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Abstract

We demonstrate the use of a “smart camera” to accel-
erate two very different image processing applications. The
smart camera consists of a high quality video camera and
frame grabber connected directly to an FPGA processing
board. The advantages of this setup include minimizing
the movement of large datasets and minimizing the latency
by starting to process data before a complete frame has
been acquired. The two applications, one from the area
of medical image processing and the other from computa-
tional fluid dynamics both exhibit speedups of more than
20 times over software implementations on a 1.5GHz PC.
This smart camera setup is enabling image processing im-
plementations that have not, before now, been achievable in
real time.

1. Introduction

We demonstrate the use of a single hardware platform to
accelerate two very different applications, one from the area
of medical image processing and the other from computa-
tional fluid dynamics. Both applications involve implemen-
tations that process raw pixel data directly from a camera.
Both can begin processing image data before a complete
frame of data has been acquired. In both cases, real-time
implementations have been desirable but not achievable up
to now.

The medical image processing application is RVT: Reti-
nal Vascular Tracing. An algorithm for tracing vasculature
in retinal images has been developed by our colleagues at
RPI [2]. However its software implementation is too slow
for real-time operation. By implementing the computation-
ally complex components in reconfigurable hardware, we
enable the real-time implementation of RVT. This will allow
surgeons to see live retinal images with vasculature high-
lighted in real time during surgery. An important require-

ment of this system is to minimize the total latency so that
the image is displayed with very little overall delay.

The computational fluid dynamics application is PIV:
Particle Image Velocimetry. Real-time PIV will enable ap-
plications such as active control flap control for airfoils, re-
sulting in more efficient aerodynamics. Currently, this con-
trol is done based on precomputed data rather than on infor-
mation of the current flow of gasses over the airfoil.

Both these applications directly process images acquired
from a camera. In both cases, low overall latency is essen-
tial, and a large amount of data must be acquired and pro-
cessed. Our smart camera setup feeds raw data directly to an
FPGA accelerator board. The FPGA accelerator board can
start processing image data before an entire frame has been
captured, thus minimizing latency. By feeding the data di-
rectly from camera to FPGA board, data movement is mini-
mized and slow downs in processing due to accessing large
datasets through the memory subsystem of a workstation
are avoided. The acceleration in both of these applications
is due to the closeness of the FPGA hardware to the sensor
(the camera) as well as the suitability of the specific appli-
cations to reconfigurable hardware acceleration.

The idea of using FPGA technology to create a smart
camera is not a new one. In 1991, Sartori [11] designed
an FPGA board that captured data directly from an image
sensor, implemented an edge detection algorithm, and fa-
cilitated a parallel data interface to the host processor. Al-
though the input images only had a resolution of 32 x 32
pixels with 1-bit monochrome pixel data, and the FPGA
was running between 3 and 4 MHz, the idea of moving im-
age processing to hardware and closer to the sensor enabled
a real-time solution for his application. Scalera, et al. [12]
designed the CAuS board which included an FPGA and a
DSP that interfaced directly to microsensors and prepro-
cessed the data in order to reduce the amount of informa-
tion necessary to transmit to the host processor. The goals
of that project were to minimize power consumption and
size. Lienhart, et al. [8] were able to implement real-time
video compression on three image sequences in parallel at
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30 fps using FPGAs. This design has a high latency because
an entire frame was stored in memory before the compres-
sion algorithm began. Their input data came from the host
PC via the PCI bus; however it was noted that the solution
could be implemented with a direct camera connection. Our
approach differs from earlier approaches in the quality of
the camera, speed of processing, and the minimization of
latency by processing data straight from the camera.

The rest of this paper is organized as follows. First we
describe the common smart camera hardware setup in more
detail. Next we describe the details of the two applica-
tions, Retinal Vascular Tracing (RVT) and Particle Image
Velocimetry (PIV). These sections include details of the im-
plementations and performance results. Finally, we present
conclusions and future directions.

