Science Foundation
Embedded Hardware-based Security and Side Channel Analysis
Principal Investigator, Analog Devices
MRI: Development of a Testbed for Side-channel Analysis and Security Evaluation-TeSCASE
Principal Investigator, National Science Foundation
STARSS: Side-channel Analysis and Resiliency Targeting Accelerators
Co-Principal Investigator, National Science Foundation and Semiconductor Research Corporation
YUN RAYMOND FU

Associate Professor, Electrical and Computer Engineering; jointly appointed, Computer and Information Science
PhD, University of Illinois, 2008
ece.neu.edu/people/fu-yun

Machine learning and computational intelligence, social media analytics, human-computer interaction, and cyber-physical systems

Office of Naval Research Young Investigator Award; Army Research Office Young Investigator Award; International Neural Network Society’s Young Investigator Award; Søren Buus Outstanding Research Award; Grainger Foundation Frontiers of Engineering Award

SELECTED PUBLICATIONS

S. Li, Y. Fu
Learning Balanced and Unbalanced Graphs via Low-rank Coding, IEEE Transactions on Knowledge and Data Engineering (T-KDE), 27(5), 2015, 1274-1287

Y. Fu
Human-centered Social Media Analytics, Springer, 2014

Y. Kong, Y. Jia, Y. Fu
Interactive Phrases: Semantic Descriptions for Human Interaction Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(9), 2014, 1775-1788

Y. Fu

K. Li, Y. Fu
Prediction of Human Activity by Discovering Temporal Sequence Patterns, IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(8), 2014, 1644-1657

SELECTED RESEARCH PROJECTS

Pinpoint Geolocation using Multi-source Multi-dimensional Big Data from Social Media
Principal Investigator, Naval Postgraduate School

Deep Structures Boosted Self-organized Behavior Pattern Learning for Anomaly Detection
Principal Investigator, Office of Naval Research

Wireless Sensing of Speech Kinematics & Acoustics for Remediation Co-Principal Investigator, National Science Foundation

Intention Sensing Through Video-based Imminent Activity Prediction
Principal Investigator, Army Research Office

Methods for Multimedia Search and Retrieval by Fusing Data Across Various Sources or Domains
Principal Investigator, MIT Lincoln Laboratory

Multimodal Speech Translation for Assistive Communication Co-Principal Investigator, National Institutes of Health

Sensing and Modeling Behavior in Response to Environmental Changes
Principal Investigator, Air Force Office of Scientific Research

VINCENT G. HARRIS

University Distinguished Professor, William Lincoln Smith Professor, Electrical and Computer Engineering; jointly appointed, Chemical Engineering
PhD, Northeastern University, 1990
ece.neu.edu/people/harris-vincent

Design and processing of advanced materials with emphasis on high frequency device applications for radar, communication, and sensing

Fellow, American Association for the Advancement of Science; Distinguished Scientist Award, The Materials, Minerals, and Metals Society; Fellow, Institute of Electrical and Electronics Engineers; Fellow, American Physical Society; Fellow, Institute of Physics; Fellow, Institute of Engineering and Technology; Institute of Metal Research’s Lee Hsun Lecture Award; Fulbright Senior Fellow; Søren Buus Outstanding; Research Award, College of Engineering

SELECTED PUBLICATIONS

A.S. Sokolov, M. Geiler, V.G. Harris

P. Taheri, R. Barua, J. Hsu, M. Zamanpour, Y. Chen, V.G. Harris

X. Wu, S. Yan, W. Liu, Z. Feng, Y. Chen, V.G. Harris

M. Bi, X. Wang, H. Lu, L. Deng, K.J. Sunday, M.L. Taheri, V.G. Harris

F. Chen, X. Wang, Y. Nie, Q. Li, J. Ouyang, Z. Feng, Y. Chen, V.G. Harris
Ferromagnetic Resonance Induced Large Microwave Magnetodielectric Effect in Cerium Doped Y3Fe5O12 Ferrites, Scientific Reports, 6, 2016, 28206

Z. Su, Q. Li, X Wang, B. Hu, Z. Feng, Y. Chen, V.G. Harris

SELECTED RESEARCH PROJECTS

Accelerated Development of Magnetodielectrics Having Equivalent Permeability and Permittivity for RF Applications
Principal Investigator, Rogers Corp

Magnetodielectric Heterostructures and Composites
Principal Investigator, Rogers Corp

Nonlinear Properties of Ferrite Materials
Principal Investigator, Raytheon
VINAY INGLE

Associate Professor, Electrical and Computer Engineering
PhD, Rensselaer Polytechnic Institute, 1981
ece.neu.edu/people/ingle-vinaykumar
Multidimensional signal processing and hyperspectral imaging

SELECTED PUBLICATIONS

E. Truslow, S. Golowich, D. Manolakis, V. Ingle

R. Herrero, V. Ingle
Backward and Forward Linear Prediction Applied to Ultraspertal Image Processing—Effects on Rate Distortion, Signal Image and Video Processing, 10(4), 2016, 639-646

R. Herrero, V. Ingle
Ultraspectral Image Compression using Two-stage Prediction: Prediction Gain and Rate-distortion Analysis, Signal Image and Video Processing, 10(4), 2016, 729-736

M. Pieper, D. Manolakis, E. Truslow, V. Ingle, T. Cooley, M. Brueggeman, A. Weisner, J. Jacobson

M. Pieper, D. Manolakis, V. Ingle, T.W. Cooley, M. Brueggeman, A. Weisner, J. Jacobson

E. Truslow, S. Golowich, D. Manolakis, V. Ingle

E. Truslow, M. Pieper, V. Ingle, S. Golowich

SELECTED RESEARCH PROJECTS

Algorithms for Vector Time Series Data Analysis
Principal Investigator, Massachusetts Institute of Technology Lincoln Lab

Hyperspectral Detection Algorithms with False Alarm Mitigation
Principal Investigator, Massachusetts Institute of Technology

Signal Processing of Long Wave Hyperspectral Imagery
Principal Investigator, Massachusetts Institute of Technology Lincoln Lab

STRATIS IOANNIDIS

Assistant Professor, Electrical and Computer Engineering
PhD, University of Toronto, 2009
ece.neu.edu/people/ioannidis-stratis
Distributed systems, networking, machine learning, big data, and privacy

SELECTED PUBLICATIONS

S. Ioannidis, E. Yeh

K. Nayak, X.S. Wang, S. Ioannidis, U. Weinsberg, N. Taft, E. Shi
GraphSC: Parallel Secure Computation Made Easy, Symposium on Security and Privacy (S&P), San Jose, CA, 2015

A. Karbasi, S. Ioannidis, L. Massoulié
From Small-world Networks to Comparison-based Search, IEEE Transactions on Information Theory (IT), 2015

Y. Sun, S. Ioannidis, A. Montanari
Learning Mixtures of Linear Classifiers, International Conference on Machine Learning (ICML), Beijing, China, 2014

SELECTED RESEARCH PROJECTS

Privacy-preserving Data Mining over FPGAs in the Datacenter
Principal Investigator, Google Faculty Research Award

Assistive Integrative Support Tool for Retinopathy of Prematurity
Principal Investigator, National Science Foundation
DAVID KAELI

COE Distinguished Professor, Electrical and Computer Engineering; affiliated faculty: Bioengineering, Computer and Information Science
PhD, Rutgers University, 1992
ece.neu.edu/people/kaeli-david

Computer architecture; GPUs; heterogeneous computing; performance analysis; security and information assurance; hardware reliability and recovery; Big Data analytics; workload characterization
Fellow, Institute of Electrical and Electronics Engineers; Distinguished Scientist, Associate of Computing Machinery; Distinguish Professor, Heterogeneous Systems Architecture Foundation; National Science Foundation CAREER Award

SELECTED PUBLICATIONS
S. Mukherjee, Y. Sun, P. Blinzer, A. K. Ziabari, D. Kaeli
Z.-H. Jiang, Y. Fei, D. Kaeli
A.K. Ziabari, J.L. Abellan, R. Ubal, C. Chen, A. Joshi, D. Kaeli
Leveraging Silicon-photonic NOC for Designing Scalable GPUs, Proceedings of the 29th ACM International Conference on Supercomputing, 2015, 273-282
D. Kaeli, P. Mistry, D. Schaa, D. Zhang
Heterogeneous Computing with OpenCL 2.0, Morgan Kaufmann Publishing, 2015

SELECTED RESEARCH PROJECTS
Development of a Testbed for Side-channel Analysis and Security Evaluation
Co-Principal Investigator, National Science Foundation
Engineering Strong, Highly Conductive Nanotube Fibers via Fusion
Co-Principal Investigator, National Science Foundation
Exploring Analysis of Environment and Health Through Multiple Alternative Clustering
Co-Principal Investigator, National Science Foundation
Leveraging Intra-chip/Inter-chip Silicon Photonic Networks for Designing Next-generation Accelerators
Principal Investigator, National Science Foundation
Multi-agent Modeling Framework for Mitigating Distributed Disruptions in Critical Supply Chains
Co-Principal Investigator, National Science Foundation
Puerto Rico Testsite for Exploring Environmental Contamination Threats
Co-Principal Investigator, National Institutes of Environmental Health Sciences
Side-channel Analysis and Resiliency Targeting Accelerators
Principal Investigator, National Science Foundation and Semiconductor Research Corporation

YONG-BIN KIM

Professor, Electrical and Computer Engineering
PhD, Colorado State University, 1996
ece.neu.edu/people/kim-yong-bin

Integrated circuit design and for nanoelectronics and nano technology, high speed system integration for signal processing and communication applications, bio-chip and bio-sensor interface circuit design, electronic neuron circuit design, low power adaptive robot controller circuit design; high performance and low power VLSI design, system-on-chip (soc), and Physical VLSI CAD

SELECTED PUBLICATIONS
W. Wei, K. Namba, F. Lombardi, Y.-B. Kim
Y. Choi, Y.-B. Kim
H. Zhu, R. Kapusta, Y.-B. Kim
I. Jung, Y.-B. Kim
Y. Choi, Y.-B. Kim
H. Chauhan, Y. Choi, M. Onabajo, I. Jung, Y.-B. Kim
T.M. Rookmaker, M.S. Kim, Y.-B. Kim
Design and Analysis of the Quadfferential Amplifier, Elsevier Microelectronics, 43(10), 2012, 697-707

SELECTED RESEARCH PROJECTS
Semi-self Calibration of High Speed Transceiver for DRAM Interface
Principal Investigator, Hynix Semiconductor
Compact and Power Efficient Integrated Voltage Tunable RF Multiferroic Inductors with Wide Tunable Inductance
Principal Investigator, Winchester Technology
EnGIN KIRDA
Professor, Electrical and Computer Engineering; jointly appointed, Computer and Information Science
PhD, Technical University of Vienna, 2002
ece.neu.edu/people/kirda-engin
Malware analysis and detection; web security; social network security; reverse engineering; intrusion detection

