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ABSTRACT
FPGA-based designs are more susceptible to single-event
upsets (SEUs) compared to ASIC designs. Soft error rate
(SER) estimation is a crucial step in the design of soft er-
ror tolerant schemes to balance reliability, performance, and
cost of the system. Previous techniques on FPGA SER es-
timation are based on time-consuming fault injection and
simulation methods.

In this paper, we present an analytical approach to esti-
mate the failure rate of designs mapped into FPGAs. Ex-
perimental results show that this technique is orders of mag-
nitude faster than fault injection method while is very ac-
curate. We also present a high-reliable low-cost mitigation
technique which can significantly improve the availability
of FPGA-based designs. This technique is able to tolerate
SEUs in both user and configuration bits of mapped de-
signs.

Categories and Subject Descriptors
B.2.3 [Performance and Reliability]: Reliability, Test-
ing, and Fault-Tolerance; B.6.2 [Logic Design]: Reliability
and Testing

General Terms
Reliability, Design, Performance

Keywords
SRAM-Based FPGA, Soft Error Rate Estimation, Error Re-
covery

1. INTRODUCTION
FPGAs are widely used in many application domains such

as industrial, spacecraft, and embedded applications due
to their high performance, no Non-Refundable- Engineering
cost and fast Time-To-Market.
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Although FPGAs provide the advantages of low-cost de-
sign and fast Time-To- Market, the importance of depend-
ability issues limit their widespread use in mission- critical
applications [19]. FPGAs are vulnerable to Single Event

Upsets (SEUs) [7, 23]. SEUs are induced by energized par-
ticles hitting the silicon device. An SEU with sufficient en-
ergy changes the logic state of the memory element, pro-
ducing a soft error. One possible solution to this problem
is to use radiation-hardened FPGA devices. These devices,
however, are much more expensive than Commercial-Off-
The-Shelf (COTS) FPGAs; thus when cost is a major issue,
the COTS devices are affordable [25]. Moreover, radiation-
hardened devices are few generations behind state-of-the-art
COTS devices.

A particle hit on a configuration bit causes a permanent
error in the mapped design. Conventional fault-tolerant
schemes [14] can only protect user-bits but not configuration
bits. The only applicable fault-tolerant mechanism to pro-
tect configuration bits is to use Triple Modular Redundancy

(TMR) scheme in all used logic and routing resources[8] [19].
However, this solution enforces high area and performance
penalties. It may not be affordable to put redundancy in
each and every module (or component) when power and area
are important constraints. To achieve a high level of relia-
bility, efficient approaches combine both hardware (spatial)
and software (temporal) redundancies.

The first step in designing such schemes is to study the
effect of soft errors at the system level and identify the most
vulnerable components in the system. Using this analysis
and based on the redundancy budget, these components are
protected at higher priorities (using hardware or software
redundancy).

Previous work on soft error rate (SER) estimation is mainly
simulation-based, radiation-based, or a combination of both
[2, 7, 9, 10, 11, 19, 25]. All these methods have been based
on Fault Injection (FI) strategies. Using this methodology, a
limited number of error sites are targeted for fault injection.
Several workloads are then run to measure the number of
detected failures by comparing the results of each run to the
clean run. These steps make FI approaches both very time-
consuming and inaccurate (the analysis is based on statis-
tics). Moreover, these approaches cannot be used during
design phases since they need physical implementation.

SEU mitigation is the next step after SER estimation.
The previous SEU mitigation techniques impose 100%-200%
overhead in terms of area and power [7, 8, 19, 20]. This
extra overhead also affects the performance of the design



mapped into the FPGA. The extra power overhead limits
the widespread use of these devices in reliable embedded
applications.

In this paper, an accurate SER estimation method for
FPGA designs is presented. The presented method does
not require physical implementation, i.e. only a synthesis
tool and a software program are used. In this method, we
first compute the netlist error rate based on FPGA used re-
sources (placement and routing information) for the given
mapped design. Then, we compute error propagation proba-
bilities using the gate-level netlist. Based on the netlist error
rate and the error propagation probabilities, we compute the
failure rate of a particular mapped design (the probability
of an error appearing at system outputs).

We also report on Mean Time To Manifest (MTTM) er-
ror for different resources of FPGAs (e.g., routing, look-up
tables, and control/clocking). Finally, we present a high-
reliable and low-cost mitigation technique which can sig-
nificantly reduce the failure rates of FPGA-based designs.
This technique protects the configuration bits for a particu-
lar mapped design.

The rest of the paper organized as follows. Section 2
explains the previous SER estimation and SEU mitigation
techniques. Section 3 describes the error models of SRAM-
based FPGAs. In Section 4, the failure rate estimation of
FPGA designs is presented. Section 5 describes the SER
estimation of user-bits. Section 6 presents the mitigation
technique. Experimental results are given in Section 7. Fi-
nally, Section 8 concludes the paper.

2. PREVIOUS WORK

2.1 SER Estimation Techniques
Error propagation probability (EPP) is one of the main

factors for SER estimation of the circuit nodes [22]. Previ-
ous SER estimation techniques use fault injection and random-
vector simulation [2, 7, 9, 10, 11, 19, 25]. To compute the
EPP of a node, several random vectors are applied to the
circuit inputs. Then the system outputs are observed to cal-
culate the probability that the erroneous value is sensitized
by the input values and is propagated to the outputs. Fault
injection is done using either radiation-equipment or bit-
stream alteration. Radiation-based methods [7, 9] are very
expensive and they are not commonly used. These meth-
ods are mainly used for device characterization, not SER
estimation of a particular mapped design.