2. Hardware Setup

Our hardware setup includes a high quality video cam-
era, a framegrabber, and an FPGA board. Figure 1 shows
how these parts are connected. The camera is a Dalsa
IM30P which outputs 12-bit data at variable rates and im-
age resolutions. Data rates are up to 30 frames per second.
Images can be 1024x1024 or 512x512 pixels. The cam-
era outputs raw pixel data at frame rate. The camera’s data
cable connects to a framegrabber designed by Dillon En-
gineering. The FPGA board is the Firebird from Annapolis
Microsystems, which has a Xilinx Virtex 2000E and five on-
board memory chips. The framegrabber is a daughter card
to the Firebird, and interfaces through an I/O port which
sends data directly to the FPGA. The FPGA interfaces to
the host PC through the PCI bus, which is 64-bits wide run-
ning at 66 MHz.

The FPGA design consists of two parts running con-
currently. One part takes the 12-bit pixel data from the
framegrabber and packs it into 64-bit words that is then
stored in the on-board memory. The data is written to, and
later read from, one of two memory chips. The Memory
Switching Design coordinates which chip to use, what ad-
dress to access, and performs all of the memory handshak-
ing operations. When the data is read, it is stored in the on-
chip memory, or BlockRAM, for faster access. The second
part, the Image Processing Design, is a custom block, which
contains the logic for application specific algorithms. The
results from the Image Processing Design are then stored
in one of two output memory chips. The host PC makes
calls to the PCI bus to access the results from the Firebird
memory.

Note that we block up and store data from the camera
in on-chip memory before processing it on the FPGA. An
alternative to this approach is to process the streaming data
directly. We do not do this because the image processing al-
gorithms we implement are window based operations with

large windows. For RVT, the result for one pixel requires
an 11x11 window. For PIV, the window size depends on
the application. Due to the window-based nature of the al-
gorithms, we chose to separate forming windows from pro-
cessing windows. Note that the image processing design
can begin processing windows as soon as sufficient data is
stored in memory. It does not need to wait for a frame to be
acquired before processing is started.

Our overall hardware approach allows us to reuse much
of our design across several different applications. The data
packing and memory switching designs remain the same for
the two implementations described in this paper.

3. Retinal Vascular Tracing

Real-time tracing of the vascular structure of retinal im-
ages is an important part of several medical applications,
including live laser surgery. Some unique challenges are
involved because of the need to attain reliable results from
images that are acquired in non-ideal conditions. Poor il-
lumination in conjunction with the inability to completely
stop all body and eye movements in a live setting contribute
to the challenges. These problems are further complicated
by the fact that high data rates require a large amount of
computation to be performed in very short periods of time.

With real-time vascular tracing results, it is possible for
a surgeon to have an image of the retina that is being oper-
ated on with highlighted blood vessels. It is also possible
to create a system where the surgical laser can be automati-
cally shut off if it is detected that it is off-course. For these
applications to be possible, not only do the results have to
be computed at the same rate that the image data is output
from the camera, but it is also important that there is very
little delay in making the results available.

3.1. RVT Algorithm

The Retinal Vascular Tracing (RVT) Algorithm was de-
signed by researchers at Rensselaer Polytechnic Institute.
The core of the tracing algorithm is a two-dimensional
convolution with 16 independent filters, described in Can,
et al. [2]. These are directional matched filters where each
filter corresponds to a unique direction, separated by 22.5°,
as shown in Figure 2. Each filter response is calculated,
and the filter that returns the greatest response is used in
the tracing algorithm to determine which direction to con-
tinue looking for the next point on the vessel. The RVT
algorithm includes other computations besides the filter re-
sponse calculations, but this is the most computationally in-
tensive part.

