
Balancing Performance and Reliability in the Memory Hierarchy

Ghazanfar-Hossein Asadi Vilas Sridharan Mehdi B. Tahoori David Kaeli

Dept. of Electrical & Computer Engineering
Northeastern University

360 Huntington Ave., Boston, MA 02115
E-mail: {gasadi,vilas,mtahoori,kaeli}@ece.neu.edu

Abstract

Cosmic-ray induced soft errors in cache memo-
ries are becoming a major threat to the reliability of
microprocessor-based systems. In this paper, we present a
new method to accurately estimate the reliability of cache
memories. We have measured the MTTF (Mean-Time-To-
Failure) of unprotected first-level (L1) caches for twenty
programs taken from SPEC2000 benchmark suite. Our re-
sults show that a 16 KB first-level cache possesses a MTTF
of at least 400 years (for a raw error rate of 0.002 FIT/bit.)
However, this MTTF is significantly reduced for higher er-
ror rates and larger cache sizes. Our results show that for
selected programs, a 64 KB first-level cache is more than
10 times as vulnerable to soft errors versus a 16 KB cache
memory. Our work also illustrates that the reliability of
cache memories is highly application-dependent. Finally,
we present three different techniques to reduce the suscep-
tibility of first-level caches to soft errors by two orders of
magnitude. Our analysis shows how to achieve a balance
between performance and reliability. keywords: soft errors,
error modeling, caches, refresh

1 Introduction

Cache memory is a fundamental component used to en-
hance the performance of modern microprocessors, and its
reliability is essential to assure dependable computing. Er-
rors in cache memories can corrupt data values, and can
easily propagate through the system to cause data integrity
issues [28].

The main threat to the reliability of cache memories is
soft errors. Soft errors, also called transient errors, are in-
termittent malfunctions of the hardware that are not repro-
ducible [19]. These errors, which can occur more often than
hard (permanent) errors [10], arise from Single Event Up-
sets (SEU) caused by strikes from energetic particles such
as neutrons and alpha particles. Researchers have shown
that in current systems, memory elements are the most vul-
nerable system component to soft errors [6, 16]. Soft error

rates for cache memory are projected to increase linearly
with cache size for the next several years [7, 11].

Many commonly used protection techniques such as
byte- or line-based parity or SEC-DED ECC (Single Error
Correct-Double Error Detect Error Correcting Codes) use
spatial redundancy to protect memory elements [13]. Un-
fortunately, several problems can arise when using these
error detection/recovery schemes. First, redundancy in-
curs area overhead, which increases proportionately with
the cache size. For instance, a 32 KB cache that sup-
ports byte parity requires an extra 4 KB just for the parity.
Second, redundancy consumes significant additional power
for the redundancy storage and logic. Third, to maintain
high throughput, the redundancy checking hardware should
not increase the L1 cache access time significantly. Using
redundancy schemes for L1 caches (especially SEC-DED
codes) can add an extra clock cycle to the L1 hit time, which
can severely degrade performance.

The last issue related to these redundancy techniques
is that they offer unbalanced protection for IL1 and DL1
caches. This happens when the MTTF of the IL1-cache is
much less than the MTTF of the DL1-cache or vice versa.
As shown in our experiments, one of these situations occurs
for almost 80% of the programs studied. For instance, con-
sider an application where the MTTFs of unprotected IL1-
cache and DL1-cache are 10 years and 1 year, respectively.
Using byte parity or ECC, the reliability of each cache in-
creases, but unequally. Note that the reliability of the overall
system depends on the least reliable component.

Scrubbing is another technique that can be used to
improve cache reliability in conjunction with SEC-DED
ECC [23]. Scrubbing involves reading values from
cache/memory, correcting any single-bit errors, and writ-
ing the bits back to cache/memory. While scrubbing can be
applied to L2 caches, it is not typically used for L1 caches,
since it can interfere with processor access to the L1 and
reduce the effective L1 bandwidth. Moreover, scrubbing
would call for dedicated hardware, which significantly in-
creases the design complexity and cost of the system [13].



Due to the difficulties mentioned above, L1 cache re-
liability remains a major concern. Since it is difficult to
provide guaranteed reliability for caches, caches are often
disabled in safety-critical applications [4]. By disabling
the cache, the area susceptible to SEUs is drastically re-
duced and so the processor’s dependability is dramatically
increased. The major downside is that running in disabled-
cache mode seriously impacts performance. This large per-
formance loss may not be tolerable for many applications.

In order to make informed decisions about the level of
protection needed for cache memories, we need a method to
accurately estimate cache reliability across different cache
organizations and target workloads. Once we understand
how susceptible a cache is to SEUs, we can make decisions
about what prevention or protection schemes to implement.

Most previously proposed reliability estimation methods
for cache memories have been based on fault injection (FI)
strategies [4, 8, 14, 22]. When using a FI strategy, a limited
number of memory addresses are targeted. Several work-
loads are then run to measure the number of detected fail-
ures. These steps make FI studies both time-consuming,
due to the large number of runs, and prone to inaccuracy,
due to the limited number of addresses targeted.

Fault injection can be performed by software or radiation
equipment. While software-based FI techniques can be em-
ployed in the design phase, radiation-based FI techniques
can not be used before the actual device is fabricated. More-
over, radiation-based FI techniques are very costly and not
commonly available. They are mainly used for character-
izing the device or the technology rather than a particular
design.

In this paper, we present a new method that can accu-
rately estimate the reliability of an unprotected or partially
protected cache memory. We report on the residency time
of critical words (CW) in the cache. A CW is a word in a
cache that is guaranteed to propagate to other locations in
the memory system or to the CPU.

