
Symbolic Reasoning About Dynamic Systems in

Conflict Alert Situations

Mei Li

August 5, 2007

Contents

1 Introduction of the Problem 1

1.1 Goal of Research . 1

1.2 The Example Problem . 2

1.3 Current Solutions . 3

1.3.1 System Components 4

1.3.2 System History . 8

1.3.3 TCAS Vertical Resolution Advisory Selection 10

1.3.4 TCAS Horizontal RA 15

1.4 Design Considerations . 16

2 Literature Review 19

2.1 Categorization . 19

2.2 Selected Papers and Comments 22

2.3 Summary . 27

3 Mathematical Formulation of a Quantitative Method 30

3.1 Vertical vs. Horizontal Maneuvers 30

3.2 Components of the Goal Function of the Optimization Prob-

lem . 31

1

3.3 Optimization Problem Considerations 32

3.3.1 Mathematical Definitions of PROCON, LINCON and

MANCON . 33

3.3.2 Mathematical Formulation of the Goal Function . . . 35

3.4 Optimization and Possible Maneuvers 36

3.5 Complexity . 38

4 Q2 Approach 42

4.1 Introduction to General Dynamic Systems and Q2 Symbolic

Reasoning . 43

4.1.1 General Dynamic System 46

4.1.2 Q2 Representation and Consistency of Symbolic Rea-

soning . 48

4.1.3 Qualitative Regions 51

4.2 Application of Q2 to Conflict Alert Resolution 52

4.2.1 Partitioning of System Spaces in Conflict Alert Situation 53

4.2.2 Partitioning of Output Space and Qualitative Outputs 56

4.2.3 Partitioning of State Space and Qualitative States . . 57

4.2.4 Partitioning of Input Space and Qualitative Inputs . 60

4.2.5 A Moore Machine Representation of the Dynamical

System . 60

4.2.6 Partitioning of Input Space with MANCON Included 62

4.2.7 Converting the Mealy Machine to a Moore Machine . 64

4.3 Pseudo Code for the Level 1 Partitioning Algorithm 68

4.3.1 Algorithm (PΩ) for Partitioning the Output Space for

the Conflict Resolution Problem 69

4.3.2 Algorithm (PΘ) for Partitioning the State Space . . . 71

2

4.3.3 Algorithm (PΛ1) for Level 1 Partitioning of the Input

Space . 72

4.4 Pseudo Code for the Level 2 Partitioning Algorithm (MAN-

CON included) . 73

4.4.1 Algorithm (PΛ2) for the Level 2 Partitioning of the

Input Space . 73

4.5 Consistency of Partitioning by Multiple Criteria 75

5 Symbolic Reasoning for Con

6.1.2 ATC Quantitative Method 93

6.1.3 Middle Ground Method 94

6.1.4 Time Distribution of the Methods 96

6.2 Quality of Maneuvers . 99

7 Results 101

7.1 Scenarios . 101

7.2 Computed Maneuvers . 105

7.3 Computation Time . 107

7.4 Evaluation of Maneuver Quality 111

8 Generalization of the Q2 Approach 113

8.1 Types of General Dynamic Systems 113

8.1.1 Static and Dynamic Systems 113

8.1.2 Linear and Non-linear Systems 114

8.1.3 Example for Testing 115

8.2 Generalization of Partitioning and Reasoning 115

8.2.1 Pseudo Code for Partitioning the Output Space of

Linear Dynamic Systems 117

8.2.2 Pseudo Code for Partitioning the State Space of Lin-

ear Dynamic System 118

8.2.3 Pseudo Code for Partitioning the Input Space of Lin-

ear Dynamical Systems 120

8.2.4 Partitioning Complicated Cases of Linear Dynamical

Systems . 121

8.2.5 Generalization of Reasoning 123

8.3 Testing of Generalized Approach 125

4

8.3.1 The Circuit Problem 126

8.3.2 The ATC problem . 129

9 Conclusion 132

9.1 Contributions . 132

9.2 Possible Future Research . 133

5

Abstract

This thesis was motivated by the problem of computational complex-

ity of conflict alert and conflict resolution in air traffic control (ATC). A

symbolic reasoning approach is proposed to solve this problem with higher

computational efficiency. Then this approach is generalized to solve similar

problems for linear dynamic systems. Finally this general method is tested

against both the ATC conflict alert problem and another example of the lin-

ear dynamic system. Even though the final product of this thesis is a general

method of symbolic reasoning, the emphasis is on the ATC example.

Organization of the thesis is as follows. The background information

about ATC conflict alert handling is given first. Then some literature re-

view on this topic is presented. Next the mathematical formulation of our

example problem is constructed. This forms the base of the research prob-

lem. From the complexity analysis, the urgency of a more efficient approach

appears. At this point the qualitative approach is introduced. The symbolic

reasoning is performed for this ATC example. After this, quantitative and

qualitative methods are discussed and compared. The results from the simu-

lations are shown. As the final step, generalization of the symbolic reasoning

approach is formed and tested.

Chapter 1

Introduction of the Problem

1.1 Goal of Research

It was shown in [36] that for a given continuous dynamic system, a consis-

tent qualitative representation (an abstraction of the continuous dynamic

system) can be constructed such that the results of symbolic logical reason-

ing within the qualitative representation hold in the underlying quantitative

dynamic system. In that formalization, an example of a consistent quali-

tative/quantitative representation of a simple dynamic system (for which a

closed form model was known) and of reasoning using such a representa-

tion, was provided. The main idea of the approach presented in [36] was to

partition the spaces — input, state and output - of a dynamic system (Carte-

sian products of variables) into subregions and assign a unique symbol to

each of such partitions. An automaton was then constructed to capture the

qualitative behavior of a dynamic system. For more complicated processes,

complete knowledge, such as known mathematical models, may not always

be available, and thus other means are needed to develop qualitative repre-

1

sentation proposed in [36].

In the research described in this thesis, an example from the air traffic

control field [76] is used. In this example, the objective is to generate con-

flict alerts whenever two aircraft are too close or predicted to become too

close, and to generate maneuver advisories such that, if executed, will cause

avoidance of a collision under arbitrary behavior of the other aircraft. It

is our goal to provide experimental evidence of the appropriateness of the

qualitative/quantitative approach and its computational efficiency to solv-

ing problems like the conflict alert and avoidance problem. Furthermore, a

method for establishing consistent partitions of linear dynamic system(GDS)

spaces that define qualitative abstractions through associating the partitions

with the inputs, states and outputs of a qualitative dynamic system (QDS)

are developed. Finally, an algorithm for finding solutions through qualita-

tive reasoning is presented. The complexity of the qualitative approach is

compared with the quantitative approach.

1.2 The Example Problem

In air traffic control, two or more aircraft approaching each other within a

close distance will create a conflict alert situation.

Traditionally, alerts are issued using quantitative algorithms based upon

tracking and prediction of the aircraft positions. There are a few systems

that can generate alerts. One is an automated system used by air traffic

controllers in the tower to track aircraft positions measured by radars. This

automation system performs conflict alert functions (without generating ma-

neuver instructions) and the human controllers give maneuver instructions.

Another system is used by pilots. It is an on-board system known as Traffic-

2

alert and Collision Avoidance System (called TCAS [1, 2]). The TCAS uses

the sensor mounted on the aircraft to monitor positions of intruders. It gen-

erates alerts when close encounters occur. When an alert is issued, TCAS

gives the pilot maneuver instructions, known as resolution advisories (RA’s).

Traditional methods have their limitations, which will be discussed in the

next sections.

Our intent is to develop a new algorithm to compute resolution advisories

assuming positions and velocities of the targets in the encounter are known

by means of sensor measurement and tracking. This algorithm can be either

in the avionics on board, or it can be in the automation system on the

ground. The sensor for such purpose can be either a regular short range or

long range radar, or it can be a GPS based on ADS-B broadcasting. This

algorithm should overcome some of the limitations of traditional methods.

1.3 Current Solutions

The Traffic Alert and Collision Avoidance System (TCAS) is an airborne

system developed by the FAA that operates independently from the ground-

based Air Traffic Control (ATC) system. Other systems, such as Automatic

Collision Avoidance System (ACAS), operate more or less in a similar way.

More recent developments, such as the “Sense and Avoid” concept, also

borrow basic concepts from TCAS. In fact, any type of an alerting and reso-

lution system is equipped with some sort of sensor to get the measurements,

then it checks the alert logic, then (when necessary) it computes maneuvers

to avoid conflicts. Note that the alerting and resolution algorithm itself is

not limited to avionics or to aircraft-based systems, such as TCAS. Since

TCAS is a typical collision avoidance system, we briefly overview it below.

3

TCAS was designed to increase cockpit awareness of the proximity of

an aircraft to other aircraft and to serve as a “last line of defense” for the

prevention of mid-air collisions [30]. There are two levels of TCAS systems:

TCAS I and TCAS II (all future developments are at the level of TCASII):

• TCAS I was developed to accommodate the needs of the general avia-
tion (GA) community and of the regional airlines. This system issues

Traffic Advisories (TAs) to assist pilots in the visual acquisition of

intruder aircraft. TCAS I is mandated on aircraft with 10 to 30 seats,

although TCAS II may be installed, instead.

• TCAS II is a more sophisticated system which provides the information
of TCAS I, and also analyzes the projected flight path of approaching

aircraft and issues Resolution Advisories(RAs) to the pilot to resolve

potential mid-air collisions. TCAS II is required internationally in

aircraft with more than 30 seats or weighing more than 15,000 kg.

1.3.1 System Components

The system components and various options that are implemented in airline

aircraft (cf. [65]) (see Figure 1.1), are described below.

TCAS Computer Unit (CAS Logic): This unit performs airspace surveil-

lance, intruder and own aircraft tracking, threat detection and reso-

lution, advice generation. Pressure and radar altimeter inputs, and

other aircraft configuration discrete inputs (not shown in Figure 1.1),

are used by the computer to control the collision avoidance logic pa-

rameters that determine the protecting volume around the TCAS air-

craft. If a tracked aircraft is a collision threat, the computer selects the

4

best avoidance maneuver, and if the threat aircraft is also equipped

with TCAS II, this maneuver is coordinated.

Mode S Transponder: The Mode S Transponder performs the normal ATC

functions of existing Mode A&C transponders (explained below). It

basically encodes numbers into signals. Because of its selective ad-

dress capability the mode S transponder is also used to provide air-

to-air data exchange between TCAS-equipped aircraft to ensure co-

ordinated, complementary resolution advisories.

Antennas: The Antennas used by TCAS II include a directional antenna

which is mounted on top of the aircraft, and an omni-directional an-

tenna. Typically, the directional antenna transmits interrogations on

1030 MHz at varying power levels in each of four 90◦ azimuth seg-

ments. Transponder replies are received on 1090 MHz and are sent to

the TCAS computer unit. The directional antenna permits the parti-

tioning of replies to reduce synchronous garbling. An omni-directional

transmitting and receiving antenna mounted on the bottom of the air-

craft provides range and altitude data on targets that are below the

TCAS aircraft.

Displays:

Traffic Advisory Display: The traffic advisory (TA) display depicts

the position of the traffic relative to the TCAS aircraft to assist

the pilot in visually acquiring intruding aircraft. This display

can be either a dedicated TCAS display or a joint-use weather

radar and traffic display. Alternatively, in some aircraft the TA

display will be an electronic flight instrument system (EFIS) or a

5

Figure 1.1: TCAS components.

6

flat-panel-display which combines traffic and resolution advisory

information on the same scope face.

Resolution Advisory Display: The resolution advisory (RA) display

is a standard Vertical Speed Indicator (VSI), modified to indicate

the vertical rate that must be achieved to maintain safe separation

from threatening aircraft. The RA display contains segmented

red and green eyebrow lights around the vertical speed scale.

Normally, there are two RA displays, one for the Captain and one

for the First Officer. In some cases, the TA and RA displays are

combined, e.g., traffic information is shown in the center portion of an

electronically displayed VSI.

Aural Annunciation: Displayed traffic and resolution advisories are sup-

plemented by synthetic voice advisories generated by the TCAS Com-

puter. The words “Traffic, Traffic” are annunciated at the time of the

traffic advisory which directs the pilot to look at the TA display to

locate the intruding aircraft. If the encounter does not resolve itself,

a resolution advisory is annunciated, e.g., “Climb, Climb, Climb.” At

this point the pilot adjusts or maintains the vertical rate of the aircraft

according to the advisory. This action is reflected on the display by

showing that the VSI needle is out of the red segments.

Below we explain some terminology used in the description of TCAS.

Mode A: A Mode A transponder can encode a number into the reply signal.

This code is a four digit octal number. “1200” is an example of a Mode

A code for the decimal number 640.

7

Mode C: A Mode C transponder can encode its altitude into the reply

signal. This code is known as the “Grey Code”, and it encodes 100

ft. increments into 12 bits. Note that Mode C transponders can also

nearby aircraft. For aircraft with Mode C or S transponders, the

TCAS II display can generate an RA, which commands vertical ma-

neuver (climb/descend) to avoid nearby co-altitude traffic. For air-

craft with Mode S transponders and TCAS II equipment, RAs will be

coordinated between aircraft (e.g., the two TCAS II processors will

cooperatively agree to send one aircraft in a climb and the other in a

descent.) Note: aircraft equipped with TCAS II must have Mode S

transponders installed.

TCAS III: Attempted to use the TCAS directional antenna to assign a

bearing to other aircraft, and thus be able to generate a horizontal

maneuver (e.g. turn left or right). TCAS III has been judged by

the industry to be infeasible due to limitations in the accuracy of the

TCAS directional antennas. The directional antennas were judged

not to be accurate enough to generate an accurate horizontal-plane

position, and thus an accurate horizontal resolution.

TCAS IV: Uses additional information encoded by the target aircraft in

the transponder reply (i.e., the target aircraft encodes its own position

into the transponder signal) to generate a horizontal resolution to be

included in an RA. This requires the target aircraft to have some data

link capability at a minimum. In addition, some reliable source of

position (e.g., GPS) is needed on the target aircraft in order for it to

be encoded.

TCAS IV can use Mode S data link capability to encode position in-

formation into TCAS replies. TCAS IV development is still underway,

but it is not likely to be fielded any time soon, as there are still tech-

nical and institutional issues that need to be resolved.

9

Also, new trends in data link capabilities, such as Automatic Depen-

dent Surveillance Broadcast (ADSB), have popped up recently and

have pointed out a need to re-evaluate whether a data link system

dedicated to collision avoidance, such as TCAS IV, should be incorpo-

rated into a more generic system of air-to-air data link. This kind of

data link capability could then be used in other on-board applications,

e.g., monitoring of civilian aircraft by military aircraft.

1.3.3 TCAS Vertical Resolution Advisory Selection

The existing TCAS II uses the following logic (cf. [2]) for RA selection.

When a threat (conflict alert) is declared, a two-step process is used to select

an RA. The first step is to select the sense direction - upward or downward -

of the resolution advisory. Based on the range and altitude of the intruder,

the CAS (collision avoidance system) logic models the intruder’s path to

the CPA. The CPA is defined as the vertical plane on which the collision

would happen. Figure 1.2 shows the paths that would result if own aircraft

climbing or descending to resolve the encounter. The CAS logic computes

the predicted vertical separation for each of the two cases and, in the case

shown in Figure 1.3, selects the “downward” sense because it provides the

greater vertical separation.

However, the CAS logic includes additional criteria in selecting the di-

rection of maneuver. In those cases where an altitude crossing by the threat

or the TCAS aircraft is projected, the CAS logic will pick the sense direction

that avoids altitude crossing if it can maintain the desired amount of verti-

cal separation at the CPA. The desired amount of separation, referred to as

ALIM, varies from 400 feet to 740 feet, depending on own aircraft’s altitude

10

Figure 1.2: RA sense selection

11

Figure 1.3: Non-crossing RA sense selection

regime. An example is shown in Figure 1.3, where the upward sense is se-

lected because this selection guarantees the ALIM requirement and avoids

altitude crossing. However, if ALIM cannot be achieved, a crossing RA

(meaning the maneuver makes paths cross at different times) will be issued.

The second step in selecting an RA is to select the strength of the advi-

sory. The least disruptive (meaning the least distance away from the original

flight plan) vertical rate maneuver that will still achieve safe separation is

selected. Advisory strength will be continuously evaluated and modified if

necessary during the course of the encounter.

After the TCAS aircraft has chosen an RA, occasionally a threat aircraft

maneuvers vertically in a manner that thwarts the RA. If the threat is not

equipped with TCAS, the own aircraft will be advised either to increase its

12

Figure 1.4: “Increase vertical rate” maneuver

vertical rate from 1500 fpm to 2500 fpm or to reverse sense. Examples of

“increase-vertical-rate” and “sense-reversal” RAs are shown in Figure 1.4

and Figure 1.5, respectively. For threat aircraft equipped with TCAS II, an

unexpected vertical maneuver is handled only by an “increase-vertical-rate”

advisory, as “sense-reversal” advisories are not permitted in this case.

Due to aircraft climb performance limitations at high altitude or in the

landing configuration, the CAS logic may inhibit a “climb” or “increase

climb” advisory during an encounter. These limitations are provided to the

CAS logic from an on-board store of geographic information. When such a

limitation is identified, the CAS logic will choose a viable alternative RA.

TCAS is able to handle multi-aircraft situations in various ways. First,

TCAS will attempt to resolve the situation with a single RA, if it can main-

13

Figure 1.5: “Sense reversal” maneuver

tain safe separation from each of the threat aircraft. Second, it will generate

a multiple-maneuver RA that is a sequence of basic maneuvers. The CAS

logic avoids “contradictory” climb and descent maneuvers, i.e., such that

are not necessary for avoiding collision. The extreme case is when there is

no feasible solution; then the decision is to maintain the current altitude.

It should also be noted that all “increase-descent” RAs are inhibited

below 1450 AGL and all “descend” RAs are inhibited below 1000 AGL, so

that the aircraft flight profile will not fall below the Standard Glide Path

(the landing angle above the runway). All RAs are inhibited below 500

AGL.

After the CPA is passed and the range between the TCAS aircraft and

the threat aircraft begins to increase, the resolution advisory is canceled and

pilots return to their assigned altitude or to their original vertical rate (if

climbing or descending).

14

1.3.4 TCAS Horizontal RA

In TCAS III, the horizontal RA capability is made possible through the use

of estimates of the miss distance, i.e., the distance in the horizontal plane be-

tween an intruder and a host aircraft at the time of the closest approach. An

accurate estimate of an intruder’s miss distance offers the capability to issue

a horizontal RA, which instructs the host aircraft to turn in the horizontal

plane to escape a possible collision (cf. [15]). Depending on the method

chosen to calculate the miss distance, five parameters must be known. For

the TCAS III method, the five parameters are: range (distance between the

intruder and the host aircraft), range rate, bearing (angle between the paths

of the two aircraft), bearing rate, and speed of the host aircraft. With these

parameters, the miss distance m can be calculated as

m = r2ω/v, (1.1)

where r is the measured relative range between the host and intruder air-

craft, ω is the estimated intruder bearing rate, and v is the magnitude of

the relative velocity between the two aircraft (which is calculated from three

parameters: range rate, bearing of the intruder, and speed of the host air-

craft).

An intruder that penetrates the threat boundary may be filtered out

by Miss Distance Filtering (MDF) in order to avoid the generation of too

many nuisance RAs. The CAS logic selects the appropriate RA based on a

comparison of the expected increase in aircraft separation that would result

from each valid RA type: climb, descend, turn left, or turn right.

