Lower bounds on precedence-constrained
scheduling for parallel processors

Ivan D. Baev and Waleed M. Meleis

Department of Electrical and Computer Engineering, Northeastern University,
Boston MA, USA 02115

Alexandre Eichenberger

Department of Electrical and Computer Engineering, NC State University,
Raleigh NC, USA 27695

Abstract

We consider two general precedence-constrained scheduling problems that have wide
applicability in the areas of parallel processing, high performance compiling, and
digital system synthesis. These problems are intractable so it is important to be
able to compute tight bounds on their solutions. A tight lower bound on makespan
scheduling can be obtained by replacing precedence constraints with release and
due dates, giving a problem that can be efficiently solved. We demonstrate that
recursively applying this approach yields a bound that is provably tighter than
other known bounds, and experimentally shown to achieve the optimal value at
least 90.3% of the time over a synthetic benchmark.

We compute the best known lower bound on weighted completion time scheduling
by applying the recent discovery of a new algorithm for solving a related scheduling
problem. Experiments show that this bound significantly outperforms the linear
programming-based bound. We have therefore demonstrated that combinatorial al-
gorithms can be a valuable alternative to linear programming for computing tight
bounds on large scheduling problems.

Key words: Scheduling, Parallel processing, Lower bounds

1 Introduction

Precedence-constrained scheduling problems on parallel processors are of-
ten intractable and combinatorial lower bounds can be used to guide solvers
and evaluate heuristics. These approaches are particularly useful for engi-
neering applications such as parallel processing, digital system synthesis, and

Preprint submitted to Elsevier Preprint 1 October 2001

high performance compiling that need to quickly estimate required computa-
tional resources [7,11,6]. We consider two general precedence-constrained job
scheduling problems on parallel processors: minimizing the maximum com-
pletion time (makespan), and minimizing the total weighted completion time
(WCT).

The makespan scheduling problem is to schedule n unit latency jobs under
p precedence constraints on m identical parallel processors so as to minimize
the maximum job completion time. The completion time of job 7 in a sched-
ule is denoted C;. A directed acyclic graph (DAG) describes the precedence
constraints among the jobs such that an edge from job ¢ to job j in the graph
implies that C; < (. In a feasible schedule, no more than one job executes
on any processor at any time, each job is scheduled nonpreemptively, and the
precedence constraints are satisfied. The goal of the makespan problem is to
find a feasible schedule of the n jobs that minimizes C,,, = max;—1_,{C;}.
The problem is NP-hard for arbitrary m [14], but efficient solutions exist for
tree-structured precedence constraints [9] or when m = 2 [5].

A natural extension of the makespan problem is the weighted completion
time scheduling problem, where in addition each job ¢ has a positive weight w;
that expresses the importance of that job. The objective here is to minimize the
total weighted job completion time, i.e. under the same constraints described
above for the makespan problem, the WCT problem finds a feasible schedule
that minimizes 7! ; w;C;. The problem is NP-hard even for m = 2 and the
empty precedence graph [4].

This paper analytically establishes the tightness of several recently proposed
bounds on the makespan problem relative to well-known bounds. A tight lower
bound can be computed by replacing precedence constraints with release and
due dates, giving a problem that can be efficiently solved. We demonstrate
that recursively applying this approach yields a bound that is provably better
than other known bounds, and experimentally shown to achieve the optimal
value at least 90.3% of the time over a synthetic benchmark.

Unlike the makespan problem, most relaxations of the weighted completion
time problem are NP-hard, so tight combinatorial bounds for this problem
have not been available. We compute the best known lower bound by apply-
ing the recent discovery of a new algorithm for solving a related scheduling
problem. Experiments show that this bound significantly outperforms the lin-
ear programming-based bound. We have therefore demonstrated that combi-
natorial algorithms can be a valuable alternative to linear programming for
computing tight bounds on large scheduling problems.

The organization of our paper is as follows. We describe four makespan
bounds in the next section, and prove their relative tightness in Section 3.
Section 4 presents two new combinatorial WCT bounds; the six bounds are
experimentally evaluated in Section 5.