The methods presented in [2], [10], [11], [19], and [25]
compute the SER of an implemented design based on the
alteration of the configuration bitstream. The device is con-
figured for every faulty bitstream, i.e., one configuration bit
is flipped for each workload. Then, it is run several clock
cycles with different input vectors to compare the results
with the golden-run results. These methods can be further
classified into two groups, as follows. The first group [2] [25]
gathers and compares the results in a host system. So, it
takes too much time to do experiments for all possible faults.
The second group [10] [11] [19] uses one FPGA for the faulty
run and one or two other FPGA(s) for the golden run and
the comparison of results. The prototype board consists of
two or three FPGAs. To implement and evaluate larger de-
signs, a new prototype board equipped with higher density
FPGAs is required. Finally, as there are much more candi-
date locations for FI in FPGA-based designs, FI techniques

are more time-consuming for FPGA designs than ASIC de-
signs.

We previously presented our preliminary error rate esti-
mation approach in [3]. In that work, only open errors were
considered. In this work, we extend the previous work by
including short errors to accurately compute the SER of a
circuit mapped into an FPGA.

2.2 Mitigation Techniques
Previous SEU mitigation techniques are based on TMR.

This approach imposes 2x area and power overhead [8].
While TMR schemes can mask single error, they will fail
if errors accumulate in the circuit. To prevent accumulated
errors, scrubbing can be used. Scrubbing includes reading
back the configuration bits, comparing those with the orig-
inal configuration bits, and writing the correct bits once
there is an error. The combination of TMR and scrubbing
gives a high-reliable framework with the cost of 200% area
overhead.

Another mitigation technique presented in [6] is based on
using a CRC checker for each frame. On the Virtex devices,
the configuration memory is segmented into frames. Virtex
devices are partially reconfigurable and a frame is the small-
est unit of reconfiguration. The number of frames and the
bits per frame is different for different devices in the Virtex
family. The number of frames is proportional to the config-

urable logic block (CLB) width of the device. In that method,
CRC is generated for each frame during the readback and
it is compared to the expected CRC value. This method
greatly reduces the amount of system memory required to
perform SEU detection. Two different methods have been
proposed to implement CRC frame constants. For an ap-
plication that will never require any updates or changes to
the design after the development phase, CRC constants can
be pre-generated in software and stored in system ROM for
a specific FPGA design. For applications that can accept
updates for the FPGAs bit-stream, CRC constants should
be generated by the host system and stored in a RAM. If
the FPGA bitstream is updated, then CRC values must be
refreshed. In the first approach, the reconfigurability of the
FPGA is missed. In the second approach, a host system is
required to reconfigure the FPGA. So, it cannot be used in
embedded applications.

3. BACKGROUND: FPGA ERROR MODELS
The effects of SEUs on digital circuits can be classified into

a) transient and b) permanent errors. SEUs can cause tran-
sient errors in the combinational logic components, which
can be propagated and captured in flip-flips. Also, SEUs
can directly make transient errors on memory elements and
change the contents of memory caches, main memories, reg-
ister files and flip-flops (FFs). These errors are called tran-
sient because they may be overwritten or corrected using
error-detection-and-correction techniques. So, transient er-
rors impacts the user-defined logic and flip-flops of the FPGA.

Moreover, SEUs can make permanent errors on a FPGA if
they alter the contents of configuration bits. Note that these
errors differ from those errors which damage the device (hard
errors or physical defects). In this case, the configuration bit
remains erroneous until the new configuration is downloaded
into the FPGA. So, these permanent errors are recoverable.
In the rest of this paper, when we refer to permanent errors,
we mean recoverable permanent errors.
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Figure 1: An SEU affects one of inputs of the AND
gate and makes a bit-flip error.

The study and analysis of transient errors have been well
described in [1], [5], [13], and [17]. They have investigated
the circuit behavior by injecting faults into the simulation or
emulation models of the design. The fault injection in these
techniques implies the alteration of memory elements such
as data-path registers and control-unit registers, as well as
alteration of inputs, outputs, or internal signals [25]. Con-
sequently, the effect of SEUs in the presence of the errors
can be straightforwardly studied using common simulation
or emulation tools.

The study of permanent errors due to configuration alter-
ation requires more complex analysis since the simple bit-flip
fault model cannot be exploited. An SEU in the device con-
figuration bits can modify the interconnect inside a CLB. It
can also affect the routing signals between different CLBs.
Moreover, an SEU may change the functionality of the logic
part by affecting the content of look-up tables (LUT). This
issue has been addressed in [9], [19], and [25].

To summarize, there are two memory resources in FPGAs,
a) user bits, and b) configuration bits. An SEU on user bits
cause a transient error, and an SEU on configuration bits
leads to a permanent error.

3.1 Transient Errors
Transient errors do not alter SRAM configuration bits but

they affect user-defined logic and flip-flops as follows:
A bit-flip on the combinational part inside CLBs:

An SEU affecting a combination part makes a transient er-
ror in logic gates. This can be propagated to the sequential
part and make a bit-flip error. Figure 1 illustrates how an
SEU makes a bit-flip error in a flip-flop. It has been shown
that in ASIC designs, combinational logic is less suscepti-
ble to soft errors than memory elements [18] [27]. This is
because the combinational logic provides some natural re-
sistance to soft errors, including logical masking, electrical
masking, and latch-window masking [27].

A bit-flip on user-defined flip-flops and memory
elements: An SEU may directly affect the contents of flip-
flops and memory elements. The content of the flip-flop will
remain erroneous until it is rewritten with another data or
it is corrected by appropriate error detecting and correcting
techniques.

3.2 Permanent Errors
An SEU changing a configuration SRAM cell makes a

permanent effect until the original configuration bitstream
is re-downloaded into the FPGA. This type of error is the
major error type in FPGAs because the number of SRAM
cells dominates user-defined memory elements. Typically,

Table 1: The number of configuration bits versus
the number of flip-flops in Virtex FPGAs.