Although TCAS antenna configurations caused errors which were just

too large to support accurate MDF and horizontal RAs, the use of Mode

S data link and GPS data in TCAS IV promises to provide the data accu-

15

racies required for horizontal functions as well as for improved vertical RA

performance. TCAS IV is under development and a lot of research has been

contributed to this direction.

1.4 Design Considerations

In the TCAS systems currently in use, RA’s concern maneuvers in the al-

titude direction, such as to climb or to descend, and at what rate. Having

horizontal maneuvers as RA’s would provide more efficient usage of the air

space, and thus would allow for the accommodation of more aircraft safely

in the controlled air space.

When aircraft come into encounter situations, based on the level of co-

ordination among participating aircraft, conflict resolution methods can

be classified as non-cooperative and cooperative (cf. [37]). In the non-

cooperative case, the aircraft involved in the encounter do not exchange

information on their intentions and do not trust one another at all, hence

the worst case approach is adopted. The two-aircraft non-cooperative con-

flict resolution problem can be formulated (cf. [72]) as each aircraft playing

a zero-sum non-cooperative game against disturbances that model the un-

certainty in the other aircraft intentions, with the value function being the

aircraft distance. In the cooperative conflict resolution case, the current po-

sitions and intentions of the aircraft are assumed to be perfectly known to

a supervising central controller. Each aircraft completely trusts the central

controller (and hence all the other aircraft), and follows its advice. The

cooperative conflict resolution problem is typically formulated as an opti-

mization problem, where the flight plans of all the aircraft are designed so

as to avoid conflicts while minimizing a certain cost function (cf. [23]). In

16

between the extremes of non-cooperative and cooperative conflict resolution

there is the probabilistic conflict resolution approach. In this approach, each

aircraft position is assumed to be distributed according to some probabilistic

law, which models the presence of disturbances affecting the aircraft motion

as well as the partial confidence of each aircraft in the available information

on the intentions of the other aircraft (cf. [55, 38]).

Although most of the commercial aircraft are equipped to be coopera-

tive, a conflict resolution system can not rely solely on this assumption. In

the case where data link fails or data exchange is interfered, the resolution

system is supposed to deal with a conflict situation without knowing the

intention of the intruder aircraft. Thus the system should be required to

handle both cooperative and non-cooperative aircraft.

Typically, conflicts are resolved by resorting to three different actions:

turn, climb/descend, and accelerate/decelerate, which affect the aircraft

heading, altitude, and speed, respectively. Resolution strategies can be one

of these actions or a combination of them. Unless absolutely necessary,

an aircraft takes one maneuver at a time, instead of doing two maneuvers

or three in combination, because that is the simplest and easiest for the

pilot to follow. Among these maneuver choices, cost and efficacy of each

are different. It is known that climb/descend is the most efficient action

for resolving short-term conflicts. On the other hand, excessive changes of

altitude are likely to cause discomfort to passengers. Also, vertical maneu-

vers are not much compatible with the current vertically layered structure

of the airspace. Speed changes cause more fuel consumption and have to

be considered with caution. The maneuvers must direct the aircraft away

from the conflict situation, but should also include a plan to direct aircraft

back to the flight path after conflict is solved. Overall, maneuvers have to

17

favor shorter travel distance, less fuel consumption, passenger comfort, ease

of handling for the pilot, less deviation from flight path, and minimum time

delay.

With so may factors to consider, we need to investigate the current

methods to handle them. The next chapter provides a background study

on how conflict detection is modeled and how maneuvers are determined in

recent research.

18

Chapter 2

Literature Review

Several approaches [20, 22, 23, 25, 26, 31, 37, 38, 53, 55, 58, 65, 67, 72]

to the problem of detection and resolution of traffic conflicts have been

developed and described. James K. Kuchar and Lee C. Yang in “Survey of

Conflict Detection and Resolution Modeling Methods” (cf. [39, 40]) give a

comprehensive overview of recent work and the applicability in an advanced

Air Traffic Management (ATM) Environment comprising free flight traffic

conflict situations.

2.1 Categorization

Conflict resolution can be categorized (cf. [39]) by the way the responses to

conflicts are determined. Three categories are identified:

• Prescribed

• Force field.

• Optimized

19

In the prescribed approach [11, 24], conflict resolution maneuvers are

determined in advance, based on a set of procedures. For example, the

Ground Proximity Warning System (GPWS) issues a standard “Pull Up”

warning when a conflict with the terrain exists. GPWS does not perform

additional computation to determine an optimal escape maneuver.

The shortcoming of the prescribed approach is that these models can be

complex and require a large number of rules to completely cover all possible

encounter situations. Additionally, it may be difficult to certify that the

system always operates as intended, or the system may in fact not use the

best strategy in resolving conflicts.

Force field [22, 37] approaches model each aircraft as a charged parti-

cle and use modified electrostatic equations to determine conflict resolution

maneuvers.

While the force field methods seem attractive in the sense that a conflict

resolution solution is continuously available using relatively simple equa-

tions, the shortcoming is that some cases exist that the computed maneu-

vers are difficult to be used in operation. For example, a solution from a

force field model may require that an aircraft continually make a series of

gradual turns and speed changes. This requires a high level of guidance

on the flight deck and increases complexity beyond issuing simple heading

vectors. Additionally, some solutions may include cusps or other physically

infeasible trajectories that must be modified to be used.

Optimized [23, 38, 72] conflict resolution derives a decision for deter-

mining which of several avoidance options minimizes a given cost function.

Several sub-categories exist that differ in the way the decision is derived:

• Rule based - the situation is compared against a set of pre-defined

20

rules to determine the course of action

• Optimal Control Theory approach (OCT) - cost functions and con-
straints are defined and an optimal solution is determined that mini-

mizes the cost functions.

• Game theory based - the problem is modeled as a zero-sum non-

cooperative dynamic game and a solution is found through negotiation

among the game players.

• Genetic Algorithms [53](GA) based - genetic algorithms are used for
searching for a solution.

The existing optimized methods are different in terms of the assumptions

on the model of the dynamic system being used. The main difference is in

the method that the current state is projected into the future. This dictates

how conflicts are managed. The Nominal projection method is the most

straightforward method, it gives a first order estimate of where and how

conflicts will occur. Nominal projections, however, do not account for the

possibility that an aircraft does not behave as predicted by the dynamic

model. This uncertainty is very important in long-term conflict detection.

The other extreme of the dynamic model is to use worst-case projection.

However worst-case maneuvers are highly unlikely, using this model may

greatly reduce the overall traffic capacity. The probabilistic approach [80]

appears to provide a reasonable balance between relying too much on an

aircraft following the dynamic model vs. relying too much on the assump-

tion an aircraft doing worst-case maneuvers. However, there is a tradeoff

between the complexity of the probabilistic model and the ability to esti-

mate probabilities rapidly. Also, the resolution maneuvers used to develop

21

the alerting logic are based on the immediate problem of avoiding a conflict

and do not consider the additional maneuvering required to return to the

original flight path. Thus the maneuver selection logic [80] does not incor-

porate issues such as increased fuel burn or flight time in the decision on

alert.

2.2 Selected Papers and Comments

From the previous section it appears that the category of Optimized ap-

proaches should be the main focus. The category of Prescribed resolution

maneuvers can not offer the capability to determine an optimal escape ma-

neuver. The category of Force field approaches ignores to consider the phys-

ical character of a flight and maneuvers, and causes trajectories that are

not physically realizable in the sense that it does not take into consideration

the fact that this is an airplane with crew, passengers and cargo on board,

all of which require some constraints to be satisfied regarding the possible

maneuvers.

Within the most promising Optimized category, different approaches dis-

tinguish themselves in the method by which the current state is projected

into the future. Below is a list of these different approaches with the example

papers.

It is worth mentioning that the Traffic Alert and Collision Avoidance

System (TCAS), the Ground Proximity Warning System (GPWS) and the

Parallel Runway Monitor (PRM) are the systems that are actually used.

Others are just research models being investigated.

1. Traffic Alert and Collision Avoidance System (TCAS) [2]

22

The TCAS system is a collision avoidance system currently used on

board of transport passenger aircraft and is working as an ATC in-

dependent safety-net to detect and avoid short term conflicts. The

TCAS system has been reviewed in Section 1.3.

Problem: The current system only gives vertical solutions, while hor-

izontal maneuvers are preferred for both passenger comfort and the

variety of possible solutions.

2. Durand et al., “Optimal Resolution of En Route Conflicts.” [23]

An automatic conflict solver and its implementation in an Air Traffic

Simulator, with statistical results on real traffic over France, is pre-

sented. The solver takes into account speed uncertainties and allows

aircraft to fly on direct routes, solves every conflict on a pre-loaded

day, and gives each aircraft its requested flight level (altitude) and

departure time. The conflict resolution problem is highly combinator-

ial involving n aircraft and cannot be optimally solved using classical

mathematical optimization techniques. Therefore an optimization ap-

proach using genetic algorithms was used.

The “cost function” approach used in [23] is very similar to the starting

point of the problem formulation in this thesis and thus will be used

in the solution proposed in this thesis.

3. Yang & Kuchar, “Prototype Conflict Alerting System for Free Flight.”

[80]

A prototype alerting system for a conceptual free flight 1 environment

1A free flight [25] is defined as a safe and efficient flight operating capability under

instrument flight rules in which the operators have the freedom to select their path and

23

is discussed. The alerting logic is based on a probabilistic model of

aircraft sensor and trajectory uncertainties that need not be Gaussian

distributions. Monte Carlo simulations are used over a range of en-

counter situations to estimate conflict probability as a function of in-

truder position, heading and speed, as determined through a datalink

between the aircraft. The probability of conflict along potential avoid-

ance trajectories is used to indicate whether adequate space is available

to resolve the conflict.

Problems identified by the authors:

(a) There is a tradeoff between the complexity of the probabilistic

model and the ability to estimate probabilities rapidly.

(b) The resolution maneuvers used to develop the alerting logic are

based on the immediate problem of avoiding a conflict and do

not consider the additional maneuvering required to return to the

original flight path. Thus the logic does not incorporate issues

such as increased fuel burn or flight time in the decision to alert.

(c) Centralized traffic management issues have been ignored. Be-

cause, as assumed in the free flight concept, pilots have initial

responsibility for traffic separation, ground controllers could have

difficulty when suddenly presented with a conflict that was not

resolved by the flight crews.

Despite the complexity, this paper gives a very clear explanation of

the conflict alert problem and its resolution procedure. The solution

is intuitive and straight forward. However, due to the high computa-

speed in real time.

24

tional complexity of Monte Carlo simulations this approach cannot be

used to solve the problem addressed in this thesis.

4. Paielli & Erzberger, “Conflict Probability Estimation for Free Flight.”

[55]

The probability of conflict between aircraft along a predicted trajec-

tory is estimated. The trajectory prediction errors are modeled as

normally distributed and the two error covariances for an aircraft pair

are combined into a single, equivalent covariance of the relative posi-

tion. A coordinate transformation is then used to derive an analytical

solution. Numerical examples and a Monte Carlo validation are pre-

sented.

Problems: This approach is similar to [80], so all the problems identi-

fied in [80] apply to this approach, too. Also, the methods are intended

to “assist rather than replace human air traffic controllers. That is,

they are intended to provide automated advisories for the controllers,

but not to make the ultimate decisions. The conflict probability can-

not be reduced to zero”.

Despite the problems listed above, this paper gives a very good for-

mulation of trajectory prediction using two error covariances. The

method of trajectory prediction will be used in this thesis.

5. Tomlin et al., “Conflict Resolution for Air Traffic Management: a Case

Study in Multi-Agent Hybrid Systems.” [3]

A conflict resolution architecture for multi-agent hybrid systems with

emphasis on Air Traffic Management Systems (ATMS) is presented. In

such systems, conflicts arise in the form of potential collisions which

25

are resolved locally by inter-agent coordination. To allow optimiza-

tion of agent objectives, inter-agent coordination is minimized by non

cooperative conflict resolution methods based on game theory. If non-

cooperative methods are not successful, cooperative methods are used.

Examples of potential resolution maneuvers in such an environment

are given.

Problems: The paper uses the method of “artificial potential field”

from robotic path planning to produce conflict-free maneuvers for

given scenarios. As a result of the method used, the conflict is some-

times avoided by aircraft transitioning to a “circle” mode, i.e., a circu-

lar path, or a loop. This solution did not consider the real maneuver

style of commercial aircraft, and did not consider increased fuel burn

or flight time.

6. Kosecka et al., “Generation of Conflict Resolution Maneuvers for Air

Traffic Management.” [37]

Based on the proposed predefined coordination maneuvers (Tomlin et

al., [3]) an extension was proposed. A distributed motion planning

algorithm based on potential and vortex fields is used. The algorithm

does not always guarantee flyable trajectories, but the results can serve

as a qualitative prototype which can be approximated using combina-

tions of straight lines and arcs.

Problems: This is similar to [3], so all the problems in [3] exist.

7. Gent et al. “Free Flight with Airborne Separation Assurance.” [25]

Human in the loop simulations regarding conflict resolution under a

proposed Free Flight Environment are described. The algorithm for

26

simulating human behavior was developed and integrated with a cock-

pit system display.

Problems: The paper’s focus is to probe for relevant human factors

issues. It does not solve the problem addressed in this thesis, i.e., it

does not propose an algorithm for an automated maneuver solution

under conflicts.

8. Gerling, “Conflict Detection in Air Traffic Control.” [26]

The prediction of horizontal conflicts between aircraft on the basis of

surveillance data, taking planned course changes into account, is de-

scribed. Assuming standard turn maneuvers, the predicted flight paths

and the horizontal distances are calculated as a function of time. In ad-

dition, the variation of ground speed in case of a known constant wind

component is considered. The resulting distance function is trans-

ferred into a measure of threat reflecting basic conflict characteristics

such as severity, urgency, dynamics and duration.

This paper gives details as to how to calculate the amount of distance

from flight path in horizontal level when aircraft is taking planned

course changes. A similar method of defining the distance between

the planned path and the maneuver path will be used in this thesis.

2.3 Summary

From the literature review provided above it seems clear that in order to

solve the conflict resolution problem addressed in this thesis one could at-

tempt to use an approach in which a cost function would be defined and

a best solution would be chosen based upon the cost function. With stan-

27

dard turn maneuvers, the predicted flight paths and the horizontal distances

would be calculated as a function of time [26]. Thus the value of the integral

of distances over time would give the measure of how “disruptive” the ma-

neuver is. This would provide the basis of defining cost function like in [23].

Based on the cost function, the least disruptive maneuver which ensures the

conflict situation to be solved would be selected.

The above cost function is based on the knowledge of both aircraft po-

sitions and velocities, and it is based on the assumption that the intruder

aircraft is not doing any evasive maneuvers. For each step of the predic-

tion, the optimal maneuver is obtained by assuming the intruder aircraft

will continue with its velocity for the next scan, and the self aircraft is only

changing course according to the selected maneuver. In a more practical

case, the intruder aircraft will likely maneuver once it detects a conflict sit-

uation. It is necessary to anticipate this maneuver. There are at least two

ways to handle this. One, even though the maneuver is unknown, it is pos-

sible to estimate intruder aircraft’s optimal maneuver using a similar cost

function approach. Then the maneuver selection procedure should include

such an estimate and revise/update the resolution advisory. As a result,

this increases the complexity of the problem. The other method is to con-

sider all the possible maneuvers by the intruder aircraft and anticipate all

of them in the calculation. Under each possible maneuver by the intruder

aircraft, the self aircraft maneuver guidance can be computed accordingly.

If the number of maneuver choices is N for each aircraft, the total number

of maneuver possibilities is N2 for two (not doubled, but squared!). For this

research, we limit our effort to search for maneuvers of the own aircraft by

predicting L steps ahead, without considering possible evasive maneuvers of

the intruder. Even so, the problem is complicated enough. We show the

28

complexity analysis in section 3.5, after we formally formulate the problem.

29

Chapter 3

Mathematical Formulation of

a Quantitative Method

3.1 Vertical vs. Horizontal Maneuvers

The current Traffic Alert and Collision Avoidance System, called TCAS, was

born in 1981. The final version, version 7, has been successfully developed

and used since 1997. TCAS II provides Traffic Advisories (TA’s) of potential

threats and it also provides pilots with resolution advisories (RA’s) when

needed. The system determines the course of each aircraft — climbing, de-

scending, or flying straight at the same level. Then it issues a RA advising

the pilots to execute an evasive maneuver to avoid the other aircraft, such

as “Climb” or “Descend”. If both planes are equipped with TCAS II, then

the two computers offer de-conflicting RA’s.

The RA gives maneuvers such as to climb or to descend. It is mostly in

the altitude direction. TCAS is designed to select the RA strength that is

the least disruptive to the existing flight path, while still providing ALIM

30

feet of separation. In the case where vertical maneuvers are too difficult

(there are aircraft climb performance limitations at high altitude) to provide

adequate vertical separation, horizontal maneuvers should be considered.

Also, when the altitude information of the aircraft is not provided (non-

altitude reporting intruders), vertical RA’s cannot be generated. In such

cases co-altitude is assumed and horizontal maneuvers should be selected.

3.2 Components of the Goal Function of the Op-

timization Problem

The aim for the general ATC conflict alert problem is to find the optimal ma-

neuver, either horizontal or vertical, that will resolve the conflict situation.

From the end of Chapter 1, where design issues were discussed, it is obvious

that some choices of maneuvers are preferred by the pilots, the controllers

and the airlines. It is usually desired to select the least destructive maneuver

from the flight plan, the shortest time delay and the simplest maneuver for

the pilot to carry. These provide the guidelines for defining the optimization

problem. To select the best maneuver among a list of candidate maneuvers

it is necessary to define an optimization criterion, or a goal function that

assesses the quality of a selected maneuver. For vertical maneuver RA in

TCAS it is obvious that the minimum path change is preferred. To quantify

this, denote the path of aircraft A in the vertical plane (2D plane yet to

be defined) as curve C1, and denote its maneuver path as M1. The path

change can then be measured by the area between the two curves. Since the

aircraft always return to their original flight paths, the area between the two

curves can be calculated. Denote the path of aircraft B in the vertical plane

as curve C2, and M2, if maneuver is applied for it. The area between the

31

two paths can then be calculated. If return maneuvers are to be included

in the computation, the goal function can be defined as the sum of these

areas for all the aircraft in the encounter space. The goal function should be

minimized under the condition that every possible maneuver has to create

sufficient separation between the two aircraft.

For horizontal maneuvers, the areas can be defined on the horizontal

plane in the same manner.

In addition to path difference calculations, often fuel consumption and

passenger comfort during evasive maneuvers are considered in selecting RA’s.

Finally, the number of maneuver orders is desired to be minimum for the

sake of pilots. We first incorporate all these elements in the goal function

and later make assumptions to simplify them.

3.3 Optimization Problem Considerations

The goal function should be minimized under the condition that every pos-

sible maneuver has to create sufficient separation between two aircraft. For

two aircraft, there is one separation constraint between them. For N aircraft

one needs to consider all pair-wise constraints and thus in such a case there

are N(N − 1)/2 separation constraints in total. For our research, the sim-
plest case with a pair (N = 2) of aircraft is considered. The optimization

problem is under the constraints of maintaining separation, i.e., avoiding

the conflict alerts of three types — PROCON, LINCON and MANCON -

described below.

32

3.3.1 Mathematical Definitions of PROCON, LINCON and

MANCON

The PROCON, LINCON and MANCON alerts are defined in [5].