2 Bounds on makespan

In the following discussion we let the release date r; = 0 for any job ¢ with
no predecessors, and for all other jobs r; = max{r;} + 1 over all immediate
predecessors j of 7. For any job 4, r;+1 is a lower bound on the completion time
C; in any schedule. The length of the critical path CP = max;—y_,{r;} + 1
represents the simplest lower bound on C,. (CP bound). We let the due date
d; = C'P for any job ¢ with no successors, and for all other jobs d; = min{d;}—1
over all immediate successors j of ¢.

Hu bound (Hu): A simple bound was described by Hu [9]. For any integer k,
0 < k < CP, we let n(k) be the number of jobs with d; < k. A lower bound
on the completion time of these jobs is [n(k)/m]. An additional time of at
least C'P — k is needed to schedule the remaining jobs, so a lower bound on
the completion time of all jobs is therefore maxy—o. cp{[n(k)/m]+CP —k}.
Note that this expression, for £ = 0, includes the CP bound. The Hu bound
can be computed in O(n + p) time.

The next two bounds replace the precedence constraints with appropriate
release dates and due dates so that the relaxed scheduling problem can be
efficiently solved.

Rim & Jain bound (RJ): Rim and Jain observe that tight lower bounds
on the solution to the makespan scheduling problem can be computed by
minimizing the maximum lateness of any job in the relaxed problem [12].
Since Chyge — CP > max;—1._,{C; — d;}, minimizing the maximum lateness of
any job in this relaxed problem and adding CP gives a lower bound on C),,,,
in the original problem.

The relaxed problem can be solved by list scheduling, with the priority of
job i set to d;, such that C; > r; + 1 [13]. That is, jobs are considered in order
of nondecreasing due dates, and each job ¢ is scheduled at the earliest time
greater than or equal to its release date such that the resource constraints are
satisfied. The lower bound is then equal to the maximum of C P+ (C;—d;) over
all jobs i. Note that the bound is not simply C,,., for the relaxed problem.
The RJ bound can be computed in O(n?) time.

Langevin € Cerny bound (LC): A better bound on the completion time of a
job can be computed by recursively using the RC bound to find tighter lower
bounds on the earliest completion time of all preceding jobs [10]. That is, the
release dates that were originally computed by finding longest paths in the
precedence graph can themselves be computed using the R.J algorithm.

The lower bound on the start time of job i, r;, used by the R.J bound is
tightened by applying the same technique to a subset of the original problem.
We let 7} be this tighter bound for each job i. We let ; = 0 for any job i
with no predecessors, as before. For all other jobs we let r; equal one less than
the RJ lower bound computed for the subproblem consisting of ¢+ and all its

predecessors and the tightened release dates 7 (we subtract one to account for
the unit latency). The value of 7} is computed for job ¢ only after ' has been
computed for all predecessors of 7. Since the LC'relaxation is more constrained
than the R.J relaxation, L(C'is a tighter bound. The LC'bound can be computed
in O(n®) time.

Brucker, Garey € Johnson bound (Br): Another relaxation of the makespan
problem is obtained by deleting edges of the precedence graph so that the
remaining edges form an intree. We again minimize the maximum lateness of
any job.

The relaxed tree scheduling problem can be efficiently solved by list schedul-
ing [3]. The priority of job i is set to d; calculated from the original DAG prece-
dence graph, but the schedule satisfies only the tree precedence constraints.
While there are many ways to extract a tree from a DAG, in this paper we
only consider a tree formed by connecting each job to a single successor with
the smallest due date. We refer to a tree constructed in this way as a Brucker
tree. Note that the due date for each job is unchanged in this tree. The lower
bound is then equal to the maximum lateness of any job, plus C'P. The Br
bound can be computed in O(n + p) time.

3 Relationships between bounds

We first show that the Hu and Br bounds are equal, and then show that the
Hu bound is less than or equal to the R.J bound for any instance.

Lemma 1 . For any instance, Hu = Br.

PROOF. We first show that Br > Hu. We apply the Br algorithm and find
the corresponding schedule. Let k be some integer in [1...CP] and let j be the
job with the largest completion time among all jobs such that d; = k. Clearly
C; —d; > C; — d; for all jobs ¢ such that d; = k, so it suffices to show that
(C; —d;) +CP > [n(k)/m] + CP — k. This is true because C; > [n(k)/m]
and d; = k. The same argument applies for all values of £k, so Br > Hu.