We have developed a simulation model that considers a
two-level cache hierarchy and measures the reliability of
L1 caches when running the SPEC2000 benchmark suite.
Our results show that the MTTFs of a 16 KB L1 instruc-
tion cache and a 16 KB L1 data cache are at least 700
and 400 years, respectively, if the raw error rate equals
0.002 Failure-In-Time (FIT) per bit. However, these MT-
TFs are significantly reduced with higher error rates and
larger cache sizes. Our results also show that the reliabil-
ity of cache memory is highly application-dependent. Our
study also finds that, on average, a DL1-cache is twice as
susceptible to SEUs than an IL1-cache. Our reliability es-
timation method can be extended to estimate the reliability
of cache memories protected by byte-parity or SEC-DED
schemes.

We also analyze the effects of various cache organiza-

tions on reliability. Our experiments demonstrate that for
some programs, larger L1 caches can reduce reliability by
up to 10 times, while system performance is improved only
by 10%. We describe three different approaches to increas-
ing reliability, while also considering the impact on perfor-
mance. We study the utility of an operating system tech-
nique called flushing to increase the reliability of cache
memories. Our results show how the error rate can be re-
duced up to 15 times, while only sacrificing 10% of the orig-
inal performance. We also investigate how a write-through
cache can positively impact reliability. Finally, we propose
a refetching technique to refresh the L1 data cache blocks,
which can have a dramatic impact on improving reliability.

The rest of this paper is organized as follows. In Sec-
tion 2, error rate and reliability background is described. In
Section 3, our reliability model is described. In Section 4,
experimental results are presented. Finally, Section 5 con-
cludes the paper.

2 Background
When a particle strikes a sensitive region of an SRAM

cell, the charge that accumulates can flip the value stored
in the cell, resulting in a soft error. Soft errors are often
classified as Detected/Unrecoverable Errors (DUE) or un-
detected errors (which are included in a more general class
of errors called Silent Data Corruptions (SDCs)) [18]. The
Soft Error Rate (SER) for a device is defined as the error
rate due to SEUs.

A system’s error budget is usually expressed in terms
of the Mean Time Between Failures (MTBF), which is the
sum of the MTTF and the Mean-Time-To-Repair (MTTR).
Failures-in-Time is another commonly used error rate met-
ric. FIT error rates are inversely proportional to MTBFs, if
the reliability function obeys the exponential failure law [9].
One FIT is equal to one failure in a billion hours (1-year
MTBF equals to 114,000 FIT). Current predictions show
that typical FIT rates for latches and SRAM cells (measured
at sea level) vary between 0.001-0.01 FIT/bit [7, 11, 20].
The overall FIT rate of a chip is calculated by adding the ef-
fective FIT rates of all components of the system. The FIT
rate of each component is the product of its raw FIT rate
and its associated Vulnerability Factor. The Vulnerability
Factor (VF) is defined as the fraction of faults that become
errors [17]. So, the FIT rate of the entire system can be
computed as follows:

FITChip =
∑

i

raw FITElement(i) × V F (1)

The reliability of a chip during the period [0, t] is defined
as the probability that the chip operates correctly throughout
this period [9]. The reliability of a chip at time t can be
computed as follows:

ReliabilityChip(t) = e−FITChip×t = e
−t

MT T FChip (2)



3 Reliability Model
The reliability of cache memories can impact the over-

all system. Data corruption in instruction and data caches
can be propagated to the processor’s registers, and corrupted
data can be written back to main memory, committing an er-
roneous result. A cache memory stores instructions or data
in a data RAM, and includes address tags that are stored in
a tag array. In most L1 data caches, every line has two sta-
tus bits: a valid bit and a dirty bit. For a 16 KB IL1 cache
and a 16 KB DL1 cache possessing the cache parameters
shown in Table 1, the tag addresses will occupy 1.25KB and
1.38KB for IL1 and DL1, respectively. To properly com-
pute overall cache reliability, we consider errors in address
tags and status bits, as well as errors in the data RAM. Our
results show that (on average) more than 90% of cache fail-
ures will be due to errors occurring in the data RAM, and
less than 10% of cache failures are due to errors occurring
in address tags and status bits.

3.1 Errors in data RAM
We define Critical Words (CW) as those words in the

cache that are either eventually consumed by the CPU or
committed to memory by a write. In other words, if the CPU
reads a word from the cache or a dirty word of the cache is
written to the memory, it is a CW. The Critical Time (CT)
associated with a CW is defined as the time period in which
the context of that CW is important.

CT is the interval between the cycle the word is brought
into the cache and the cycle it is used by the CPU; or the
interval from the cycle in which the last modification is done
on the word by the CPU, to the cycle in which the word is
written back to memory.

If an error in a CW is encountered during its critical
time, this can result in an erroneous value being propagated.
All other words that are not critical are called Non-critical
Words (NWs). Any failure to NWs should not affect the
correct operation of the system.

Suppose that the words W1 and W2 are fetched into the
cache in cycle 10. W1 is read by the CPU in cycle 40 and
W2 is updated by the CPU in cycle 30. In cycle 50, W1
is replaced by another word and W2 is written back to the
memory. The CT of W1 is calculated as 40 − 10 = 30 and
the CT of W2 is calculated as 50 − 30 = 20. Note that the
replacement time in the read operation (cycle 50) and the
entrance time in the write operation (cycle 10) do not affect
the critical time. This is shown in Figure 1.

3.2 Errors in address tags and status bits
To investigate the impact of errors in address tags and

status bits, we extend the classification provided in [13] and
then study how these errors individually affect the reliability
of caches.

There is a tag address associated with every cache line
of data or instructions. The width of the tag is a function

time

W2

W1

10 30 4020 50

Enter to
cache

Read by
CPU

Replacement

Enter to
cache

Write by
CPU

Write back to
Memory

CT1

CT2

0

Figure 1. Critical words and critical time defi-
nitions.

of the size of the address, the number of cache lines and
the associativity of the cache. Bit changes in the tag array
may cause pseudo-hits, pseudo-misses, replacement errors
or multi-hits, as described below:

Pseudo-miss: the tag associated with the indexed entry
does not erroneously match the requested address tag.