Mathematically, the PROCON alert is declared if the distance, d, be-

tween two aircraft is smaller than a threshold, dproxim1, or if the distance is

smaller than a larger threshold, dproxim2, and the two aircraft are approach-

ing each other at a rate R larger than a speed threshold Rproxim:

(d < dproxim1) ∨ (d < dproxim2 ∧R > Rproxim) (3.1)

The LINCON condition is satisfied if, by linear prediction, the impact

time, IMPT , of the aircraft pair is below the lookahead time, Tlookahead, (a

threshold of 40 seconds):

(IMPT < Tlookahead) ∧ (IMPT > 0) (3.2)

where IMPT is the time at which the two aircraft are predicted to come

into a lateral conflict or the Time of Co-Altitude (TOCA), which ever is

earlier. Since in the example of this thesis we are considering only horizontal

maneuvers, we can assume that IMPT is equal to the Time of Lateral

Violation (TOLV), whose predicted value is computed from the following

equation [5]:

TOLV =

−(x · ẋ+ y · ẏ)− [LATQ2(ẋ2 + ẏ2)− (x · ẏ + y · ẋ)2]1/2

ẋ2 + ẏ2

(3.3)

and LATQ is a system parameter (e.g., 2.0 nmi), ẋ, ẏ are relative ve-

locities in x, y directions, x, y are relative positions in x, y directions.

33

MANCON conditions are tested when the turn rate, ω, is larger than a

threshold, ωthresh. The MANCON conditions are satisfied if one aircraft is

turning into the other aircraft and will cause a conflict situation under the

“turning model” prediction [5]:

ω > ωthresh ∧ [(s1 < 0) ∨ (s2 > 0) ∨ (s3 > 0) ∨ (s4 > 0)] (3.4)

where

s1 = x · ẋ+ y · ẏ (3.5)

s2 = ẋ1 · ẋ2 + ẏ1 · ẏ2 (3.6)

s3 = x · ẋ1 + y · ẏ1 (3.7)

s4 = −(x · ẋ2 + y · ẏ2) (3.8)

and ẋ, ẏ are relative velocities in x, y directions, x, y are relative

positions in x, y directions, xi, yi, ẋi, ẏi are position and velocity of aircraft

i (i = 1, 2).

PROCON is the highest priority alert since it is issued when two aircraft

are already in close proximity. LINCON is less severe since it is based

upon the prediction within 30 seconds in the future. MANCON is even less

severe than LINCON since it is based on the prediction for 60 seconds in

the future, including the estimation of the trajectory of own aircraft due to

its maneuver. If none of the three conditions are satisfied, the aircraft are

in a safe status.

While it would be desirable that none of the conditions for LINCON alert

or MANCON alert are satisfied during a maneuver, this is rather difficult to

achieve. When an aircraft pair is in some form of conflict alert, the maneuver

may or may not be able to take the aircraft out of conflict alert immediately.

34

It is more likely the aircraft pair continues to be in conflict for a few scans,

with more severe conflicts turning into less severe conflicts, and eventually

turning into a safe status.

3.3.2 Mathematical Formulation of the Goal Function

Based upon the literature review, we selected the Optimized approach to

the problem of RA generation. Towards this aim, we need to define the

cost function and the constraints that the solution must satisfy. Taking into

account the components of the goal function discussed in Section 3.2, we

define the cost function as a measure of deviation of flight trajectory from

the original flight plan during the course of the conflict avoiding maneu-

ver. We limit this research to horizontal maneuvers and ignore the vertical

maneuvers.

Assuming the prediction time (number of steps) is l, the cost of the

maneuver can be expressed as:

g() =
tl

tk=t1

(xm(tk)− xc(tk))2 + (ym(tk)− yc(tk))2

+w2 · |av|+ w3 · |aω|+ w4 · |ż(m)(tk)| (3.9)

where the first item is the deviation of flight, the second term and the

third term (with w2 and w3 as weight coefficients) are fuel consumption

proportional to speed changes and turns, and the fourth term (with weight

coefficient w4) [44] is associated with passenger discomfort. However, not

considering vertical maneuvers, the fourth term can be ignored. Since the

fuel consumption rate depends on the weight of the aircraft, the type of the

aircraft, the design of the engine and the type of fuel in the engine, it is very

complicated and not within the scope of this research. We will ignore the

35

second term and third term too. Therefore, the cost function is:

g() =
tl

tk=t1

(xm(tk)− xc(tk))2 + (ym(tk)− yc(tk))2 (3.10)

where tk - time, (x
m(tk), y

m(tk)) - a point on the X,Y trajectory of the

maneuver at time tk, and (x
c(tk), y

c(tk)) - a point on the trajectory of the

planned flight path at time tk. The function g() computes the discrepancy

between the two paths (planned and maneuver) during the maneuver inter-

val [t1, tl]. The planned trajectory is assumed to be known. The maneuver

trajectory is computed by the RA determination algorithm.

3.4 Optimization and Possible Maneuvers

A concrete maneuver command must be given in the form of the values of

climbing rate, e.g., in feet per minute (fpm), descending rate (fpm), turn

rate (degree per second) to the left or right, speed up or speed down rate

(fraction of the gravity constant g). All possible maneuver choices are listed

in Table 3.1 in Section 1.2. These choices are based upon [4].

The smallest interval of the vertical rate is 500 fpm. The choices are

±500 fpm, ±1000 fpm, . . . , ±4500 fpm. The largest feasible vertical rate is
±4500.

The smallest interval of turn rate is 1 deg/sec. The choices are 1, 2, . . . , 7

deg/sec for either left turn or right turn. The largest feasible turn rate is 7

deg/sec.

The smallest interval of speed up rate (acceleration) is 45 knots/minute,

which is approximately 0.04g. The choices are 0.036g 0.073g 0.11g 0.146g

0.183g 0.22g. The value of 0.22g is the maximum acceleration feasible.

36

We see that horizontal maneuvers typically include turns, ω, and ac-

celerations, av. Normally one maneuver is carried out at a time, i.e., no

concurrent maneuvers [31] are executed. Therefore, a maneuver that starts

at tk and ends at tk+1 can be expressed as:

a(tk) =
av(tk), acceleration maneuver

ω(tk)/v(tk), turn maneuver
(3.11)

The optimization problem is then to find a sequence of maneuvers a(t1),

a(t2),. . . , a(tl−1) that minimizes the cost function (3.10).

Since this optimization includes multi-step prediction, the trajectories of

the (own) aircraft are computed according to the following motion equations.

xm(tk+1) = xm(tk) + v
m
x (tk) ·∆T +

1

2
· ax · (∆T)2 (3.12)

ym(tk+1) = ym(tk) + v
m
y (tk) ·∆T +

1

2
· ay · (∆T)2

and

xm(t0) = x
c(t0) (3.13)

ym(t0) = y
c(t0)

where ax, ay, vx, vy are projections of a and v on the X and Y coordinates,

respectively. The trajectory of the other aircraft is computed using the same

equations using zero acceleration.

The optimization is subject to the satisfaction of three constraints de-

fined in section 3.3.1 by equations 3.1, 3.2 and 3.4, respectively. The con-

straint PROCON must evaluate to false, i.e., at any time t ∈ [t0, t0+T] the
minimum separation constraint must be satisfied (eq. (3.1) ≡ false). More-
over, at the end of the maneuver time, the aircraft pair is out of conflict

situation, i.e., the conflict constraints eq. (3.2) ≡ false and eq. (3.4) ≡ false
are maintained.

37

The maneuvering has to be performed within the time interval that

is between the issuing of an alert and the collision (if a maneuver m2.5(s)-439.7(n)0.2oat

Maneuver Name Dimension Unit Possible Values

turn left or right horizontal degree/second 1,2,3...7

speed up or down horizontal knot/minute 45, 90, ..., 270

climb up or descend vertical foot/minute 500, 1000, ..., 4500

Table 3.1: Possible maneuver choices

steps are computed, there are N1 choices for each choice computed in up to

step N2−1. Thus the total number of choices for all possibilities during the
time duration of N2 steps is: N1+N

2
1 +N

3
1 + ...+N

N2
1 . Therefore, the time

complexity of this problem is in the order of:

O(
NN2+1
1 − 1
N1 − 1) ·O(1) = O(NN2+1

1) (3.14)

To give an intuitive understanding of the complexity of this problem we

compute the number of possible maneuvers that need to be considered for

the values of N1 and N2 that are chosen based upon the characteristics of

the typical sensor, i.e., on a typical scan duration, as well as on a reasonable

maneuver granularity in the horizontal plane. These values are summarized

in Table 3.1. For horizontal maneuvers, seven turns in the increments of

one degree per second have been considered. The choices for horizontal

linear acceleration are in the increments of 45 knots per minute, up to 270

knots. For comparison, in the vertical dimension, there are nine choices for

climbing up or descending in the range from 500 to 4,500 feet per minute,

in the increments of 500. The granularity for each of these choices could

be finer, which would result in even higher values of N1, N2, and as a net

result, in a higher computational complexity.

According to this table, there areN1 = 27 possible horizontal maneuvers:

39

seven left turns, seven right turns, no maneuver, six positive accelerations

and six negative accelerations. Since we are assuming only one maneuver

at a time, the case of no turn is the same as zero acceleration. Assuming

N2 = 6 steps for prediction, the number of horizontal maneuvers that need

to be computed is
277 − 1
27− 1 = 4.02 · 10

8

Furthermore, assuming that each computation can be done within 10ms, the

computation time of such a problem would be equal to 4.02 ·106 sec = 1, 117
hours. In case N2 = 10 was taken, this would be on the order of 10

10 hours

of computation.

It is clear that the time complexity of multiple-step prediction is too

high to be practically implementable. Therefore, there is a need for low-

ering the complexity of RA generation without sacrificing the accuracy of

maneuver advisories. One way to achieve this goal would be by lowering

the granularity of partitioning the various variables into intervals; for in-

stance by recomputing predictions at larger time intervals. Unfortunately,

this might result in errors - making maneuvers that might lead to conflict.

What is really needed is a non-uniform resolution - dense quantization in

some (critical) regions and sparse partition in some other (not so impor-

tant) regions. In other words, there is a need for “logical”, rather than just

uniform partition of the space of the dynamical system. But the notion of

“logical partitioning” would first had to be formalized. This is exactly what

the Q2 approach [36] is meant to achieve - logical (consistent) partition-

ing, s.t., symbols are assigned to partitions and decisions in the symbolic

space never cause inconsistencies, i.e., while the decision is not precise, it

always falls within the boundaries of the right partitions. In the research

40

described in this thesis we applied the main principles of the Q2 approach

to the problem of RA generation.

The prediction of the aircraft trajectory can be modeled by state tran-

sition functions. The maneuvers behave like the input control signals that

influence the state. The task to find the optimal input is to search within

all the input possibilities, compute the future state from the current state,

check for sufficient separation between aircraft, compute the cost function

for each valid possibility, and select the one with the lowest cost function.

The trajectory of the aircraft depends, not only on the value of the input,

but also on the state the system is in, and on the time interval at which a

given input is applied. As a result, the dimension of the search is large: two

for control input in X and Y , four for initial state in X and Y , one for time.

Thus for one aircraft alone, the search space is seven-dimensional. For two

aircraft as a pair, the search space is thirteen-dimensional.

For our ATC problem, we will try to find a quantized version of the input,

state, and output. The goal will be to select a resolution that allows us to

preserve the consistency of the logical reasoning about conflict resolution.

The process that we will apply is the one of abstraction. In this process we

will select some special values in the input, state and output spaces of the

dynamical system, which we will treat as symbolic inputs, i.e., such that will

carry some meaning. More detail of this idea is given in chapter 4.

41

Chapter 4

Q2 Approach

In the previous chapters the quantitative approach to the problem of detec-

tion and resolution of conflict alerts has been analyzed. The problem was

formulated as an optimization problem. The analysis of complexity resulted

in the conclusion that the problem is not computationally tractable within

the available time limits. For this reason, we now turn our attention to quali-

tative (symbolic) methods, instead. Symbolic reasoning is prefered for many

tasks because (cf. [6]) people relate better to reasoning based on alphanu-

meric symbols; planning can be performed more easily; symbolic reasoning

can be used to achieve goals expressed in a high-level symbolic language; cer-

tain complex problems become computationally tractable when converted

to symbolic representation [61]. This approach has demonstrated partial

success in maneuver detection (cf. [46]), where qualitative reasoning about

a quantitative dynamic system was used. In this thesis we investigate the

possibility of using symbolic reasoning for the problem of conflict resolution

formulated in Chapter 3. Similarly as in [46], our system will be modeled

as a dynamic system.

42

Some of the symbols and notations are listed below.

q(t), u(t) — state and control input, respectively

W — output set,

Q — state set,

U — input set

X — position vector (in the state space), with components Xx and Xy

V — velocity vector (in the state space)

X — position difference, a vector (in the output space)

x1, x2 — position vectors of aircraft 1,2

a1, a2 — acceleration for aircraft 1,2

P — input process function

F — global state transition function

f , g — state transition function, output function

χ — abstraction function

S, Σ — GDS and QDS

TQU — the input space

Λ — qualitative inputs (events),

Θ — qualitative states,

Ω — qualitative output

4.1 Introduction to General Dynamic Systems and

Q2 Symbolic Reasoning

The integration of symbolic (qualitative) and quantitative representation

involves several tasks (cf. [36]):

43

1. Determine the region (qualitative output) to which the output of the

system belongs given a region (qualitative state) to which the current

state belongs.

2. Determine to which of the regions in the state space the state will be-

long (next qualitative state) given the region in the Cartesian product

of input, initial state and time sets.

3. Determine the class of input processes that would cause the system to

switch to a particular region in the state space.

It is important to know how to partition a quantitative dynamic system so

that the results of reasoning within the qualitative structure (i.e., answers

to the above three questions) always hold in the underlying quantitative

dynamic system. In the formalization in [36], the quantitative structure is

represented using a general dynamic system (GDS). The qualitative coun-

terpart, called Qualitative Dynamic System (QDS), is represented using a

finite-state automaton structure. The two structures are related through ab-

straction functions called qualitative abstractions of dynamic systems. The

abstraction functions take the duty of mapping the GDS onto the QDS.

Interpretation of the QDS is achieved by the inverse of the abstraction func-

tion. The entire quantitative/qualitative structure is referred to as the Q2

structure.

A typical approach to translating quantitative variables into qualitative

symbols is to partition the quantitative state variables with some critical

values of the quantitative variables. The result is partitions of the space

of the dynamic system in hyper boxes. When the value of the quantitative

state variable crosses a critical value, a qualitative event occurs. These

events can be monitored and used as inputs to a finite state automaton,

44

which provides a qualitative model of the continuous plant. The automaton

switches to a new state and generates qualitative output associated with this

state. Various approaches to mapping quantitative systems to qualitative

systems have been investigated, mainly in the AI community (cf. [73, 43,

49, 63, 68, 29, 50, 60, 78]).

In the hyperbox representation, a qualitative event is triggered by a

transition between boxes, with each event causing a corresponding transition

between states in the automaton. A hyperbox representation constrains the

critical values of one state variable independent of the values of the other

state variables. In contrast to the hyperbox approach, the Q2 approach

[36] allows the critical values for a quantitative variable to be functions of

the other quantitative variables, which results in partitions that in general

have more complex shapes than hyperboxes. Reasoning with boxes is not

consistent since such a representation of a dynamic system cannot guarantee

that its results will hold in the underlying quantitative system. This means

that if the symbolic reasoner derives a conclusion that the next state will be

within a given box, it may or may not be true. It is important to understand

(cf. [36]) that the boxes approach is not optimal, and that whenever we use

it, we are making a tradeoff between the consistency of reasoning and the

lack of precise knowledge.

Similar results can be obtained by identifying regions in the spaces of

a general dynamical system, instead of considering boundaries between re-

gions. Describing points in the regions is easier when the boundaries are

hard to describe, and thus it is used in this paper.

For our problem, it is necessary to find the consistent partitioning of

three system spaces, i.e., the output space, the state space, and the input

space (Cartesian product of the input set, initial state space and time). This

45

partitioning allows us to construct qualitative reasoning systems whose in-

ferences are guaranteed to hold in the underlying (deterministic) continuous

dynamic system [36].

4.1.1 General Dynamic System

Our quantitative plant is modeled by a General Dynamic System (c.f. [52]).

The model can be represented in differential equation form as:

q̇ = f(q(t), u(t), t) (4.1)

w = g(q(t), t) (4.2)

where q is the state, w is the output and u is the control input of the system.

In the control literature, this set of equations is generally referred to as the

plant model, where the function f determines how the system state q varies in

response to the input (control signals), g determines how the output signal is

generated as a function of state. A plant whose characteristics don’t change

with time t is called a time-invariant system. [47, 19] The time set in the

definition of a general dynamic system must have an order relation on it.

The input process consists of time functions together with inner splicing on

them, and the state transition function has the following properties [52]:

consistency, semigroup, and causality.

The definition of a general dynamic system is constructed in such a way

as to reflect some general characteristics of all dynamic systems. The splicing

property of the input processes gives the flexibility of choosing any control

strategy for the given system at any point in time. The consistency property

of this function ensures that state transitions are not instantaneous. The

semigroup property means that the system state at any particular time, t,

46

Figure 4.1: The structure of a general dynamic system.

can be computed either directly for the whole time interval [t0, t), or indi-

rectly by performing two computations: for [t0, t1) and [t1, t). More gener-

ally, it allows us to decompose the computation of a state into finitely many

steps. The causality property means that the value of the new state depends

only on the input function restricted to the interval [t0, t) (in addition to

the previous state).

A model of a general dynamic system includes an input set U, an output

setW, a time set T with an order relation on it, a state set Q, input process

functions, P , a global state transition function F and an output function,

g. From now on, we will refer to the input, state, and output sets as input

space, state space and output space, respectively.

The anatomy of a general dynamic system is represented in Figure 4.1.

The circles in this figure represent sets: T - time set, U - input set, Q - state

set, and W - output set, respectively. The rectangles represent functions

that appear in the definition of a general dynamic system: P - input process

functions, f - local state transition function, and g - output function. The

state transition function has two incoming arrows: from U - the input at

current time, and from Q - the state at current time.

47

4.1.2 Q2 Representation and Consistency of Symbolic Rea-

soning

An abstraction is the mapping from a real system to an abstract system

which maintains certain desirable properties and throws away details [28]

[7, 8, 71, 27] [12]. In general, a mapping from a set S to a finite set I is

called a qualitative abstraction function if it is total and many to one. A

typical example of such an abstraction function is the function

sign :W → {−1, 0, 1} (4.3)

whose value is determined by the sign of the output W of the system (it is

-1 for negative values of W , 1 for positive, and 0 for W = 0).

For the purpose of this research, we propose to use abstraction to rep-

resent an infinite-state quantitative dynamic system with a finite state au-

tomaton. The representation is provably correlated with the underlying

dynamic system. This means that the conclusions about the state transi-

tions and outputs of the system in the qualitative representation hold in the

quantitative dynamic system .

The Q2 qualitative abstraction approach given in [36] differs from other

methods of qualitative abstractions in the fact that it makes qualitative

inputs a function of not only quantitative inputs but also of quantitative

states and time. The idea of treating subsets of T ×Q×U as the qualitative

input allows the qualitative dynamic system to be a consistent abstraction

of the general dynamic system plant. The argument and proof are in [36].