We now show that Br < Hu. The Hu bound is the same for the original
graph and a Brucker tree because the due dates d; are unchanged and therefore
the values of n(k) are unchanged. The same is true for the Br bound. But for
a Brucker tree, which is an intree, the Hu lower bound is in fact the optimal
value for the problem [9]. Therefore Br < Hu.

Lemma 2 For any instance, Hu < RJ.

PROOF. [t suffices to show that [n(k)/m| + CP — k < RJ for all integers
k €]0...CP]. We let RJ' equal the bound computed by the Rim and Jain
algorithm when applied to the following relaxed scheduling problem: delete
all jobs ¢ with d; > k, set d; = k for the remaining jobs, set r; = 0 and
leave C'P unchanged. Notice that this new scheduling problem is a relaxation
of the scheduling problem solved by the original Rim and Jain algorithm, so

RJ'" < RJ. When applied to this new problem, the Rim and Jain algorithm
schedules all the jobs as early as possible with a maximum completion time

equal to [n(k)/m]. Then the bound R.J' is equal to the maximum lateness
plus the critical path, so [n(k)/m| —k+CP = RJ' < RJ for all k.

Therefore we have established that for any instance, CP < Hu = Br <
RJ < LC.

4 Bounds on weighted completion time

There are several integer linear formulations of the WCT scheduling problem
[8,1]. The corresponding LP-relaxations give tight lower bounds. However,
their computation involves solving a linear program, and therefore requires
substantial time which is not appropriate for many applications. In this section
we present two fast combinatorial algorithms for computing a lower bound on
the weighted completion time. The quality of our first bound is close to that of
the LP-based bound, while the second one outperforms the LP-based bound.

The first group of algorithms uses the makespan lower bounds described in
Section 2. By applying any of these algorithms to a job and its predecessors,
a lower bound on the completion time of that job can be computed. The
weighted sum of these values over all jobs then gives a lower bound on the
weighted completion time of all jobs. We restrict our study to the L C'makespan
bound since we have shown it is analytically better than the other bounds.

Langevin & Cerny weighted completion time bound (WCT-LC): First we
use the LC algorithm to compute a lower bound on makespan for each job.
Multiplying the bound by the job weight and summing over all jobs then
gives a lower bound on the weighted completion time of all jobs. The W(CT-
LC bound can be computed in O(n?) time.

Our second algorithm uses a relaxation of the WCT problem which does
not rely on an LP formulation. In general, one deletes a constraint from the
original problem and uses a polynomial algorithm to find an optimal solution
of the relaxed problem; the cost of this optimal solution represents a lower
bound on the initial problem. Unfortunately, most of the WCT problem re-
laxations along the natural dimensions are also NP-hard. One exception is
the WCT problem with release dates but without precedence constraints for
which Baptiste recently discovered a polynomial-time algorithm [2].

We outline the two key observations behind Baptiste’s algorithm. First, the
times at which jobs start and end in the optimal schedule belong to the set
of release dates and their multiples (up to a factor of n). Next, a resource
profile ¢ is defined as a vector (&;,&,...,&y) such that & < & < --- < &,
and &, — & < 1. Each entry &; in the resource profile divides the available
execution times for processor i. Given two resource profiles ¢ and &', & < ¢
denotes that for any index ¢ in {1,...,m}, & < &. Baptiste proves that an
optimal partial schedule for the first k& jobs between any two resource profiles

¢ < & can be found recursively from optimal partial schedules for the first
k — 1 jobs between all resource profiles § and €' such that ¢ < 0 < 0’ < ¢'.
While this gives a dynamic programming algorithm whose time and space
complexities are respectively O(n3™*4) and O(n*™*?), we show below that
the actual runtime and memory usage are much lower.

Dynamic programming bound (DP): First we apply the LC algorithm to find
tight release dates for the jobs. Then we use a version of Baptiste’s algorithm

where the times at which jobs start and end in the optimal schedule belong
to {0,1,...,n}.

We compare our two lower bounds on weighted completion time to an LP-
based lower bound. The following time-indexed LP formulation is used.

n T
Minimize Z Z w; - Tig - t,

i=1t=1

subject to

T
S =1, (i=1...n)
=1

in,tgm, (t=1...T)
T T
> (wig 1) <Y (wje 1) = ((5,4) € R)
t=1 t=1
z;s € {0,1}, (i=1...n,t=1...T).