No. of No. of Config.
Device FFs (Nff) Bits (Ncb) Nff/Ncb
XCV50 1,536 559,200 0.27%
XCV100 2,400 781,216 0.31%
XCV200 4,704 1,335,840 0.35%
XCV300 6,144 1,751,808 0.35%
XCV400 9,600 2,546,048 0.38%
XCV800 18,816 4,715,616 0.4%
XCV1000 24,576 6,127,744 0.4%

XC2V2000 21,504 7,492,000 0.29%
XC2V4000 46,080 15,659,936 0.29%
XC2V8000 93,184 29,063,072 0.32%
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Figure 2: An impact of SEU on routing signals

the number of SRAM configuration cells are more than 98%
of all memory elements inside an FPGA [29, 30]. As an
example, Table 1 shows the number of configuration bits
and the number of flip-flops for some Xilinx Virtex FPGA
devices.

The configuration memory bits are categorized into sensi-

tive and non-sensitive bits, according to their vulnerabilities
to SEUs. An SEU in a sensitive configuration bit affects
the functionality of the particular circuit mapped into the
FPGA. Non-sensitive bits act as “don’t care” configuration
bits for that particular mapped design. Hence, the sensitiv-
ity of particular configuration bit is application-dependent.

Permanent errors are classified into routing errors, LUT
bit-flips, and control/clocking bit-flips.

Routing errors: Programmable interconnect points (PIPs),
multiplexers and buffers constitute the programmable rout-
ing network of a segmented-routing FPGA (e.g. Xilinx Vir-
tex FPGAs). More than 80% of transistors in an FPGA are
used in the routing network [28].

Routing resources can be inter-CLBs or intra-CLB. An
inter-CLB routing signal connects two or more CLBs. Those
that used inside a CLB are called intra-CLB signals. Switch
matrices and line segments are used to route inter-CLB while
multiplexers and buffers are mostly used for intra-CLB rout-
ing. Select-bits of multiplexers comprise more than half of
the total susceptible SRAM cells to SEUs, as shown in [11].

An SEU changing a configuration routing bit causes a
switch open, switch short, or bridging error (wired-or, wired-
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Figure 4: LUT bit-flip

and), as shown in Figure 2. Buffer errors are buffer on and
buffer off errors.

Consider a chain of PIPs connecting two nodes of the cir-
cuit. An SEU changing a PIP control from 1 to 0 causes a
switch open in this chain resulting in an open error in the
gate-level netlist. However, the situation for 0 to 1 SEUs is
different. Not all switch shorts due to a 0 → 1 SEU cause
bridging errors in the netlist. Consider the switch matrix
shown in Figure 2(a). Three different nets are shown which
use PIPs (W1,N1), (W2,S1), and (S2,E2). An SEU (0 → 1)
on the unused PIP (W1,S1) or (N1,S1) causes a bridging
error between nets A and B. These PIPs are called sensi-

tive PIPs and the corresponding controlling configuration
bits are sensitive bits. However, an SEU on the unused PIP
(N2,E1) does not cause any bridging error since no two nets
are adjacent to this PIP. Hence, (N2,E1) is a non-sensitive

PIP.
Similar situation for bridging errors can happen across

two adjacent switch matrices. This is due to the fact that
if a switch is turned on, the wire segments adjacent to that
switch are also connected. Consider the example shown in
Figure 3. If there is an SEU (0 → 1) on the PIP (N2,W1) in
the left switch matrix, it will cause a bridging error between
nets A and B, since the wire segment (W1,E1) along with
this PIP form a bridge between these two nets.

A bit-flip on LUT configuration bits: A look up
table implements a logic function by storing all values for
the truth table. The example in Figure 4 shows how a bit-
flip changes the functionality of an LUT. As shown in the
figure, a bit-flip in one of LUT cells changes the original
function (XOR) to an OR gate.

A bit-flip on control/clocking bits: There are some
control bits inside CLBs and input-output blocks (IOBs)
to determine miscellaneous functionalities. As an example,
there are some control bits that determine whether the LUT

performs as a look up table, a dual-ported RAM, or a pro-
grammable shift register. Also, there are some SRAM cells
for clock signal routing throughout the circuit. A bit-flip
on the control/clocking bits affects the functionality of the
mapped design drastically.

4. FAILURE RATE ESTIMATION OF FPGA
DESIGNS

There are some differences between failure probability com-
putation in ASIC designs and FPGA-based designs:

• In ASIC designs, only the propagation of an erroneous
value from the error site to primary outputs (POs)
or flip-flops (FFs) has to be considered. However in
FPGA designs, the activation probability as well as the
propagation probability are required for failure rate
estimation. This is because in FPGAs, a failure occurs
if an erroneous node is first activated and then the
error is propagated to POs or FFs (permanent errors).

• In FPGAs, the errors occurring in the configuration
bits remain unchanged during the next clock cycles af-
ter the bit-flip. So, the same failure probability is valid
for the next clock cycles. However in ASIC designs, if
an erroneous value, due to an SEU, is masked and not
propagated to the outputs, the effect of that SEU will
be completely disappeared in the system.

• The error sites in ASICs are mainly logic gates rather
than routing signals. But in FPGAs, routing signals
(controlled by SRAM cells) constitute more than 70%
of the total sensitive SRAM bits. [11].

• In FPGAs, if an SEU flips the content of a configu-
ration bit, an erroneous value can be propagated from
the error site to the system outputs without any atten-
uation (electrical masking). However, electrical mask-
ing is one of the key factors that causes the combi-
national logic in ASIC designs to be less susceptible
to soft errors than memory elements [27]. Electrical
masking occurs when the pulse resulting from a parti-
cle strike is attenuated by subsequent logic gates due
to the electrical properties of the gates. This attenua-
tion reaches to the point that the SEU does not affect
system outputs.