Analyzing the filter response calculations reveals some
optimizations to reduce the computational complexity.
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Figure 2. Matched Filters

First, all of the filter coefficients are =1 and +2. The cor-
responding multiplications can be replaced with simpler bi-
nary shifts and sign changes. It can also be noted from Fig-
ure 2 that the filters in the first row are the same as the filters
in the second row, except for a change in sign. Only eight
of the responses need to be calculated; the other eight can
be found by simply copying the results and changing the
sign. All of the template responses are also independent of
each other. This implies that given one 11 x 11 pixel block
of data, all of the template responses can be calculated in
parallel, and the results returned at the same time.

3.2. Hardware System Design

From the algorithm analysis, it is shown that the filter
response calculations can be computed as a series of parallel

shifts and adds. A hardware solution can take advantage of
the parallelism, and offer a great deal of speedup compared
to a serial solution implemented in software.

The ”Smart Camera” in Figure 1 is implemented by im-
plementing the filter response calculations as the Image Pro-
cessing Design block of the FPGA. Instead of the host pro-
cessor getting image data directly from the camera, it re-
ceives both the unaltered image data and the filter response
results for every pixel from the hardware board. This addi-
tional data is received at the same rate as the original camera
data would be, with a small delay to allow for the additional
calculation.

By moving the most computationally complex part of the
RVT algorithm into hardware and closer to the camera, the
amount of software computation is greatly reduced. The
overall processing time is reduced to create a high-speed
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run-time solution.

3.2.1 Filter Response Calculation

Figure 3 shows how the filter responses are calculated on the
FPGA. The data for the 11 x 11 neighborhood of pixels that
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Figure 3. Filter Response Hardware Imple-
mentation

is required for the filters is stored in the on-chip memory, or
BlockRAM. There are eight identical copies of the response
module with four inputs, one for each coefficient (1 and
+2). The interconnection network chooses the correct data
to send to each input of the response modules. The response
modules perform the binary shifts for the data with coeffi-
cients of 2, then compute the response with additions and
subtractions. The response for the filter’s complement is
found by changing the sign of the response that was calcu-
lated. Since we are only interested in finding the response
with the greatest value, we output the absolute value of the
response along with an additional bit showing whether the
result represents the filter or its complement. Cerro-Prada
and James-Roxby describe methods for implementing 3 x 3
convolutions with arbitrary weights using distributed arith-
metic [3]. Our weights are sufficiently simple that such an
approach is not needed here.

The next step is to compare the eight responses that were
just calculated to find the greatest result. This is accom-
plished in three steps using a comparator tree. The response
and 4-bit label of a pair of filters are input into a template

comparator module, and the output is the response and label
of the filter with the greatest result. After all of the compar-
isons are complete, the filter with the greatest response is
output, and ready to be stored into the output memory for
the host to use.

The pipeline registers are not shown in Figure 3. In order
to keep a fast clock speed, there is a pipeline register fol-
lowing every addition, subtraction, and comparison. While
these registers require additional space on the FPGA and
add several clock cycles of latency, they are necessary so
that we can achieve clock speeds that can keep up with the
frame rate of the camera.

3.2.2 Traversing the Image

The data coming from the camera is 12-bits per pixel. In
order to efficiently store the pixel data into our 64-bit wide
memory and minimize the number of memory reads and
writes, we have a data packing design that packs five pix-
els into a single word of memory. A similar data packing
technique was used in [6]. The filter response calculations
require an 11 x 11 pixel window, but since we get five pix-
els from a single memory read, we cannot efficiently input a
window that is 11 pixels wide. Instead, we read in windows
that are 11 rows by 15 columns wide, and find five results
for every window that is read.

Adjacent pixel windows contain a great deal of com-
mon data, so rereading an entire window before processing
would require more memory accesses than is necessary. To
avoid this, we have a system for shifting and reusing a ma-
jority of the data without accessing the memory again. The
11 x 15 pixel window is stored in BlockRAM which is split
into three sections. Each section stores an 11 x 5 portion
of the window, which is a single column of 11 words from
memory. When the results for a window are finished, the
window is shifted to the right by five pixels for the next set
of calculations. Figure 4 shows that in order to get a new
window, only one new 11 x 5 block of pixels needs to be
read. The other two 11 x 5 blocks are still in the Block-
RAM from the previous window. Thus, we need to perform
11 memory reads in order to get five results. Different meth-
ods for buffering image data are described in [7].