Qualitative reasoning in the AI literature [59, 77, 69, 21, 17, 62, 13, 70,

41, 64, 51, 66] uses the term “abstraction function” and “qualitative dy-

namic system” in a somewhat different way than we use it in this paper. In

the literature about qualitative reasoning, direct qualitative counterparts of

48

quantitative concepts are dealt with: qualitative inputs, qualitative states,

qualitative outputs, and qualitative time. We, following the work in [36],

interpret qualitative inputs (events) as subsets of the Cartesian product of

quantitative states, inputs and time. This removes the main difficulty to con-

structing representation in which qualitative reasoning about a quantitative

dynamic system is consistent. Obviously we cannot abstract just qualitative

inputs (meaning input values from an interval of possible values), because

the qualitative behavior which includes both the trajectory of the system’s

state and the output, depend not only on the value of the input, but also

on the state the system is in. Plus, this behavior depends also on the time

interval at which a given input is applied. In order to be able to predict the

system’s behavior, we need all these three pieces of information: the current

state, the input, and the time interval at which the input is applied.

The relation between the GDS and the corresponding QDS is shown in

Figure 4.2. As shown in this figure, the lower row indicates how the GDS

operates. The middle row gives the abstraction functions. Let χ be the

abstraction function, where

χ = (χTQU,χQ,χW) (4.4)

consisting the three qualitative abstraction functions:

χTQU : T ×Q×U→ Λ

χQ : Q→ Θ

χW :W→ Ω.

Λ,Θ,Ω are the qualitative input event set, qualitative state set, and quali-

tative output set, respectively. The top row of Figure 4.2 indicates how the

49

Figure 4.2: Q2:Quantitative/qualitative representation of a dynamic system.

QDS operates, where φ is the qualitative state transition function

φ : Θ× Λ→ Θ,

and γ is the qualitative output function

γ : Θ→ Ω.

Definition 1 [36] Let S, Σ and χ represent a GDS, a QDS, and an abstrac-

tion function defined as in previous sections. The pair (Σ,χ) is a consistent

representational structure of a dynamic system S if the following consistency

postulates are satisfied ∀q, q0, u, t:

50

1.

γ(χQ(q)) = χW(g(q))

2.

φ(χQ(q0),χTQU(t, q0, u)) = χQ(f(t, q0, u)).

4.1.3 Qualitative Regions

So far we have not made any assumptions about the functions f , g and about

the topology of the initial partitioning of the output space W. Without

such presumptions we can not make any statements about the form of the

derived partitions. For practical applications, the assumption of continuity

of functions can be made such as: functions f, g are continuous, except for

a finite number of points. If the dynamic system is a single-output system,

we can assume the partitioning of this variable into intervals. The types of

constraints on the system spaces and of the consequences of such constraints

(like the above assumptions) on the partitioning of the spaces of a GDS

is a subject of topology. Any deeper analysis of topological properties of

dynamic systems is beyond the scope of this thesis. However, we make

these comments for the sake of completeness. For instance, in our problem,

the most relevant questions are whether by following the approach proposed

here one can arrive at a fine number of partitions and whether qualitative

regions are connected. For instance, qualitative classes of the state space Q,

obtained through the application of g−1 to open intervals inW, are regions

in Q which are open and connected (cf. [36]). This is because inverse images

of open and connected sets through a continuous function are also open and

connected. Similarly, the application of f−1 to these regions results in a

collection of open and connected regions in T ×Q×U. Depending on the

51

type of the functions f and g, there might be only a few regions or an infinite

number. Interesting questions include the following: what are the classes of

dynamic systems for which these regions are contiguous? When would we

have only a finite number of them? And many others. As we stated above,

such questions are beyond the scope of this thesis.

All of the system’s spaces can be subdivided into regions. The behavior

of the system can be represented as a trajectory in each of the spaces:

input process plus initial state trajectory, state space trajectory, and output

space trajectory. Each of these trajectories may cross the region boundaries.

The event of crossing a boundary in one of the system’s spaces coincides

with the crossing of the respective critical boundary in all system’s spaces.

Qualitative behaviors can be characterized by the trajectories, i.e., by series

of qualitative inputs (events) in Λ, qualitative states in Θ, or qualitative

output in Ω.

4.2 Application of Q2 to Conflict Alert Resolution

Now we apply the Q2 approach to our problem of conflict alert resolution.

First we consider two aircraft and refer to them as an aircraft pair. We

represent two aircraft as one dynamic system. The variables of this dynamic

system are as follows.

The output space of the pair is a vector space span over the output

variableW:

W = (x1 − x2,v1 − v2) (4.5)

where x1,x2 are the position vectors of the two aircraft and v1,v2 are

52

their velocities. It is composed of the difference of position vectors, and the

difference of velocity vectors.

State space of the pair is a vector space span over the state variable Q:

Q = (x1,x2,v1,v2). (4.6)

It is composed of individual position vectors and velocity vectors of each

aircraft in the pair. This can be very high dimensional if x1 alone is vector

of 3-D.

Input space of the pair is a vector space span over the variables consisting

of the previous state vector, accelerations and the time interval.

TQU = (Q0,a1,a2, T) (4.7)

where a1,a2 are the acceleration vectors of the two aircraft and they are

the results of the maneuvers by each of the aircraft in the pair.

The partitions of these spaces are discussed below. The details of this

dynamic system such as its state transition function and output equation

are given in next chapter.

4.2.1 Partitioning of System Spaces in Conflict Alert Situa-

tion

From the point of view of alert resolution, the physical status of an aircraft

pair would be either “in conflict” or “no conflict” (safe). The most intuitive

way of partitioning the output space is to split it into two regions - “in-

conflict” and “no conflict”. However, in air traffic control, different types of

conflict alerts are considered, indicating different levels of emergency. When

two aircraft are very close in proximity, or in close proximity with fast ap-

proaching rate, PROximity CONflict alert (PROCON) is issued. This re-

53

quires the pilot to maneuver immediately to ensure safety. If no PROCON

alert has been detected, linear prediction of the aircraft position for 30 sec-

onds ahead is computed to decide whether LINCON alert should be issued.

If no PROCON or LINCON alert has been detected, MANeuver prediction

(IMM filter maneuver mode) of the aircraft position in the next 60 seconds

is computed to decide whether a MANCON alert should be issued. If no

PROCON, LINCON or MANCON has been detected, the aircraft pair is in

“no conflict” status. The partitioning of quantitative output space is given

by an algorithm based on industry standards. The mathematical definitions

are provided in section 3.3.1.

When the spaces are partitioned into regions according to the definitions

of PROCON, LINCON and MANCON, the regions can be described either

by the boundaries (distinguished points and hypersurfaces) that enclose the

regions, or by groups of points in the regions. When the boundaries are

difficult to express in equations, the characteristic functions are used.

The approach in [36] was to partition the output space by distinguished

points first, map back the distinguished points to the state space (the result

is hypersurfaces in the state space), then map back the hypersurfaces to

the input space. For our conflict alert problem the boundaries are difficult

to describe, so the groups of points in the regions are used. Also, some

challenges surface for our ATC problem, thus some of these partitioning

steps can be different.

PROCON, by definition, depends on the relative position and relative

speed. It is defined using variables from the output space. Therefore a

region in the output space corresponds to the PROCON status.

LINCON also depends on the relative position and relative velocity. Ad-

ditionally, it is based on the assumption that the acceleration is zero (linear

54

prediction means constant velocity is assumed for each aircraft). Since the

acceleration variable belongs in the input space, the question is whether

LINCON should be defined in the input space.

A similar question involves MANCON. MANCON depends on the rel-

ative position and relative velocity. It also depends on the individual (self

aircraft) position and velocity, plus it depends on the turn rate (or cross

track deviation). But the MANCON conditions are tested only when a

maneuver is detected. Should then MANCON be defined based upon ac-

celeration, and thus only the input space should be partitioned so that a

portion of the input space corresponds to MANCON?

The answers to the above questions have to be addressed before we can

continue with partitioning the system spaces and the Q2 approach. From

the air traffic control point of view, even though the linear prediction in

LINCON is based upon the assumption that the acceleration is zero, the

actual acceleration of the aircraft is not measured or computed to support

this assumption. Neither is the aircraft controlled by the pilot to fly at

zero acceleration. When the aircraft is flying at varying speed, LINCON

conditions are still checked and LINCON alerts are generated whenever the

LINCON conditions are satisfied. It is understood that when the actual

flight has a discrepancy with the model assumption, the track prediction

would be somewhat inaccurate. So LINCON is merely a way of identifying

a portion of the space as representing the LINCON alarm. Other parts of

the space can be classified as safe or as some other alerts. So LINCON can

be fully specified in the output space.

MANCON depends on the relative position and relative velocity, the

individual (self aircraft) position and velocity and the turn rate. Some of

these are variables in the state space, some variables can be computed from

55

the state space variables, some (e.g. turn rate) depend on the previous state

(see [5] for turn rate computation). Thus MANCON partitioning is defined

in the input space.

From this point on, the approach in (cf. [36]) and the proposed approach

for this ATC problem diverge. By the end of section 4.2, the partitioning

mechanism for this ATC problem will be constructed in a somewhat different

manner. In the approach in [36], the partitioning starts from the output

space. When a partitioning of the output space is mapped back to the state

space, a partitioning of the state space is obtained. For the ATC problem

the partitioning of the system spaces imposed by MANCON has to be done

in the input space. One might try to partition the state space by mapping

the partitioning of the input space through the state transition function.

However, in that case the result might not be a partition, since the images

of the input partitions could overlap. This would mean that the images of

the partition of the input space would not result in a partition of the state

space. This problem occurs when the function is not one-to-one.

4.2.2 Partitioning of Output Space and Qualitative Outputs

As stated earlier, only PROCON and LINCON alerts are defined in the

output space, thus the output space is divided into three regions - two

regions corresponding to the PROCON and LINCON alerts, and “OTHER”

region, corresponding the situations where none of the two alerts are issued.

To formalize the problem we introduce the following symbols to label the

regions of the output space (qualitative outputs):

Ω = {ω1,ω2,ω34},

56

where

ω1 - PROCON alert issued,

ω2: PROCON not issued, LINCON alert issued,

ω34: OTHER. This may include MANCON and “safe” which are not sep-

arable at this time.

An example of a projection of the output partitioning onto 2D is shown

in Figure 4.3.

4.2.3 Partitioning of State Space and Qualitative States

The mapping of the partitions of the output space through the inverse of

the output function defines a partition of the state space. The “functional”

property of the inverse of the map, guarantees that the disjoint property in

the output space also holds in the state space. The state space is partitioned

into regions corresponding to PROCON and LINCON alerts, as well as

OTHER (similar to the output space partitioning). These three regions in

the state space can be represented by three symbols in the qualitative state

space:

Θ = {θ1, θ2, θ34} (4.8)

An example of a projection of the state space partitions onto 2D is shown

in Figure 4.4.

57

Figure 4.3: Partitioning of the output space. Red is ω1 (PROCON), purple

is ω2 (LINCON), blue is ω34 (OTHER)

58

Figure 4.4: Partitioning of the state space. Red is θ1 (PROCON; not visible

in this figure), purple is θ2 (LINCON), blue is θ34 (OTHER).

59

4.2.4 Partitioning of Input Space and Qualitative Inputs

Mapping from the state partitions

Θ = {θ1, θ2, θ34}

to the input space, we obtain three regions (not necessarily connected) in

the input space.

f(Ui) = Qi, i = 1, 2, 34. (4.9)

We call it “level 1” partitioning, since we have not introduced MANCON,

as yet. The three regions (level 1) in the input space can be represented by

three symbols in the qualitative space:

Λ1 = {λ1,λ2,λ34} (4.10)

where λ1 corresponds to PROCON, λ2 corresponds to LINCON and λ34

corresponds to OTHER.

An example of a projection of the input space partitions onto 2D is shown

in Figure 4.5.

4.2.5 A Moore Machine Representation of the Dynamical

System

At this point, since MANCON is not considered, the output space, state

space and input space partitions can be defined in exactly the same way

as in [36]. A Moore machine (automaton) can represent the qualitative

state transitions, as shown in Figure 4.6. The states of this automaton are

qualitative states defined in the previous section. Transitions are caused by

qualitative inputs. Since this is a Moore machine, the outputs are associated

with the states of the automaton.

60

Figure 4.5: Partitioning of the input space. Red is λ1 (PROCON), purple

is λ2 (LINCON), blue is λ34 (OTHER).

61

Figure 4.6: Moore Machine. Qualitative state transitions without consider-

ing MANCON (level 1).

From this automaton, we can see that when the aircraft pair is in a

conflict state, say PROCON, it can transition to OTHER by applying the

input λ34. λ34 defines a class of maneuvers, each of which takes the aircraft

pair from either the PROCON or the LINCON conflict situation to the

OTHER situation.

4.2.6 Partitioning of Input Space with MANCON Included

The Moore machine representation in Figure 4.6 captures two types of alert

- PROCON and LINCON. MANCON is defined in terms of the input-space

62

variables. So now we need to expand the representation of Figure 4.6 to

account for MANCON. Since inputs define transitions, in order to achieve

this goal, we need to first split some of the qualitative inputs into two or

more, depending on the subpartitioning of the input space, and then as-

sociate outputs (alerts) with transitions, rather than with states. Outputs

are associated with transitions in a Mealy machine. Therefore, our next

step is to develop a Mealy machine representation of this dynamical system.

Towards this goal, we first sub-partition the input space. In the general

case, this means that each of the PROCON and LINCON partitions of the

input space is subpartitioned by the MANCON partitioning, meaning that

the resulting partition is a Cartesian product of the two partitions. How-

ever, in this particular example, MANCON is issued only if no PROCON

or LINCON is issued. This means that only the OTHER partition needs to

be subpartitioned by MANCON. As a result, we partition OTHER into two

regions labeled by:

Λ2 = {λm,λs} (4.11)

where λm corresponds to MANCON and λs corresponds to SAFE.

From the cross product Λ1×Λ2, the only possible (allowed) combinations
are : < λ1,λ

s > , < λ2,λ
s >,< λ34,λ

m > and < λ34,λ
s > . These four

combinations are denoted as

Λ = {λs1,λs2,λm34,λs34} (4.12)

Based upon the partitioning of the input space, a Mealy machine au-

tomaton can be constructed as shown in Figure 4.7. The outputs that used

to be associated with the states in the Moore machine have been moved to

the transitions, and some of the transitions have been due to the splitting

63

Figure 4.7: Mealy Machine. Qualitative state transitions with MANCON

included (level 2).

of the input state partitions. Consequently, multiple transitions may exist

for any given two states.

4.2.7 Converting the Mealy Machine to a Moore Machine

While the Mealy machine of Figure 4.7 captures all three alerts, it is not very

convenient to use [74]. A Moore model is very easy to code — “the transition

may be often implemented just by constants as initialized tables”. Whereas

the program for a Mealy model becomes so complex that one often loses the

state machine in the confusing code. Note that in order to determine what

64

qualitative state the system is in one has to keep track of the history of tran-

sitions until the current time. From this point of view, the Moore machine

representation is better. It is known, however, that a Mealy machine can be

converted to a Moore machine, and vice versa.

So now we convert the previously obtained Mealy machine (Figure 4.7)

to a Moore machine. The procedure is standard and is given in many articles

such as [45].

1. For each transition, move the output associated with the transition

“forward” into the next state, i.e., associate the output with the state.

2. If this results in a state with two different outputs, then “split” that

state into as many states as there are different outputs.

3. The “next” states for the created states are the same next states as

for the original state (i.e., same as for the state that was split in the

previous step).

A Moore machine representation of our conflict alert resolution problem

is shown in Figure 4.8. As we can see, an additional state has been created

as a result of splitting the θ34 qualitative state. So now there are no multiple

transitions between two states and thus the state can be recognized directly.

This Moore machine includes four abstract states: ξ1, ξ2, ξ3, ξ4. The mapping

between the concrete states of the Mealy machine to the abstract states of

the Moore machine is described below.

Let θi denote a state of the Mealy machine (we sometimes call it “original

state”), λj denote qualitative input and ξk denote a state in the Moore

machine (we sometimes call it “abstract state”). For any state θi and any

qualitative input λj the Moore-Mealy conversion procedure is unique (cf.

65

Figure 4.8: Complete Moore Machine. Qualitative state transitions, with

MANCON included.

66

[45]), i.e., there is a function β defined by this conversion procedure

ξk = β(θi,λj) (4.13)

For instance, for the problem discussed in Chapter 4, we know that

ξ1 = β(θ1, .)

ξ2 = β(θ2, .)

ξ3 = β(θ34,λ
m
34)

ξ4 = β(θ34,λ
s
34)

This representation is very convenient for the sake of comprehension.

One does not need to trace transitions in order to determine the current

state. It is also easy to understand how to search for desired plans of control

actions - one just needs to find a sequence of qualitative inputs such that

they drive from the current state to another (desired) state. However, this

representation adds some complexity to the approach described in [36]. This

complexity is due to the fact that the newly created states are abstract, i.e.,

they don’t have constraints associated with them directly. This means that

an algorithm for state identification needs to be developed.

For instance, in the representation we have developed so far for our alert

resolution problem the two qualitative states - θ1 and θ2 (corresponding to

PROCON and LINCON, respectively) - have a simple interpretation through

the constraints that define these qualitative states. The state corresponding

to OTHER, on the other hand, does not represent a clear physical status of

the aircraft pair yet; it just represents some region that is neither associated

with PROCON nor with LINCON. From the Mealy machine of Figure 4.7,

we can see that the outputs were different when the inputs were different,

67

even with the same state θ34 . Thus this state was split into two abstract

states.

4.3 Pseudo Code for the Level 1 Partitioning Al-

gorithm

In Table 4.3.1, Table 4.3.2 and Table 4.3.3 we give the partitioning algo-

rithms of the conflict alert problem spaces (output space, state space and in-

put space, respectively) without taking MANCON into consideration. With

only PROCON, LINCON and OTHER, the partitioning is straight-forward

and it just follows the framework described in [36].

First, the partitioning is done in the output space (see Figure 4.9). Then

the inverse of the output function maps the partitions of the output space

to the partitions of the state space. Then the inverse of the state transition

function maps the partitions of the state space to the partitions of the input

space.

68

Figure 4.9: Flowchart of the partitioning logic of the output space for the

conflict resolution problem

4.3.1 Algorithm (PΩ) for Partitioning the Output Space for

the Conflict Resolution Problem

Notation:
Xx, Xy : position; x ∈ Xx, y ∈ Xy
Vx, Vy : velocity; ẋ ∈ Vx, ẏ ∈ Vy
Xx : position difference in x direction; x = x1 − x2, x ∈ Xx
Xy : position difference in y direction; y = y1 − y2, y ∈ Xy
Vx : velocity difference in x direction; ẋ = ẋ1 − ẋ2, ẋ ∈ Vx
Vy : velocity difference in y direction; ẏ = ẏ1 − ẏ2, ẏ ∈ Vy

X : Xx × Xy
V : Vx × Vy
X × V : output space

Ω : {ω1,ω2,ω34} - qualitative outputs
PΩ : X × V → Ω
d : d = (x)2 + (y)2 , distance between two aircraft
R : R = (ẋ)2 + (ẏ)2 , approach rate of the two aircraft
LAT1 : time of coming into conflict by linear prediction;

computed from x, y, ẋ, ẏ,
δx, δy : resolution in x and y
δẋ, δẏ : resolution in ẋ and ẏ

69

[xl, xh] : valid range (low and high bound) of x
[yl, yh] : valid range (low and high bound) of y
[ẋl, ẋh] : valid range (low and high bound) of ẋ
[ẏl, ẏh] : valid range (low and high bound) of ẏ

System parameters::
dproxim1 : threshold value in distance
dproxim2 : threshold value in distance
Rproxim : threshold value in speed
Tlookahead : look ahead time for predicting positions
dsafe : threshold value in distance

Constraints:
c1 : (d < dproxim1) ∨ (d < dproxim2 ∧R > Rproxim)

: meaning the two aircraft are very close, or close and
approaching;

c2 : (LAT1 < Tlookahead) ∧ (LAT1 > 0)
: meaning by linear prediction, will be in conflict within 40
seconds;

System parameter values used in this computation:
dproxim1 : 0.75nmi
dproxim2 : 1 nmi
Rproxim : 0.0096 nmi/sec
Tlookahead : 40 seconds
dsafe : 4 nmi

Input: δx, δy, [xl, xh], [yl, yh], δẋ, δẏ, [ẋl, ẋh], [ẏl,∆ẏh], Ω

Output: PΩ : X × V → Ω

begin{program}
for x = xl : δx : xh, y = yl : δy : yh,

ẋ = ẋl : δẋ : ẋh, ẏ = ẏl : δẏ : ẏh
if(c1)

PΩ(x, y, ẋ, ẏ)← ω1
else if(c2)

PΩ(x, y, ẋ, ẏ)← ω2
else
PΩ(x, y, ẋ, ẏ)← ω34

70

end(c2)
end(c1)

end {for }
end{program}.