Pseudo-hit: the tag associated with the indexed entry
erroneously matches the requested address tag.

Replacement error: the tag address of a line is changed
after the the line has been written to.

Multi-hit: the tag that was modified matches a tag entry
in the same cache set.

A pseudo-miss does not introduce a failure into the cache
system because it only generates an unnecessary access to
the next level of cache hierarchy or to the main memory.
The soft error will be effectively overwritten.

In the case of a pseudo-hit, the processor is sent the
wrong data on a read or updates the wrong address on a
write. The tag address contains the most-significant bits of
an address. So an error in a tag address will change the
original address to a location potentially far away in the ad-
dress space. Considering the property of spatial locality, it
is highly probable that this line would be replaced before it
would be used by the CPU. To maintain high accuracy in
our results, we faithfully model pseudo-hits in our simula-
tions.

A line that experiences a multi-hit, like one that experi-
ences a pseudo-hit, is unlikely to be re-referenced. A re-
placement error represents the majority of all failures that
are due to tag address errors. Consider a line l that is fetched
into the data cache, is written to by the CPU in cycle t1 and
then is written back to the memory in cycle t2. This period
is also the critical time for the tag address portion of this
line, because any failure in the tag address during this period
will cause errors in two main memory locations. First, the
line possessing the original address was expecting the new
updated value, but this store is never performed. Second,
the line associated with faulty address in the main memory
is incorrectly updated with the stored value.

Dirty bits are used only in data caches. An error occur-
ring in a dirty bit, when changing from 0 to 1, does not



Config. Parameter Value
Processor

Functional Units 4 integer ALUs
1 integer multiplier/divider

4 FP ALUs
1 FP multiplier/divider

LSQ / RUU Size 8 / 16 Instructions
Fetch / Decode Width 4 / 4 instructions/cycle
Issue / Commit Width 4 / 4 instructions/cycle

Fetch Queue Size 4 instructions
Cycle Time 1 ns

Cache and Memory Hierarchy
L1 Instruction Cache 16KB, 1-way, 32 byte lines

(IL1) 1 cycle latency
L1 Data Cache 16KB, 4-way, 32 byte lines

(DL1) Writeback, write alloc.
1 cycle latency

L2 256KB unified, 4-way
64 byte lines, 6 cycle latency

Memory 100 cycle latency
Branch Logic

Predictor Combined bimodal 2KB table
two-level 1KB table

8 bit history
BTB 512 entry, 4-way

Mis-prediction Penalty 3 cycles

Table 1. Default Configuration Parameters

affect data integrity. But when a soft error causes a change
from 1 to 0 in a dirty bit, if this line is replaced before it is
written to again, the new value of the line is lost.

In the case of an error in a valid bit, if the bit changes
from 1 to 0, it depends whether the line was dirty or not. If
the line was not dirty, only a miss may occur, but no data
integrity will occur. However, if the line was dirty, the most
recent data written to the line will be lost.

Alternatively, if an error changes the valid bit from 0 to
1, this will change the status of an invalid line to a valid
line. We ignore this case in our computation because the
number of invalid lines is very small as compared to the
number of valid lines (less than 0.2% in our experiments).
Additionally, this line should never be requested by the CPU
and will eventually be replaced by another clean line.

Note that it is possible that a dirty line is read by the CPU
once or several times. In this case, one should take care so
that the critical time of read operations and the critical time
of dirty lines do not overlap. We have been careful to check
for these instances in our experiments.

To summarize this section, the number of important bits
in a clean (not dirty) line during a read operation equals the
word size in bits. But the number of important bits in a dirty
line equals linesize+tagsize+2. The line size and the tag

size are in terms of bits, and we add 2 bits to account for the
dirty bit and the valid bit. Note that our estimation method
for data RAM and tag-addresses is very accurate. That is,
we include in our modeling both the data RAM or the tag-
addresses. These two contain more than 99% of all of the
bits in a typical cache. In this paper we approximate the
vulnerability of the status bits. The accuracy of our method
with respect to these approximations is more than 99.5%.

There is the fact that an erroneous value from the cache,
either read by the CPU or written back to the memory, may
be later over-written by the correct value (e.g., a silent store
may occur [15]). First, note that our work is focused on
computing the reliability of cache memory, not the entire
system. Second, the vulnerability of the cache memory is
always less than or equal to the system-level vulnerability.
In other words, even if error-masking possibilities occur in
the system, the computed reliability (expressed in terms of
MTTF) using our estimation method is always more than
or equal to the actual reliability of the system (i.e., the esti-
mated reliability is always guaranteed.) Note that the guar-
anteed reliability for components of a system is important
because the reliability of the entire system is determined by
the least reliable component.

3.3 Reliability computation

The reliability of the cache system only depends on the
correctness of the CW words. If a CT is assigned to every
CW, then the vulnerability factor of the cache system can
be computed as follows [17]:

V FCache =
∑

residency time of all critical words

Total Execution T ime × M
(3)

where, (M = cache size in number of words) and

V FCache =
∑N

i=1 CTi

TT × M
(4)

where, TT = total execution time, and N =
number of CWs. Note that V FCache is the probability
of error in a cache word, and its value is between 0 and 1. If
every word is critical for the entire time duration, the VF=1.