After the window gets to the end of one row, it needs
to shift down one pixel and start at the beginning of the
next row. Since the data is stored in the memory in raster
scan order, if we continue to increment the addresses in the
same manner, the window will automatically shift down to
the next line as desired. At the end of every row, however,
there are two filter calculations that are invalid because the
window spans two different rows. This is a price that we
are willing to pay, because hardware algorithms are more
efficient when there are fewer special cases, and can run
uninterrupted over large sets of data.
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Figure 4. Shifting the Window

The frames are 512 x 512 pixels, so we pad the right hand
side of the image with three columns of zeros to create a 512
x 515 image. This allows us to continue shifting the win-
dow to the right by five pixels without creating a problem
at the end of a row. Due to the nature of the application,
boundary conditions are not an issue. There is no important
information on the edges of the image, so any invalid results
that occur when an 11 x 11 window spans multiple rows can
simply be ignored.

3.2.3 Memory Interface

Memory management is an important consideration in
real-time hardware solutions. Data streams in from the
framegrabber continuously, so the incoming data must be
stored and overwritten carefully. Another, larger problem,
is that a single on-board memory chip cannot be read from
and written to on the same clock cycle. Like many other
hardware applications, reading data from off-chip memory
into the FPGA is the bottleneck in speeding up the design.
The only way to prevent the entire design from having to
wait for new data, is to read a new word from memory on
every clock cycle. However, if every clock cycle is ded-
icated to reading data, then there would be no free clock
cycles to write new data to the same memory chip. To solve
this problem, two memory chips must be used to store the
incoming data.

One solution to the problem is to store the first frame that
comes from the camera into Memory 0. The next frame is
stored into Memory 1, and while new data is being writ-
ten into Memory 1, the data from Memory 0 could be read
into the FPGA with no conflicts. This ”ping-pong” method
would continue, so the memory chip that is being read from
and written to is alternating every frame, avoiding concur-
rent reads and writes on the same chip. While this is a com-
mon solution to streaming data applications, it introduces
unacceptable delay in our application. No processing can
be done until the first frame is completely written, and this

latency carries through the entire design.

In order to calculate all of the filter responses shown in
Figure 2, an 11 x 11 pixel neighborhood is required. The
data coming from the camera is in raster order, so we can
theoretically start processing data after the first 11 rows of
data are available. In order to make this happen, we de-
signed a more complex memory swapping method. After
the Data Packing Design packs five incoming pixels into a
64-bit word, every consecutive word is stored in two alter-
nating memories. The first word into Memory 0, the second
word into Memory 1, etc. After the first 11 rows of data
are written, the FPGA can read the data in the correct order
by alternating reads between the two memories. Using this
method, data is still being read on every clock cycle so that
the processing doesn’t slow down. In addition, both mem-
ory chips are only being accessed on every other clock cy-
cle for a read, and new data can be written on the off cycles.
Figure 5 shows a basic timing diagram of how the reads
and writes alternate. Note that there are more reads than
writes in this diagram. Due to the nature of reading two-
dimensional blocks of data, we must re-read a great deal of
data, so there is not a one-to-one relationship between reads
and writes.

Clock rnuoJirrroruirg
InputMemory O INEEN 1N N I .
Input Memory 1 I 1 EENENN BN BN

' >

Time
B Writing
B Reading
U Inactive

Figure 5. Memory Timing Diagram

3.3. Results and Analysis

The goal of the design is for the processing to keep up
with the frame rate of the camera. To achieve this, the de-
sign was synthesized and run at 60 MHz. At this speed, the
design is able to process the incoming image data, and out-
put it at the frame rate of 30 frames per second (fps). The
biggest concern is minimizing the latency. Table 1 shows
the latency for each part of the hardware design.