SELECTED PUBLICATIONS
M. Weissbacher, W. Robertson, E. Kirda, C. Kruegel, G. Vigna
C. Mulliner, W. Robertson, E. Kirda
Hidden GEMs: Automated Discovery of Access Control Vulnerabilities in Graphical User Interfaces, In IEEE Symposium on Security and Privacy (S&P), San Jose, CA, 2014
S. Le Blonde, A. Uritescu, C. Gilbert, Z. Leong Chua, P. Saxena, E. Kirda
Look at Targeted Attacks through the Lens of an NGO, In USENIX Security Symposium, San Diego, CA, 2014
K. Onarlioglu, C. Mulliner, W. Robertson, E. Kirda
L. Bilge, E. Kirda, C. Kruegel, M. Balduzzi

SELECTED RESEARCH PROJECTS
Continuum: Finding Space and Time Vulnerabilities in Java Programs
Co-Principal Investigator, Defense Advanced Research Projects Agency
DarkDroid: Exposing the Dark Side of Android Marketplaces
Principal Investigator, Defense Advanced Research Projects Agency
Firmalice: Modeling and Identifying Malice in Firmware
Principal Investigator, Defense Advanced Research Projects Agency
TWC: Medium: Collaborative: Automated Reverse Engineering of Commodity Software
Co-Principal Investigator, National Science Foundation
ZIGZAG: Secure Execution of Client-side Web Application Components
Principal Investigator, Office of Naval Research

MIECZYSLAW KOKAR
Professor, Electrical and Computer Engineering
PhD, Wroclaw University of Technology, 1973
ece.neu.edu/people/kokar-mieczyslaw
Cognitive radio; software engineering-self-controlling software; information fusion

SELECTED PUBLICATIONS
L. Lechowicz, M.M. Kokar
Y. Chen, M.M. Kokar, J. Moskal, D. Suresh
D. Suresh, M.M. Kokar, J. Moskal, Y. Chen
IEEE DySPAN 1900.5 Efforts To Support Spectrum Access Standardization, 2013 IEEE Military Communications Conference (MILC OM 2013), San Diego, 2013
D. Suresh, M.M. Kokar, J. Moskal
B. Ulicny, J. Moskal, M.M. Kokar
L. Lechowicz, M.M. Kokar
S. Li, M.M. Kokar

SELECTED RESEARCH PROJECTS
Detection and Learning of Unexpected Behaviors of Systems of Dynamical Systems by Using the Q2 Abstractions
Principal Investigator, Air Force Research Laboratory
MIRIAM LEESER

Professor and Interim Chair, Electrical and Computer Engineering; affiliated faculty, Bioengineering

PhD, Cambridge University, 1988
ece.neu.edu/people/leeser-miriam

Accelerators for compute intensive applications: reconfigurable hardware and graphics processing units (GPUs); applications including biocomputing, machine learning, software-defined radio; uses and implementations of computer arithmetic

SELECTED PUBLICATIONS

Cardiac MRI Compressed Sensing Image Reconstruction with a Graphics Processing Unit, International Symposium on Medical Information and Communication Technology (ISMICT), 2016

High-level System Design of IEEE 802.11b Standard-compliant Link Layer for MATLAB-based SDR, IEEE Access, 4, 2016, 149-1509

B. Drozdenko, M. Zimmermann, T. Dao, K. Chowdhury, M. Leeser
Modeling Considerations for the Hardware-software Co-design of Flexible Modern Wireless Transceivers, 22nd International Conference on Field Programmable Logic and Applications (FPL), 2016

X. Fang, M. Leeser

N. Moore, M. Leeser, L. Smith
King Kernel Specialization Provides Adaptable GPU Code for Particle Image Velocimetry, IEEE Transactions on Parallel and Distributed Systems, 26(4), 2015, 1049-1058

M. Leeser, S. Mukherjee, J. Brock
Fast Reconstruction of 3D Volumes from 2D CT Projection Data with GPUs, Biomed Central Research Notes, 7(528), 2014

X. Wang, M. Leeser
VFloat: A Variable Precision Fixed and Floating-point Library for Reconfigurable Hardware, ACM Transactions on Reconfigurable Technology and Systems, 3(3), 2010, 1-34

X. Wang, M. Leeser

SELECTED RESEARCH PROJECTS

Ensuring Reliability and Portability of Scientific Software for Heterogeneous Architectures
Co-Principal Investigator, National Science Foundation
Hardware/Software Implementations of WiFi and LTE Communications
Principal Investigator, MathWorks

BRAD LEHMAN

Professor, Electrical and Computer Engineering

PhD, Georgia Institute of Technology, 1992
ece.neu.edu/people/lehman-bradley

Power electronics; dc-dc converters; pulse width modulation; motion control; electric motor drives; analog circuits; control theory; differential equations; time delays; nonlinear systems and control; industrial control

IEEE Modeling and Control Technical Achievement Award of the IEEE Power Electronics Society

SELECTED PUBLICATIONS

J.-H. Huang, Y. Zhao, B. Lehman

S. Chen, P. Li, B. Lehman, R. Ball, J.F. de Palma

S. Chen, P. Li, D. Brady, B. Lehman
Determining the Optimum Grid-connected Photovoltaic Inverter Size, Solar Energy, 87, 2013, 96-116

Y. Zhao, B. Lehman, R. Ball and J.-F. de Palma

Y. Zhao, J. de Palma, J. Mosesian, R. Lyons, B. Lehman

SELECTED RESEARCH PROJECTS

A Multi-Model Machine Learning-solar Forecasting Technology
Principal Investigator, United States Department of Energy
Advanced 100W Solar Blanket for Squad Power
Principal Investigator, Department of Defense
HANOCH LEV-ARI
Professor, Electrical and Computer Engineering
PhD, Stanford University, 1984
ece.neu.edu/people/lev-ari-hanoch
Adaptive filtering; statistical signal processing; spectrum analysis and estimation; networked dynamic state estimation
Fellow, Institute of Electrical and Electronics Engineers

SELECTED PUBLICATIONS
P. Hajiyani, H. Lev-Ari and A.M. Stankovic

P. Ren, H. Lev-Ari, A. Abur

P. Argyropoulos, H. Lev-Ari, A. Abur

P.E. Argyropoulos, H. Lev-Ari
Wavelet Customization for Improved Fault Location Quality in Power Networks, IEEE Transactions on Power Delivery, 30(5), 2015, 2215-2223

B. Yan, H. Lev-Ari, A.M. Stankovic

L. Peng, H. Lev-Ari

P. Argyropoulos, H. Lev-Ari, A.M. Stankovic

M. Korkali, H. Lev-Ari, A. Abur

SELECTED RESEARCH PROJECTS
Center for Ultra-wide-area Resilient Electric Energy Transmission Networks (CURENT)
Co-Principal Investigator, National Science Foundation
Cyber-physical Models for Estimation, Control and Fault Management in Naval Energy Systems
Principal Investigator, Office of Naval Research

XUE LIN
Assistant Professor, Electrical and Computer Engineering
PhD, University of Southern California, 2016
ece.neu.edu/people/lin-xue
Near-threshold computer for low-power embedded systems; high-performance and mobile cloud computing systems; machine learning and computing in (embedded) cyber-physical systems

SELECTED PUBLICATIONS
Q. Xie, X. Lin, Y. Wang, S. Chen

Y. Wang, X. Lin, M. Pedram

X. Lin, Y. Wang, Q. Xie, M. Pedram

Y. Wang, X. Lin, M. Pedram

Y. Wang, X. Lin, Y. Kim, Q. Xie, M. Pedram, N. Chang

X. Lin, Y. Wang, M. Pedram, J. Kim, N. Chang
Designing Fault-tolerant Photovoltaic Systems, IEEE Design & Test (MDAT), 31(3), 2014, 76-84

Y. Wang, X. Lin, Y. Kim, N. Chang, M. Pedram

Y. Wang, X. Lin, M. Pedram
YONGMIN LIU

Assistant Professor, joint faculty appointment in Mechanical and Industrial Engineering and Electrical and Computer Engineering

PhD, University of California, Berkeley, 2009

mie.neu.edu/people/liu-yongmin

Nano optics; nanoscale materials and engineering; nano devices; plasmonics; metamaterials; applied physics

Office of Naval Research Young Investigator Award; 3M Non-Tenured Faculty Award; Air Force Summer Faculty Fellow

SELECTED PUBLICATIONS

K. Yao, Y.M. Liu
Controlling Electric and Magnetic Resonances for Ultracompact Nanoantennas with Tunable Directionality, ACS Photonics, 3, 2016, 953-963

W.L. Gao, F.Z. Fang, Y.M. Liu, S. Zhang
Chiral Surface Waves Supported by Biaxial Hyperbolic Metamaterials, Light: Science and Applications, 2015, e238

Z.B. Li, K. Yao, F.N. Xia, S. Shen, J.G. Tian, Y.M. Liu
Graphene Plasmonic Metasurfaces to Steer Infrared Light, Scientific Reports, 5, 2015, 12423

C.L. Zhao, Y.M. Liu, Y.H. Zhao, N. Fang, T.J. Huang
Reconfigurable Plasmofluidic Lens, Nature Communications, 4(2350), 2013, 1-8

Y.M. Liu, X. Zhang
Metamaterials: A New Frontier of Science and Technology, Chemical Society Reviews, 40, 2011, 2494-2507

S.C. Kehr, Y.M. Liu, et al.
Near-field Examination of Perovskite-based Superlenses and Superlens-enhanced Probe-object Coupling, Nature Communications, 2(249), 2011, 1-9

T. Zentgraf, Y.M. Liu, M.H. Mikkelsen, J. Valentine, X. Zhang

Y. M. Liu, T. Zentgraf, G. Bartal, X. Zhang

Optical Negative Refraction in Bulk Metamaterials of Nanowires, Science, 321(5891), 2008, 930

SELECTED RESEARCH PROJECTS

Reconfigurable Metamaterials for Beam Steering, Imaging and Sensing at Infrared Frequencies

Principal Investigator, Office of Naval Research

FABRIZIO LOMBARDI

ITC Endowed Professor, Electrical and Computer Engineering

PhD, University of London, 1982

ece.neu.edu/people/lombardi-fabrizio

Fault-tolerant computing; VLSI CAD; testing, configurable computing, distributed systems

Fellow, Institute of Electrical and Electronics Engineers; Søren Buus Outstanding Research Award, College of Engineering