To compute the failure rate of a design mapped into an
FPGA, we perform the following steps. First, we compute
the netlist failure probability. In this step, the gate-level
netlist of the mapped design is used. Second, we compute
the error rate of all nodes of the circuit. This step is per-
formed based on the detailed FPGA placement and routing
information of the mapped design (i.e. the detailed informa-
tion regarding used and unused FPGA resources). Finally,
the system failure rate is computed based on these two steps.
The details of these steps are provided in the subsequent
subsections.

4.1 Error Propagation Probabilities (PPi)
While particle flux uniformly encounters the entire sys-

tem, the probability of an erroneous value observed at the
system outputs highly depends on which node a particle is
striked and the values of other nodes of the circuit at that
time (i.e. the system state).
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Table 2: Computing probability at the output of a
gate in terms of its inputs

GATE RULE

AND P1(out) =
Qn

i=1
P1(Xi)

Pa(out) =
Qn

i=1
[P1(Xi) + Pa(Xi)] − P1(out)

Pā(out) =
Qn

i=1
[P1(Xi) + Pā(Xi)] − P1(out)

P0(out) = 1 − [P1(out) + Pa(out) + Pā(out)]

OR P0(out) =
Qn

i=1
P0(Xi)

Pa(out) =
Qn

i=1
[P0(Xi) + Pa(Xi)] − P0(out)

Pā(out) =
Qn

i=1
[P0(Xi) + Pā(Xi)] − P0(out)

P1(out) = 1 − [P0(out) + Pa(out) + Pā(out)]

NOT P1(out) = P0(input)

Pa(out) = Pā(input)

Pā(out) = Pa(input)

P0(out) = P1(input)

In our proposed approach for error propagation probabil-
ity computation, we use the signal probabilities of all nodes
in the combinational part and the topological structure of
the circuit [4]. The signal probability (SP) of a signal line is
the probability of logic value 1 (versus 0) on that line [24].
SP estimation techniques have been presented in [16, 21,
26]. In our approach, the structural paths from each er-
ror site to all reachable outputs and flip-flops are extracted.
Then, these paths are traversed to trace and compute the
error propagation probabilities to reachable outputs or flip-
flops. For a particular error site (hit by a particle), we clas-
sify the circuit nets and gates as follows. An on-path signal
is a net on a path from the error site to a reachable output.
An on-path gate is defined as the gate with at least one on-
path input. Finally, an off-path signal is a net which is not
on-path and is an input of an on-path gate. These three are
shown in Figure 5. In this figure, gates D, E, G, and H are
on-path gates.

In the general case in which reconvergent paths might
exist, the propagation probability to the output of the re-

convergent gate depends not only on the type of the gate
and the signal probabilities of the off-path signals, but also
on the polarities of the propagated erroneous values on the
on-path signals. To address this issue, we consider error
propagation rules for reconvergent gates. These rules are
presented in Table 2. In summary, as we traverse the paths,
we use signal probability for off-path signals and use these
error propagation rules for on-path signals. The example
of application of these rules to calculate error propagation
probabilities is shown in Figure 5. In this example, consid-
ering the output of gate A has an erroneous value, first we
compute the propagation probabilities for gates D, E, and
G. Then, we compute the propagation probability for gate
H, as shown in Figure 5. Now, the propagation probability
of an erroneous value to the output of gate H is calculated
as 0.042 + 0.392 = 0.434. More details of this approach can
be found in [4].

4.2 Netlist Failure Probability (Ni)
Netlist failure probability, Ni, depends on the error model

and the circuit topology. In general, Ni is the product of the
activation probability of node i (APi) and the propagation
probability of that node (PPi). We use signal probability for
APi. Computation of PPi has been presented in Section 4.1.

In the case of open and stuck-at errors, Ni can be com-
puted according to Equation 1. The first part of this equa-
tion accounts for the erroneous value being 0 and the second
part accounts for the erroneous value being 1. Each part
expresses that the erroneous value should be first activated
(signal probability, SPi, is used for the activation probabil-
ity) and then propagated to the outputs (PPi). Note that
PPi(0) = PPi(1).

Ni = SPi × PPi(0) + (1 − SPi) × PPi(1) = PPi (1)

PPi: Propagation probability

SPi: Signal probability

For wired-AND bridging errors (between nets i and j), Ni

can be computed according to Equation 2. The first term of
the equation expresses the probability of node i being 1 and
node j being 0. The second term calculates the probability
of node i being 0 and node j being 1.



Ni = [SPi × (1 − SPj) × PPi(0)]

+[(1 − SPi) × SPj × PPj(0)] (2)

We use the same approach to compute Ni for wired-OR
bridging errors between nets i and j, as shown in Equation 3.

Ni = [SPi × (1 − SPj) × PPj(1)]

+[(1 − SPi) × SPj × PPi(1)] (3)

For a bit-flip in one of LUT cells (cell i), Ni is computed
according to Equation 4. To compute the failure probabil-
ity due to LUT SRAMs, we use the propagation probability
of the LUT output. Ni is computed as the product of the
propagation probability of the LUT output and the activa-
tion probability of the SRAM cell from LUT inputs which
is computed during SP estimation.

Ni = APi × PP (LUTout) (4)

PPi: Propagation probability

APi: Activation probability of cell i

4.3 Node Error Rate (PRi)
PPi and Ni depends only on the gate-level netlist of the

mapped design. In contrast, the node error rate depends
on the detailed FPGA placement and routing information
of the design. For each gate-level circuit node i, PRi is
defined as the permanent-error rate of node i. PRi is cal-
culated based on the raw error rate of the device, the error
model, and the number of SRAM configuration bits used
for implementing node i in the FPGA. The error rate of a
node is directly proportional to the number of SRAM con-
figuration cells controlling that node. So, nodes with more
configuration bits have higher error rates. Accordingly, we
define the vector PR(n) (n: total error sites).