The total latency from the time the camera sends the first
pixel to the time that the first filter response is available in
the on-board memory is approximately 250usec. The ma-
jority of the latency comes from waiting for the initial data
to become available in on-board memory. The framegrab-
ber latency is unavoidable, because one line of pixels is
internally cached. The latency for computation and the
storing of results is negligible due to the large amount of
pipelining in the design.
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Operation | Clock Clock | Latency
Cycles Speed

Framegrabber ~520 | 30 MHz 17 usec

Write 11 rows | ~7000 | 30 MHz | 235usec

Compute Results ~20 | 60 MHz | 0.3usec

Write Results ~5 | 60 MHz | 0.08usec

Table 1. Latency

A 250usec latency is a very small price to pay, especially
when considering that at 30 fps, it takes the camera 33msec
just to output one frame. We took the filter response al-
gorithm that was implemented in hardware, and wrote it in
C to compare the timing results. Random image data was
written to memory, and we found the time that it took to
read an 11 x 11 window from memory, run the eight unique
filters over the window, and decide which filter returned the
greatest response. The program was run 50 million times
on an Intel Xeon 2.6GHz PC, and we found that it took, on
average, 1.96usec to find the result for one window. The
hardware solution is able to load five new windows in 11
clock cycles. When the pipeline is full, the FPGA can re-
turn five results every 11 clock cycles. Running at 60MHz,
one result, on average, is returned every 36.67nsec. The
speedup factor in hardware is greater than 50 compared to
our software implementation.

4. Particle Image Velocimetry

Particle Image Velocimetry(PIV) [10] is a measuring
technique to capture the flow velocity of fluids. For a con-
ventional PIV system, small particles are added to the fluid
and their movements are measured by comparing two im-
ages taken within a short time interval, ¢ and t+/A\¢, of the
flow field. Such PIV systems are called double frame/single
exposure systems and the movement of the fluid can be es-
timated by comparing these two images recorded in the two
frames.

A typical PIV system is shown in Figure 6. It is com-
posed of the follows parts: camera, frame grabber, im-
age processing unit and the output. The camera is the
PIV recording part. It can be either single frame/multi-
exposure or multi- frame/single exposure PIV [10]. In
this paper, we are only interested in double frame, single ex-
posure cameras and all the following discussion is based on
this type of digital PIV system.The frame grabber gets the
two images from the camera and stores them in the mem-
ory so that the processing unit can analyze the movement of
small particles in different locations. The results from the
processing unit are sent to the output where the data can be
used for flow movement analysis or feedback control.

The images recorded by the camera are divided into

Processing Unit
S = Control
V| Grabber
Output Computation

Figure 6. Basic PIV system

small subareas called “interrogation areas” or “’interroga-
tion windows”. The local displacement vector for the im-
ages of the tracer particles of the first and second images
is determined for each interrogation area by means of sta-
tistical methods. The increasing resolution of CCD sensors
makes it possible to get digital images and use cross corre-
lation to find the displacement vector for the interrogation
area. The interrogation area can move around and different
displacement vectors for the current interrogation area can
be computed. Some overlapping of the interrogation area is
necessary for accuracy purposes. Typically, the interroga-
tion area from the first and the second images are of differ-
ent size. In our application, the area taken from the first im-
age is larger than that from the second one. Figure 7 shows
the cross correlation process where m, n are the size of the
interrogation area from different images and we assume the
interrogation areas are square. Correlation moves in raster-
scan order: starting in the upper left corner and looping first
over columns, and next over rows. Estimation of the particle
movement are based on these the cross-correlation results,
which is very computation-intensive. Sequential computers
cannot meet the requirements of real-time PIV, thus making
hardware acceleration necessary for real-time PIV systems.