We assume that the failure rates of all words are statis-
tically independent, and hence, linearly uncorrelated. We
also assume that all cache elements have the same failure
probability. Using the above assumptions and comparing
expressions (1) and (3), the entire FIT rate of the cache sys-
tem can be obtained as follows:

FITCache =
∑

j

raw FITWord(j) ×
∑N

i=1 CTi

TT × M
(5)

FITCache =
raw FIT per bit × Bpw × ∑N

i=1 CTi

TT
(6)



(TT = Total Execution T ime,N =
Number of CWs,Bpw = Bits per word)

To compare the reliability of cache memories indepen-
dent of raw FIT rates, we define the vulnerability of a cache
system during the execution of a program as follows:

V ulnerabilityCache =
FITCache

raw FIT per bit
(7)

Comparing expressions (6) and (7), the following ex-
pression can be derived:

V ulnerabilityCache =
Bpw × ∑N

i=1 CTi

TT
(8)

Expressions (6) and (8) will be used in all experiments
to evaluate the FIT and the vulnerability of caches. As CTs
increase, the vulnerability of the cache system increases as
well. In other words, the longer the duration that critical
data or instructions stay in the cache, the greater the prob-
ability that an error in the cache will be propagated to the
outside.

Cache organization can affect the vulnerability of caches
to SEUs. Some organization parameters that impact vulner-
ability include: prefetching policies, associativity, and the
total cache size. In this paper, we show the impact of cache
size on both performance and reliability of the cache sys-
tem. Note that to estimate the vulnerability of the cache
system, it is necessary to compute the CT value of every
cache word.

4 Experimental Results
For our experimental setup, we use SimpleScalar 4.0

[2] and sim-outorder to get detailed information including
cache miss rates and Instructions Per Cycle (IPC). In our ex-
periments, IPC is used as the performance metric. The de-
fault configuration parameters are detailed in Table 1. Two
parameters, IL1 cache size and DL1 cache size, are varied
across experiments.

We selected twenty programs from the SPEC2000 [25]
benchmark suite. All benchmark programs were compiled
targeting the Alpha ISA [12]. The IL1 and DL1 miss rates
are reported for the default configuration. In all experi-
ments, we fast forward past the first 500 million instructions
and present detailed results for the next 500 million instruc-
tions. In a subset of the benchmark programs (specifically,
ammp, equake, fma3d, mcf and vpr), we see significantly
different IPCs when using our simulation points versus run-
ning the programs to completion. To validate our results,
we re-ran these five programs using the SimPoint simula-
tion points, as specified in [21]. The resulting vulnerability
values are consistent with the vulnerability results reported
in Figure 2 through Figure 15, even though the absolute IPC
numbers differ. These experiments have been executed on
a Dell PowerEdge 2650 c© with dual 2.4 Ghz Xeon proces-
sors and 4 GB of memory, running the Redhat Linux 9.0
c© operating system.

4.1 Reliability of L1 caches

To evaluate the reliability of IL1 and DL1 caches, we
have extended the SimpleScalar source code to integrate our
reliability estimation method. Using SimpleScalar, we can
measure the reliability of a typical program in less than 40
minutes on our Dell PowerEdge system. Our reliability es-
timation method can be used during early design phases.

The main limitation of FI methods is the time to com-
plete a study. The entire program is run for each injected
fault and then compared to a clean run. For example, if we
wanted to test 16 K fault locations in the IL1 cache, the three
steps (1- fault injection, 2-program execution, and 3- results
comparison) would need to be repeated 16 K times. But us-
ing our estimation methodology, we run the whole program
only once. Thus, we obtain a speedup over software-based
FI techniques that is proportional to the number of simu-
lated faults.

Figures 2 and 3 show the MTTFs for the IL1 and DL1
for twenty SPEC2000 benchmark programs. The MTTFs
of these programs have been computed for three different
raw FIT rates (0.002, 0.005, 0.01).

As shown in these figures, the MTTF of the IL1 and DL1
caches (as configured) for all 20 programs is at least 400
years when the raw FIT rate is 0.002. In this case, providing
protection to support short-time missions may be unneces-
sary. For example, assume that bzip is the target application.
The reliability of the IL1 and DL1 caches for a six-month
execution period can be calculated according to expression
(2) as follows:

ReliabilityIL1(6 months) = e
−0.5
2915 = 0.99983 (9)

ReliabilityDL1(6 months) = e
−0.5
1382 = 0.99963 (10)

Now consider if we run mesa in a noisy environment
(i.e., FIT=0.01). If we consider the reliability of this pro-
gram over a longer execution period (10 years), we can
compute the reliability of the L1 cache as follows:

ReliabilityIL1(10 years) = e
−10
160 = 0.939 (11)

ReliabilityDL1(10 years) = e
−10
118 = 0.918 (12)

This level of reliability is not acceptable for safety-
critical applications. In this case, one can choose to employ
redundancy such as byte-wise parity or SEC-DED ECC
codes. If we use ECC codes, we will be able to recover from
a single error. However, this recoverability comes with a po-
tential increase in the hit time for all cache accesses, which
can impact system performance significantly.

Note that ECC codes are commonly used to protect L2
caches. The protection can be done either by passive scrub-
bing or active scrubbing. Scrubbing includes reading a line,



0

500

1000

1500

2000

M
T

T
F

 (
ye

ar
s)

ar
t

bz
ip gc

c
gz

ip
m

cf

m
es

a
vp

r

cr
af

ty

pa
rs

er
tw

olf

wup
wise

sw
im

m
gr

id
ap

plu

ga
lge

l

eq
ua

ke

am
m

p
luc

as

fm
a3

d
ap

si

av
er

ag
e

29
15

73
77

14
31

0

12
26

6

27
84

29
51

57
24

49
06

28
62

24
53

>=

FIT=0.002
FIT=0.005
FIT=0.01

Figure 2. Reliability of IL1 cache with different raw error rates.