The binary variables z;, indicate whether job ¢ completes at time ¢. The
first two constraints ensure that every job completes exactly once and that
no more than m jobs are executing at any time. There is a pair (i,7) in R
for each precedence edge from job ¢ to job j, and for each such pair the third
constraint ensures that the completion time of ¢ is before the completion time
of 5. The formulation minimizes the weighted sum of job completion times.
We compute a lower bound on the optimal value using a relaxation of this
formulation where the variables z;; can take on any values between 0 and 1.

5 Experiments

In this section we present a series of experiments that evaluate the quality
of the six makespan and WCT bounds.

We evaluate the lower bounds for the makespan problem by constructing
a set of 100 hard synthetic instances. The instances have an average of 1500
jobs each, and the number of processors m varies from 3 to 8. We compare all
lower bounds to the upper bound computed by the critical path list scheduling
algorithm [9]. The upper bound is computed by applying list scheduling to each

Table 1

Quality of lower bounds vs. upper bound: average absolute difference / % instances

equal

m Density Hu, Br RJ LC
3 6.5% | 13.60 / 0% | 9.18 / 1% | 0.38 / 70%
4 5.0% | 8.29 / 11% | 3.31 / 27% | 0.20 / 81%
5 4.0% | 3.95/28% | 0.58 / 77% | 0.03 / 97%
6 3.0% | 2.50 / 44% | 0.26 / 88% | 0.02 / 98%
7 2.5% | 2.00 / 59% | 0.14 / 92% | 0.03 / 97%
8 2.0% | 1.05/74% | 0.02 / 98% | 0.01 / 99%

Average: 5.23 / 36% | 2.25 / 64% | 0.11 / 90%

instance with the priority of job ¢ set equal to r;. The critical path upper bound
is then equal to the maximum completion time of any job in this schedule.
Note that this critical path upper bound is different from the C'P lower bound
described in Section 2.

In our first experiment, we use graph edge densities to construct hard in-
stances that expose the worst-case behavior of the bound algorithms. The
edge density of a graph is the probability that any edge is present in the in-
stance. For each fixed number of processors m, we select the edge density that
maximizes sum of the absolute differences between the lower bounds and the
critical path upper bound. We considered a range of edge densities between
1% and 10% in increments of 0.5%. The results in Table 1 give the average
absolute difference between each lower bound and the upper bound, the per-
centage of the instances for which the lower bound equals the upper bound,
and the edge density that gave the results indicated. The average runtime
of the algorithms was 0.28 sec, 0.46 sec, and 313.81 sec, for the Hu bound,
RJ bound, and LC bound, respectively. These experiments were run on a 333
MHz Sun Ultra 10 workstation with 256 MB of memory.

The results indicate that relaxing precedence constraints into release dates
gives tight lower bounds when combined with an algorithm that minimizes
maximum lateness. Even better bounds can be computed by recursively tight-
ening release dates: the L C'lower bound is on average only 0.11 from the upper
bound.

We evaluate the WCT-LC bound by constructing two sets of 20 synthetic
instances. The instances in the first set have 250 jobs each (small instances),
and the instances in the second set have 350 jobs each (large instances). In each
case, the weight of each job is uniformly distributed in [1,100], and m varies
from 2 to 10. The results in Tables 2 and 3 demonstrate the high quality of the
combinatorial WCT-LC bound. The WCT-LC bound, which can be efficiently

Table 2

WCT-LC vs. LP lower bounds, small instances

m WCT-LC LP difference
2 640,137 | 751,458 | 14.81%
3 435,905 | 506,052 | 13.86%
4 336,969 | 383,379 | 12.11%
5 284,379 | 310,292 8.35%
6 265,154 | 271,938 2.49%
7 263,161 | 264,136 0.37%
8 263,156 | 263,483 0.12%
9 263,156 | 263,274 | 0.04%
10 263,155 | 263,195 0.02%
Average: 5.80%
Table 3
WCT-LC vs. LP lower bounds, large instances
m WCT-LC LP difference
2 1,344,833 | 1,501,396 | 10.43%
3 908,919 | 1,009,132 9.93%
4 694,946 763,031 8.92%
5 573,577 615,439 6.80%
6 510,862 525,063 2.70%
7 492,231 493,627 0.28%
8 490,479 490,887 0.08%
9 490,479 490,579 0.02%
10 490,479 490,498 0.00%
Average: 4.38%

computed, is on average only 5.80% from the LP bound on the small instances,
and 4.38% from the LP bound on the large instances. The average runtime of
the WCT-LC bound was 2.37 sec for the small instances and 6.00 sec for the
large instances on the same platform described above.