SELECTED PUBLICATIONS

J. Han, J. Liang, F. Lombardi
Analysis of Error Masking and Restoring Properties of Sequential Circuits, IEEE Transactions on Computers, 62(9), 2013, 1694-1704

K. Namba, W. Wei, F. Lombardi
Extending Non-volatile Operation to DRAM Cells, IEEE Access, 1, 2013, 758-769

J. Han, J. Liang, F. Lombardi
New Metrics for the Reliability of Approximate and Probabilistic Adders, IEEE Transactions on Computers, 62(9), 2013, 1760-1771

G. Cho, F. Lombardi

A.F. Almurib, T Nandha Kumar, F. Lombardi

H. Feng, A.F. Almurib, T. Nandha Kumar, F. Lombardi
EDWIN MARENGO
Associate Professor, Electrical and Computer Engineering; affiliated faculty, Bioengineering
PhD, Northeastern University, 1997
ece.neu.edu/people/marengo-fuentes-edwin

Theoretical and applied electromagnetics, theoretical and applied optics, scattering theory, wave inverse problems, noniterative inverse scattering, physics-based signal processing and imaging, change detection theory and applications, compressive sensing, electromagnetic information theory, analysis and design of optical and quantum holographic detectors

National Science Foundation CAREER Award

SELECTED PUBLICATIONS
E.A. Marengo
E.A. Marengo, P. Berestesky
E.A. Marengo
E.A. Marengo, J. Tu
E.A. Marengo
E.A. Marengo, F.K. Gruber

SELECTED RESEARCH PROJECTS
Wave-based Algorithms and Bounds for Target Support Estimation
Principal Investigator, Air Force Office of Scientific Research

JOSE MARTINEZ LORENZO
Assistant Professor, Mechanical and Industrial Engineering; jointly appointed, Electrical and Computer Engineering
PhD, University of Vigo, 2005
mie.neu.edu/people/martinez-lorenzo-jose-angel

Devices, circuits and sensing; antenna analysis, modeling, design, and optimization; subsurface scattering analysis; computational methods of electromagnetics; novel radar system specification and design; explosives detection

SELECTED PUBLICATIONS
I.A. Osaretin, M.W. Shields, J.A. Martinez-Lorenzo, W.J. Blackwell
Fourier-based Imaging for Multistatic Radar Systems, IEEE Transactions on Microwave Theory and Techniques, 62(8), 2014, 1798-1810
On the Combination of SAR and Model Based Techniques for High-Resolution Real-time Two-dimensional Reconstruction, IEEE Transactions on Antennas & Propagation, 62(10), 2014, 5180-5189
Y. Rodriguez-Vaqueiro, J.A. Martinez-Lorenzo

SELECTED RESEARCH PROJECTS
Advanced Algorithm Development for Multiband GPR Radar Detection of Buried Mines
Co-Principal Investigator, US Army Night Vision and Electronic Sensors Directorate
Advanced Imaging and Detection of Security Threats using Compressive Sensing
Principal Investigator, Department of Homeland Security
Advanced Mechanical-electromagnetic Applications for next Generation Environmental Monitoring
Principal Investigator, National Oceanic and Atmospheric Administration
Multi-modality Electromagnetic Detection and Localization of Implanted Explosives Using Ultra low Field MRI and Nuclear Quadrupole Resonance
Co-Principal Investigator, Defense Advanced Research Projects Agency
NICOL MCGRUER

Professor, Electrical and Computer Engineering; affiliated faculty: Mechanical and Industrial Engineering, Bioengineering

PhD, Michigan State University, 1983
ece.neu.edu/people/mcgruer-nicol

MEMS, NEMS, RF MEMS; nanotechnology; micro/nanofabrication; microsystems; microrelay; nanoswitch; microspectrometer; microfluidics; organic FETs, organic solar cells

Søren Buus Outstanding Research Award, College of Engineering

SELECTED PUBLICATIONS

Simulation of Dielectrophoretic Assembly of Carbon Nanotubes Using 3D Finite Element Analysis, Nanotechnology, 26(15), 2015, e155602

A. Basu, R.P. Hennessy, G.G. Adams, N.E. McGruer

Y.-C. Wu, N. McGruer, G.G. Adams

Hot-switched Lifetime and Damage Characteristics of MEMS Switch Contacts, Journal of Micromechanics and Microengineering, 23(5), 2013, e055003

H. Pan, Y.-C. Wu, G.G. Adams, G.P. Miller, N. McGruer

P. Ryan, Y.-C. Wu, S. Somu, G. Adams, N. McGruer

SELECTED RESEARCH PROJECTS

PLASMID (Plasmonic Microelectromechanical Infrared Digitizer), Zero-power Sensor
Co-Principal Investigator, Defense Advanced Research Projects Agency

Zero Power Sensors (ZePS), RF Wake-up
Co-Principal Investigator, Defense Advanced Research Projects Agency

WALEED MELEIS

Associate Professor and Associate Chair, Electrical and Computer Engineering; affiliated faculty, Bioengineering

PhD, University of Michigan, 1996
ece.neu.edu/people/meleis-waleed

Combinatorial optimization; algorithm design and analysis; scheduling; machine learning; parallel computing

COE Fostering Engineering Innovation in Education Award; Black Engineering Student Society Professor Appreciation Award; Invited to represent Northeastern at the National Academy of Engineering’s Frontiers of Engineering Education Symposium; College of Engineering Outstanding Teacher Award; Martin W. Essigmann Outstanding Teaching Award, College of Engineering;Eta Kappa Nu Professor of the Year Award; Center for Innovative Course Design Teaching Award, EdTech

SELECTED PUBLICATIONS

L. Hayward, S. Ventura, M. Mahanna, and W. Meleis
Inter-professional Collaboration between Physical Therapy, Speech Language Pathology and Engineering Faculty and Students to Address Global Pediatric Rehabilitation Needs: A Case Report, Journal of Physical Therapy Education, 30(4), 2016

Optimizing Stimulus Patterns for Dense Array TDCS with Fewer Sources than Electrodes Using a Branch and Bound Algorithm, International Symposium on Biomedical Imaging (ISBI’16), Prague, Czech Republic, 2016

Performing Massively Open Online Social Experiments with Volunteer Science, Workshop on Crowdsourcing and Online Behavioral Experiments (COBE) at the ACM Conference on Economics and Computation, 2015

C. Wu, W. Li, W. Meleis

W. Meleis, et al.

Detecting Solid Masses in Phantom Breast Using Mechanical Indentation, Experimental Mechanics, 54(6), 2014, 935-942

TOMMASO MELODIA
Associate Professor, Electrical and Computer Engineering
PhD, Georgia Institute of Technology, 2007
ece.neu.edu/people/melodia-tommaso
Modeling, optimization, and experimental evaluation of wireless networked systems; networked implantable medical systems; multimedia sensor networks; secure tactical cognitive radio networks; underwater networks; mobile cloud computing
National Science Foundation CAREER Award

SELECTED PUBLICATIONS
Z. Guan, T. Melodia
G.E. Santagati, T. Melodia
Z. Guan, G.E. Santagati, T. Melodia
S. Pudlewski, N. Cen, Z. Guan, T. Melodia

SELECTED RESEARCH PROJECTS
NeTS: Small: Beyond Separate-then-centralize: A Cellular Operating System to Optimize Software-defined 5G Wireless Networks
Principal Investigator, National Science Foundation
CAREER: Towards Ultrasonic Networking for Implantable Biomedical Devices
Principal Investigator, National Science Foundation
Networking Medical Implants Through Ultrasounds
Principal Investigator, National Science Foundation
Small: Towards Real-time Video Streaming in the Internet of Underwater Things
Principal Investigator, National Science Foundation
Toward Maximal Spectral-efficiency Networking
Principal Investigator, Air Force Research Laboratory

NINGFANG MI
Associate Professor, Electrical and Computer Engineering
PhD, College of William and Mary, 2009
ece.neu.edu/people/mi-ningfang
Capacity planning; MapReduce/Hadoop scheduling; cloud computing; resource management; performance evaluation; workload characterization; simulation; virtualization
National Science Foundation CAREER Award; IBM Faculty Award; Air Force Office of Scientific Research Young Investigator Award

SELECTED PUBLICATIONS
Y. Yao, H. Gao, J. Wang, N. Mi, B. Sheng
J. Tai, D. Liu, Z. Yang, X. Zhu, J. Lo, N. Mi
Y. Yao, J. Wang, B. Sheng, C.C. Tan, N. Mi
Self-adjusting Slot Configurations for Homogeneous and Heterogeneous Hadoop Clusters, IEEE Transactions on Cloud Computing (TCC), 2015, 1-14
J. Tai, B. Sheng, Y. Yao, N. Mi
Y. Yao, J. Tai, B. Sheng, N. Mi

SELECTED RESEARCH PROJECTS
AFOSR YIP: Creating an Integrated Management Layer to Administer Heterogeneous Resources in Dynamic Workflow Clusters
Principal Investigator, Air Force Office of Scientific Research CAREER: Capacity Planning Methodologies for Large Clusters with Heterogeneous Architectures and Diverse Applications
Principal Investigator, National Science Foundation
HOSSEIN MOSALLAEI
Associate Professor, Electrical and Computer Engineering; affiliated faculty, Bioengineering
PhD, University of California, Los Angeles, 2001
ece.neu.edu/people/mosallaei-hossein
Electromagnetics and optics, quantum systems, nanoscale materials and metamaterials, nanoantennas, THz-IR Devices, multiscale computation and mathematical-numerical models

SELECTED PUBLICATIONS
B. Memarzadeh, H. Mosallaei Multimaterial Loops as the Building Block for a Functional Metasurface, Journal of the Optical Society of America B, 30(7), 2013, 1827-1834

SELECTED RESEARCH PROJECTS
Computationally-designed Materials for Wave Synthesis Principal Investigator, Defense Advanced Research Projects Agency
Designer Solids Nanoantennas and Material Principal Investigator, Army Research Office
MURI, Multiscale Mathematical Modeling and Design Realization of Novel 2D Functional Materials Co-Principal Investigator, Army Research Office
Nanoantennas for Engineering Waves on the Surface Principal Investigator, Air Force Office of Scientific Research

MARK NIEDRE
Associate Professor, Electrical and Computer Engineering; jointly appointed, Bioengineering
PhD, University of Toronto, 2004
ece.neu.edu/people/niedre-mark
Biomedical optics and non-invasive imaging, rare cell detection and tracking in the body, ultrafast time-domain diffuse optical imaging, image reconstruction and biomedical signal processing

SELECTED PUBLICATIONS
N. Valim, J. Brock, M. Leeser, M. Niedre The Effect of Temporal Impulse Response on Experimental Reduction of Photon Scatter in Time-resolved Diffuse Optical Tomography, Physics in Medicine and Biology, 58(2), 2013, 335-349