4.3.2 Algorithm (PΘ) for Partitioning the State Space

Notation:
x1,x2 : position vector for aircraft 1 and 2
v1,v2 : velocity for aircraft 1 and 2
x1 × v1 × x2 × v2 : state space
Θ : {θ1, θ2, θ34} - qualitative states
PΘ : x1 × v1 × x2 × v2 → Θ
δx, δy : resolution in x and y ;
δẋ, δẏ : resolution in ẋ and ẏ ;
[xl, xh], [yl, yh] : valid range (low and high bound) of position
[ẋl, ẋh], [ẏl, ẏh] : valid range (low and high bound) of velocity
X × V : output space (see Section 4.3.1)

g : x1 × v1 × x2 × v2 → X × V
: output function (see Chapter 5)

Input: δx, δy, [xl, xh], [yl, yh], δẋ, δẏ, [ẋl, ẋh], [ẏl, ẏh], g,Θ

Output: PΘ : x1 × v1 × x2 × v2 → Θ

begin{program}
for x1 = xl : δx : xh, y1 = yl : δy : yh, x2 = xl : δx : xh, y2 = yl : δy : yh,
ẋ1 = ẋl : δẋ : ẋh, ẏ1 = ẏl : δẏ : ẏh, ẋ2 = ẋl : δẋ : ẋh, ẏ2 = ẏl : δẏ : ẏh

ω ← PΩ(g(x1, y1, ẋ1, ẏ1, x2, y2, ẋ2, ẏ2))
for i=[1,2,34]
if(ω == ωi)
PΘ(x1, y1, ẋ1, ẏ1, x2, y2, ẋ2, ẏ2) ← θi
exit forloop(i)
end if

end for (i)
end {for}
end{program}.

71

4.3.3 Algorithm (PΛ1) for Level 1 Partitioning of the Input
Space

Notation:
Q : x1 × v1 × x2 × v2 , state space (see section 4.3.2)
Q0 : initial state
a1 = ax1 × ay1 : acceleration for aircraft 1
a2 = ax2 × ay2 : acceleration for aircraft 2
T : time
Q0 × a1 × a2 ×T : TQX (input space), see Equation 4.7
Λ1 : {λ1,λ2,λ34} - qualitative inputs
PΛ1 : Q0 × a1 × a2 × T → Λ1
x01, x

0
2, y

0
1, y

0
2 : initial position x and y coordinates of aircraft 1 and 2

ẋ01, ẋ
0
2, ẏ

0
1, ẏ

0
2 , : initial velocities x and y components of aircraft 1 and 2

ax1, ay1, ax2, ay2 : acceleration x and y components of aircraft 1 and 2
δT : resolution in T
δx, δy : resolution in x and y
δẋ, δẏ : resolution in ẋ and ẏ
δax, δay : resolution in ax and ay
[Tl, Th] : valid range (low and high bound) of T
[xl, xh], [yl, yh] : valid range (low and high bound) of position
[ẋl, ẋh], [ẏl, ẏh] : valid range (low and high bound) of velocity
[axl, axh], [ayl, ayh] : valid range (low and high bound) of accelerations
f : Q0 × a1 × a2 × T → x1 × v1 × x2 × v2 - state

transition function

Input: δT, [Tl, Th], δx, δy, [xl, xh], [yl, yh], δẋ, δẏ,
[ẋl, ẋh], [ẏl, ẏh], δax, δay, [axl, axh], [ayl, ayh], f,Λ1

Output: PΛ1 : Q
0 × a1 × a2 × T → Λ1

begin{program}
for x01 = xl : δx : xh, x

0
2 = xl : δx : xh, y

0
1 = yl : δy : yh, y

0
2 = yl : δy : yh

ẋ01 = ẋl : δẋ : ẋh, ẋ
0
2 = ẋl : δẋ : ẋh, ẏ

0
1 = ẏl : δẏ : ẏh, ẏ

0
2 = ẏl : δẏ : ẏh,

ax1 = axl : δax : axh, ay1 = ayl : δay : ayh, ax2 = axl : δax : axh, ay2 = ayl : δay : ayh
T = Tl : δT : Th
θ= PΘ(f(x

0
1, x

0
2, y

0
1, y

0
2 , ẋ

0
1, ẋ

0
2, ẏ

0
1, ẏ

0
2, ax1, ay1, ax2, ay2, T))

for k=[1,2,34]
if(θ == θk)

72

PΛ1(x
0
1, x

0
2, y

0
1 , y

0
2, ẋ

0
1, ẋ

0
2, ẏ

0
1 , ẏ

0
2, ax1, ay1, ax2, ay2, T) ← λk

exit forloop(k)
end if

end for (k)
end {for }
end{program}.

4.4 Pseudo Code for the Level 2 Partitioning Al-
gorithm (MANCON included)

In 4.3.3, MANCON was not considered. Now we present the algorithm for

partitioning the input space, including the MANCON alerts.

4.4.1 Algorithm (PΛ2) for the Level 2 Partitioning of the In-
put Space

Notation:
x1,x2 : position of aircraft 1 and 2
v1,v2

[Tl, Th] : valid range (low and high bound) of T
[xl, xh], [yl, yh] : valid range (low and high bound) of position
[ẋl, ẋh], [ẏl, ẏh] : valid range (low and high bound) of velocity
[axl, axh], [ayl, ayh] : valid range (low and high bound) of accelerations
f : Q0 × a1 × a2 ×T→ x1 × v1 × x2 × v2 - state

transition function

Constraints:
c3 : ωthresh ∧ [(s1 < 0) ∨ (s2 > 0) ∨ (s3 > 0) ∨ (s4 > 0)]

meaning one aircraft is turning into the other
aircraft and will cause a conflict situation under
the turning model prediction (s1,s2,s3,s4 are
from eq.3.4)

Input: δT, [Tl, Th], δx, δy, [xl, xh], [yl, yh], δẋ, δẏ,
[ẋl, ẋh], [ẏl, ẏh], δax, δay, [axl, axh], [ayl, ayh], f,Λ1,Λ

2

Output: PΛ : Q
0 × a1 × a2 ×T→ Λ

begin{program}
for x01 = xl : δx : xh, x

0
2 = xl : δx : xh, y

0
1 = yl : δy : yh, y

0
2 = yl : δy : yh

ẋ01 = ẋl : δẋ : ẋh, ẋ
0
2 = ẋl : δẋ : ẋh, ẏ

0
1 = ẏl : δẏ : ẏh, ẏ

0
2 = ẏl : δẏ : ẏh,

ax1 = axl : δax : axh, ay1 = ayl : δay : ayh, ax2 = axl : δax : axh, ay2 = ayl : δay : ayh
T = Tl : δT : Th
θ= PΘ(f(x

0
1, x

0
2, y

0
1, y

0
2 , ẋ

0
1, ẋ

0
2, ẏ

0
1, ẏ

0
2, ax1, ay1, ax2, ay2, T))

for k=[1,2,34]
if(θ == θk)
PΛ1(x

0
1, x

0
2, y

0
1 , y

0
2, ẋ

0
1, ẋ

0
2, ẏ

0
1 , ẏ

0
2, ax1, ay1, ax2, ay2, T) ← λk

exit forloop(k)
end if

end for (k)
if(k == 34)
if(c3)
PΛ2(x

0
1, x

0
2, y

0
1, y

0
2 , ẋ

0
1, ẋ

0
2, ẏ

0
1, ẏ

0
2 , ax1, ay1, ax2, ay2, T) ← λm

PΛ(x
0
1, x

0
2, y

0
1, y

0
2 , ẋ

0
1, ẋ

0
2, ẏ

0
1, ẏ

0
2, ax1, ay1, ax2, ay2, T) ← λm34

else
PΛ2(x

0
1, x

0
2, y

0
1, y

0
2 , ẋ

0
1, ẋ

0
2, ẏ

0
1, ẏ

0
2 , ax1, ay1, ax2, ay2, T) ← λs

PΛ(x
0
1, x

0
2, y

0
1, y

0
2 , ẋ

0
1, ẋ

0
2, ẏ

0
1, ẏ

0
2, ax1, ay1, ax2, ay2, T) ← λs34

end (c3)

74

else (i.e., k == 1or2)
PΛ(x

0
1, x

0
2, y

0
1, y

0
2 , ẋ

0
1, ẋ

0
2, ẏ

0
1, ẏ

0
2, ax1, ay1, ax2, ay2, T) ← λsk

end
end {for }
end{program}.

4.5 Consistency of Partitioning by Multiple Cri-
teria

The partitioning problem described in the previous section is different from

the problem addressed in [36]. In particular, it adds two levels of complexity

to the approach in [36] in two ways. Each of these complexities requires some

additional investigations.

1. Unlike [36], it partitions the system spaces using multiple criteria. In

the first step, it uses LINCON and PROCON. To derive the partitions

of the state space and of the input state we used the same algorithm

as in [36].

Now the question is - should we first derive two partitions of the output

space using PROCON and LINCON, then map them back to the state

space and then overlay the two partitions to obtain a final refined

partitioning of the state space? Or should we overlay the two partitions

of the output space obtaining a combined partitioning of the output

space and then map it back to the state space? Intuitively the two

approaches should give the same result. But to be sure we need to

formulate and prove an appropriate theorem. A similar question can

be asked of the mapping of the partitioning of the state space back to

the input space.

2. The second question arrives due to the fact that in our conflict alert

75

resolution problem we first constructed a Moore machine using PRO-

CON and LINCON, then we constructed a Mealy machine that also

incorporates MANCON, then we converted it to a Moore machine by

defining some abstract states. The approach in [36], on the other hand,

only constructs a Moore machine.

The question is whether the final Moore machine representation of

the dynamical system under consideration guarantees consistency. In

other words, the question is whether reasoning with a such constructed

Mealy machine is sound. Again, we could have formulated and proved

an appropriate theorem to address this question. Instead, we base a

conclusion that the constructed abstraction is consistent on the fact

that Moore and Mealy machines are equivalent.

To formulate and prove the theorem about the equality of partitions

provided by the two ways outlined above we need to introduce some notation.

Suppose LINCON results in the partitioning of W into two subsets:

PL = {L0, L1} (4.14)

where L0 is the area with LINCON not satisfied, L1 is the area with LIN-

CON satisfied, i.e., LINCON alert. Since PL is a partition, it satisfies the

following:

L0 ∩ L1 = ∅; (4.15)

L0 ∪ L1 =W. (4.16)

Suppose PROCON results in the partitioning of the output space into two

subsets:

PP = {P0, P1} (4.17)

76

where P0 is the area with PROCON not satisfied, P1 is the area with PRO-

CON satisfied, i.e., PROCON alert. Again, the following must hold:

P0 ∩ P1 = ∅; (4.18)

P0 ∪ P1 =W. (4.19)

The partitions of the state space generated by the inverse of theW partition

by PP and PL, respectively, can be represented as follows

g−1P (W) = g
−1(P0) ∪ g−1(P1) (4.20)

g−1L (W) = g
−1(L0) ∪ g−1(L1) (4.21)

By superposing the two partitions we obtain the following partitioning of

the state space Q

g−1P∪L(W) = (g
−1(P0) ∪ g−1(P1)) ∩ (g−1(L0) ∪ g−1(L1)) (4.22)

This is equal to

g−1P∪L(W) = (4.23)

g−1(P0) ∩ g−1(L0) ∪ g−1(P0) ∩ g−1(L1)
∪ g−1(P1) ∩ g−1(L0) ∪ g−1(P1) ∩ g−1(L1)

On the other hand, we can first superpose the two partitions of the output

space and obtain the following partitioning

W = P0 ∩ L0 ∪ P0 ∩ L1 ∪ P1 ∩ L0 ∪ P1 ∩ L1 (4.24)

Through the inverse of g, we obtain the following partitioning

g−1P∩L(W) = g
−1(P0∩L0)∪g−1(P0∩L1)∪g−1(P1∩L0)∪g−1(P1∩L1) (4.25)

77

Theorem 1 Partitions of the state space generated by g−1P∪L(W) and g−1P∩L(W)
are equal.

(i) g−1(P0 ∩ L0) = g−1(P0) ∩ g−1(L0)
(ii) g−1(P0 ∩ L1) = g−1(P0) ∩ g−1(L1)
(iii) g−1(P1 ∩ L0) = g−1(P1) ∩ g−1(L0)
(iv) g−1(P1 ∩ L1) = g−1(P1) ∩ g−1(L1)

The proof of this theorem follows from the fact that f−1(A∩B) = f−1(A)∩
f−1(B).

78

Chapter 5

Symbolic Reasoning for
Conflict Resolution in the
X-Y Plane

This chapter explains how symbolic reasoning is applied to the conflict alert

resolution problem described in Chapter 3. Our goal is to find a sequence

of maneuver advisories on the X − Y plane in a conflict alert situation, so

that if the advisories are executed, the aircraft will transit from an unsafe

state to the SAFE state. The algorithm will provide these advisories within

real-time constraints.

The movement of each aircraft separately is modeled by a dynamic equa-

tion - the state transition function. In order to consider the pair of aircraft

together, we develop a model in which the dynamic system (the pair) is

described by a single state transition function and an output function, in

which the joint state vector, the joint output vector, and the joint input

vector are used. In the previous chapter, the detailed dynamical system

state transition and output functions were not given in detail. They will

be provided in the following three sections. This will be followed by the

79

verification of the dynamic-system properties of the constructed model.

First, some of the symbols and notations are listed below.

Q — state set

U — input set (consists of acceleration vectors)

Â, B̂ — state transition matrices

ai — acceleration vectors of the aircraft i

5.1 State Transition Function

The joint state vector for an aircraft pair in the X − Y plane is given by

Equation 5.1 below. The input vector is given by Equation 5.2. And the

state transition function is given by Equation 5.3.

Q =

x1

y1

ẋ1

ẏ1

x2

y2

ẋ2

ẏ2

(5.1)

U =

ax1(k)

ay1(k)

ax2(k)

ay2(k)

 (5.2)

80

Q(k) = f(Q(k − 1),U(k − 1), T) =
Â 0(4, 4)

0(4, 4) Â

Q(k − 1) +
 B̂ 0(4, 2)

0(4, 2) B̂

 ·U(k − 1) (5.3)

where 0(4,4) is a four by four matrix of zeroes, 0(4,2) is a four by two

matrix of zeroes and Â, B̂ are matrices defined [34, 32] below.

Â =

1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

 (5.4)

B̂ =

T 2/2 0

0 T 2/2

T 0

0 T

 (5.5)

The state transition functions for each aircraft (i = 1, 2) are shown next.

xi(k)

yi(k)

ẋi(k)

ẏi(k)

 = Â

xi(k − 1)
yi(k − 1)
ẋi(k − 1)
ẏi(k − 1)

+ B̂ · ai(k − 1) (5.6)

ai =

axi(k − 1)
ayi(k − 1)

 (5.7)

81

5.2 Output Function

The output of the system is given by Equation 5.8

x1 − x2
y1 − y2
ẋ1 − ẋ2
ẏ1 − ẋ2

 (5.8)

The output function is given by Equation 5.9.

x1 − x2
y1 − y2
ẋ1 − ẋ2
ẏ1 − ẋ2

 =

1 0 0 0 −1 0 0 0

0 1 0 0 0 −1 0 0

0 0 1 0 0 0 −1 0

0 0 0 1 0 0 0 −1

 ·

x1

y1

ẋ1

ẏ1

x2

y2

ẋ2

ẏ2

(5.9)

5.3 Input Space

The input space of the aircraft pair is 13-dimensional. It consists of the

initial state vector at k − 1, accelerations at k, and time interval T , as
shown in Equation 5.10.

82

x1(k − 1)
y1(k − 1)
ẋ1(k − 1)
ẏ1(k − 1)
x2(k − 1)
y2(k − 1)
ẋ2(k − 1)
ẏ2(k − 1)
ax1(k)

ay1(k)

ax2(k)

ay2(k)

T

(5.10)

5.4 Verification of Dynamic System Properties

The state transition function has to satisfy some properties such as consis-

tency, semigroup and causality (c.f. [52]). Consistency and causality prop-

erties are inherent in the definition of the system provided by Equations

5.1 through 5.10. We provide the formulation of the semigroup property,

without proof, below.

Theorem 2 The state transition function f of our ATC problem (Eq. 5.3)
satisfies the following property (semigroup property):

f(U(k − 2),Q(k − 2), 2) = f(U(k − 1), f(U(k − 2),Q(k − 2), 1), 1)

where U is the input set and Q is the state set.

83

5.5 Reasoning Procedures

If the ATC problem could be framed using the conventional Q2 method,

the automaton constructed according to the Q2 approach [36] would define

transitions from one conflict alert status to another conflict alert status with

the appropriate input selection. Given this automaton, as for example in

Figure 4.6, first the qualitative state that the aircraft pair is currently in

would have to be determined based upon the quantitative state estimation

and qualitative state partitioning (see Section 4.2.3). Then a qualitative

input would have to be selected by analyzing the possible state transitions

of the automaton. For instance, if two aircraft are in the LINCON alert

status (state θ2), then the aircraft would have to transit to a less emergent

conflict alert status state, i.e., to state θ4, which in this case includes both the

SAFE state and the MANCON state. Then, with the input space partitions

that were defined previously (see Section 4.2.1), it is only necessary to select

a maneuver within the region that corresponds to the qualitative input λ4.

However, as described in Chapter 4, our ATC problem does not fall in

the frame of the original Q2 approach. As explained in Chapter 4, the parti-

tioning of the output space is in fact not a simple task. When MANCON is

considered, the input space is partitioned into PROCON, LINCON, MAN-

CON and SAFE (λs1,λ
s
2,λ

m
34,Λ

s
34) by using the cross product of two levels

of partitioning. The original state space is constructed into an abstract

state space where the input becomes a part of it. This creates a complica-

tion in the reasoning as compared to the conventional Q2 approach. The

complication comes from the fact that now it is more difficult to determine

the current qualitative state of the aircraft pair. To determine the current

qualitative state, the procedure outlined in Section 4.2.7 should be followed.

84

Pseudo code for the algorithm will be developed and presented in Section

5.5.1.

5.5.1 Pseudo Code for Determining Current Abstract State

First we give an outline of the procedure for determining the qualitative

λi, ξ2 means that this is the abstract state that was constructed from the

concrete state θ2 with any λi, ξ3 means that this is the abstract state that

was constructed from the concrete state θ34 by applying the input λ
m
34, ξ4

means that this is the abstract state that was constructed from the concrete

state θ34 by applying the input λ
s
34.