Table 4
DP vs. LP lower bounds

Density | LP DP | difference
10% 10,261 | 11,187 9.0%
30% | 11,010 | 11,285 | 2.5%
50% 13,006 | 13,345 2.6%

We next evaluate the DP bound against the LP bound on two processors.
We use a set of 100 instances each with 90 jobs, and the weight of each job
is uniformly distributed in [1,10]. Here, we also vary the edge density. The
average runtime for these instances is 12.90 seconds. These experiments were
run on a 450 MHz Intel Pentium IT Xeon MP system with 2GB of memory.

The results in Table 4 show that the DP bound clearly outperforms the
LP bound across a variety of edge densities. While the DP algorithm has an
unappealing asymptotic time and space complexity, efficient implementations
are possible for small values of m.

6 Conclusion

While our work here considers scheduling problems with unit latency jobs,
the same algorithms can be applied to non-unit latency problems by first
preprocessing the jobs. Each job is replaced by a chain of unit latency jobs
with the same total latency. The solution to the modified problem yields a
lower bound for the non-unit latency problem.

This paper analytically and experimentally evaluated a group of algorithms
for computing lower bounds on the makespan and WCT scheduling problems.
We demonstrated that combinatorial algorithms can be a valuable alterna-
tive to linear programming for computing tight bounds on large scheduling
problems.

References

[1] I. Baev, W. Meleis, and A. Eichenberger. Algorithms for total weighted
completion time scheduling. In Proceedings of the 7th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 852-853, Baltimore, Maryland, 1999.

[2] P. Baptiste. Scheduling equal-length jobs on identical parallel machines.
Research Report UTC, 1998.

[3] P. Brucker, M. Garey, and D. Johnson. Scheduling equal-length tasks under
treelike precedence constraints to minimize maximum lateness. Mathematics of
Operations Research, 2:275-284, 1977.

[4] J. Bruno, E. G. Coffman Jr, and R. Sethi. Scheduling independent tasks to
reduce mean finishing time. Communications of the ACM, 17:382-387, 1974.

[5] E. Coffman and R. Graham. Optimal scheduling for two-processor systems.
Acta Inform., 1:200-213, 1972.

[6] A. Eichenberger and W. M. Meleis. Balance scheduling: Weighting branch
tradeoffs in superblocks. In 32nd Annual International Symposium on
Microarchitecture (IEEE/ACM), pages 272-283, Haifa, Israel, 1999.

[7] E. Fernandez and B. Bussell. Bounds on the number of processors and time for
multiprocessor optimal schedules. IEEE Trans. on Computers, pages 745—751,
1973.

[8] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein. Scheduling to minimize
average completion time: Off-line and on-line approximation algorithms.
Mathematics of Operations Research, 22:513-549, 1997.

[9] T. Hu. Parallel sequencing and assembly line problems. Operations Research,
9:841-848, 1961.

[10] M. Langevin and E. Cerny. A recursive technique for computing lower-bound
performance of schedules. ACM Trans. on Design Automation, 1:443-455, 1996.

[11] R. Rabaey and M. Potkonjak. Estimating implementation bounds for real time
DSP application specific circuits. IEEE Trans. on CAD, 13:669-683, 1994.

[12] M. Rim and R. Jain. Lower-bound performance estimation for the high-level
synthesis scheduling problem. IEEE Trans. on CAD, 13:452-459, 1994.

[13] B. Simons. Multiprocessor scheduling of unit-time jobs with arbitrary release
times and deadlines. SIAM Journal on Computing, 12:294-299, 1983.

[14] J. D. Ullman. NP-complete scheduling problems. Journal of Computing Systems
and Sciences, 10:384-393, 1975.

10