SELECTED RESEARCH PROJECTS
High Resolution Multiplexed Fluorescence Tomography Principal Investigator, National Institutes of Health
Ultra-rare Cell In Vivo Flow Cytometry Principal Investigator, National Institutes of Health
MARVIN ONABAJO
Assistant Professor, Electrical and Computer Engineering
PhD, Texas A&M University, 2011
ece.neu.edu/people/onabajo-marvin

Design of analog, radio frequency, and mixed-signal integrated circuits; built-in test and calibration techniques for systems-on-a-chip; on-chip temperature sensors for thermal monitoring and built-in testing

National Science Foundation CAREER Award; Martin Essigman Outstanding Teaching Award, College of Engineering

SELECTED PUBLICATIONS
L. Xu, C.-H. Chang, M. Onabajo
A 0.77mW 2.4GHz RF Front-end with -4.5dBm in-band IIP3 Through Inherent Filtering, IEEE Microwave and Wireless Components Letters, 26(5), 2016, 352-354

H. Chauhan, V. Kvartenko, R. Coxe, T. Weber, M. Onabajo

C.-H. Chang, L. Xu, M. Onabajo

H. Chauhan, Y. Choi, M. Onabajo, I. Jung, Y.-B. Kim

C.-J. Park, M. Onabajo, J. Silva-Martinez
External Capacitor-less Low Drop-out Regulator with 25dB Superior Power Supply Rejection in the 0.4-4MHz Range, IEEE Journal of Solid-State Circuits, 27(2), 2014, 486-501

SELECTED RESEARCH PROJECTS
CAREER: Low-power Transceiver Design Methods for Wireless Medical Monitoring
Principal Investigator, National Science Foundation

Integrated Self-calibrated Analog Front-end for Biopotential and Bioimpedance Measurements
Principal Investigator, National Science Foundation

SARAH OSTADABBAS
Assistant Professor, Electrical and Computer Engineering
PhD, University of Texas at Dallas, 2014
ece.neu.edu/people/ostadabbas-sarah

Machine learning/pattern recognition; signal and image processing; human decision support systems; augmented cognition system with medical applications

SELECTED PUBLICATIONS

S. Ostadabbas, M. Ghovanloo, A.J. Butler
Developing A Tongue Controlled Exoskeleton for a Wrist Tracking Exercise: A Preliminary Study, Journal of Medical Devices (JMD), 9, 2015

S. Ostadabbas, M. Nourani, R. Yousefi, M. Pompeo
A Knowledge-based Modeling for Plantar Pressure Image Reconstruction, IEEE Transactions on Biomedical Engineering (TBME), 61(10), 2014, 2538-2549

S. Ostadabbas, R. Yousefi, M. Nourani, M. Faezipour, L. Tamil, M. Pompeo
A Resource-efficient Planning for Pressure Ulcer Prevention, IEEE Transactions on Information Technology in BioMedicine (TITB), 16(6), 2012, 1265-1273
TASKIN PADIR
Associate Professor, Electrical and Computer Engineering; affiliated faculty Mechanical and Industrial Engineering
PhD, Purdue University, 2004
ece.neu.edu/people/padir-taskin

Humanoid robots, dexterous manipulation, model-based robot design, human-supervised robot autonomy, medical cyber-physical systems

Kalenian Award for Entrepreneurial Spirit, HEART: Humans Empowered with Assistive Robot Technologies; Romeo L. Moruzzi Young Faculty Award for Innovation in Undergraduate Education

SELECTED PUBLICATIONS
Human-supervised Control of the ATLAS Humanoid Robot for Traversing Doors in Human Robots, IEEE-RAS 15th International Conference, 2015, 722-729
V. Dimitrov, V. Jagtap, J. Skorinko, S. Chernova, M. Gennert, T. Padir
Human-centered Design of a Cyber-physical System for Advanced Response to Epidemics, EMBC 2015 Annual International Conference of the IEEE, Milan, Italy, 2015
M.P. DeDonato, V. Dimitrov, T. Padir
G. Schirner, D. Erdogmus, K. Chowdhury, T. Padir
The Future of Human-in-the-loop Cyber-physical Systems, IEEE Computer, 46(1), 2013, 36-45

SELECTED RESEARCH PROJECTS
Accessible Testing on Humanoid-Robot-R5 and Evaluation of NASA Administered (ATHENA) Administered (ATHENA) Space Robotics Challenge
Principal Investigator, National Aeronautics and Space Administration
Customer Discovery for Field-deployable Indoor Localization Technology
Principal Investigator, National Science Foundation
Enhancing Disabilities Engineering Research and Education Through Robotics Capstone Projects
Principal Investigator, National Science Foundation
Model-based Designs in Smart Environments to Enable Independent Living
Principal Investigator, Intel Corporation
Realization of a Medical Cyber-physical System to Enhance Safety of Ebola Workers
Principal Investigator, National Science Foundation

CAREY RAPPAPORT
COE Distinguished Professor, Electrical and Computer Engineering; affiliated faculty, Bioengineering
PhD, Massachusetts Institute of Technology, 1987
ece.neu.edu/people/rappaport-carey

Bioelectromagnetics, microwave tissue imaging, electromagnetic breast cancer detection and treatment, cardiac ablation therapy, microwave assisted balloon angioplasty, catheter-based sensing. Antennas, electromagnetic computation, subsurface sensing and imaging, explosives detection, security system conceptualization and design

Fellow, Institute of Electrical and Electronics Engineers; Søren Buus Outstanding Research Award, College of Engineering

SELECTED PUBLICATIONS
C. Rappaport, B. Gonzalez-Valdes
M. Tajdini, B. Gonzalez-Valdes, J.A. Martinez-Lorenzo, A. Morgenthaler, C. Rappaport
Efficient 3D Forward Modeling of GPR Scattering from Rough Ground, IEEE International Symposium on Antennas and Propagation, Vancouver, Canada, 2015, 1686-1687
B. Gonzalez-Valdez, Y. Alvarez Lopez, J.A. Martinez Lorenzo, F. Las-Heras Andres, C. Rappaport
Accurate Profile Reconstruction Using An Improved SAR Based Technique, Proceedings of the IEEE International Antennas and Propagation Symposium (IAPS), 2013, 818-819
B. Gonzalez-Valdes, J.A. Martinez-Lorenzo, C. Rappaport
Dual Band SAR Processing for Low Dielectric Contrast Buried IED Detection, Proceedings of the IEEE IAPS, 2013, 1080-1081

SELECTED RESEARCH PROJECTS
PURNIMA RATILAL-MAKRIS
Associate Professor, Electrical and Computer Engineering; affiliated faculty, Bioengineering
PhD, Massachusetts Institute of Technology, 2002
ece.neu.edu/people/ratilal-makris-purnima
Remote sensing; underwater acoustics; acoustical oceanography; bioacoustics; ultrasound imaging; nonlinear scattering; wave propagation in random media; signal, image and array processing; statistical inference theory
Presidential Early Career Award for Scientists and Engineers; Office of Naval Research Young Investigator Award

SELECTED PUBLICATIONS
Z. Gong, A.D. Jain, D. Tran, P. Ratilal, et al.
Ecosystem Scale Acoustic Sensing Reveals Humpback Whale Behavior Synchronized with Herring Spawning Processes and Re-evaluation Finds No Effect of Sonar on Humpback Song Occurrence in the Gulf of Maine in Fall 2006, PLoS ONE, 9(10), 2014, e104733
D. Tran, W. Huang, A. Bohn, D. Wang, N. Makris, P. Ratilal, et al.
Using a Coherent Hydrophone Array for Observing Sperm Whale Range, Classification, and Shallow-water Dive Profiles, The Journal of the Acoustical Society of America, 135(6), 2014, 3352-3363
Z. Gong, D. Tran, P. Ratilal
Z. Gong, T. Chen, P. Ratilal, N. Makris
D. Tran, M. Andrews, P. Ratilal
M. Andrews, Z. Gong, P. Ratilal
Effects of Multiple Scattering, Attenuation and Dispersion in Waveguide Sensing of Fish, Journal of the Acoustical Society of America, 130, 2011, 1253-1271

MATTEO RINALDI
Assistant Professor, Electrical and Computer Engineering; affiliated faculty, Bioengineering
PhD, University of Pennsylvania, 2010
ece.neu.edu/people/rinaldi-matteo
Understanding and exploiting the fundamental properties of micro/ nanomechanical structures and advanced nanomaterials to engineer new classes of micro and nanoelectromechanical systems (M/NEMS) with unique and enabling features applied to the areas of chemical, physical and biological sensing and low power reconfigurable radio communication systems
IEEE Sensors Council Early Career Award; National Science Foundation CAREER Award; Defense Advanced Research Projects Agency Young Faculty Award

SELECTED PUBLICATIONS
C. Cassella, Y. Hui, Z. Qian, G. Hummel, M. Rinaldi
C. Cassella, G. Chen, Z. Qian, G. Hummel, M. Rinaldi
Z. Qian, Y. Hui, F. Liu, S. Kar, M. Rinaldi
Graphene-aluminum NEMS Resonant Infrared Detector, Microsystems and Nanoengineering, 2, 2016, 16026
Y. Hui, J. S. Gomez-Diaz, Z. Qian, A. Alú, M. Rinaldi
Plasmonic Piezoelectric Nanomechanical Resonator for Spectrally Selective Infrared Sensing, Nature Communications, 7, 2016, 11249
Z. Qian, F. Liu, Y. Hui, S. Kar, M. Rinaldi

SELECTED RESEARCH PROJECTS
Microelectromechanical Resonant Circulator (MIRC) Principal Investigator, DARPA MTO SPAR program
Plasmonic Microelectromechanical Infrared Digitizer (PLAS MID) Principal Investigator, DARPA MTO N-Zero program
Zero Power Sensors (ZePS) Principal Investigator, DARPA MTO N-Zero program
CAREER: Nano Electro Mechanical Resonant Sensing Platform for Chip Scale, High Resolution and Ultra-fast Terahertz Spectroscopy and Imaging Principal Investigator, National Science Foundation Intrinsically Switchable and Programmable MEMS Filter Array Principal Investigator, Defense Advanced Research Projects Agency
WILLIAM ROBERTSON
Assistant Professor, Computer & Information Science; jointly appointed, Electrical and Computer Engineering
PhD, University of California, Santa Barbara, 2009
ece.neu.edu/people/robertson-wil
Trustworthy computing architectures; web security; statistical machine learning for anomaly detection; malware analysis using adversarial program analysis; reverse engineering; intrusion detection