Digital PIV systems have proved to be useful in several
areas. Its applications include aerodynamics [10, 14], liquid
flows and even medical research [5]. Nowadays, real-time
PIV systems attract more and more interest because of the
real-time requirement of some applications. Research as
well as application specific commercial systems have been
proposed [1, 13]. Tsutomu [9] and Toshihito [4] et al. have
proposed a FPGA based real-time PIV system which can
process 10 pairs of images in a second hence its perfor-
mance can satisfy the requirements for real-time process-
ing. However, their approach to interrogation window size
is much more restrictive than ours.
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4.1. Algorithm

4.1.1 Discrete cross-correlation

We assume we are given a pair of same size images contain-
ing particle images recorded from a traditional PIV record-
ing camera. The images need to be divided into small inter-
rogation widows. The size of the window is dependent on
the application. We call the window from first image Area
A and that from the second Area B. We use N to represent
the size of one dimension of the images; m, n to represent
the sizes of Area A and Area B, respectively; and we assume
images and interrogation areas are square and m > n. Find-
ing the best match between Area A and Area B can be ac-
complished through the use of the discrete cross-correlation
function, whose integral formulation is given in Equation

(D):

n—1ln—1

Rag(w,y) =Y Y Ali+z,j+y)B(i,5) (1)

i=0 j=0

where x, y are called the sample shift. For each choice of
sample shift (x,y), the sum of the products of all overlap-
ping pixel intensities produces one cross-correlation value
Rap(z,y). By applying this operation for a range of shifts
(=757t <o < PR MR <y < WS a correlation
plane of the size (m — n 4+ 1) x (m —n + 1) is formed.
Figure 8 shows an example of correlating two interrogation
windows. The size of Area A is 4 and Area B is 2. We
move Area B around and match it with Area A to find out

the displacement of particles recorded in Area A. A high

Shiffx=-1,y=1) Shiffx=0,y=0) Shif(x=1y=1)

Shift(x=—1,y =0)

Cross-correlation plane

Figure 8. Example of the formation of correla-
tion plane

cross-correlation value indicates a good match at this sam-
ple shift position. The peak value can be used as an estimate
of the local particle movement.

4.1.2 Sub-pixel interpolation

After determining the local displacement of particles, we
can estimate the movement in pixel shift. Moreover, the
position of the correlation peak can be measured to sub-
pixel accuracy using sub-pixel interpolation. Several meth-
ods of estimating the peak position have been developed.
For narrow correlation peaks, using three adjacent values
to estimate the correlation peaks is widely used and proven
to be efficient. The most common three-point estimators
are Parabolic peak fit (Equation (2)) and Gaussian peak
fit(Equation(3)). We use Parabolic peak fit in our imple-
mentation.

Ba—1.y) = Rat1,y)
=X —|— > 2
Pz 2R@—1,9) ~ 4w ) T2 (a4 1,y) )

. Riz,y—1)—B(z,y+1)
py =Y + 2R(m7y71)74R(m,y)+2R(Tr1y+1)

InBw—1) —InRe_1.y)
=X = 2
Pz + 2l71R(m,11y) —4lnR(m,y) +2lnR(m+1,y> (3)
—y+ By —lnhe.y41)
Py =Y 3Ry, 1) —AnR, ) +2n R g1

4.2. Hardware System Design

From Equation (1), we know that for one cross-
correlation value, we need n x n multiplication and n xn—1
addition operations. To determine the peak correlation
value for the current interrogation window, we need to cal-
culate all correlation values on the correlation plane. This
requires (m —n+1) X (m—n+ 1) x n x n multiplications
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and (m—n—+1)x (m—n+1)x (nxn—1) additions. There-
fore, if we want to determine the local movement through-
out the image, the total computation would be O(N2n?) if
we assume m ~ n. With such a large amount of compu-
tation, software cannot process images in real-time in most
cases. Hardware implementation is a good candidate for
real-time applications since the cross-correlation computa-
tion is highly parallelizable. Different applications have dif-
ferent requirements for the size of the image, the size and
number of interrogation areas, etc. A specific application
may need to change the size of the interrogation area ac-
cording to the flow movement. ASICs may not be flexible
enough to adjust to different design requirements. Thus,
FPGAs are a good candidate hardware platform for real-
time PIV applications. In the remainder of this section, we
discuss our FPGA implementation of the digital PIV sys-
tem.