For example, consider two nodes n1 and n2 which consist
of 4 and 2 PIPs, respectively (Figure 6). The permanent-
error probability of n2 is less than n1 because n1 has more
candidate locations for permanent-errors than n2. PRi is
computed as shown in Equation 5. In this equation, f is the
total number of possible errors which can occur on node i.
For example, f is one for LUT SRAMs. fMUX is equal to the
number of select bits. For a routing node, f is directly pro-
portional to all ON/OFF switches connected to that node.
As an example, the permanent-error rate of node AB, shown
in Figure 7, is equal to six times the raw error rate of an
SRAM-cell. In our method, we compute PRi for both short
and open errors.

PRi = r × fi (5)

r: Raw error rate of an SRAM cell

f : The number of all possible errors

The raw error rate of an SRAM cell (r) depends on the de-
vice characteristics and the flux encounters the device. The
raw error rate can be expressed in terms of either MTBF
(Mean Time Between Failures) or FIT (Failure in Time).
FIT is inversely proportional to MTBF and is equal to one
failure in a billion hours (109). Designers usually work with
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FIT units because they are additive, unlike MTBF. Cur-
rent predictions show that typical FIT rates for latches and
SRAM cells (measured at sea level) vary between 0.001-0.01
FIT/bit [12, 15, 23]. The FIT/bit increases with the eleva-
tion. At 10Km, the FIT/bit is approximately 100x higher
[31] than the sea-level value.

4.4 Failure Rate Computation
After the computation of PRi and Ni, the system failure

probability due to node i can be compute as follows:

System failure rate Si = PRi × Ni (6)

Having the system failure rates computed for all nodes
(Si), we compute the system failure rate for the entire cir-
cuit in the clock cycle after the particle hit, according to
Equation 7.

S = 1 −
n

Y

i=1

(1 − Si) = 1 −
n

Y

i=1

(1 − PRi × Ni) (7)

Finally, the system failure rate of the entire circuit c clock
cycles after the particle hit is calculated as follows:

S = 1 −
n

Y

i=1

(1 − PRi × (1 − (1 − Ni)
c)) (8)

Note that the node error rate factor (PRi) has the same
impact on the system failure rate in Equation 7 and Equa-
tion 8. But the way netlist failure probability (Ni) is used
to calculate the system failure rate c clock cycles after the
particle hit is different from Equation 7.



5. SER ESTIMATION OF USER-BITS
In this section, we present an analytical framework to es-

timate SER in multiple clock cycles after particle strike. In
general, an erroneous value in a flip-flop can be propagated
to primary outputs either directly or through other flip-flops.
As a result, the system failure probability can increase at
each cycle after the error occurrence.

To formalize this analysis, an n×n error propagation ma-

trix M is defined where Mij is the probability of error in
flip-flop FFj given the content of flip-flop FFi is erroneous
(n in the number of flip-flops).

Matrix M :

Mij = P (error appears in FFj |FFi is erroneous)

M =

0

B

B

B

@

P (FF1|FF1) P (FF2|FF1) . . . P (FFn|FF1)
P (FF1|FF2) P (FF2|FF2) . . . P (FFn|FF2)

...
...

. . .
...

P (FF1|FFn) P (FF2|FFn) . . . P (FFn|FFn)

1

C

C

C

A

System failure probability vector S :

Si = P (system failure|FFi is erroneous)

Also, the system failure vector S is defined, where Si is
the probability of system failure at the first clock given the
content of FFi is erroneous (i.e., Si = P (SF |FFi).

S =

0

B

B

B

@

P (SF |FF1)
P (SF |FF2)

...
P (SF |FFn)

1

C

C

C

A

Using the error propagation matrix, the probability of a
system failure at clock c given that FFi is erroneous is cal-
culated as follows:

P (SF at cycle c|FFi erroneous) =

ith element ofMc−1S (9)

Matrix M and vector S are computed using the propa-
gation probability computation approach presented in Sec-
tion 4.1. Each column of M (as well as the corresponding
entry in S) is computed by a traversal of the circuit from
the corresponding flip-flop.

Note that the simulation time of random-simulation method
increases exponentially with c, making it intractable for
large sequential circuits. However, the presented approach
requires only a matrix multiplication to compute the system
failure rate in next clock cycles.

6. SOFT ERROR MITIGATION
Unprotected FPGA-based designs have very poor avail-

ability since once an SEU occurs and then manifests to sys-
tem output, the steady state availability becomes zero. In
this section, a high-reliable framework for soft error toler-
ance in the configuration bits with very low area overhead
is presented. To protect the configuration bits, we reserve
some rows of the FPGA to store the checksum and the sta-
tus for all configuration frames. Specifically, the last two
bytes of each frame is used to keep the CRC values of that
frame. We also use the checkpointing technique for recovery
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RAM
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Figure 8: The architecture of the proposed mitiga-
tion technique.

of user bits by keeping the latest correct state of the circuit
(user bits including FFs).

We use an auxiliary FPGA device to store the correct
state of the main system (checkpointing), re-calculate, and
compare the CRC checksums for configuration bits. As will
be shown in our experiment, this auxiliary circuitry can be
mapped into the smallest FPGA device even if the main
system is implemented on the largest FPGA device.

To assure the reliability of the auxiliary FPGA, we use
non-SRAM based FPGA (such as Actel antifuse family). To
further reliability assurance of the CRC checking circuitry,
it is implemented using the TMR technique. Since the CRC
checking circuit is very small (16 logic cells), the TMR CRC
checker can be easily mapped into one of the smallest Actel
devices (AX125).