0

500

1000

1500

2000

M
T

T
F

 (
ye

ar
s)

ar
t

bz
ip gc

c
gz

ip
m

cf

m
es

a
vp

r

cr
af

ty

pa
rs

er
tw

olf

wup
wise

sw
im

m
gr

id
ap

plu

ga
lge

l

eq
ua

ke

am
m

p
luc

as

fm
a3

d
ap

si

av
er

ag
e

24
51

52
48

20
99

>=
FIT=0.002
FIT=0.005
FIT=0.01

Figure 3. Reliability of DL1 cache with different raw error rates.

correcting any latent single-bit error and recomputing the
ECC. If used passively, scrubbing is done when a line is re-
quested by the CPU or when it is written back to the mem-
ory. If used actively, scrubbing is performed at fixed time
intervals using dedicated hardware. L2 caches are not as
busy as L1 caches, so scrubbing can be performed in the
background without major disruptions to performance.

Comparing the MTTFs shown in Figures 2 and 3, the
MTTF of the DL1 is (on average) smaller than the MTTF of
the IL1 (i.e., the DL1 is more vulnerable to soft errors than
the IL1). This difference is due to a number of reasons:

• IL1 is read only, and

• only one dirty bit is associated with a line. That is,
even if there is only one dirty word in a line, the whole
line is written back to the next level of cache hierarchy
or to the main memory. This makes DL1 more suscep-
tible to SEUs than IL1.

Another interesting result shown in Figures 2 and 3 is
that the reliability of cache memories is highly application-
dependent. For example, the MTTF of IL1 when running
bzip is three times greater than the MTTF for mesa; or the
MTTF of the DL1 when running galgel is about 10 times
greater than the MTTF for lucas.

The last interesting result is the unbalanced MTTFs of
the IL1 and DL1 caches for almost 80% of programs. That
is, when running one particular program, the MTTF of the
DL1-cache is much less than the MTTF of the IL1-cache
or vice versa. For instance, as shown in Figures 2 and 3,

the MTTF of IL1 when running wupwise is about 18 times
greater than the MTTF of DL1. Alternatively, the MTTF of
DL1 when running art is about two times greater than the
MTTF of IL1. In these two examples, the reliability of the
L1 caches depends on the least reliable component (DL1
when running wupwise and IL1 when running art). In the
situation of unbalanced reliability for L1 caches, applying
the same protection technique (for example, byte-parity) for
both IL1 and DL1 caches is not an efficient solution.

4.2 Impact of cache size on vulnerability

Cache organization has been a major design point for mi-
croprocessors [5, 24]. There has been a plethora of research
that has studied the impact of cache organization on perfor-
mance and power [1, 3, 26, 27]. For instance, picking the
right cache size has direct implications on power. In this
section, we investigate the effect of different cache sizes on
reliability.

Figures 4- 7 show the impact of four different cache sizes
(1KB, 4KB, 16KB and 64KB) on both reliability and per-
formance (note, 1KB-4KB caches are included here since
these sizes do appear in the embedded domain). As shown
in the figures, a smaller cache is much more reliable and can
potentially provide reasonable performance. While a larger
cache increases performance, it comes at the expense of in-
creased vulnerability to SEUs. For instance, the IPC for a 4
KB IL1 differs in IPC compared to a 16KB IL1 by less than
5% for art, gcc, gzip, twolf, swim, mgrid, applu, galgel, and
ammp, while the 16 KB IL1 is about twice as vulnerable to
SEUs compared to the 4KB IL1. Similarly for a data cache,



0

1

2

3

x 10
5

V
ul

ne
ra

bi
lit

y

ar
t

bz
ip gc

c
gz

ip
m

cf

m
es

a
vp

r

cr
af

ty

pa
rs

er
tw

olf

wup
wise

sw
im

m
gr

id
ap

plu

ga
lge

l

eq
ua

ke

am
m

p
luc

as

fm
a3

d
ap

si

av
er

ag
e

1KB
4KB
16KB
64KB

Figure 4. Vulnerability of IL1 cache with different cache sizes.

0

0.5

1

1.5

2

IP
C

 (
In

st
ru

ct
io

ns
 p

er
 C

yc
le

)

ar
t

bz
ip gc

c
gz

ip
m

cf

m
es

a
vp

r

cr
af

ty

pa
rs

er
tw

olf

wup
wise

sw
im

m
gr

id
ap

plu

ga
lge

l

eq
ua

ke

am
m

p
luc

as

fm
a3

d
ap

si

av
er

ag
e

1KB
4KB
16KB
64KB

Figure 5. IPC with different cache sizes of IL1.

0

1

2

3

4

5

x 10
5

V
ul

ne
ra

bi
lit

y

ar
t

bz
ip gc

c
gz

ip
m

cf

m
es

a
vp

r

cr
af

ty

pa
rs

er
tw

olf

wup
wise

sw
im

m
gr

id
ap

plu

ga
lge

l

eq
ua

ke

am
m

p
luc

as

fm
a3

d
ap

si

av
er

ag
e

1KB
4KB
16KB
64KB

Figure 6. Vulnerability of DL1 cache with different cache sizes.

0

0.5

1

1.5

2

IP
C

 (
In

st
ru

ct
io

ns
 p

er
 C

yc
le

)

ar
t

bz
ip gc

c
gz

ip
m

cf

m
es

a
vp

r

cr
af

ty

pa
rs

er
tw

olf

wup
wise

sw
im

m
gr

id
ap

plu

ga
lge

l

eq
ua

ke

am
m

p
luc

as

fm
a3

d
ap

si

av
er

ag
e

1KB
4KB
16KB
64KB

Figure 7. IPC with different cache sizes of DL1.

0

2

4

6

8
x 10

4

V
ul

ne
ra

bi
lit

y

ar
t

bz
ip gc

c
gz

ip
m

cf

m
es

a
vp

r

cr
af

ty

pa
rs

er
tw

olf

wup
wise

sw
im

m
gr

id
ap

plu

ga
lge

l

eq
ua

ke

am
m

p
luc

as

fm
a3

d
ap

si

av
er

ag
e

No Flush
Flush per 1M cycles
Flush per 100K cycles
Flush per 10K cycles

Figure 8. Vulnerability of IL1 cache with different flush counts.