SELECTED PUBLICATIONS
M. Weissbacher, W. Robertson, E. Kirda, C. Kruegel, G. Vigna
C. Mulliner, W. Robertson, E. Kirda
Hidden GEMs: Automated Discovery of Access Control Vulnerabilities in Graphical User Interfaces, Proceedings of the IEEE Symposium on Security and Privacy (Oakland), San Jose, CA, 2014, 1-14
M. Weissbacher, T. Lauinger, W. Robertson
K. Onarlioglu, C. Mulliner, W. Robertson, E. Kirda

SELECTED RESEARCH PROJECTS
Automated Inference of High-level Program Structure
Principal Investigator, Office of Naval Research
Continuum: Finding Space and Time Vulnerabilities in Java Programs
Principal Investigator, Defense Advanced Research Projects Agency
DarkDroid: Exposing the Dark Side of Android Marketplaces
Co-Principal Investigator, Defense Advanced Research Projects Agency
Firmalice: Modeling and Identifying Malice in Firmware
Co-Principal Investigator, Defense Advanced Research Projects Agency
Multi-disciplinary Preparation of Next Generation Information Assurance Practitioners
Co-Principal Investigator, National Science Foundation

MASOUĐ SALEHI
Associate Professor, Electrical and Computer Engineering
PhD, Stanford University, 1979
ece.neu.edu/people/salehi-masoud
Error correcting codes; information theory; digital communications

SELECTED PUBLICATIONS
K.-L. Huang, V.C. Gaudet, M. Salehi
A Hybrid ARQ Scheme Using LDPC Codes with Stochastic Decoding, Proceedings of the 49th Annual Conference on Information Sciences and Systems, 2015, 1-4
N. Yang, M. Salehi
A Family of Orthogonal Full Rate Differential Space Time Block Code Systems, Proceedings of the IEEE Military Communications Conference (MILCOM), Baltimore, MD, October 6-8, 2014, 569-574
John G. Proakis and Masoud Salehi
Pearson, 2014
K. Firoozbakht, G. Noubir, M. Salehi
K.-L. Huang, V. Gaudet, M. Salehi
K. Firoozbakht, G. Noubir, M. Salehi
Packetized Wireless Communication Under Jamming, a Constrained Bimatrix Game, Proceedings of the IEEE Global Communications Conference (GLOBECOM), 2014, 740-745
K. Firoozbakht, G. Noubir, M. Salehi
O. Vahabzadeh, M. Salehi
A Novel Two-user Cooperation Scheme for Cooperative Communications Based on Protopraph-based Low-density Parity-check (LDPC) Codes, Proceedings of the 47th Annual Conference on Information Sciences and Systems, 2013, 1-4
J.G. Proakis, M. Salehi, G. Bauch
GUNAR SCHIRNER
Associate Professor, Electrical and Computer Engineering
PhD, University of California, Irvine, 2008
ece.neu.edu/people/schirner-gunar

Embedded computer systems; novel architectures for embedded vision; cyber-physical systems; system-level design and methodologies; hardware/software co-design

SELECTED PUBLICATIONS
H. Tabkhi, G. Schirner
A Joint SW/HW Approach for Reducing Register File Vulnerability, ACM Transactions on Architecture and Code Optimization (ACM TACO), 2015

N. Teimouri, H. Tabkhi, G. Schirner
Revisiting Accelerator-rich CMPs: Challenges and Solutions, Proceedings of the 52nd Annual Design Automation Conference (DAC), San Francisco, CA, 2014

H. Tabkhi G. Schirner
Application-guided Power Gating Reducing Register File Static Power, IEEE Transactions on Very Large Scale Integration (TVLSI), 2014, 2513-2526

J. Zhang, G. Schirner
Automatic Specification Granularity Tuning for Design Space Exploration, Design Automation and Test in Europe (DATE), Dresden, Germany, 2014, 1-6

H. Tabkhi, R. Bushey, G. Schirner

H. Tabkhi, R. Bushey, G. Schirner
Function-level Processor (FLP): Raising Efficiency by Operating at Function Granularity for Market-oriented MSoCs, IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP), Zurich, Switzerland, 2014

G. Schirner, M. Götz, A. Rettberg, M. Zanella, F. J. Rammig

G. Schirner, D. Erdogmus, K. Chowdhury, T. Padir
The Future of Human-in-the-loop Cyber-physical Systems, IEEE Computer, 46(1), 2013, 36-45

SELECTED RESEARCH PROJECTS
Collaborative Research: Holistic Design Methodology for Automated Implementation of Human-in-the-loop Cyber-physical Systems
Principal Investigator, National Science Foundation

Power Efficient Emerging Heterogeneous Platforms
Principal Investigator, National Science Foundation

BAHRAM SHAFAI
Professor, Electrical and Computer Engineering; affiliated faculty, Bioengineering
PhD, George Washington University, 1985
ece.neu.edu/people/shafai-bahram

Control Systems; digital signal processing; robust and optimal control

SELECTED PUBLICATIONS
B. Shafai, S. Nazari, A. Oghbaee

B. Shafai, M. Saif
Proportional-integral Observer in Robust Control, Fault Detection, and Decentralized Control of Dynamic Systems, Control and Systems Engineering, Springer International Publishing, 2015, 13-43

S.M.M. Alavi, M. Saif, B. Shafai
Accurate State Estimation in DC-DC Converters Using a Proportional Integral Observer (PIO), Proceedings of 23rd IEEE International Symposium on Industrial electronics (ISIE), 2014, 1304-1309

R. Ghadami, B. Shafai

P. Brunet, B. Shafai

B. Shafai, A Oghbaee

B. Shafai, A Oghbaee
Positive Quadratic Stabilization of Uncertain Linear System, Proceeding of IEEE Multi-conference on Systems and Control, CAA, Antibes, France, 2014, 1412-1417

R. Ghadami, B. Shafai
Decomposition-based Distributed Control for Continuous-time Multi-agent Systems, IEEE Transactions on Automatic Control, 58(1), 2013, 258-264
AATMESH SHRIVASTAVA

Assistant Professor, Electrical and Computer Engineering
PhD, University of Virginia, 2014
ece.neu.edu/people/shrivastava-aatmesh

Self-powered and ultra-low power circuits and system; energy-harvesting and power-first system/computer architecture; internet-of-things; ultra-low power bio-medical and neural circuits and systems; exascale computing; high reliability system design

SELECTED RESEARCH PROJECTS

A 236nW-56.5dBm Sensitivity Bluetooth Low-energy Wakeup Receiver with Energy Harvesting in 65nm CMOS, IEEE Solid-state Circuits Conference (ISSCC), 2016

A. Shrivastava, D. Akella, B.H. Calhoun
A 1.5nW, 32.768kHz XTAL Oscillator Operational from 0.3V Supply, IEEE Journal of Solid-state Circuits, 51(3), 2016, 686-696

A. Shrivastava, K. Craig, N.E. Roberts, D. Wentzloff, B.H. Calhoun
A 32nW Bandgap Reference Voltage Operational from 0.5V Supply for Ultra-low Power Systems, IEEE Solid-State Circuits Conference (ISSCC), 2015

A. Shrivastava, D.D. Wentzloff, B.H. Calhoun

MICHAEL B. SILEVITCH

Robert D. Black Professor, COE Distinguished Professor, Electrical and Computer Engineering; affiliated faculty, Civil and Environmental Engineering
PhD, Northeastern University, 1971
ece.neu.edu/people/silevitch-michael

Subsurface sensing and imaging systems, detection of explosives related anomalies, engineered system development and engineering leadership

SELECTED RESEARCH PROJECTS

ALERT: Awareness and Localization of Explosives Related Threats, A Department of Homeland Security Center of Excellence. ALERT seeks to conduct transformational research, technology and educational development for effective characterization, detection, mitigation and response to the explosives-related threats facing the country and the world
Director and Principal Investigator, Department of Homeland Security

CenSSIS: Center for Subsurface Sensing and Imaging Systems, Gordon-CenSSIS, a graduated NSF Engineering Research Center, was created to develop new technologies to detect hidden objects, and to use those technologies to meet real-world subsurface challenges in areas as diverse as noninvasive breast cancer detection and underground pollution assessment
Director and Principal Investigator, National Science Foundation

Research and Development of Reconstruction Advances in CT Based Object Detection Systems
Principal Investigator, Department of Homeland Security
HANUMANT SINGH

Professor, Electrical and Computer Engineering; jointly appointed, Marine and Environmental Sciences

PhD, Massachusetts Institute of Technology, 1995
ece.neu.edu/people/singh-hanumant

Robotic sensors, systems, platforms, and algorithms including high resolution optical and acoustic sensing; underwater vehicles (AUV, ROV, towed and manned vehicles), unmanned surface vehicles, and unmanned aerial systems; system architectures for navigation, docking and power; and the interactions between these subsystems

SELECTED PUBLICATIONS

DAGMAR STERNAD

Professor, Biology; jointly appointed: Electrical and Computer Engineering; affiliated faculty, Bioengineering

PhD, University of Connecticut, 1995
ece.neu.edu/people/sternad-dagmar

Motor control and learning, variability and stability, virtual rehabilitation, dynamic modeling, rhythmic and discrete movements as primitives for action

Klein Lectureship Award; Distinguished Lecturer on Life and the Sciences of Complexity, Center for the Ecological Study of Perception and Action

SELECTED PUBLICATIONS

C.J. Hasson, Z. Zhang, M.O. Abe, D. Sternad Neuromotor Noise is Malleable by Amplification of Perceived Error, PLoS Computational Biology, 2016

M.E. Huber, D. Sternad Implicit Guidance to Stable Performance in a Rhythmic Perceptual-motor Skill, Experimental Brain Research, 233(6), 2015, 1783-1799

SELECTED RESEARCH PROJECTS

Challenging the Cognitive-control Divide
Principal Investigator, National Science Foundation

Multi-center Trial of Augmented Sensory Feedback in Children with Dyskinetic CP
Co-Principal Investigator, National Institutes of Health

Predictability in Complex Object Control
Principal Investigator, National Institutes of Health

Quantification of Predictive Motor Impairments in Individuals with ASD
Principal Investigator, National Institutes of Health
MILICA STOJANOVIC
Professor, Electrical and Computer Engineering; affiliated faculty, Bioengineering
PhD, Northeastern University, 1993
ece.neu.edu/people/stojanovic-milica
Wireless communications and networks, underwater acoustic transmission, statistical system characterization, adaptive signal processing

Distinguished Technical Achievement Award, IEEE Ocean Engineering Society; Fellow, Institute of Electrical and Electronics Engineers

SELECTED PUBLICATIONS
Y. Aval, S.K. Wilson, M. Stojanovic

Y. Aval, M. Stojanovic

E. Zorita, M. Stojanovic
Space-frequency Block Coding for Underwater Acoustic Communications, IEEE Journal of Oceanic Engineering, 40(2), 2015, 303-314