4.2.1 PIV System

This design fits into the smart camera system(Figure 1),
which provides a memory interface directly from the cam-
era to the FPGA board. As a result, we do not need to move
data around unnecessarily before processing. By imple-
menting the PIV processing algorithm into the Image Pro-
cessing Part, we have a PIV system based on reconfigurable
hardware. A big advantage of this approach is that process-
ing can start before a complete frame of data has been ac-
quired.

4.2.2 Processing Unit

Cross-correlation is suitable for parallel processing. All the
multiplication operations are pixel by pixel and independent
of one another and therefore can be computed simultane-
ously given sufficient hardware resources. The accumula-
tion process can be pipelined by several stages of adders.
The hardware structure of cross-correlation is shown in Fig-
ure 9. The level of parallelization of the multipliers and
the number of stages of adders depends on the hardware
resources we can spend on the design. Another important
aspect of FPGA design is the memory interface. On-chip
memory is fast but has limited size while on-board memory
is slow but has large size. As we mentioned in the previous
section, at any given time we only need two small interro-
gation windows to calculate a cross-correlation plane. The
memory locations of these two windows can be reused for
the whole plane, which means the computation has a spa-
tial locality property. In this case we can use a two-stage
memory architecture, similar in concept to a data cache, to
accelerate the processing. Two on-chip memories are used
to temporarily store the pixel values of Area A and Area B.
The cross-correlation computation uses these two on-chip
memories as input and another on-chip memory as output

X Data from Area A

—
—
—

e

Y L Y L Wl__:__:__‘;l Y L A J i

PeE 998

L

logzX Stages of adders
Accumulate value of X multiplication

X Data from Area B

Figure 9. Block diagram of image processing
unit

to store the cross-correlation value. The peak value and its
position can be recorded for sub-pixel interpolation. Fig-
ure 10 shows a more detailed block diagram of the image
processing part.
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Figure 10. Block diagram of image processing
unit

4.3. Results

Our FPGA implementation improves performance in
two ways. First, the parallel and pipelined design greatly
reduces the image processing time. Second, by using this
smart camera system, once we get the data from the frame
grabber, we can start processing immediately. Processing
can even start before an entire pair of images are captured.
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Our application has two input images of size 1008 x
1016. The interrogation window of Area A is 40 x 40 and
of Area B, 32 x 32. Interrogation windows have 50% over-
lap. The sub-pixel interpolation uses the Parabolic peak fit
algorithm.

Our results show that for the same cross-correlation
and sub-pixel interpolation algorithm, software using fixed-
point running on an Intel(R) 1.5GHz Xeon requires 3.4 sec-
onds while the FPGA implementation using an Annapolis
Microsystems Firebird board takes only 0.16 seconds. The
speedup of data transfer is not so easy to estimate since it
depends on the memory type, the way data is transferred
etc. But we can safely say that the speedup is more than 20
times for our current hardware structure. This speedup can
be further improved with a more parallel structure.

5. Conclusions

We have demonstrated the use of a smart camera setup
for two very different applications: medical image process-
ing and computational fluid dynamics. Both applications
benefit from processing streaming data on reconfigurable
hardware straight from a video camera. In both cases, we
have speedups of over 20 times compared to software run-
ning on a 1.5 GHz Pentium processor. This setup has sev-
eral advantages, including minimizing the overhead of data
movement in the system, and minimizing processing la-
tency by starting data processing before a full frame of data
has been acquired. We have demonstrated using a common
memory interface to enable these two different applications.