The question is whether the procedure for determining the abstract state

is unique. In other words, we need to prove that the determination of

abstract state is unique, i.e., the unique combination of θi and λj would

create a unique abstract state ξk.

5.5.2 Determining Desired Next Abstract State

The second thing for Q2 reasoning is to determine the qualitative abstract

state that the aircraft pair should be in at the next scan. This can be done

by looking up the automaton map, shown in Figure 4.8. If the aircraft pair

is in conflict state, a new state should be selected such that it is no more

emergent than the current state. The emergency levels from low to high are:

SAFE, MANCON, LINCON, PROCON (most urgent), i.e., ξ4 (built from

θ34 and λ
s
34) is more preferred than ξ3 (built from θ34 and λ

m
34), ξ3 is more

preferred than ξ2, ξ2 is more preferred than ξ1. This can be formalized by

defining a preference function

b : Ξ→ Ξ (5.11)

For the conflict resolution problem, this function is defined as:

b(ξ1) = ξ3 (5.12)

b(ξ2) = ξ3

b(ξ3) = ξ4

86

b(ξ4) = ξ4

(Note the first equation is not b(ξ1) = ξ2.)

Since some of the preferred states are not reachable from the current

state, the final decision should be made by analyzing possible transitions

(Section 5.5.3).

5.5.3 Determining Qualitative Input

The third thing for Q2 reasoning is to find the qualitative input that will

result in a transition to the selected desired state. This can be achieved

by selecting a qualitative input that leads to a less emergent state. The

automaton map provides the choices from (λs1,λ
s
2,λ

m
34,λ

s
34). The qualitative

input that leads to the desired state is selected. This gives a coarse solution

to the maneuver advisory.

Once the qualitative input is selected, the values of the input variables

need to be selected that fall within the given qualitative input. Any set of

values in this region would put the system to the desired state. However

the best one should be searched for using a goal function defined in Chapter

3. Since the search is only within a subregion of the input space, it is less

time consuming than a full-space search would be. Also, the search is in the

subregion that guarantees the desired existence of a solution.

In Section 5.5.4 we show an algorithm for selecting qualitative state.

This algorithm provides a solution for a one-step RA. This algorithm will

be utilized in the process of planning a full RA solution (multiple steps).

87

5.5.4 Algorithm for Q2 Reasoning (selection of qualitative
input)

% Reasoning algorithm PRA

Notation:

Xx, Xy : position; x ∈ Xx, y ∈ Xy
Vx, Vy : velocity; ẋ ∈ Vx, ẏ ∈ Vy
X : Xx ×Xy, position
V : Vx × Vy, velocity vector
x1,x2 : positions for aircraft 1 and 2,

v1,v2 : velocity vectors for aircraft 1 and 2

ax1, ay1, ax2, ay2 : accelerations of aircraft 1 and 2

a1 = [ax1, ay1] : acceleration vector for aircraft 1

a2 = [ax2, ay2] : acceleration vector for aircraft 2

T : time interval between consecutive state transitions

Λ : qualitative inputs, λk ∈ Λ
Θ : qualitative states in the Mealy machine, θm ∈ Θ
Ω : qualitative outputs, ωn ∈ Ω
Ξ : qualitative abstract states in the Moore machine, ξj ∈ Ξ
PΛ : partitioning algorithm of input space

PΘ : partitioning algorithm of state space

PΩ : partitioning algorithm of output space

φ : Λ×Θ→ Θ - qualitative state transition function

ξj : next abstract state

b : preference function on abstract states

88

Input: x1,v1,x2,v2,a1,a2

Output: RA

begin{program}
ωn = PΩ(x1,v1,x2,v2)

θm = PΘ(x1,v1,x2,v2)

λk = PΛ(x1,v1,x2,v2,a1,a2)

ξj = β(λk, θm) %see eq. 4.13

if (ξj = ξ4)

ξj = b(ξj)

for l = [1,2,3,4]

if φmoore(ξj ,λl) == ξj

RA← λl

exit for

end if

end for

end if

end{program}.

5.6 Reasoning with Multiple Step Prediction

In the case the aircraft pair is in conflict and the next available RA can only

maneuver the pair into a less dangerous state, but not into the final SAFE

state, multiple steps of maneuver are needed. At each scan, the positions

and velocities of the aircraft pair are updated, the qualitative abstract state

is updated, the desired next state is updated, and thus the RA (maneuver)

89

is updated.

5.6.1 Pseudo code for Reasoning with Multiple Step Predic-
tion

% Reasoning algorithm for multiple RA’s MRA

begin{program}
get initial (x1(0),v1(0),x2(0),v2(0),a1(0),a2(0)) at T0

initiate j=-1

for i = 0, 1, 2, ...9, (t=T0+i*4.7)

ωn = PΩ(x1(i),v1(i),x2(i),v2(i))

θm = PΘ(x1(i),v1(i),x2(i),v2(i))

λk = PΛ(x1(i),v1(i),x2(i),v2(i),a1(i),a2(i))

ξj = β(λk, θm) %see eq. 4.13

if (ξj = ξ4)

ξj = b(ξj) (use the preference function)

for l = [1,2,3,4]

if φmoore(ξj ,λl) == ξj

MRA(i)← λl

exit for (l)

end if

end for

Given λl, compute (x1(i+ 1),v1(i+ 1),x2(i+ 1),v2(i+ 1),

a1(i+ 1),a2(i+ 1)) at time index i+ 1 using Kinetic equations

else (already safe)

exit for (i)

end if

90

end (for)

print out all computed MRA(i) for i = 1, 2, ...

optimize the MRA solution

end{program}.

91

Chapter 6

Comparison of Methods

We have already shown two approaches to obtain resolution advisory in a

conflict alert situation. The traditional quantitative approach is described

in Chapter 3, and the qualitative approach is formulated in Chapter 4 and

Chapter 5. There is a third approach that attempts to take the benefits of

both. The third approach will be described in Section 6.1.3. To compare

these three methods, the costs and the benefits need to be evaluated.

6.1 Computation Cost

The complexity of the method has a direct effect on the computation time,

and thus influences whether a method can be applied in real-time. In a

conflict alert situation, it is vital to provide resolution advisory as soon as

possible, so that the pilot has time to react and maneuver.

6.1.1 Qualitative Method

The qualitative method described in Chapters 4 and 5 is expected to be less

computation expensive than the traditional quantitative method in ATC.

For an aircraft pair, given its current positions and velocities, the time it

92

takes to give a maneuver advisory using the qualitative method consists of

the following components:

1. Time to decide its current conflict status (ξ1, ξ2, ξ3, or ξ4). According

to Matlab profiler, the time for this is t1=0.047 second.

2. Time to decide its next conflict status as where it wants to be (ξ1, ξ2, ξ3,

or ξ4). This time is very small as compared to the previous item and

thus can be ignored.

3. Time to search the automaton for a corresponding input (λ1,λ2,λ3 or

λ4). This time is also very small and thus can be ignored.

4. Time to convert the input space partition λi into a concrete quanti-

tative input (in 13D) and save it. According to Matlab profiler, the

time for this is t4=0.062 second. However, this needs to be repeated

for every quantitative input in this partition.

5. Time to select the best ax1, ay1 and ax2, ay2 from the results in the

previous step, using the cost function calculation. According to Matlab

profiler, the time for this is t5=0.204 second.

Thus the total computation cost (assuming automaton is built already)

is t = t1+ t4 ·Na+ t5, where Na is the number of quantitative input sets (it
depends on the resolution of the input variables).

Using t4 = 0.062 and Na = 7
5, we get t = 1.04 · 103 seconds.

6.1.2 ATC Quantitative Method

The traditional quantitative method (Chapter 3) is a point to point search

through all possible accelerations for each scan. The following computation

cost is incurred:

93

1. Time to decide if the state is currently under conflict. According to

Matlab profiler, the time for this is tt1=0.063 second.

2. Time to compute the next state under given (ax1, ay1), to see if it is

within constraints. According to Matlab profiler, the time for this is

tt2=0.031 second. This needs to be repeated for each (ax1, ay1) point

in the entire search space.

3. Time to save this set of (ax1, ay1) if constraints are satisfied. Same as

before, the time for this is tt3=0.016 second. This also needs to be

repeated for all valid (ax1, ay1) accelerations.

4. Time to compute the cost function. According to Matlab profiler, the

time for this is tt4=0.204 second.

Thus the total computation cost is tt = tt1 + tt2 · Ne + tt3 · Ns + tt4,
where Ne is the number of quantitative inputs in the entire search space (it

depends on the resolution of the input variables); Ns is the number of the

quantitative inputs that satisfy the constraints (it can be less than Ne).

Using tt2 = 0.031, Ne = 27
5, tt3 = 0.016 and Ns = 27

4 × 13 (so that it
is less than Ne), we get t = 5.55 · 105 seconds.

6.1.3 Middle Ground Method

The qualitative method divides the output space into four partitions. The

question is whether it is optimal for computation. After qualitative rea-

soning, the fine search within each region is computationally costly, and its

complexity depends on the size of that particular region. The smaller the

region, the less costly this search will be. If the output space is divided into

more partitions, then each region will be (on average) smaller. However, at

94

the other extreme, more partitions in the output space will increase the com-

plexity of the symbolic reasoning, and will increase the computation cost on

the qualitative side. Time for performing step 1 in the qualitative method

(see Section 6.1.1) will increase, since the number of constraints to check

for the partitioning will increase. Time in items 2 and 3 in the qualitative

method can not be ignored. Yet time in item 5 may be smaller. Thus there

is a tradeoff between the qualitative reasoning and the quantitative search.

In order to know if the computation time can be minimized by using

another n (the number of partitions of the output space), it is necessary

to estimate the time needed for symbolic reasoning when the number of

symbols is large. It is also necessary to note that even though each region is

on average smaller, the number of regions that can transit to a given state

may be more than one, i.e., there are more than one paths going into the

state that is most desired. In fact, the number of desired states can be more

than one if the partitions of the state space increase. If this is the case, the

reasoning becomes very complicated and then there is no good reason for

dividing the output space further into more (smaller) partitions.

In our analysis of this problem, we assume that the time in item 1 is

linearly proportional to the number of qualitative outputs, m, and that the

linearity constant is K. We also assume that time in items 2 and 3 can still

be ignored if m < 100. Moreover, we assume that time in item 4 depends

linearly (coefficient equal to J) on the number of quantitative input choices,

Na. And at last, we assume that time in item 5 is linearly proportional

(constant H) to the number of quantitative input choices, Na. This can be

summarized as follows.

t1 = K ·m,

95

t2 = 0, m < 100

t3 = 0, m < 100

t4 = J ·Na,

t5 = H ·Na.

We also use the estimated values of time (Sections 6.1.1 and 6.1.2) for m =

4,Na = (27/m)5 to calibrate the parameters K,J and H. Using t1 =

0.047, t4 = 0.062 · Na, t5 = 0.204, we get K = 0.047/4, J = 0.062, H =

0.204/(27/4)5. Thus

t = 0.047/4 ·m+ 0.062 · (27/m)5 + 0.204

((27/4)5)
· (27/m)5.

Solving the minimization of t over m, we obtain m = 26.897. Rounding it

up to the nearest interval, we obtain m = 27. The conclusion then is that in

order to optimize the computation time of the qualitative method for this

particular problem, the output space would have to be partitioned into 27

qualitative regions.

6.1.4 Time Distribution of the Methods

As another method to evaluate the performance of different approaches,

we introduce the concept of “average resolution time”. Resolution time is

defined as the time from the time of declaring a conflict alert to the time of

the output of a valid RA (resolution advisory). We expected there would be

an improvement in the resolution time of the qualitative method over the

quantitative method.

The magnitude of this difference will depend on various aspects of the

scenario and of the speed of the computer used. If a very small number

of look-ahead step is used for prediction and if the computer is very fast,

96

Figure 6.1: Expected resolution time distribution curve

the difference might even be unnoticeable. But if a five-step-ahead RA is

computed, while the intruder’s maneuver intention is randomly generated,

the resolution time is expected to have a more significant improvement using

the qualitative method. The computation time also depends on the conflict

scenario, the geometry of the conflict, the approaching speed of the pair, the

“hostility” of the intruder and others. In some situations five steps of RA to

solve the conflict are not necessary. The ideal RA is to plan as many steps as

necessary until a conflict free situation is achieved and the flight returns to

the planned trajectory. The time from the issuing of the conflict alert to the

end of the last step of RA generation can be accumulated from a large sample

of randomly generated scenarios. The resolution time distribution curve was

expected to be like the one in Figure 6.1. In this figure, most conflicts are

solved in a shorter time by the qualitative method (black curve) than by the

quantitative method (green curve). This is the expected advantage that had

to be demonstrated in this research. Since resolution is scenario dependent,

97

these curve needs to be generated and only compared under the same type

of scenarios.

Due to a very long computation time needed to simulate a quantitative

solution, we have limited our experiments L = 3 look-ahead prediction steps.

The resolution time has been collected and the distribution for 20 scenarios.

The resulting distribution of resolution time is shown in Figure 6.2. This

curve is essentially similar in nature to the expected curve of Figure 6.1. It

is important to note that the difference between the two curves will be much

larger if we use L = 5 or more (refer to table 7.5 and table 7.6 in section

7.3 for details). Also, this curve will be much smoother if we run 100 to 200

scenarios.

98

Figure 6.2: Comparison of resolution time distribution curves for Q2 method
and quantitative method

6.2 Quality of Maneuvers

While computation time is critical to the generation of RA’s, the quality

of maneuvers (quality of RA’s) is also very important. Our goal was to

develop a method for generating RA’s that could be computed in real time.

But the maneuvers would still need to be close in the quality to the ma-

neuvers generated by the quantitative method. To evaluate the quality of

maneuvers, we use the cost function g (Equation 3.10) defined in Chapter

3. The maneuver is better when it is less destructive to the flight plan, i.e.,

when the flight path due to the maneuver is closer to the original flight plan

than those caused by other maneuvers. The maneuver is also better when

the delay caused by the maneuver is shorter. Therefore, the smaller the

cost function, the better the performance, provided the constraints being all

satisfied.

The results of the evaluating experiments are shown in the next chap-

99

ter. Here we give an example of the comparison of costs for the qualitative

method vs. the quantitative method. In that example (see scenario 4 in

the next chapter), the value of the cost function g for the optimal maneu-

ver path derived by the Q2 method using L = 5 prediction steps was equal

to g = 2.206. The quantitative method, on the other hand, resulted in

g = 0.711. The qualitative method paid a small price for its faster compu-

tation in terms of a slightly higher g. This means the path computed by

the qualitative method is somewhat worse than the one computed by the

quantitative method.

To assess the significance of the difference in the costs we need to under-

stand the meaning of the quantitative value of the cost function. The cost

function is expressed in the unit of nautical miles. However, it is spread over

a number of integration intervals. In this case, the integration (summation)

was performed over five steps (look-ahead predictions). So the average devi-

ation from the optimal path in each step is about 0.2 to 0.4 nautical miles.

On the other hand, the best possible maneuvers derived by the quantitative

method) are on average 0.15 nautical miles away from the flight plan. Thus

the qualitative method gave advisories that are from 0.05 to 0.25 nautical

miles away from the quantitative method. Note that the radar measurement

noise is 0.05 nautical miles, i.e., 0.05 nautical miles of position difference (or

less) is not detectable by the radar. In conclusion, although the difference

between the best RA’s given by the qualitative method are not below the

noise level, they are also not that significant, either. This difference is well

compensated by the very large improvement in the computation time.

100

Chapter 7

Results

In this chapter we describe the scenarios used for the evaluation the proposed

approach and the results of evaluation.

7.1 Scenarios

Four scenarios have been developed and simulated. These four scenarios

have been devised in such a way as to reflect different types of common

encounter scenarios.

1. Scenario 1: Aircraft A (self) in linear flight, constant velocity; air-

craft B (intruder) also in linear flight, constant velocity. The approach

angle, approach time, simulation time are given in Table 7.1. The plot

of this particular scenario is shown in Figure 7.1.

2. Scenario 2: Aircraft A (self) in turning flight with constant turn rate;

aircraft B (intruder) in linear flight, constant velocity. The approach

angle, approach time, simulation time, the value of the turn rate, start

and end time of the turn and left turn or right turn indicator are given

in Table 7.2. The plot of this particular scenario is shown in Figure

7.2.

101

3. Scenario 3: Aircraft A (self)in turning flight with constant turn rate;

aircraft B (intruder) in linear flight, accelerating. The approach angle,

approach time, simulation time, the value of the turn rate of A, start

and end time of the turn, left turn or right turn indicator and the

acceleration of B are given in Table 7.3. The plot of this scenario is

shown in Figure 7.3.

4. Scenario 4: Aircraft A (self) in linear flight, constant velocity; air-

craft B (intruder) also in linear flight, but accelerating. The approach

angle, approach time, simulation time, and acceleration of B are given

in Table 7.4. The plot of this scenario is shown in Figure 7.4.

scenario 1 value

approach time 15 scan
simulation time 30 scans
angle of approach 45 degrees
acceleration for A 0
acceleration for B 0

Table 7.1: Scenario 1 parameters.

scenario 2 value

approach time 15 scan
simulation time 30 scans
angle of approach 90 degrees
turn rate for A 1.0 deg per second
turn start time for A 5 scan
turn end time for A 16 scan
right turn indicator A 1, right turn
acceleration for B 0

Table 7.2: Scenario 2 parameters.

102

scenario 3 value

approach time 15 scan
simulation time 30 scans
angle of approach 90 degrees
turn rate for A 1.0 deg per second
turn start time for A 2 scan
turn end time for A 16 scan
right turn indicator A 1, right turn
acceleration for B 0.05G

Table 7.3: Scenario 3 parameters.

scenario 4 value

approach time 15 scan
simulation time 30 scans
angle of approach 80 degrees
acceleration for A 0
acceleration for B 0.1G

Table 7.4: Scenario 4 parameters.

Figure 7.1: Scenario 1

103

Figure 7.2: Scenario 2

Figure 7.3: Scenario 3

104

Figure 7.4: Scenario 4

7.2 Computed Maneuvers

These scenarios were simulated, then data were saved and fed into our Q2

reasoning algorithm. The resulting maneuvers are described below. Maneu-

vers in two scenarios are shown in Figure 7.5 and 7.6 just to give a direct view

of the solutions. These figures illustrate the correctness of the algorithm.

Below we list the best maneuvers generated by the qualitative method for

each of the four scenarios. For each maneuver step, the number of possible

choices is also provided.