P. Qarabaqi, M. Stojanovic

S. Yerramalli, M. Stojanovic, U. Mitra

J. Heidemann, M. Stojanovic, M. Zorzi

SELECTED RESEARCH PROJECTS
NeTS: Large: Collaborative Research: Exploration and Exploitation in Actuated Communication Networks
Principal Investigator, National Science Foundation

Intelligent Coordination and Adaptive Classification for Naval Autonomous Systems
Principal Investigator, Office of Naval Research

MRI: Development of the Northeastern University Marine Observatory NETwork (NU MONET)
Co-Principal Investigator, National Science Foundation

NIAN SUN
Professor, Electrical and Computer Engineering; affiliated faculty, Bioengineering
PhD, Stanford University, 2002
ece.neu.edu/people/sun-nian-xiang
Magnetic, ferroelectric and magnetoelectric materials; RF/microwave magnetic and magnetoelectric devices design, fabrication and testing; materials properties at RF/microwave frequency; range self-assembly of magnetic nanostructures
Fellow, Institute of Physics; Fellow, Institute of Engineering and Technology; Office of Naval Research Young Investigator Award; National Science Foundation CAREER Award; Søren Buus Outstanding Research Award, College of Engineering

SELECTED PUBLICATIONS
Z. Zhou, M. Trassin, Y. Gao, Y. Gao, D. Chen,...N.X. Sun
Probing Electric Field Control of Magnetism Using Ferromagnetic Resonance, Nature Communications, 6, 2015, 6082

T. Nan, Y. Hui, M. Rinaldi, N.X. Sun

M. Liu, Z. Zhou, T. Nan, B.M. Howe, G.J. Brown, N.X. Sun
Voltage Tuning of Ferromagnetic Resonance with Bistable Magnetization Switching in Energy-efficient Magnetoelectric Composites, Advanced Materials, 25(10), 2013, 1435-1439

J. Lou, M. Liu, D. Reed, Y. Ren, N.X. Sun
Giant Electric Field Tuning of Magnetism in Novel Multiferroic FeGaB/Lead Zinc Niobate Lead Titanate Heterostructures, Advanced Materials, 21(46), 2009, 4711-4715

S.X. Wang, N.X. Sun, M. Yamaguchi, S. Yabukami

SELECTED RESEARCH PROJECTS
Integrated Thermoelectric Materials and Devices
Principal Investigator, Analog Devices, Incorporated

Multiferroic Materials for RF Applications
Principal Investigator, Defense Advanced Research Projects Agency

Nanofabricated Neural Probes with Ultra-sensitive Integrated Compact RF NEMS Magnetoelectric Sensors for Electromagneto-brain Activity Mapping
Principal Investigator, Keck Foundation

Novel Multiferroic Heterostructures for Translational Compact and Power Efficient Voltage Tunable Devices
Principal Investigator, National Science Foundation

Power Efficient Voltage Tunable Spin Hall Nano Oscillators with Multiferroic Heterostructures
Principal Investigator, Air Force Research Laboratory

Sensitive and Selective Chemical Sensor Using Molecularly-imprinted Single Layer Graphene
Principal Investigator, Air Force
MARIO SZNAIER

Dennis Picard Trustee Professor, Electrical and Computer Engineering; affiliated faculty, Bioengineering

PhD, University of Washington, 1989
ece.neu.edu/people/sznaier-mario

Robust control; reduced order models; video-based control; applications to dynamics in imaging and video processing; information extraction from high volume data streams

IEEE Control Systems Society Distinguished Member Award

SELECTED PUBLICATIONS

B. Yilmaz, C. Lagoa, M. Sznaier
An Efficient Atomic Norm Minimization Approach to Identification of Low Order Models, 2013 IEEE 52nd Annual Conference on Decision and Control, 2013, 5834-5839

M. Ayazoglu, B. Yilmaz, M. Sznaier, O. Camps

C. Dicle, O. Camps, M. Sznaier
The Way They Move: Tracking Multiple Targets with Similar Appearance, IEEE International Conference on Computer Vision, Sydney, Australia, 2013

K. Bekiroglu, M. Sznaier, C. Lagoa, B. Shafai

Y. Cheng, Y. Wang, M. Sznaier
Worst Case Optimal Estimators for Switched Linear Systems, Proceedings of the 52nd IEEE Conference on Decision and Control, 2013, 4036-4041

SELECTED RESEARCH PROJECTS

Robust Identification and Model (in) Validation of Switched Hammerstein/Wiener Systems and Applications
Principal Investigator, National Science Foundation

GILEAD TADMOR

Professor, Electrical and Computer Engineering; affiliated faculty, Bioengineering

PhD, Weizmann Institute of Science, 1984
ece.neu.edu/people/tadmor-gilead

Control systems; dynamical systems; low order modeling and estimation in complex systems; medical imaging

SELECTED PUBLICATIONS

V. Troshin, A. Seifert, D. Sidilkover, G. Tadmor

Extensions to a Manifold Learning Framework for Time Series Analysis on Dynamic Manifolds in Bioelectric Signals, Physical Review E, 93, 2016, 042218

On the Need of Nonlinear Control for Efficient Model-based Wake Stabilization, Theoretical and Computational Fluid Dynamics, 28(1), 2014, 23-49

L. Mirkin, T. Shima, G. Tadmor

S. Laxminarayan, G. Tadmor, et al.
Modeling Habituation in Rat EEG Evoked Responses via a Neural Mass Model with Feedback, Biological Cybernetics, 105, 2011, 371-397

EDMUND YEH
Professor, Electrical and Computer Engineering
PhD, Massachusetts Institute of Technology, 2001
ece.neu.edu/people/yeh-edmund

Future internet architecture, cross-layer design and optimization of wireless networks, wireless network science, network economics, wireless sensor networks, network information theory and coding, smart power grids

Alexander von Humboldt Fellowship; Best Paper Award, IEEE International Conference on Communications; Army Research Office Young Investigator Program Award; Senior Member of the Institute of Electrical and Electronics Engineers; Secretary, IEEE Information Theory Society

SELECTED PUBLICATIONS
E. Yeh, R.A. Berry
R.A. Berry, E. Yeh
E. Yeh, A.S. Cohen
A. Bedekar, S. Borst, K. Ramanan, P. Whiting, E.Yeh
Downlink Scheduling in CDMA Data Networks, Global Telecommunications Conference, Rio De Janeiro, Brazil, 1999, 2653-2657

SELECTED RESEARCH PROJECTS
Modeling, Analysis and Control for Robust Interdependent Networks
Co-Principal Investigator, Defense Threat Reduction Agency
NeTS: Small: Collaborative Research: Large Scale Networks and Information Flow: From Emergent Behavior to Algorithm Design
Principal Investigator, National Science Foundation
Scalable Distributed and Dynamic Forwarding and Caching Algorithms for Named Data Networks
Principal Investigator, Cisco Systems, Incorporated
Yashar Mottedayen Aval
PhD 2015, Electrical and Computer Engineering; Advisor, Milica Stojanovic

MULTI-CARRIER COMMUNICATION OVER TIME-VARYING ACOUSTIC CHANNELS
In this dissertation we address the fundamental question of acoustic channel capacity (achievable rate) for single-input-multi-output (SIMO) acoustic channels using a per-path Rician fading model, and focusing on two scenarios: narrowband channels where the channel statistics can be approximated as frequency-independent, and wideband channels where the nominal path loss is frequency-dependent. In each scenario, we compare several candidate power allocation techniques, and show that assigning uniform power across all frequencies for the first scenario, and assigning uniform power across a selected frequency-band for the second scenario, are the best practical choices in most cases, because the long propagation delay renders the feedback information outdated for power allocation based on the estimated channel response. We quantify our results using the channel information extracted form the 2010 Mobile Acoustic Communications Experiment (MACE’10).

See full dissertation at coe.neu.edu/YasharAval

Hari Chauhan
PhD 2016, Electrical Engineering; Advisor, Marvin Onabajo

DIGITALLY-ASSISTED DESIGN, SIMULATION AND TESTING TECHNIQUES FOR OPTIMIZATION OF ANALOG AND RF INTEGRATED CIRCUITS
This dissertation focuses on the design and integration of digital circuits with analog/RF circuits for performance optimizations. Spectral analysis for the evaluation of analog/RF circuits is a standard procedure for which the fast Fourier transform (FFT) algorithm is widely used. However, the majority of existing FFT implementations on chips consume excessive area and power for built-in testing applications. In this research, an FFT-based performance monitoring technique with multi-tone test signals has been created for efficient on-chip spectral analysis of analog/RF circuits. This method enables to estimate third-order intermodulation components of up to 50 dB below the fundamental tones with an accuracy of ±1.5 dB based on the output spectrum of analog circuits. The capability of this technique to accurately determine the power of two test tones as well as their distortion components and intermodulation products was demonstrated by designing an on-chip linearity calibration scheme for a tunable low-noise amplifier.

See full dissertation at coe.neu.edu/HariChauhan

Koorosh Firouzbakht
PhD 2015, Electrical and Computer Engineering; Advisor, Masoud Salehi

PACKETIZED WIRELESS COMMUNICATION UNDER JAMMING
In this dissertation, we develop two general game-theoretic frameworks, constrained zero-sum and constrained bimatrix, that can be used to model many interactive communication scenarios in wireless networks when physical layer jamming is present.

In constrained games, players’ strategies are limited to a subset of all possible strategies and as a result, a broader class of problems can be modeled by using these frameworks. Furthermore, we formulate the interactions between adaptive communicating nodes and smart power limited adversaries by constrained zero-sum and constrained bimatrix games and provide necessary and sufficient conditions under which existence of the Nash equilibrium solutions for these non-typical games are guaranteed.

See full dissertation at coe.neu.edu/KooroshFirouzbakht

Yuan Gao
PhD 2015, Electrical Engineering; Advisor, Nianxiang Sun

E-FIELD TUNABLE RG INTEGRATED MULTIFERROIC INDUCTORS AND TRANSFORMERS FOR RFIC APPLICATIONS
The goals of this dissertation are designing and fabricating magnetic inductors with characteristic high quality factor and high tunability potential by E-field on Si substrate. The research work includes three parts. Firstly, integrated RF inductors with high quality factor have been designed, fabricated, measured and analyzed. Secondly, based on the fabricated high Q inductors, a new type of tunable RF multiferroic inductors have been made on 0.5mm thick ferroelectric (011) cut lead magnesium niobate - lead titanate (PMN-PT) slab. Lastly, with the same magnetic material and fabrication process, we present a micromachined implementation of embedded magnetic solenoid transformers with high quality factor (Q) and low insertion loss.