In our presented approach, we do not keep the original
copy of the configuration bits since it requires a large storage
(e.g. at least 1MB RAM for Xilinx Virtex XCV1000). Only
the contents of the FFs are stored in the auxiliary FPGA
which are protected by error correction codes (ECC). As
shown in Table 1, the number of FFs is much less than the
number of configuration bits. The FFs of a large FPGA
(e.g., XCV1000) can fit in a 8KB RAM available in the
auxiliary FPGA.

The main difficulty in the mitigation techniques is when
some configuration bits are used as user-bits. For example,
an LUT can be also used as a 16-bit RAM. This problem is
common in all mitigation techniques whether the mitigation
technique uses the checksum or keeps the original copy of the
bitstream to detect errors. In checksum-based mitigation
techniques, these bits should be excluded from the checksum
computation. In our approach, we put some tag-bits in the
last bytes of each frame indicating which LUT tables in that
frame are used as user-RAMs. Using these tag-bits, those
configurations bits which are used as user bits are excluded
during checksum recomputation by the auxiliary FPGA.

Since CRC values are kept inside the main FPGA, it can
also be connected to the host system as well. Specifically,
the main FPGA can be connected to either the host system
or the auxiliary FPGA without any changes. This feature is



very useful during the development, debug, and test of the
system. Moreover, the way CRC values stored inside the
FPGAs is scalable for larger FPGAs.

This mitigation technique adds a constraint on the place-

ment algorithm since the last few bytes of all frames should
be reserved for the CRC values and tag-bits. The straight-
forward way is to leave the last rows of the FPGA device
unused.

The frames are repeatedly read back from the main FPGA
by the auxiliary FPGA and CRC checksums of these frames
are re-calculated and compared to the last two bytes of the
frame (the original checksum). Using this error correction
code (ECC), any detected single bit-flip can be corrected.
If any error is detected, the system must be restored to its
latest correct state which is obtained from the most recent
checkpoint values. This mechanism is known as rollback

recovery.
Note that if an error occurs in the configuration bits, the

error can be propagated to the system states (FFs or system
RAMs) in just few clock cycles. Therefore, in the event of
configuration bit-flip, the system state is no longer valid and
should be restored to the correct state. The architecture of
the proposed mitigation technique is shown in Figure 8.

The following steps are performed to recover an error in
the configuration bits.

1. The state of the system (user bits) is read back, ECC
is computed, and all stored in the auxiliary memory.
This step is called checkpointing. Using the SelectMap
interface for Xilinx FPGAs, checkpointing takes be-
tween 1ms to 4ms to read and save the content of FFs.
The checkpointing time (tc) depends on the device and
circuit size. The time interval between two checkpoints
(tcp) (checkpointing period) can be determined based
on the raw error rate of the SRAM cell, the reliability
requirements of the system, and the specification of
the mapped design. Note that checkpointing does not
intervene with the operation of the main system.

2. The configuration frames are read back by the auxil-
iary FPGA, frame CRC checksums are computed and
compared with the original CRC checksums in each
frame. This process, which is called error-checking,
is repeated for all configuration frames and in case of
error occurrence, the next step is executed.

3. If any configuration frame is erroneous, it implies that
the state of the circuit might be erroneous, as well. In
this situation, both configuration data and user data
(system state) must be restored to correct values. The
functionality of the system needs to be stopped, the
corrected configuration frames (including CRC check-
sums) are re-downloaded into the main FPGA, and
the correct system state (stored in the auxiliary FPGA
RAM) is written into the FFs and user memory. After
these tasks, the operation of the main system can be
resumed.

The simple approach for error-checking is to uniformly
check all configuration frames in order. Suppose that tf is
the time required to complete the error-checking step for one
frame. If tep is defined as the error-checking period, then tep

is bigger than or equal to tf . Also, assume Nf is the number
of all sensitive frames of the main FPGA. Sensitive frames
are those that contain sensitive configuration bits. The term
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Figure 9: Error manifestation rate

Mean Time To Detect (MTTD) an error is defined as the
time interval between the time a particle strike causes a bit-
flip in a sensitive bit and the time that the erroneous con-
figuration bit is detected (by the auxiliary FPGA). MTTD
increases linearly with the Nf and tep. Using uniform error-
checking approach, MTTD = 0.5 × tep × Nf .

MTTM is defined as the mean time to manifest errors
from the error site to the circuit outputs, i.e. the time in-
terval between bit-flip and the time the error appears at
system outputs. To reduce the overall failure rate of the
system, MTTD should be reduced with respect to MTTM.
This means that before an erroneous configuration bit man-
ifests to the system outputs, it should be detected and cor-
rected by the auxiliary circuitry. We define the term Error

Manifestation Rate (EMR) according to Equation 10. If
MTTD is less than MTTM, the error is detected and cor-
rected before it is propagated to the outputs. In this case,
EMR is zero. If MTTD is bigger than MTTM, the proba-
bility that an error is manifested to the outputs is equal to
(MTTD − MTTM)/(MTTD). This is shown in Figure 9.

EMR =
MTTD − MTTM

MTTD
× S, if MTTD > MTTM (10)

EMR = 0, if MTTD ≤ MTTM

Note that S is the failure rate of an unprotected de-
sign, which is computed in the previous sections. By de-
creasing MTTD or increasing MTTM, EMR is reduced. In
other words, in a protected design, some failures of unpro-
tected designs are masked by decreasing MTTD or increas-
ing MTTM. Therefore, EMR is the failure rate of the pro-
tected design. EMR is equal to S for an unprotected design.

Finally, it is notable to mention that keeping CRC values
in the last row of each frame may cause an invalid config-
uration of the FPGA resources. This may cause conflict
between routing signals and also lead to an abnormal power
consumption. One possible solution to avoid any contention
is to put some status bits to relocate CRC bits. In Virtex
family, the last row of each frame contains at least 20 bits.
Hence, some of these bits can be used to determine where
the CRC bits are located in the last row of each frame.