Best maneuver for Scenario 1:

1. m1: Turn right at ω = 2o per sec, 5 choices of maneuver

2. m2: Turn right at ω = 2o per sec, 42 choices of maneuver

3. m3: Turn right at ω = 2o per sec, 354 choices of maneuver

105

4. m4: turn right at ω = 2o per sec, 3010 choices of maneuver

5. m5: Turn right at ω = 2o per sec, 25973 choices of maneuver (535.45

seconds to reach this step)

Best maneuver for Scenario 2:

1. m1: Turn left at ω = −5o per sec, 3 choices of maneuver

2. m2: Accelerate at a = 135knots/min, 34 choices of maneuver

3. m3: Accelerate at a = 135knots/min, 411 choices of maneuvers

4. m4: Accelerate at a = 90knots/min, 5280 choices of maneuver

5. m5: Accelerate at a = 90knots/min, 72176 choices of maneuver

(2619.3 seconds to reach this step)

Best maneuver for Scenario 3:

1. m1: Turn left at ω = −4o per sec, 1 choices of maneuver

2. m2: No maneuver, coasting at constant speed, 6 choices of maneuver

3. m3: Decelerate at a = −45knots/min, 75 choices of maneuver

4. m4: No maneuver, coasting at constant speed, 1154 choices of maneu-

ver

5. m5: Accelerate at a = 90knots/min, 18242 choices of maneuver

(198.516 seconds to reach this step)

Best maneuver for Scenario 4:

1. m1: turn right at ω = 6o per sec, 3 choices of maneuver

106

Figure 7.5: Scenario 3 conflict alert resolution (in green)

2. m2: turn right at ω = 2o per sec, 33 choices of maneuver

3. m3: turn right at ω = 2o per sec, 186 choices of maneuver

4. m4: turn right at ω = 2o per sec, 824 choices of maneuver

5. m5: turn right at ω = 1o per sec, 7123 choices of maneuver (65.344

seconds to reach this step)

6. m6: turn right at ω = 1o per sec, 112938 choices of maneuver (6036.8

seconds to reach this step)

7.3 Computation Time

During each run in Matlab [35], the computation time in seconds was recorded.

The computer used for this task was a Dell Pentium R 4 CPU 3.20GHz,

1.00GB of RAM. The PC version of the MATLAB software was version

107

Figure 7.6: Scenario 4 conflict alert resolution (in green)

6.5.1. The times that are needed to generate the maneuvers are included in

table 7.5. From the table it can be seen that the computation is scenario

dependent — some scenarios cost more float point operations than others.

Overall, the average cost for a 5-step computation is about 500 seconds.

To put the computation times of the qualitative algorithm in perspective,

we implemented the quantitative method so that the two approaches could

be compared. The quantitative method is the straight forward search in the

maneuver space. Basically, all possible maneuvers are considered and the

cost function is computed for every possibility. In the end, the maneuver

path with the lowest cost is selected. Figures 7.7 to 7.8 show the extensive

selections of maneuvers for each encounter scenario. The computation cost

of the quantitative method is collected and given in table 7.6. In theory,

the number of maneuver choices for a 5-step computation using traditional

quantitative method is about 14 millions — hundreds of times higher than

108

Q2
Step Step Step Step Step method ave

scen 1 2 3 4 5 total -rage

1 0.110 0.422 2.390 24.6 507.9 535.4
2 0.078 0.156 2.016 31.4 2585.4 2619.3
3 0.047 0.094 0.437 6.4 191.5 198.5 500
4 0.095 0.233 1.094 6.5 57.4 65.3

Table 7.5: Time in seconds that is needed to generate each maneuver upto
5 steps using Q2 method

Step 1 Step 2 Step 3 Step 4 Step 5 total

Scenario 3 0.141 1.921 62.360 13923.1 329627.3 343614.8
Scenario 4 0.266 2.172 71.906 11219.4 44488.8 55782.5

Table 7.6: Time in seconds that is needed to generate L steps of maneuvers
using the quantitative method for Scenario 3 and Scenario 4

that of the qualitative method.

The maneuvers for Scenarios 3 and 4 have been computed using the

quantitative method. Results for Scenario 4 are shown in Figure 7.9. It

took about fifteen and a half hours to compute the 5-step prediction for

Scenario 4 and more than 95 hours to compute 5-step prediction for Sce-

nario 3. Therefore we did not perform the computations for the other two

scenarios. According to our estimates, it would take 15 to 150 hours to com-

pute maneuvers for the 5-step prediction using the quantitative method. It

would be 100 to 1000 times longer than the time used by the qualitative

method at L = 5. The saving would be even more significant at L = 7.

However, such a comparison is not provided since it is impossible to carry

the simulation of the quantitative method at L = 7 using a PC.

109

Figure 7.7: Scenario 1: possible maneuvers (in purple) before constraints
are applied.

Figure 7.8: Scenario 2: possible maneuvers (in purple) before constraints
are applied.

110

Figure 7.9: Scenario 4: conflict alert resolution (in green) using quantitative
method

7.4 Evaluation of Maneuver Quality

As discussed earlier, we used the cost function, g, to evaluate the quality of

the maneuvers. The values of the cost function, g, for the chosen optimal

maneuver paths using both methods are included in Table 7.7. We can see

that the qualitative method computes faster, but it pays a small price for

this, i.e., it gives a slightly higher g.

111

Total Quantitative
Scenario Q2 method method

1 1.089
2 2.132
3 1.707
4 2.206 0.711

Table 7.7: Minimum cost function g for both methods

112

Chapter 8

Generalization of the Q2

Approach

Even though only an example problem from the air traffic control field is used

in this research, the method and the algorithms developed in this research

may be applicable to a wider range of problems ([75] etc.) dealing with

dynamical systems. We start this chapter by looking at the different types

of systems. Then we provide algorithms that are applicable to some cases

of linear dynamic systems.

8.1 Types of General Dynamic Systems

8.1.1 Static and Dynamic Systems

There are two basic types of system: static and dynamic. In a static sys-

tem, the current outputs are based solely on the instantaneous values of the

current inputs. An example of a static system is a resistor hooked up to a

current source:

V (t) = R · i(t). (8.1)

At any given moment, the voltage across the resistor (the output) depends

only on the value of the current running through it (the input). The current

113

Figure 8.1: RLC circuit: 2nd order

at any time t is simply multiplied by the constant value describing the

resistance R to give the voltage V .

When a system’s output depends on both the present and the past input,

it is said to be a dynamical system. Take the RLC circuit shown in Figure

8.1 as an example. The current can be described by:

dy2(t)

d2t
+
7

2

dy(t)

dt
+ 9y(t) = 6u(t). (8.2)

8.1.2 Linear and Non-linear Systems

Dynamical systems are not limited to electrical circuits. Any system whose

output depends on current and past inputs is a valid dynamical system. The

mathematical models used to describe the swinging of a clock pendulum,

the flow of water in a pipe, or the number of fish each spring in a lake are

examples of dynamical systems.

Unfortunately, nonlinear dynamics are not fully understood and the best

we can do is simulate the real world with [16] linear or low-order approxima-

tions. To be more precise, linear behavior is simulated locally, at a point or

along a small interval in space-time, and then the results are extrapolated

to the general domain. This extrapolation relies on knowledge about the

114

direction of linearity (say, directional derivatives at a point on a surface)

and knowledge of the nonlinear behavior. For example, a clock pendulum

problem (shown by Eq.8.3) is non-linear.

d2θ

dt2
+
mgl

I
sin θ = 0 (8.3)

But this differential equation can be approximated by an equation obtained

though the Taylor series expansion. Near the equilibrium point, the higher

orders of the sin function can be ignored. Thus this system can be viewed

as (approximated by) a linear system.

d2θ

dt2
+
mgl

I
· θ = 0 (8.4)

8.1.3 Example for Testing

The algorithms developed for the ATC problem have been generalized to

some cases of linear systems. An example of such linear dynamical system

is shown in Figure 8.1.

 ẋ
ẏ

 =
 −7/2 −9

1 0

 ·
 x
y

+
 6
0

 · u(t) (8.5)

We take the output function to be W = x− 3.0. We define the critical
point at W = 0, i.e., we define the qualitative output ω1 if W < 0, the

qualitative output ω2 if W = 0 and the qualitative output ω3 if W > 0.

8.2 Generalization of Partitioning and Reasoning

First we specify the generalization of partitioning and then the generalization

of reasoning in the next two sections. We provide the pseudo code for the

algorithms below. Then we select two example problems:

115

1. a simple circuit example

2. a simplified ATC problem

and use them to test our generalized approach.

Some symbols and notations used in this chapter are listed below:

Q — state

W — output

U — input

U×T×Q0 — input space

Θ — qualitative state space (θi)

Ω — qualitative output space (ωi)

Λ — qualitative input space

Ξ — qualitative states in the final Moore machine

Pi — general partition algorithm of input

Ph — general partition algorithm of state

Pg — general partition algorithm of output

Ā — constraints

Â, B̂ — state transition matrices

116

8.2.1 Pseudo Code for Partitioning the Output Space of Lin-
ear Dynamic Systems

If f in Eq. (4.1) and g are linear, or if they can be linearized, then Eq.

(4.1) can be represented in linear matrix form like Eq. (8.6). The inverse

mappings of f and g can then be obtained using the inverse of the matrices

Â and B̂ (provided their determinants are not zero). The pseudo code for

the partitioning of the output space for a general case is given below.

Q(k) = Â ·Q(k − 1) + B̂ ·U(k − 1). (8.6)

Generalized algorithms for output space partitioning:
% Partitioning algorithm Pg

Notations:
L : dimension of the output space
W (1), W (2),..., W (L) : variable of the output space
W (1)×W (2)× ...×W (L) : output space
k : number of functions
m : number of thresholds
l : number of constraints
n : number of qualitative outputs
Ω : qualitative outputs {ω1,ω2, ...ωn}
zi : functions zi = fi(W (1),W (2), ...,W (L))

where i = 1, 2, ...k
dj : thresholds where j = 1, 2, ...m
RO : relation operators RO ∈ {<,<=,=, >,≥, }
Wmin(i) : lower bound of the output variable W(i)

where i = 1, 2, ...L
Wmax(i) : upper bound of the output variable W(i)

where i = 1, 2, ...L
Wstep(i) : resolution of the output variable W(i)

where i = 1, 2, ...L

Constraints:

117

C = {c1, c2,, cl} set of constraints, where cs = (zi RO dj)
Ā = {ā1, ā2,, ān−1} set of ordered constraints,

where Ā =CNFDNF (C) and ā1 ≺ ā2 ≺ ... ≺ ān−1
DNF - Disjunctive Normal Form
CNF - Conjunctive Normal Form

Input:
L, n, Ā,Wmin(.),Wmax(.),Wstep(.)

Output:
Pg :W (1)×W (2)× ...×W (L)→ Ω

begin{program}
for all W (1 to L)=Wmin(1 to L):Wstep(1 to L):Wmax(1 to L)
for i=1...n-1
if(āi)

Pg(.)← wi
break

end(āi)
end {for }
Pg(.)← wn
end all W
end{program}.

Note that the constraints in Ā depend on the specific problem. For the ATC

problem, they depend on how “PROCON”,“LINCON”and “MANCON” are

defined. For a circuit problem, they may depend on functions of the current

and/or the voltage being greater or smaller than some thresholds. For a

heat conducting problem, they may depend on functions of the tempera-

ture difference being greater or smaller than thresholds. For each specific

problem, these constraints should be known.

8.2.2 Pseudo Code for Partitioning the State Space of Linear
Dynamic System

If the problem at hand is such that the constaints Ā depend only on the out-

put variables, then partitions of the state space can be obtained by inverse-

118

mapping of the output space partitions. For the type of problems where this

type of simple inverse mappings exist, the pseudo-code is provided below.

Generalized algorithms for state space partitioning:
% Partitioning algorithm Ph

Notations:
Ls : dimension of the state space
Q(1), Q(2), ...Q(Ls) : variables of the state space
Q(1)×Q(2)× ...×Q(Ls) : state space
Q, S : variables of the output space

Θ : {θ1, θ2, ...θn}
Pg : W (1)×W (2)× ...×W (L)→ Ω
g : output function, (W (1),W (2), ...W (L))

=g(Q(1), Q(2), ...Q(Ls))
Qmin(i) : lower bound of the state variable Q(i)

where i = 1, 2, ...Ls
Qmax(i) : upper bound of the state variable Q(i)

where i = 1, 2, ...Ls
Qstep(i) : resolution of the state variable Q(i)

where i = 1, 2, ...Ls

Input:
Ls, g, Pg, Qmin(.), Qmax(.), Qstep(.)

Output:
Ph : Q(1)×Q(2)× ...×Q(Ls)→ Θ

begin{program}
for all Q(1 to Ls)=Qmin(1 to Ls):Qstep(1 to Ls):Qmax(1 to Ls),

ω ← Pg(g(.))
for i=[1,2...n]
if(ω == ωi)
Ph(.) ← θi
exit forloop(i)
end if

end for (i)
end {for Q}
end{program}.

For problems where the constraints depend on the state variables, the state

119

space can be partitioned directly like the partitioning of the output space

in page 117. The pseudo-code is not included in order to avoid redundancy.

For some problems, the constraints depend on the input variables, then

the input space can be partitioned directly (although the Q2 approach seem

unnecessary now). There may be cases where the constraints depend on both

the input and the output variables (such as our ATC problem), or constraints

depend on the input, state and the output. In that case the algorithms are

more complicated so more steps would be required to partition the state

space. We provide some discussion of these issues on page 121.

8.2.3 Pseudo Code for Partitioning the Input Space of Linear
Dynamical Systems

If partitions of the state space are already obtained using the method dis-

cussed in the previous subsection, then the partitions of the input space can

be obtained by the inverse-mapping of the state space partitions. For the

problems where this type of simple inverse mappings exist, the pseudo-code

is provided below.

Generalized algorithms for input space partitioning:
% Partitioning algorithm Pi

Notations:
Lo : number of input variables (exclude

initial state and time)
U(1), U(2), ...U(Lo) : input variables
U ×T×Q0 : input space
Λ : {λ1,λ2, ...λn}
Ph : Q(1)×Q(2)× ...×Q(Ls)→ Θ
f : state transition function, (Q) = f(U,T, Q0)
Umin(i) : lower bound of the input variable U(i)

where i = 1, 2, ...Lo
Umax(i) : upper bound of the input variable U(i)

where i = 1, 2, ...Lo

120

Ustep(i) : resolution of the input variable U(i)
where i = 1, 2, ...Lo

[tl, th] : the valid range (low and high bound) of T
δt : resolution of T

Input:
Lo, f, Ph, Umin(.), Umax(.), Ustep(.),
Qmin(.), Qmax(.), Qstep(.), [tl, th], δt

Output:
Pi : U ×T×Q0→ Λ

begin{program}
for all U(1 to Lo)=Umin(1 to Lo):Ustep(1 to Lo):Umax(1 to Lo),

Q0(1 to Ls)=Qmin(1 to Ls):Qstep(1 to Ls):Qmax(1 to Ls), t = tl : δt : th,
θ ← Ph(f(.))

for i=[1,2...n]
if(θ == θi)
Pi(.) ← λi
exit forloop(i)
end if

end for (i)
end {for}
end{program}.

8.2.4 Partitioning Complicated Cases of Linear Dynamical
Systems

As discussed earlier, the constraints may depend on the output variables,

state variables or input variables, or on a combination of all of them. If we

look at all the possibilities, the constrants Ā could depend on:

1. the output variables

2. the state variables

3. the input variables

4. the output and input variables

121

5. the output and state variables

6. the state and input variables

7. the output, state and input variables

For case 1 to 3, the spaces can be partitioned directly, as mentioned earlier.

For case 4, it is exactly like our ATC example. The general approach for

all linear dynamic problems is the same as the approach in our example

(Chapter 4). Before we lay down the pseudo-code of a general approach for

this case, we briefly discuss cases 5 and 7.

If the constraits depend on the output and state (case 5) variables, we

know that the output is obtained from the state using the output function. If

we expand the output function and include the involved state variables in an

expanded output space, then the constraints depend only on the expanded

output variables, therefore case 5 becomes case 1.

Similarly, for case 7, since the output is obtained from the state using the

output function, if we expand the output function and include the involved

state variables in an expanded output space, then the constraints depend

on the expanded output variables and the input. Therefore, case 7 becomes

case 4.

As a result of the above analysis, we need to address cases 4 and 6. For

a general linear dynamic system where constrains depend on the output and

input variables, the inverse mapping of partitions do not apply easily. Let

us start with the case where constraints Ā depend on both output and input

variables (case 4).

Let Pi be the partitioning of input space obtained from inverse mapping

through output partitioning and state partitioning. Let Pg be partitioning

122

of the input space directly. Then the resultant partitioning is the superpo-

sition of the two. Our ATC problem is such a case. Note that Pg is the

direct partitioning algorithm of the input space.

For case 6, where the constraints depend on the state and input vari-

ables, a similar approach can be followed by starting from the state space.

Let Λ1 be level 1 input partitions obtained from the inverse mapping of

partitions of the state space, i.e., Λ1 = {λ1,λ2, ...λn}. Let Λ2 be level 2
partitions obtained by partitioning the input space directly , i.e., Λ2 =

{λ1,λ2, ...λm}. Then Λkj = β(Λj ,Λ
k) can be obtained by superposing the

two sub-partitionings. The pseudo-code is not included in order to avoid

redundancy.

8.2.5 Generalization of Reasoning

For those cases (out of the seven cases discussed in the previous section)

that the output variables are not involved in the constraints, there is no

need to use Q2 approach because the problems are simpler than the general

format presented here. Therefore, only cases 1,4,5,7 correspond to problems

where the output variables are in the constraints, and only these cases need

to be discussed. Also, it was discussed earlier that case 5 becomes case 1

after some extension of the output space, case 7 becomes case 4 after some

expansion. As a result, we only need to discuss case 1 and 4.

Fortunately, case 1 is the simpliest - we have shown the reasoning for the

ATC problem (without MANCON) for this case. Case 4 is more complicated

but we have also shown the reasoning for the ATC (with MANCON) problem

for this case in Section 5.5. As a result, they all come down to reasoning

within a Moore Machine framework. The pseudo-code for the reasoning is

given below.

123

% Reasoning algorithm for general linear system — Prg

Notation:

Q(1), ...Q(Ls) : variables in the state space

T : time interval between consecutive state transitions

Λ : qualitative inputs, λk ∈ Λ
Ω : qualitative outputs, ωn ∈ Ω
Ξ : qualitative states in the final Moore machine, ξj ∈ Ξ
PΛ : partitioning algorithm of input space

PΞ : partitioning algorithm of state space

PΩ : partitioning algorithm of output space

φ : Λ× Ξ→ Ξ - qualitative state transition function

ξj : next state

b : preference function on states

ξm : the most desired (goal) states

n : total number of qualitative states

Input: Q(1)...Q(Ls), - current state

PΞ, n, b, ξm,φ

Output: rg

begin{program}
ξj = PΞ(Q(1), Q(2), ...Q(Ls))

if (ξj = ξm)

ξj = b(ξj)

124

for l = [1,2,...n]

if φmoore(λl, ξj) == ξj

rg ← λl

exit for

end if

end for

end if

end{program}.

8.3 Testing of Generalized Approach

For testing purposes, we implemented the general linear system partitioning

algorithm discussed above. As the input to this algorithm, the following

information is given in a text file.

1. number of output variables,

2. number of state variables,

3. number of input variables,

4. number of ordered constraints,

5. number of functions used in constraints,

6. number of thresholds,

7. the ranges and resolution sizes of each variable

The text file is read in to load the necessary parameters and functions before

the partitioning algorithms start. Also, the state transition function, f , and

the output function, g, are given for the test problem. The partitioning

125

algorithms can work with any valid text input file and f and g functions for

a general linear dynamic system.

8.3.1 The Circuit Problem

A very simple case (Q is the state, W is the output, and A1 is the input) is

used. The linear dynamic system used as a test example, which was given

in eq. 8.5, can be transformed to : x(k + 1)
y(k + 1)

 =
 −7/2 ∗ T + 1 −9 ∗ T

T 1

 ·
 x(k)
y(k)

+
 6 ∗ T

0

 · u(k)
(8.7)

Output function:

w = x− 3.0 (8.8)

Ordered constraints:

ā1 : w < 0; (8.9)

ā2 : w = 0;

This example system was processed successfully by the generalized parti-

tioning and reasoning algorithms. Projections of the partitions of the input

space onto a 2-D plane and the partitions of the state space are shown in

Figures 8.2 and 8.3.