0

0.5

1

1.5

2

IP
C

 (
In

st
ru

ct
io

ns
 p

er
 C

yc
le

)

ar
t

bz
ip gc

c
gz

ip
m

cf

m
es

a
vp

r

cr
af

ty

pa
rs

er
tw

olf

wup
wise

sw
im

m
gr

id
ap

plu

ga
lge

l

eq
ua

ke

am
m

p
luc

as

fm
a3

d
ap

si

av
er

ag
e

No Flush
Flush per 1M cycles
Flush per 100K cycles
Flush per 10K cycles

Figure 9. IPC with different flush counts for IL1.

the vulnerability of a 64 KB DL1, on average, is 48 times
more than that of 1 KB DL1. In this case, the IPC of 1 KB
DL1 differs with the IPC of 64 KB DL1 by less than 10%. 1

To reduce the vulnerability of caches to SEUs, one inter-
esting approach is to use configurable cache architectures.
Configurable caches [1, 3, 26, 27] have been shown to re-
duce power consumption. With a configurable cache, some
cache parameters such as cache size and line size can be
tuned for the application under execution. For example, to
reduce power, portions of the cache can be turned off. Us-
ing a configurable cache architectures, we could increase
the reliability of L1 caches up to 200 times. But this so-
lution is only applicable where the workload is very stable
and where configurability does not impact the cache access
time.

4.3 Impact of flushing on vulnerability

Next, we discuss how to apply cache flushing to further
increase the reliability of the cache system. Flushing is a
mechanism used by the operating system for data integrity,
but we will use this mechanism to reduce cache vulnerabil-
ity. Flushing increases the reliability of caches by reducing
the critical time of CWs. That is, critical words get kicked
out of the cache before they have an opportunity to be cor-
rupted.

Using periodic flushing, the vulnerability of the cache
system can be reduced by up to 25 times. The effect of dif-
ferent flush counts on reliability and performance is shown
in Figures 8- 11. The flush count is the number of cycles
between cache flushes.

As shown in Figure 8, if the IL1 cache is flushed every
100K cycles, the vulnerability of IL1 is reduced by 20 times
when running art. For the DL1, applying flushing every
10K cycles reduces the vulnerability by 10 times for mcf.
Flushing, on average, reduces the IPC by less than 10%.

Note that here, we only flush the L1 caches. That is, if a
dirty line exists in the DL1 cache, it will be written back into
the L2 caches. 2 We faithfully model the traffic to L2 related

1The authors realize that cache sizes need to be large to maintain the
working set for programs, as well as multiple program contexts. The point
of this study is to suggest that there are tradeoffs between performance and
reliability, and a larger cache is not always the best solution.

2We are assuming a writeback DL1 cache in this section.

with writing dirty lines to L2. The latency of an L2 cache is
at least 10 times smaller than the latency of main memory.
Using the L2 cache to hold flushed dirty lines significantly
reduces the latency of our flushing technique.

In the case of IL1, there are no dirty lines involved, so
flushing has only to reset the valid bits. Thus, IL1 invali-
dates can be done in one clock cycle.

Here one may ask whether flushing the L1 caches may
increase the vulnerability of L2 caches. But recall that it
is assumed L2 caches are protected by ECC. Moreover, L2
caches can be scrubbed either actively or passively. Note
that since L2 caches are much larger than L1 caches, they
will be much more vulnerable to SEUs. So, L2 caches
should be protected by ECC.

4.4 Store Policy and Refresh

Figures 12 and 13 show the impact on vulnerability
and IPC of changing from a write-back (allocate-on-write-
miss) to a store-thru (no-allocate-on-write-miss) policy in
the L1D. As it is shown in these figures, a store-thru policy
dramatically reduces the cache vulnerability to soft errors,
reducing the average vulnerability in a 64K cache by almost
8 times.

In a write-back cache with allocate on write-miss, a
single word written to a cache block causes the data and
tag/status bits in the entire block to become vulnerable un-
til the block is replaced and written back to memory. In
a store-thru cache, this block is not vulnerable since the
data is immediately written to the memory (there is a short
time interval when the data is in the store buffer that the
data remains vulnerable, though we could use ECC on the
store buffer). In addition, a no-allocate-on-write-miss pol-
icy causes a cache block to not be allocated on a write miss.

In our simulations, the data bus between L1 and L2
caches has enough bandwidth to support the additional
writes to L2 generated by the store-thru policy, and thus
the impact on the IPC of these writes is less than 2%. In a
processor designed with appropriate store buffering to the
L2, we don’t expect this overhead to large.

We have also considered a new mechanism that periodi-
cally refreshes the data cache. We first consider refresh for
only L1D since there are many extra cycles available that



0

5

10

x 10
4

V
ul

ne
ra

bi
lit

y

ar
t

bz
ip gc

c
gz

ip
m

cf

m
es

a
vp

r

cr
af

ty

pa
rs

er
tw

olf

wup
wise

sw
im

m
gr

id
ap

plu

ga
lge

l

eq
ua

ke

am
m

p
luc

as

fm
a3

d
ap

si

av
er

ag
e

No Flush
Flush per 1M cycles
Flush per 100K cycles
Flush per 10K cycles

Figure 10. Vulnerability of DL1 cache with different flush counts.

0

0.5

1

1.5

2

IP
C

 (
In

st
ru

ct
io

ns
 p

er
 C

yc
le

)

ar
t

bz
ip gc

c
gz

ip
m

cf

m
es

a
vp

r

cr
af

ty

pa
rs

er
tw

olf

wup
wise

sw
im

m
gr

id
ap

plu

ga
lge

l

eq
ua

ke

am
m

p
luc

as

fm
a3

d
ap

si

av
er

ag
e

No Flush
Flush per 1M cycles
Flush per 100K cycles
Flush per 10K cycles

Figure 11. IPC with different flush counts for DL1.