See full dissertation at coe.neu.edu/YuanGao
Yu Han
PhD 2016, Computer Engineering; Advisor, Yunsi Fei

STOCHASTIC MEDIUM ACCESS CONTROL FOR UNDERWATER ACOUSTIC SENSOR NETWORKS

In this dissertation, we address the inefficiency issues in random-access MAC for UWSNs, using a stochastic sending probability-based approach. We propose three handshaking-free underwater MAC solutions targeting the same goal: high network throughput, low packet end-to-end delay, and robustness under dynamics and controlled implementation complexity. The three solutions are based on a common utility-based probability optimization framework, but with different design considerations and objective functions. We first leverage the feature of long propagation delay, often taken as negative, to improve the parallelism between multiple senders. Our proposed protocol, the Delay-Aware Probability-based underwater MAC protocol (DAP-MAC), characterizes the group compatibility relation, a proposed indicator for successful concurrent transmissions, and utilizes this relation in the stochastic optimization framework for the best transmission strategy.

See full dissertation at coe.neu.edu/YuHan

Kuo-Lun Huang
PhD 2016, Electrical and Computer Engineering; Advisor, Masoud Salehi

EFFICIENT ALGORITHMS FOR STOCHASTIC DECODING OF LDPC CODES

In this study, we propose a reduced-latency stochastic decoding algorithm for LDPC codes. The proposed algorithm, called Conditional Stochastic Decoding (CSD), improves error rate performance and reduces the decoding latency by more than 30% compared with the existing stochastic decoders. We also characterize the performance of CSD in various communication schemes. For example, we show the advantages of using the proposed CSD algorithm in the Automatic Repeat reQuest (ARQ) scheme when compared with other iterative decoding algorithms. We extend our study of stochastic decoding to non-AWGN channel models including the Binary Symmetric Channel (BSC), the Z-channel, and the Rayleigh fading channel. We introduce scaling methods to improve the performance of stochastic decoding on these channel models. On the Rayleigh fading channel, the proposed method not only reduces the computational complexity of the stochastic decoding, but also provides 3-dB improvement in performance and lowers the error floor. Simplicity of hardware implementation, low latency, and good error rate performance of the proposed schemes make them suitable for emerging communication standards.

See full dissertation at coe.neu.edu/Kuo-LunHuang

Chengcheng Jia
PhD 2016, Electrical and Computer Engineering; Advisor, Yun Raymond Fu

LOW-RANK TENSOR LEARNING FOR HUMAN ACTION RECOGNITION

In this thesis, we focus on the social security problem, in particular human action recognition, and give the analytics in two lines, (1) machine learning algorithms for action recognition, (2) applying algorithms for novel problems in action recognition, e.g., missing-modality problem, dimensionality reduction. These two lines are detailed in following. For machine learning algorithm, extracting features from high-dimensional action data is crucial in human action recognition. The usual approach is finding a subspace, i.e., projecting high-dimensional data into a low-dimensional subspace containing main pattern of original data and fewer variables, for classification. First of all, data representation is crucial for action video which contains spatiotemporal information. To this end, we propose high-order tensor to represent the action videos, and employ tensor decomposition methods for dimensionality reduction. Second, different problems in action recognition tasks are solved by machine learning algorithms, such as transfer learning, low-rank learning, manifold learning.

See full dissertation at coe.neu.edu/ChengchengJia

Bingnan Jiang
PhD 2016, Computer Engineering; Advisor, Yunsi Fei

OPTIMIZATION AND MANAGEMENT OF CYBER-PHYSICAL SYSTEMS

My dissertation has been focused on the optimization and prediction model design for cost-effective and energy-efficient CPS—smart grid and PHEVs. First, a novel cost-effective energy ecosystem is proposed for a residential microgrid with renewable energy resources. It effectively coordinates demand response (DR), distributed generations (DGs), and energy storage management through a three-level hierarchical optimization, in which particle swarm optimization (PSO) algorithm and environment-adaptive Q-learning algorithm are applied. Second, I explore the application of modern vehicle-to-grid (V2G) technologies on smart grid reactive power compensation. On-board chargers of plug-in electric vehicles (PEVs) are proposed to be utilized as mobile volt-ampere reactive (VAR) resources. Third, an on-road PHEV power management system is proposed which utilizes the information of stochastic vehicle driving states and real-time traffic conditions. With these stochastic elements incorporated, a two-level hierarchical optimization model is developed based on multi-stage stochastic quadratic programming (MSQP) and Markov decision process (MDP).

See full dissertation at coe.neu.edu/BingnanJiang
SELECTED PhD THESSES

Erfan Kherikhahi
PhD 2015, Electrical Engineering; Advisor, Nicol McGruer

CONTACT EFFECTS IN PENTACENE FIELD EFFECT TRANSISTORS

This dissertation focuses on the effect of the energy barrier at the semiconductor-metal junction in pentacene transistors.

To quantitatively extract and analyze the effect of the contact, a novel method of Kelvin probing is introduced and investigated. This method, while involving simple fabrication and measurement procedures, offers the extraction of voltage drops at the drain and source interfaces. To demonstrate the validity of the method as well as the existence of an energy barrier at the metal-pentacene interface, systematic measurements are done by modulating the metal-pentacene barrier height in pentacene transistors. For this work IrO2, Au, RuO2 and Ti metals with respective reported work functions of 5.6 eV, 5.1 eV, 4.6 eV and 4.3 eV are used.

See full dissertation at coe.neu.edu/ErfanKherikhahi

Ho Joon Lee
PhD 2016, Computer Engineering; Advisor, Yong-Bin Kim

A PROCESS AND TEMPERATURE TOLERANT LOW POWER SEMI-SELF CALIBRATION OF HIGH SPEED TRANSCEIVER FOR DRAM INTERFACE

This thesis presents a novel process and temperature variation compensation technique for self-impedance calibration of the transmission line driver. Based on the impedance mismatch analysis, a new semi-self impedance calibration circuit for high speed transceiver design is proposed to compensate the driver impedance mismatch caused by the process and temperature variation using process and temperature monitoring circuit. In this thesis, the Low Voltage Swing Terminated Logic (LVSTL) using a VSSQ termination and an adaptive calibration scheme are proposed. The LVSTL generates high frequency low voltage-swing signals with the VSSQ termination to reduce power consumption along with slew-rate control circuits. 2 stacked PU/PD network circuit are designed and each PU(Pull-Up)/PD(Pull-Down) network has two data inputs with the delay of the input data to control the slew rate of the inputs. VOHdrift control scheme is also presented to address the VOH drift issue of VDDQ raised by NMOS rather than PMOS.

To prevent the VOH drift phenomenon, a weak NMOS transistor is connected in parallel with NMOS PD transistor to provide a leakage path, resulting in a reduced but fixed V_{OH} level.

See full dissertation at coe.neu.edu/HoJoonLee

Jiliang Liu
PhD 2015, Electrical and Computer Engineering; Advisor, Lee Makowski

SCANNING X-RAY MICRODIFFRACTION STUDIES OF THE MOLECULAR ARCHITECTURE OF BIOLOGICAL TISSUES

In this dissertation I apply scanning x-ray micro-diffraction, a new advanced synchrotron technology, to study the molecular structure of three tissues: 1. Myelin within the peripheral nervous system (PNS); 2. Plant cell walls in Arabidopsis stems; 3. Protein aggregation in human brain sections from Alzheimer's patients. A suite of custom software was developed to overcome the challenge of processing a large amount of data collected by scanning micro diffraction and to extract complex features from the scattering patterns of these different tissues. These improvements in software have greatly expanded the utility scanning microdiffraction technology for analysis of detailed information about the molecular architecture of myelin in the nodal, paranodal, and juxtaparanodal regions; the structural heterogeneities within the Arabidopsis stem; and pathological molecular structures that arise in Alzheimer's disease. We anticipate significant expansion of the use of this method for studies of the molecular architecture of intact tissues and the alteration of these structures due to wounds, specific mutations or pathological conditions.

See full dissertation at coe.neu.edu/JiliangLiu

Thomas McCormick
PhD 2016, Computer Engineering; Advisor, David Kaeli

AN EXPERIMENTAL INVESTIGATION OF HOT SWITCHING CONTACT DAMAGE IN RF MEMS SWITCHES

In this dissertation, we present FSAware, a novel algorithmic approach that enhances existing flash translation layer (FTL) designs. Specifically, FSAware reduces overall WAF by separately supporting the write requests associated with the file data and file system overhead produced by host file system write activities. FSAware distinguishes file data write requests from file system overhead write requests by characterizing the file system installed on the flash memory system by the host system. We consider the File Allocation Table (FAT) format, which is specifically selected for its ubiquity in embedded computer applications. FSAware is applicable to both block-mode and page-mode style FTLs.

See full dissertation at coe.neu.edu/ThomasMcCormick
Tianxiang Nan
PhD 2016, Electrical and Computer Engineering; Advisor, Nian Sun

MAGNETOELECTRIC HETEROSTRUCTURES FOR SPINTRONICS AND MAGNETIC SENSING

This study first shows that by utilizing a unique ferroelastic polarization switching path-way, one can achieve non-volatile electric-field-switching of magnetism in multiferroic heterostructures with different ferroelectric single crystals through a strain-mediated magnetoelectric coupling. In the same system, with atomically-thin ferromagnets, the interfacial charge-mediated should also be taken into account. The charge- and strain-mediated coupling mechanisms are demonstrated and precisely quantified by the electric-field-tuning of ferromagnetic resonance. With the same technique, magnetic relaxation including intrinsic and extrinsic damping has also been shown to be strongly correlated to the strain, which is attributed to the electric-field-modification of spin-orbit coupling. Moreover, I will also show the tuning of spin-orbit torques from the spin-Hall effect with applied voltage probed with spin-torque ferromagnetic resonance and show the possible application on voltage tunable spin-Hall nano-oscillators.

See full dissertation at coe.neu.edu/TianxiangNan

Kham Nguyen
PhD 2016, Electrical Engineering; Advisor, Gilead Tadmor

ADAPTIVE BOOSTING FOR AUTOMATIC SPEECH RECOGNITION

In this work, the Gaussian mixture models (GMM)-based classifier is used to convert each acoustic feature vector to a posterior probability vector given all classes. Furthermore, an adaptive boosting (AdaBoost) algorithm is applied to combine the classifiers to enhance the performance. The training of GMM-based AdaBoost classifiers requires very expensive computation. To make it feasible for very large vocabulary speech recognition systems with thousands of hours of training data, we have implemented a hierarchical AdaBoost to split the whole training to multiple parallel processes. The speed up reduced the training data time from about more 100 days to within a week. The AdaBoost features were then used successfully to combine with spectral feature for ASR. Compared to the baseline of the standard features, the AdaBoost system reduced the word-error-rate (WER) by 2%. Moreover, the AdaBoost system also contributed consistent gains on the system combination even compared with a very strong baseline.