In the future we plan to apply our smart camera approach
to several new applications. We will build up a library of
memory interface and component designs that will enable
the quick use of a smart camera for real time image pro-
cessing in a variety of different applications. This will en-
able new real-time applications of reconfigurable hardware
processing at video data rates.

Acknowledgements

This research was supported in part by CenSSIS, the
Center for Subsurface Sensing and Imaging Systems, under
the Engineering Research Centers Program of the National
Science Foundation (award number EEC-9986821) and by
National Science Foundation Grant CCR-0208791.

References

[1] E. B. Arik and J. Carr. Digital particle image velocimetry
system for real-time wind tunnel measurements. ICIASF
’97, pages 267-277, Sept. 1997.

(2]

(3]

(4]

(3]

(6]

(71

(8]

(9]

[10]

(11]

[12]

[13]

[14]

Proceedings of the 12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’'04)
0-7695-2230-0/04 $ 20.00 IEEE

A. Can, H. Shen, J. N. Turner, H. L. Tanenbaum, and
B. Roysam. Rapid automated tracing and feature extrac-
tion from retinal fundus images using direct exploratory al-
gorithms. IEEE Transactions on Information Technology in
Biomedicine, 3(1), March 1999.

E. Cerro-Prada and P. B. James-Roxby. High speed low
level image processing on FPGAs using distributed arith-
metic. In R. W. Hartenstein and A. Keevallik, editors,
Field-Programmable Logic: From FPGAs to Computing
Paradigm, pages 436-440. Springer-Verlag, Berlin, / 1998.
T. Fujiwara, K. Fujimoto, and T. Maruyama. A real-time vi-
sualization system for piv. FPL2003, pages 437-447, Sept.
2003.

P. Hochareon, K. Manning, A. Fontaine, S. Deutsch, and
J. Tarbell. Development of high resolution particle image
velocimetry for use in artifi cial heart research. EMBS/BMES
Conference, pages 1591-1592, Oct. 2002.

J. Jean, X. Guo, F. Wang, L. Song, and Y. Zhang. A study
of mapping generalized sliding window operations on re-
confi gurable computers. In ERSA ’03: Proceedings of the
International Conference on Engineering of Reconfigurable
Systems and Algorithms, Las Vegas, NV, June 2003.

X. Liang and J. Jean. Mapping of generalized template
matching onto reconfi gurable computers. IEEE Transac-
tions on Very Large Scale Integration Systems, 11(3), June
2003.

G. Lienhart, R. Manner, R. Lay, and K. H. Noffz. An fpga-
based video compressor for h.263 compatible bit streams. In
FPGA ’01: ACM/SIGDA Ninth International Symposium on
Field Programmable Gate Arrays, Monterey, CA, February
2001.

T. Maruyama, Y. Yamaguchi, and A. Kawase. An ap-
proach to real-time visualization of piv method with fpga.
FPL2001, pages 601-606, Jan. 2001.

M. Raffel, C. Willert, and J. Kompenehans. Particle Image
Velocimetry. Springer-Verlag, Berlin, Germany, 1998.

A. Sartori. A smart camera. In W. L. Will Moore, editor,
FPGAs, chapter 6.6, pages 353-362. Abingdon EE and CS
Books, Abingdon, England, 1991.

S. Scalera, M. Falco, and B. Nelson. A reconfi gurable
computing architecture for microsensors. In FCCM ’00
Preliminary Proceedings, Napa, CA, April 2000. Field-
Programmable Custom Computing Machines.

S. Siegel, K. Cohen, and T. E. McLaughlin. Real-time parti-
cle image velocimetry for closed-loop fbw control studies.
41th AIAA Aerospace Sciences Meeting, 2003.

C. Willert, M. Raffel, and J. Kompenhans. Recent applica-
tions of particle image velocimetry in large-scale industrial
wind tunnels. ICIASF ’97, pages 258-266, Sept. 1997.

YF]',F.

COMPUTER
SOCIETY