0

1

2

3

4

5

x 10
5

V
ul

ne
ra

bi
lit

y

ar
t

bz
ip gc

c
gz

ip
m

cf

m
es

a
vp

r

cr
af

ty

pa
rs

er
tw

olf

wup
wise

sw
im

m
gr

id
ap

plu

ga
lge

l

eq
ua

ke

am
m

p
luc

as

fm
a3

d
ap

si

av
er

ag
e

16KB writeback
16KB storethru
64KB writeback
64KB storethru

Figure 12. Vulnerability of DL1 cache comparing writeback to storethru.

0

0.5

1

1.5

2

IP
C

 (
In

st
ru

ct
io

ns
 p

er
 C

yc
le

)

ar
t

bz
ip gc

c
gz

ip
m

cf

m
es

a
vp

r

cr
af

ty

pa
rs

er
tw

olf

wup
wise

sw
im

m
gr

id
ap

plu

ga
lge

l

eq
ua

ke

am
m

p
luc

as

fm
a3

d
ap

si

av
er

ag
e

16KB writeback
16KB storethru
64KB writeback
64KB storethru

Figure 13. IPC for writeback versus storethru DL1.



the L1D is not being accessed. Our methodology for re-
fresh is to periodically refetch cache lines from L2. In our
approach, in an attempt to avoid interfering with the normal
operation of the DL1 cache system, we refresh one set once
every 100 cycles. So, it takes 12.8K cycles to refresh the en-
tire cache (the total number of sets is equal to 128). While
this can take cache access cycles away from the CPU, if we
can reduce the frequency of accesses, the impact is small
(we found that the IPC drops by less than 2%).

In our simulations we model refresh with a store-thru
cache. In Figures 14 and 15, we show the positive impact
that our refresh policy can have. Figure 14 shows that our
refresh technique can reduce the vulnerability of the store-
thru DL1 cache by three times on average. Together, using
store-thru and refresh increases reliability by 8 ∗ 3 = 24x,
over a write-back cache with no refresh. Inspecting Fig-
ure 15, the impact on IPC is minimal. In future work we
will consider how to adapt between flushing and refresh-
ing. We will also try to be more selective in which lines
are refreshed. Once we are able to reduce the frequency of
refetches, we can apply refresh to the IL1 cache.

5 Conclusions
In this paper, we presented a new method to accurately

estimate the reliability of cache memories. The estimation
method was applied to L1 caches to measure their reliabil-
ity. It was shown that the MTTF of L1 caches, in normal
environments (raw FIT=0.002), is at least 400 years. We
also studied the impact of cache size on the vulnerability of
caches. For selected programs in the SPEC2000 suite, the
reliability of small caches can be 10 times higher than the
reliability for larger caches. To further reduce of the vulner-
ability of caches to soft errors, cache flushing can be used.
Our results show that flushing can increase the reliability
by an order of magnitude. Flushing provides a reasonable
alternative to disabling cache whenever reliability and high
performance are being considered. Also, we employed a re-
freshing technique to reduce the vulnerability of the L1 data
cache by three times. In future work we will look to refresh
the instruction cache to reduce its vulnerability.

References
[1] R. Balasubramonian, D.H. Albonesi, A. Buyuktosunoglu, and

S. Dwarkadas, “Memory Hierarchy Reconfiguration for Energy
and Performance in General-Purpose Processor Architectures,”
Proc. of the 33rd Intl. Symp. on Microarchitecture, pp. 245-
257, Dec. 2000.

[2] D. Burger and T. M. Austin, “The SimpleScalar Tool Set, Ver-
sion 2.0,” University of Wisconsin-Madison, Computer Science
Dept., Technical Report No. 1342, June 1997.

[3] S. Dropsho, A. Buyuktosunoglu, R. Balasubramonian, D.H.
Albonesi, S. Dwarkadas, G. Semeraro, G. Magklis, and M.L.
Scott, “Integrating Adaptive On-Chip Storage Structures for
Reduced Dynamic Power,” Proc. of the Intl. Conf. on Parallel
Architectures and Compilation Techniques, pp. 141-152, 2000.

[4] F. Faure, R. Velazco, M. Violante, M. Rebaudengo, and M.
Sonza Reorda, “Impact of Data Cache Memory on the Sin-
gle Event Upset-Induced Error Rate of Microprocessors,” IEEE
Trans. on Nuclear Science, Vol.50, No. 6, pp.2101-2106, 2003.

[5] M. D. Hill and A. J. Smith, “Aspects of Cache Memory and In-
struction Buffer Performance,” PhD Thesis, University of Cal-
ifornia at Berkeley, Berkeley, CA, 1987.

[6] J. Gaisler, “Evaluation of a 32-bit Microprocessor with Built-
in Concurrent Error-Detection,” Proc. of Intl. Symp. on Fault-
Tolerant Computing (FTCS-27), pp. 42-46, June 1997.

[7] S. Hareland, J. Maiz, M. Alavi, K. Mistry, S. Walstra, and C.
Dai, “Impact of CMOS Scaling and SOI on soft error rates of
logic processes,” Symp. on VLSI Technology, Digest of Tech-
nical Papers, PP. 73-74, June 2001.

[8] S. H. Hwang and G. S. Choi, “On-Chip Cache Memory Re-
silience,” Proc. of the Intl. Symp. on High-Assurance Systems
Engineering, pp. 240-247, Nov. 1998.

[9] B. W. Johnson, “Design & analysis of fault tolerant digital
systems,” Addison-Wesley Longman Publishing, ISBN:0-201-
07570-9, Boston, MA, 1988.