See full dissertation at coe.neu.edu/KhamNguyen

Hooman Nezamfar
PhD 2016, Electrical and Computer Engineering; Advisor, Deniz Erdogmus

FLASHLIFE™, A CONTEXT-AWARE CODE-VEP BASED BRAIN COMPUTER INTERFACE FOR DAILY LIFE USING EEG SIGNALS

In this dissertation, we introduce FlashLife™, a context aware language independent brain interface, suitable for everyday needs of an individual with disabilities. FlashLife™ provides control and communication abilities all through the same stimulation method using a single EEG electrode or eye tracking. In addition, use of the context information along with a probabilistic classification and decision making mechanism adds more robustness and flexibility at the same time. The stimulation paradigm provides highly accurate and fast classifications making use of short Calibration sessions. FlashLife™ provides performance estimates for each individual for different tasks taking advantage of the Calibration data. The stimulation paradigm has been put into use by different applications to do different tasks. A short list of applications is, FlashType(TM) for typing, FlashNav(TM) for navigation, FlashGrab(TM) for object manipulation and FlashPlay(TM) for entertainment in a virtual environment.

See full dissertation at coe.neu.edu/HoomanNezamfar

Vivian Esperanza Pera
PhD 2016, Electrical Engineering; Advisor, Mark Niedre

NOVEL BIPHOTONIC IMAGING CONCEPTS

In this work, we consider the development of novel biophotonic imaging concepts from both a signal processing and hardware perspective. With respect to the former, we employ classic and recent signal processing approaches to (1) explore the optimization of system design for a novel time-domain hyperspectral tomographic imager; and (2) develop novel, intrinsically-regularized algorithms for the processing of fluorescence molecular tomography (FMT) data from two instrument prototypes. With respect to the latter, we consider the construction of a custom microscope to be used for label-free enumeration and characterization of circulating cells in vivo.

See full dissertation at coe.neu.edu/VivianPera
Enqiang Sun
PhD 2016, Computer Engineering; Advisor, David Kaeli
CROSS-PLATFORM HETEROGENEOUS RUNTIME ENVIRONMENT
In this dissertation, we have designed a cross-platform heterogeneous runtime environment which provides a high-level, unified execution model that is coupled with an intelligent resource management facility. The main motivation for developing this runtime environment is to provide OpenCL programmers with a convenient programming paradigm to fully utilize all possible devices in a system and incorporate flexible workload balancing schemes without compromising the user’s ability to assign tasks according to the data affinity. Our work removes much of the cumbersome initialization of the platform, and now devices and related OpenCL objects are hidden under the hood.

Equipped with this new runtime environment and associated programming interface, the programmer can focus on designing the application and worry less about customization to the target platform. Further, the programmer can now take advantage of multiple devices using a dynamic workload balancing algorithm to reap the benefits of task-level parallelism.

See full dissertation at coe.neu.edu/EnqiangSun

Ming Shao
PhD 2016, Computer Engineering; Advisor, Yun Fu
EFFICIENT TRANSFER FEATURE LEARNING AND ITS APPLICATIONS ON SOCIAL MEDIA
In this thesis, we focus on the popular social media data such as, face, object, digital number images, and study the problems of social media analytics in two lines: (1) developing efficient and effective machine learning tools given limited or poor training data by considering the structure of the data from different domains, (2) applying existing or developed machine learning tools to novel social media problems, e.g., kinship verification, family photo understanding.

A critical observation is that faces of parents captured while they were young are more like their children’s compared with images captured when they are old. Therefore, we can readily apply the proposed transfer learning methods to kinship verification defined above, where kin relation between young parent and child is the source problem, while that between old parent and child is the target. Promising research outcome can be extended to real-world applications: family album management, image retrieval and annotation, missing children search, etc.

See full dissertation at coe.neu.edu/MingShao

Zhijuan Su
PhD 2016, Electrical Engineering; Advisor, Vincent G. Harris
DEVELOPMENT OF LOW LOSS HEXAFERRITE MATERIALS FOR MICROWAVE APPLICATIONS
This study focuses on hexaferrites, which have been widely used in microwave and millimeter wave devices as permanent magnets and as gyromagnetic materials, e.g., in circulators, filters, isolators, inductors, and phase shifters. Many efforts have been made to design light and miniature circulators with self-biased ferrite materials. We report the magnetic and structural properties of a series of W-type barium hexaferrites of composition BaZn2-xCoxFe16O27 where x=0.15, 0.20, and 0.25. The anisotropy field of these BaW ferrites decreased with the substitution of divalent Co ions, while, they maintained crystallographic c-axis texture. The measured anisotropy field was ~10 kOe, and a hysteresis loop squareness Mr/Ms=79% was obtained due to well-controlled grain size within the range of single domain scale. U-type barium hexaferrite thin films were deposited on (0001) sapphire substrates by pulsed laser deposition. The results indicate a measured anisotropy field of ~8 kOe, and the saturation magnetization (4πMs) of 3.6 kG.

See full dissertation at coe.neu.edu/ZhijuanSu

Eric Truslow
PhD 2016, Electrical Engineering; Advisor, Vinay K. Ingle
PERFORMANCE EVALUATION OF HYPERSPECTRAL CHEMICAL DETECTION SYSTEMS
In this dissertation we demonstrate that using a detector bank followed by an identifier can achieve superior performance relative to either algorithm individually. Remote sensing of chemical vapor plumes is a difficult but important task with many military and civilian applications. Hyperspectral sensors operating in the long wave infrared (LWIR) regime have well demonstrated detection capabilities. However, the identification of a plume’s chemical constituents, based on a chemical library, is a multiple hypothesis-testing problem that standard detection metrics do not fully describe. Our approach partitions and weights a confusion matrix to develop both the standard detection metrics and an identification metric based on the Dice index.

See full dissertation at coe.neu.edu/EricTruslow
Jing Tu
PhD 2016, Electrical Engineering; Advisor, Edwin A. Marengo

GENERALIZED OPTICAL THEOREM DETECTION IN RANDOM AND COMPLEX MEDIA

This PhD dissertation presents a new wave physics-based approach for the detection of targets or changes in rather arbitrary backgrounds. The problem of detecting changes of a medium or environment based on active, transmit-plus-receive wave sensor data is at the heart of many important applications including radar, surveillance, remote sensing, nondestructive testing, and cancer detection. This is a challenging problem because both the change or target and the surrounding background medium are in general unknown and can be quite complex. The proposed methodology is rooted on a fundamental result of wave theory called the optical theorem, which gives real physical energy meaning to the statistics used for detection.

See full dissertation at coe.neu.edu/JingTu

Bei Yan
PhD 2015, Computer and Electrical Engineering; Advisor, Hanoch Lev-Ari

NETWORKED DYNAMIC STATE ESTIMATION WITH TIME-STAMPED MULTI-SENSOR OBSERVATIONS

In this dissertation the performance of a continuous-discrete Kalman filter using multi-sensor observations is analyzed in the presence of irregular sampling, observation/control delay, bad data and system parameter inaccuracy. We show that the average error covariance depends only on system parameters and on the moment generating function of the irregular sampling interval of the multi-sensor sampling pattern. We obtain lower and upper bounds on the average error covariance, as well as a necessary condition for its stability, expressed in terms of the region of convergence of the sampling interval moment generating function. We provide an explicit expression for the added effect of delayed time-stamped observations on the steady-state error covariance of our networked Kalman filter.

See full dissertation at coe.neu.edu/BeiYan

Yash Ukidave
PhD 2016, Computer Engineering; Advisor, David Kaeli

ARCHITECTURAL AND RUNTIME ENHANCEMENTS FOR DYNAMICALLY CONTROLLED MULTI-LEVEL CONCURRENCY ON GPUs

In this thesis, we propose a dynamic and adaptive mechanism to manage multi-level concurrency on a GPU. We present a new scheduling mechanism for dynamic spatial partitioning on the GPU. Our mechanism monitors and guides current execution of compute workloads on a device. To enable this functionality, we extend the OpenCL runtime environment to map multiple command queues to a single GPU, and effectively partition the device. The result is that kernels that can benefit from concurrent execution on a partitioned device can more effectively utilize more of the available compute resources of a GPU. We also introduce new scheduling mechanisms and partitioning policies to match the computational requirements of different applications. Our partitioning/scheduling mechanism uses machine learning to analyze the current execution state of the GPU. We improve the effectiveness of adaptive partitioning and TMM by tracking execution time behavior of real world applications.

See full dissertation at coe.neu.edu/YashUkidave

Yi Yao
PhD 2016, Computer and Electrical Engineering; Advisor, Mingfang

RESOURCE MANAGEMENT IN CLUSTER COMPUTING PLATFORMS FOR LARGE SCALE DATA PROCESSING

In this dissertation, we mainly focus on improving system efficiency and performance for cluster computing platforms, i.e., Hadoop MapReduce and Hadoop YARN, by designing the following new scheduling algorithms and resource management schemes. First, we developed a Hadoop scheduler (LsPS), which aims to improve average job response times by leveraging job size patterns of different users to tune resource sharing between users as well as choose a good scheduling policy for each user. We further presented a self-adjusting slot configuration scheme, named TuMM, for Hadoop MapReduce to improve the makespan of batch jobs. The major goal of our new scheme is to improve system resource utilization without incurring severe resource contentions due to resource over provisioning.

See full dissertation at coe.neu.edu/YiYao
Ye Zhao
PhD 2016, Electrical Engineering; Advisor, Brad Lehman

FAULT DETECTION, CLASSIFICATION AND PROTECTION IN SOLAR PHOTOVOLTAIC ARRAYS

This dissertation reviews the challenges and limitations of existing fault detection and protection solutions in solar PV arrays. For the first time, a 35kW commercial-scale PV laboratory is designed to study faults under real-working conditions and to discover the “blind spots” in conventional fault protection schemes. It is shown that the line-line fault may not be detectable by traditional overcurrent protection devices (OCPD) under certain conditions. Therefore, the fault may remain in the PV system as a safety concern.

To eliminate the detection “blind spot,” outlier rules, such as statistical outlier detection rules (ODRs) and local outlier factors (LOFs) are proposed in PV-string monitoring systems. To further identify the fault types (or so-called fault classification), machine learning algorithms are studied in solar PV arrays. To overcome the drawbacks of supervised learning algorithms, a semi-supervised learning algorithm is proposed. The dissertation demonstrates the effectiveness in fault detection and classification in both simulation and experimental results.

See full dissertation at coe.neu.edu/YeZhao
This page intentionally left blank