7. EXPERIMENTAL RESULTS

7.1 SER Estimation
In the experiments, we use Xilinx FPGA devices [29].

To extract detailed placement and routing information of
a design mapped into an FPGA, the Xilinx design language
(XDL) is used. Figure 10 shows the overall flow of our SER
estimation method.



Table 3: Number of sensitive SRAM bits for each
part
Circuit Routing LUT Control/ Total No. of

Clocking Conf Bits FFs

s298 982 410 133 1525 14
s344 1035 392 168 1595 15
s349 1450 520 187 2157 15
s382 1849 712 207 2768 21
s386 1689 660 160 2509 6
s400 1949 700 218 2867 21
s444 1690 692 208 2590 21
s510 3122 1244 299 4665 6
s526 2401 856 227 3484 21
s641 3038 1056 375 4469 19
s713 2793 988 355 4136 19
s953 7906 2644 597 11147 29
s1196 7980 2976 613 11569 18
s1238 8608 3224 652 12484 18
s1488 9660 3688 702 14050 6
s1494 9670 3628 695 13993 6

ave 4114 1524 362 6001 16

The error list considered in the experiments includes mux-
open, PIP open, PIP short, buffer-on, buffer-off, LUT bit-
flip, and control/clocking bit-flip, and bridging errors. A
software tool has been developed to extract the netlist in-
formation from the XDL file including the list of used re-
sources, sensitive bits, and the error list. The failure rate
of all circuit nodes are computed based on the above in-
formation. The experiments have been executed on a Sun
Blade 1500 c© workstation equipped with 1GB main mem-
ory and running Solaris 9 c© operating system.

Table 3 shows the number of sensitive bits of the Vir-
tex XCV300 device for ISCAS89 benchmark circuits. The
sensitive bits are classified according to the error models
described in Section 3. As shown in this table, the config-
uration routing bits constitute more than half of the total
sensitive configuration bits. As shown in this table, the num-
ber of FFs, on average, is less than 0.5% of the number of
configuration bits.

Table 4 shows the mean time to manifest errors from
the error site to the system outputs. MTTM is classified
for different types of configuration bits (routing, LUT, and
control/clocking) as well as user bits (FFs). The MTTM
results have been measured for the XCV300 (Virtex) and
XC2s200 (Spartan) devices. As shown in this table, the
average MTTM of routing, LUT, and control/clocking re-
sources for the Virtex device are 3.64, 25.63, and 1.63 cycles,
respectively. Also, the average MTTM of routing, LUT,
and control/clocking resources for the Spartan device are
3.66, 26.22, and 1.65 cycles, respectively. This shows that
control/clocking bits are the most sensitive ones. For both
families, the MTTM of the routing and control/clocking re-
sources is much less than the MTTM of the LUT resources.
In this table, the MTTM of flip-flops (user bits) is also
shown.

As the results show, the average manifestation time of
an erroneous FF to the primary outputs is about 10 cycles.
These results also show that LUTs are the least sensitive bits
to SEUs, although they are easiest to be protected against
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Figure 10: SER Estimation Flowchart



Table 4: Mean Time To Manifest (MTTM) errors to outputs (Results in terms of cycles)
Routing LUT Cnt/clocking

Circuit Virtex Spartan Virtex Spartan Virtex Spartan FFs

s298 2.73 2.76 20.22 21.41 1.23 1.31 4.95
s344 2.59 2.61 17.48 21.15 1.37 1.39 5.62
s349 2.91 3.06 20.44 24.66 1.39 1.47 5.62
s382 3.30 3.24 22.11 22.59 1.40 1.38 6.98
s386 3.88 4.11 30.61 28.49 1.79 1.82 15.76
s400 3.13 3.35 20.80 22.54 1.40 1.39 7.23
s444 3.00 3.18 21.92 22.25 1.39 1.39 7.34
s510 4.87 4.27 34.77 35.52 2.14 2.15 3.80
s526 4.03 3.90 27.68 27.70 1.48 1.49 8.14
s641 2.42 2.40 16.96 16.34 1.41 1.40 12.10
s713 2.41 2.47 16.82 16.81 1.37 1.37 13.06
s953 3.23 3.29 21.22 21.27 1.49 1.50 24.16
s1196 5.17 5.16 36.59 36.65 2.16 2.16 23.81
s1238 5.56 5.77 41.23 41.23 2.33 2.33 24.06
s1488 4.47 4.48 29.92 30.22 1.90 1.92 3.81
s1494 4.60 4.58 31.39 30.82 1.98 1.99 3.82

average 3.64 3.66 25.63 26.22 1.63 1.65 10.63

soft errors (implementation of parity schemes in LUTs is
very straightforward).

If we consider normalized manifestation rate (NMR) for
each category (routing, LUT, control/clock, and FF) accord-
ing to Equation 11, routing bits and LUT bits are the most
vulnerable and the least vulnerable ones, respectively.

NMR =
Number of sensitive bits

MTTM
(11)

The detailed execution time of our SER estimation method
is reported in Table 5. The total time of this SER estimation
method includes a) the time needed to extract the netlist
and also to extract SRAM cells information from the XDL
file, b) SP computation time, and c) error propagation prob-
ability computation time including the time needed to com-
pute PRi and Ni for all nodes. As shown in this table, the
SER of an ISCAS’89 circuit is computed, on average, in 108
seconds. As the results show, SP computation is the most
time-consuming part of our estimation method. Our sim-
ulation time is much less than the results reported in [25].
The reported simulation time in [25] varies from 453 sec-
onds to 11,831 seconds. They have measured the simulation
time for only 100 injected faults for some small circuits of
ITC’99 benchmarks. The accuracy of our SER method ver-
sus the random-simulation method has also been reported
in Table 5. The accuracy, on average, is about 95%.