[10] J. Karlsson, P. Ledan, P. Dahlgren, and R. Johansson, “Using
Heavy-Ion Radiation to Validate Fault Handling Mechanisms,”
IEEE Micro, 14(1), pp. 8-23, Feb. 1994.

[11] T. Karnik, B. Bloechel, K. Soumyanath, V. De, and S.
Borkar, “Scaling Trends of Cosmic Rays Induced Soft Errors
in Static Latches Beyond 0.18µ,” Symp. on VLSI Circuits, Di-
gest of Technical Papers, pp. 61-62, June 2001.

[12] R. Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro,
19(2):24–36, March 1999

[13] S. Kim and A. K. Somani, “Area Efficient Architectures for
Information Integrity in Cache Memories,” Proc. of the 26th

Annual Intl. Symp. on Computer Architecture (ISCA’99), pp.
246-255, Atlanta, Georgia, May 1999.

[14] S. Kim and A. K. Somani, “Soft Error Sensitivity Character-
ization for Microprocessor Dependability Enhancement Strat-
egy,” Proc. of the Intl. Conf. on Dependable Systems and Net-
works (DSN), pp. 416-425, June 2002.

[15] K. M. Lepak and M. H. Lipasti, “Silent Stores for Free,”
Proc. of the 33rd Annual IEEE/ACM Intl. Symp. on Microar-
chitecture (MICRO-33), pp. 22-31, Dec. 2000.

[16] P. Liden, P. Dahlgren, R. Johansson, and J. Karlsson, “On
Latching Probability of Particle Induced Transients in Combi-
national Networks,” Proc. of the 24th Symp. on Fault-Tolerant
Computing (FTCS-24), pp. 340-349, June 1994.

[17] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T.
Austin, “A Systematic Methodology to Compute the Architec-
tural Vulnerability Factors for a High-Performance Micropro-
cessor,” Proc. of the 36th Annual IEEE/ACM Intl. Symp. on
Micro-architecture (MICRO-36), pp. 29-40, 2003.

[18] S. S. Mukherjee, J. Emer, T. Fossum, and S. K. Reinhardt,
“Cache Scrubbing in Microprocessors: Myth or Necessity?,”
Proc. of the 10th IEEE Pacific Rim Intl. Symp. on Dependable
Computing, pp. 37-42, March 2004.



0

1

2

3

4

x 10
4

V
ul

ne
ra

bi
lit

y

ar
t

bz
ip gc

c
gz

ip
m

cf

m
es

a
vp

r

cr
af

ty

pa
rs

er
tw

olf

wup
wise

sw
im

m
gr

id
ap

plu

ga
lge

l

eq
ua

ke

am
m

p
luc

as

fm
a3

d
ap

si

av
er

ag
e

No Refresh
Refresh per 1.28M cycles
Refresh per 128K cycles
Refresh per 12.8K cycles

Figure 14. Vulnerability of DL1 cache with periodic refreshing.

0

0.5

1

1.5

2

IP
C

 (
In

st
ru

ct
io

ns
 p

er
 C

yc
le

)

ar
t

bz
ip gc

c
gz

ip
m

cf

m
es

a
vp

r

cr
af

ty

pa
rs

er
tw

olf

wup
wise

sw
im

m
gr

id
ap

plu

ga
lge

l

eq
ua

ke

am
m

p
luc

as

fm
a3

d
ap

si

av
er

ag
e

No Refresh
Refresh per 1.28M cycles
Refresh per 128K cycles
Refresh per 12.8K cycles

Figure 15. IPC of DL1 cache with periodic refreshing.

[19] H. T. Nguyen and Y. Yagil, “A Systematic Approach to SER
Estimation and Solutions,” Proc. of the 41st Annual Intl. Reli-
ability Physical Symp., pp. 60-70, Dallas, Texas, 2003.

[20] E. Normand, “Single Event Upset at Ground Level,”IEEE
Trans. on Nuclear Science, Vol. 43, No. 6, Dec. 1996.

[21] E. Perelman, G. Hamerly, and B. Calder “Picking Statisti-
cally Valid and Early Simulation Points,” Proc. of the Intl. Con-
ference on Parallel Architectures and Compilation Techniques,
September 2003.

[22] M. Rebaudengo, M. S. Reorda, and M. Violante, “An Ac-
curate Analysis of the Effects of Soft Errors in the Instruction
and Date Caches of a Pipelined Microprocessor,” Proc. of the
ACM/IEEE Design, Automation and Test in Europe Conf. and
Exhibition (DATE’03), pp. 602-607, Munich, Germany, 2003.

[23] A. M. Saleh, J. J. Serrano, and J. H. Patel, “Reliability of
Scrubbing Recovery-Techniques for Memory Systems,” IEEE
Trans. on Reliability, Vol. 39, No. 1, pp. 114-122, April 1990.

[24] A. J. Smith, “Cache Memories,” ACM Computing Surveys,
Vol. 14, No. 3, pp. 473-530, Sep. 1982.

[25] SPEC CPU2000 Benchmarks, http://www.specbench.org.

[26] C. Zhang, F. Vahid, and W. Najjar, “A Highly Configurable
Cache Architecture for Embedded Systems,” Proc. of the 30th

Annual Intl. Symp. on Computer Architecture (ISCA’03), pp.
136-146, June 2003.

[27] C. Zhang, F. Vahid, and R. Lysecky, “A Self-Tuning Cache
Architecture for Embedded Systems,” Proc. of the Design, Au-
tomation and Test in Europe Conf. and Exhibition (DATE’04),
pp. 142-147, Feb. 2004.

[28] W. Zhang, S. Gurumurthi, M. Kandemir, and A. Siavasub-
ramaniam, “ICR: In-Cache Replication for Enhancing Data
Cache Reliability,” Proc. of the Intl. Conf. on Dependable Sys-
tems and Networks (DSN), pp. 291-300, June 2003.