The reasoning procedure takes the initial state (x(0) = 0.0; y(0) =

−13.0). Then it computes the input partition which will make the state
transition to another state. For this example, it is desired that ω = ω1

transition to ω = ω3. The input partition to achieve this task is λ3. From

126

Figure 8.2: Projection of partitions of the input space onto a 2-D plane for
the RLC circuit example

127

Figure 8.3: Partitions of the state space for the RLC circuit example

128

our reasoning algorithm implementation, the input u that belongs to this

partition is u = −12. For this case the algorithm exits on the first solution.

It does not attempt to obtain the optimal solution since our goal in this

section is only to test the implementation of Q2 reasoning of the general

linear system.

8.3.2 The ATC problem

We have already solved the ATC problem. In this section we just show the

result of a test of the implementation of general linear system against the

ATC example. Compared to the circuit example, the dimensionality is much

higher. The partitioning algorithms successfully generated partitions of the

input space and partitions of the state space. Projections onto 2-D of those

partitions are shown in figure 8.4 and figure 8.5.

The reasoning procedure takes the initial state (Q(1) = 101; Q(2) = 121;

Q(3) = 0.035; Q(4) = 0.059; Q(5) = 103.5; Q(6) = 119.8; Q(7) = −0.007;
Q(8) = 0.07). Then it computes the input partition which will cause the

state transition to a safer state. For this example, ω = ω2 is required to

transition to ω = ω3. The input partition to achieve this task is λ3. From

our reasoning algorithm, the input variables that belong to this partition is

A(1) = −0.007, A(2) = −0.006. The algorithm exits on the first solution.

It does not attempt to obtain the optimal solution since our purpose of this

experiment is only to test the implementation of a general linear system.

129

Figure 8.4: Projection of the partitions in the input space onto a 2-D plane
for the ATC example (without MANCON)

130

Figure 8.5: Partitions in the state space for the ATC example (without
MANCON)

131

Chapter 9

Conclusion

Through this thesis research, it has been shown that the symbolic reason-

ing approach can be used in the application to the air traffic conflict and

resolution problem. Moreover, the Q2 approach has been expanded and

generalized to linear dynamic systems. Examples are tested against the

generalized partitioning and reasoning.

9.1 Contributions

1. Application of qualitative reasoning about dynamic systems in a realis-

tic scenario. The major contribution of this thesis is to show that qual-

itative reasoning about dynamic systems in a real world application

brings measurable benefits over traditional quantitative approaches.

The scenario from the air traffic control field has been selected for this

purpose.

2. Modifications to the Q2 approach. The air traffic scenario picked for

the thesis does not lend itself to the straight-forward application of

the Q2 approach. Therefore, the Q2 approach had to be extended,

including conversions between Mealy and Moore automata.

132

3. Hypersurface partition of the output space. One of the contributions

of this thesis is the extension of the Q2 approach by partitioning the

output space by hypersurfaces, rather than by “landmark points”, as

was done in [36]. Such an extension is needed for dealing with more

complex problems in which the output space is higher-dimensional and

thus partitions cannot be just intervals.

4. Qualitative partitions with multiple criteria. Combining partitions

derived from partitioning the output space first with those derived

through partitioning the input space first have been investigated and

appropriate algorithms have been developed.

5. An algorithm for partitioning dynamic system spaces and for deriving

qualitative abstractions have been developed.

6. Qualitative reasoning algorithms. Qualitative reasoning algorithms

about dynamic systems have been developed and implemented. Con-

sistency and complexity results have been provided.

7. The middle ground approach to reasoning about dynamic systems. A

hybrid approach (quantitative and qualitative) has been proposed to

address issues of computational efficiency of reasoning.

8. Generalization of the Q2 approach to linear systems has been achieved.

Both partitioning and reasoning algorithms have been implemented

and tested against two example problems successfully.

9.2 Possible Future Research

1. Consider more specific models for the intruder aircraft, like including

maneuvers, instead of just nominal projection. This would make the

133

inference more precise, but at the same time this would increase the

complexity significantly. Therefore an in-depth study of this problem

is needed.

2. Expand the cost function so that whenever possible, a single maneuver

would be used, instead of multiple small maneuvers.

3. Investigate the appropriateness of the Q2 approach in the context of

noise. This would require the incorporation of an uncertainty in the

reasoning process.

4. Expand the Q2 approach to more complicated systems, not just linear

systems.

134

Bibliography

[1] Traffic Alert and Collision Avoidance System (TCAS II). Technical

report, Competency Standards for TCAS II Operations and Aeronatical

Knowledge Syllabus of Training,FAA.

[2] Introduction to TCAS II. Technical report, United States Depart-

ment of Transportation, Federal AviationAdministration,Washington

D.C, 1990.

[3] TELSACS - Annex 1. Technical report, TELSACS project programme,

1996.

[4] Common ARTS Computer Program Functional Specification (CPFS).

Technical report, FAA, 2003.

[5] Common ARTS Design Specification. Technical report, FAA, 2003.

[6] J.S Albus. Outline for a Theory of Intelligence. IEEE Trans.Systems

Man Cybernet, 1991.

[7] T. Ball and O Kupferman. An Abstraction-Refinement Framework

for Multi-Agent Systems. 21st Annual IEEE Symposium on Logic in

Computer Science, 2006, pages 379 — 388, 2006.

135

[8] P. Benjamin, M. Erraguntla, D. Delen, and R. Mayer. Simulation Mod-

eling at Multiple Levels of Abstraction. Simulation Conference Proceed-

ings, 1:391 — 398, 1998.

[9] T. J. Biggerstaff. Fixing Some Transformation Problems. 14th IEEE

International Conference on Automated Software Engineering, 1999.,

pages 148 — 157, 1999.

[10] N. Bredeche, Shi Zhongzhi, and J.-D. Zucker. Perceptual Learning

and Abstraction in Machine Learning. Proceedings of the Second IEEE

International Conference on Cognitive Informatics, 2003., pages 18 —

25, 2003.

[11] B.C. Breen. Controlled Flight Into Terrain and the enhanced Ground

Proximity Warning system. Aerospace and Electronic Systems Maga-

zine, IEEE, 14(1), 1991.

[12] M Brockmeyer. Automatic Abstractions of Real-time Specifications.

Fifth IEEE International Symposim on High Assurance Systems Engi-

neering, 2000., 1:147 — 158, 2000.

[13] R.E. Bryant. Symbolic Simulation-techniques and Applications. Pro-

ceedings of 27th ACM/IEEE Design Automation Conference, 1990.,

pages 517—521, 1990.

[14] S. Buhne, G. Halmans, K. Pohl, M. Weber, H. Kleinwechter, and

T. Wierczoch. Defining Requirements at Different Levels of Abstrac-

tion. Proceedings of 12th IEEE International Requirements Engineering

Conference, 2004., pages 346 — 347, 2004.

136

[15] Douglas W. Burgess, Sylvia I. Altman, and M.L Wood. TCAS: Ma-

neuvering Aircraft in the Horizontal Plane. The Lincoln Laboratory

Journal, 7(2):295—311, 1994.

[16] Chi-Tsong. Chen. Linear System Theory and Design. Oxford Univerity

Press, New York Oxford, 1999.

[17] C. Combastel, S. Gentil, and J.-P. and Rognon. A Symbolic Reason-

ing Approach to Fault Detection and Isolation Applied to Electrical

Machines. Proceedings of the 1998 IEEE International Conference on

Control Applications, 1998., 1:475—479, 1998.

[18] J.-C. Delvenne and V.D. Blondel. Complexity of Control on Finite

Automata. IEEE Transactions on Automatic Control, 51:977 — 986,

2006.

[19] Z. J. Deng, J. W. S. Liu, L. Zhang, M. Seri, and A. Frei. An Open

Environment for Real-time Applications. Real-Time Systems Journal,

16(2/3):155—186, 1999.

[20] G. Dowek, A Geser, and C Munoz. Tactical Conflict Detection and Res-

olution in a 3D Airspace. In 4th USA/Europe Air Traffic Management

R and D Seminar, 2001.

[21] D. Dubois, A. Hadj-Ali, and H. Prade. Incoherence Detection and

Approximate Solving of Equations Using Fuzzy Qualitative Reasoning.

The Ninth IEEE International Conference on Fuzzy Systems, 2000.

FUZZ IEEE 2000., 1:203—208, 2000.

[22] V. N. Duong. FREER: Free-Route Experimental Encounter Resolution

- Initial Results. In EUROCONTROL Experimental Centre EEC, 1997.

137

[23] Nicolas Durand and Jean-Marc Alliot. Optimal Resolution of En Route

Conflicts. In Laboratoire d’Optimisation Globale, 1997.

[24] FAA. Precision Runway Monitor Demonstration Report.

www.tc.faa.gov/acb300/techreports/RD-91-5.pdf.

Document DOT/FAA/RD-91/5, February, 1991.

[25] R.N.H.W van Gent, J.M. Hoekstra, and R.C.J. Ruigrok.

Free Flight with Airborne Separation Assurance.

http://www.cami.jccbi.gov/AAM-500/freeflight/rvg doc.pdf, 1997.

[26] W. Gerling. Conflict Detection in Air Traffic Control. In Institut f r

Flugf hrung, 1994.

[27] P Godefroid. Generalized Model Checking. 12th International Sympo-

sium on Temporal Representation and Reasoning, pages 3 — 4, 2005.

[28] F. Guinchiglia and T. Walsh. A Theory of Abstraction. Artificial

Intelligence, 1992.

[29] G. Gupta and E. Pontelli. A Constraint-based Approach for Specifi-

cation and Verification of Real-time Systems. Proceedings of the 18th

IEEE Real-Time Systems Symposium, 1997., pages 230 — 239, 1997.

[30] W.H. Harman. TCAS: A System for Preventing Midair Collision. The

Lincoln Laboratory Journal, 2(3):437—458, 1989.

[31] Jianghai Hu, M. Prandini, A. Nilim, and S. Sastry. Optimal Coordi-

nated Maneuvers for Three Dimentional Aircraft Conflict Resolution.

In AIAA Conf. Guidance, Navigat. Contr, 2001-4294, 2001.

138

[32] Inseok Hwang, Jesse Hwang, and Clarie Tomlin. Flight-Mode-Based

Aircraft Conflict Detection using a Residual-Mean Interacting Multi-

ple Model Algorithm. Technical report, Hybrid Systems Laboratory,

Departmetn of Aeronautics and Astronautics, Stanford University.

[33] R. Jota, J. Martins, A. Rito-Silva, and J. Pereira. Experimenting with a

Flexible Awareness Management Abstraction for Virtual Collaboration

Spaces. Proceedings of Symposium on Applications and the Internet,

2003., pages 56 — 64, 2003.

[34] Keith Kastella and Mark Biscuso. Tracking Algorithm for Air Traffic

Control Applications. Air Traffic Control Quarterly, 3(1), 1996.

[35] M. Keulers and Beckers. W. Efficient Data Storage Handling in Matlab.

IEEE Symposium on Computer-Aided Control System Design, CACSD,

pages 9 — 14, 1992.

[36] M.M. Kokar. On Consistent Symbolic Representations of General Dy-

namic Systems. IEEE Transactions on systems, man and cybernetics,

25(8):—, 1995.

[37] Jana Kosecka and Claire Tomlin. Generation of Conflict Resolution

Maneuvers for Air Traffic Management. In Department of Electrical

Engineering and Computer Sciences, 1996.

[38] Jimmy Krozel and Mark Peters. Strategic Conflict Detection and Reso-

lution for Free Flight. In Proceedings of the 36th Conference on Decision

& Control, 1997.

139

[39] J. K. Kuchar and L. C. Yang. Survey of Conflict Detection and Resolu-

tion Methods. In AIAA Guidance, Navigation and Control Conference,

1997.

[40] J. K. Kuchar and L. C. Yang. A review of Conflict Detection and Res-

olution Modeling Methods. IEEE Transactions on Intelligent Trans-

portation SYstems, 1(4):179—189, 2000.

[41] P. Kungas and M. Matskin. Symbolic Negotiation in Linear Logic with

Coalition Formation. IEEE/WIC/ACM International Conference on

Intelligent Agent Technology, 2006., pages 298 — 305, 2006.

[42] R. Kurki-Suonio and T. Mikkonen. Abstractions of Distributed Coop-

eration, their Refinement and Implementation. Proceedings of Interna-

tional Symposium on Software Engineering for Parallel and Distributed

Systems, 1998., pages 94 — 102, 1998.

[43] Hsuan-Shih Lee. Minimizing Fuzzy Finite Automata. The Ninth IEEE

International Conference on Fuzzy Systems, 2000., 1:65 — 70, 2000.

[44] Lissys Limited. In-Flight Performance.

http://www.lissys.demon.co.uk/pug/c09.html.

[45] Charles Lin. Finite State Machines with Output.

www.cs.umd.edu/class/spring2003/cmsc311/Notes/Seq/fsm.html.

University of Maryland, Computer Science.

[46] S.P. Linder and M.M. Kokar. q2 Symbolic Reasoning about Noisy Dy-

namic Systems. Journal of Intelligent and Robotic Systems, 24:295—311,

1999.

140

[47] J. W. S. Liu. Real-time Systems. Prentice Hall, Upper Saddle River,

N.J., 2000.

[48] X. Liu, H. Yang, H Zedan, and A. Cau. Speed and Scale Up Software

Reengineering with Abstraction Patterns and Rules. Proceedings of

International Symposium on Principles of Software Evolution, 2000.,

pages 90 — 99, 2000.

[49] J. Lygeros, K.H. Johansson, S.N. Simic, Jun Zhang, and S. Sastry.

Continuity and Invariance in Hybrid Automata. Proceedings of the

40th IEEE Conference on Decision and Control, 2001., 1:340 — 345,

2001.

[50] J. Lygeros, K.H. Johansson, S.N. Simic, Jun Zhang, and S. Sastry.

Continuity and Invariance in Hybrid Automata. Proceedings of the 40th

IEEE Conference on Decision and Control, 2001, 1:340 — 345, 2001.

[51] A. Meisels and D. Mintz. Image Interpretation by Symbolic Reasoning.

The Sixteenth Conference of Electrical and Electronics Engineers in

Israel, 1989., pages 1 — 3, 1989.

[52] M.D. Mesarovic and Y Takahara. Abstract Systems Theory. Springer

Verlag, 1989.

[53] S Mondoloni and S. Conway. An Airborne Conflict Resolution Approach

using a Genetic Algorithm.

[54] T. Moor, J. M. Davoren, and J. Raisch. Strategic Refinements in Ab-

straction Based Supervisory Control of Hybrid Systems. Proceedings of

Sixth International Workshop on Discrete Event Systems, 2002., pages

329 — 334, 2002.

141

[55] Russel A. Paielli and Heinz Erzberger. Conflict Probability Estimation

for Free Flight. In Journal of Guidance, Control and Dynamics, 1997.

[56] G. J. Pappas and S. Simic. Consistent Abstractions of Affi

[62] M. Rao, T.-S. Jiang, and J.J.-P. Tsai. A New Method to Design In-

telligent Control Systems. Proceedings of the IEEE National Aerospace

and Electronics Conference, 1988. NAECON 1988., 2:408 — 413, 1988.

[63] K. Rohloff and S. Lafortune. On the Computational Complexity of the

Verification of Modular Discrete-event Systems. Proceedings of the 41st

IEEE Conference on Decision and Control, 2002, 1:16 — 21, 2002.

[64] H. Sawamura and K. Kiyozuka. A Hybrid Reasoning System with Di-

agrams and Sentences. Proceedings of IEEE International Symposium

on Visual Languages, 2000., pages 73 — 74, 2000.

[65] Raoul Schild. Rule Optimization for Airborne Aircraft Separation. PhD

thesis, Institute of Econometrics, Operations Research and System The-

ory at the Technical University of Vienna, 1997.

[66] D.G Schwartz. Connection Between Fuzzy Quantifiers and the Classical

Modalities. NAFIPS/IFIS/NASA ’94. Proceedings of the First Inter-

national Joint Conference of the North American Fuzzy Information

Processing Society Biannual Conference., pages 310 — 314, 1994.

[67] Jinglai Shen, N. H. McClamroch, and E.G. Gilbert. A Computational

Approach to Conflict Detection Problems. In Proceedings of the Amer-

ican Control Conference, 1999.

[68] S. Sivasundaram and S. Vassilyev. Automata Dynamics Preserved Un-

der Homomorphism: Connectness, Reachability, Optimality. IEEE

International Conference on Systems, Man, and Cybernetics, 1998.,

2:1462 — 1466, 1998.

143

[69] M Stevenson, Pin-chan Du, and Ming Rao. An Expert System for

selecting Viscosity Models and Prediction. IEEE Pacific Rim Confer-

ence on Communications, Computers and Signal Processing, 2:730—733,

1993.

[70] M. Stevenson, Q. Wang, and M. Rao. An Intelligent Approach to

Conceptual Design Automation of Chemical Processes. IEEE Pacific

Rim Conference on Communications, Computers and Signal Process-

ing, 1993., 2:650 — 653, 1993.

[71] P. Tabuada, G.J. Pappas, and P Lima. Compositional Abstractions of

Hybrid Control Systems. Proceedings of the 40th IEEE Conference on

Decision and Control, 2001., 1:352 — 357, 2001.

[72] Claire Tomlin, G.J. Pappas, and S. Sastry. Conflict Resolution for

Air Traffic Management: A Study in Multi-Agent Hybrid Systems.

In Department of Electrical Engineering and Computer Sciences, 1997.

Versions of this paper has been presented at the 1997 IEEE COnference

on Decision and COntrol, San Diego, and the first USA / Europe ATM

Seminar, Eurocontrol, Paris, 1997.

[73] C. Unsal, P. Kachroo, and J.S. Bay. Simulation Study of Learning

Automata Games in Automated Highway Systems. IEEE Conference

on Intelligent Transportation System, 1997, pages 936 — 941, 1997.

[74] F. Wagner. Moore or Mealy model?

http://www.stateworks.com/active/download/TN10-Moore-Or-Mealy-

Model.pdf.

144

[75] Yingjie Wang, Li min Jia, and Yong Qin. Application of Entity Au-

tomata to Railway Transportation System Modeling and Simulation.

Proceedings of IEEE Intelligent Transportation Systems, 2003., 2:1463

— 1466, 2003.

[76] Oliver Watkins and John Lygeros. Safety Relevant Operational Cases

in Air Traffic Management. Technical report, University of Cambridge,

UK, 2002.

[77] E.U. Weber and Coskunoglu O. Descriptive and Prescriptive Models

of Decisionmaking. IEEE TRANSACTIONS ON SYSTEMS, MAN,

AND CYBERNETICS, 20(2):310—317, 1990.

[78] Xian Xu. P Systems and Finite Automata. First International Con-

ference on Complex, Intelligent and Software Intensive Systems. CISIS

2007., pages 135 — 138, 2007.

[79] T. Yairi, K. Hori, and S. Nakasuka. Unified Criterion for State and

Action Abstraction in Autonomous Agent. Proceedings of IEEE Inter-

national Conference on Systems, Man, and Cybernetics, 1999., 5:165 —

170, 1999.

[80] L. C. Yang and J. K. Kuchar. Prototype Conflict Alerting System for

Free Flight. In AIAA Journal of Guidance, Control and Dynamics,

1999.

145