The system failure rates of these benchmark circuits for
both Virtex and Spartan devices are reported in Table 6.
In these experiments, the raw error rate of an SRAM cell is
assumed to be 0.01 (FIT/bit). Failure is observed for 1 and
50 clock cycles after an SEU flips the content of an SRAM
cell. Since SEUs cause permanent errors in the configuration
bits, the failure rate in 50 cycles after an SEU occurrence is
much bigger than the failure rate in the first clock cycle.

These results, Table 4 and Table 6, show that the choice of
the FPGA architecture has an indistinguishable effect on the
error rate of a particular mapped design. Nevertheless, it has
to be mentioned that Virtex and Spartan architectures are
similar. The error rate is mainly a function of the number

Table 5: System Failure Estimation Time.
SP Time: Signal Probability computation time (sec-
ond)
SFR Time: System Failure Rate computation time
(second)
Number of Clock cycles: 50

Execution Time (sec) Accuracy
Circuit Extract SP SFR Total (%)

s298 0.79 1.18 0.09 2.06 95
s344 0.95 34.52 0.12 35.59 96
s349 1.01 41.59 0.15 42.75 96
s382 1.05 47.64 0.14 48.83 95
s386 1.40 0.10 0.19 1.69 97
s400 1.30 46.89 0.19 48.38 95
s444 1.05 45.83 0.14 47.02 95
s510 2.64 84.25 0.38 87.27 96
s526 0.84 54.57 0.13 55.54 96
s641 3.10 88.19 0.55 91.84 91
s713 3.80 77.11 0.58 81.49 90
s953 3.33 179.58 0.73 183.64 95
s1196 4.94 212.69 1.24 218.87 96
s1238 4.83 231.97 1.39 238.19 96
s1488 6.86 267.29 1.20 275.35 95
s1494 7.16 266.29 1.26 274.71 95

ave 2.82 104.98 0.53 108.33 95



Table 6: System Failure Rate for Virtex and Spartan
family.
Number of Clock cycles: 50
SFR: System Failure Rate
FIT of an SRAM cell: 0.01

SFR of Virtex SFR of Spartan
Circuit clk=1 clk=50 clk=1 clk=50

s298 7.46 13.82 7.14 13.86
s344 7.31 14.28 8.09 15.57
s349 9.91 19.45 9.67 19.73
s382 12.10 24.72 12.16 23.70
s386 9.46 18.79 8.72 18.30
s400 13.23 25.31 12.52 24.85
s444 11.60 22.88 12.16 23.93
s510 16.99 36.70 17.19 35.91
s526 15.38 28.23 12.70 25.21
s641 21.11 39.32 21.87 39.77
s713 19.41 36.35 19.32 36.44
s953 49.54 88.41 49.76 88.47
s1196 34.89 80.98 38.16 84.61
s1238 39.27 83.20 38.62 84.11
s1488 53.80 114.36 56.06 117.07
s1494 53.14 113.84 54.34 116.61

average 23.41 47.54 23.66 47.12

of sensitive bits and the structure of the design. Placement
and routing algorithms have a major impact on the number
of sensitive bits. For example, signals routed with fewer
switches have less node error rate.

7.2 Mitigation Technique: A Case Study
In our experiments, we use AX125 (Actel) as the auxiliary

FPGA and XCV300(Virtex) as the main FPGA. We use 16-
bit CRC polynomial (CRC − 16 = X16 + X15 + X2 + 1).
This can be implemented by a 16-bit shift register and 3
XOR gate, which can be mapped into 16 logic cells. The
TMR version of this circuit imposes about 200% overhead
which can be easily mapped into the AX125 device. The
AX125 contains 18,432 RAM bits. This memory can keep a
copy of the FFs of XCV300 device. For larger Virtex devices
(e.g. XCV1000), we can use AX500 which contains 73,728
RAM bits.

An unprotected system will no longer be available after
the first failure in the system. Therefore, the steady-state
availability of an unprotected system is zero. Table 7 illus-
trates the availability of a protected design which occupies
all columns of XCV300 device (the worst case scenario for
our method). As shown in this table, the availability of the
protected design is more than 0.9962 if the raw error rate
equals to 1.0e−9 (bit/hour). Note that the typical raw error
rate at sea level is between 1.0e-12 and 1.0e-11 bit/hour 1.

8. CONCLUSIONS
Designs mapped into FPGAs are more susceptible to soft

errors than ASIC implementations. Analysis of the effect of

1These raw error rates almost equal to 0.001-0.01 FIT/bit.

Table 7: Availability of a protected design with dif-
ferent error rates.
(A design occupies all CLBs of XCV300 device)

Error Rate Steady-State
(errors/hour) Availability

1.0e-10 0.9996
2.0e-10 0.9992
3.0e-10 0.9989
4.0e-10 0.9985
5.0e-10 0.9981
6.0e-10 0.9977
7.0e-10 0.9973
8.0e-10 0.9969
9.0e-10 0.9966
1.0e-9 0.9962

soft errors in different resources of an FPGA is a key factor
in development of low cost, high performance, and high re-
liable solutions. In this paper, a very fast and accurate SER
estimation technique for FPGA-based designs has been pre-
sented.

The experimental results show that the presented method
is orders of magnitude faster than conventional fault injec-
tion methods while more than 95% accurate. The results
also show that the error manifestation time for routing and
clock/control resources is 10 times less than that for LUT
bits.

We have also presented a low-cost and high reliable soft
error mitigation technique based on checkpointing. An aux-
iliary FPGA (a small device) is utilized to store checkpoints,
compare the checksums, and reconfigure the main FPGA.
Experimental results show that the availability of a pro-
tected design based on this technique is increased to more
than 99.6%. Since no host system or pre-store configuration
is required, this solution can be used for embedded applica-
tions.
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