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ABSTRACT 
This paper extends the KBM method of averaging to delay dif- 
ferential equations. Near identity change of variables are used 
to transform time varying delay differential equations into au- 
tonomous delay differential equations plus small perturbations. 
Then Lyapunov functionals are used to relate the autonomous 
averaged delay differential equation to the original timevarying 
delay differential equation. 

I .  INTRODUCTION 
One of the most important methods ofdetermining the be- 

havior of periodic and almost periodic differential equations 
whichcontainasmall parameteristhese-calledmethodofaver- 
aging. By making an asymptotic expansion about a small pa- 
rameter. authors [ 1-31 have shown that behavior of solutions to 
classes of time varying differential equations can be approxi- 
mated by behavior of solutions to corresponding autonomous 
differential equations. Averaging techniques have foundnumer- 
ous applications in areas including adaptive control, bifurcation 
theory,celestial mechanics,noisecontrol,nonlinearoscillations, 
stability analysis, time varying controllers and vibrational con- 
trol, among many other fields. 

The method of averaging is most often credited to the work 
of Krylov and Bogoliubov [I] and to Bogoliubov and Mitro- 
polskii [2],andhas beenreferredtobymanyauthorsastheKBM 
method of averaging (Krylov-Bogoliubov-Mitropolskii). 
These authors considered the time varying ODE 

X ’ ( t )  = & > X , E ) ,  (1.1) 

where . f :  W x 8” x [0, m )  + W‘ is continuous and f ( t ,x ,E)  
is often assumed to be almost periodic in T with respect to x in 
compact sets for fixed constants E. By making the change of 
variables close to the identity of: x = z + EU(T,Z,E),  (1 . I )  is 
transformed into 

Z’(t) = m) -t Eg(r,z, E ) ,  

t + T  

where ,fb(z) = lim - f(s, z, O)ds, and U is given by 
T--.z ;I, 

~ ( t ,  z, E )  = e-F(r-A)v(L, 290) -fo(z)lQ . II. 
It can be shown that when f satisfies the proper conditions, 

g( t , z ,E )  is a Lipschitz perturbation with the property that 

g(7, z, 0) = 0 . By using basic Lyapunov theory, it is then pos- 
sible to relate stability properties of the averaged equation 
Y’W = &foCv) (1.2) 

to stability propertiesof( 1.1) when E is sufficiently small. Addi- 
tionally, if the initial conditions of (1.1) and (1.2) are chosen 
properly, then,forsuficientlysmall E ,  thesolutions to( I.l)and 
(1.2) remain arbitrarily close to each other on finite (and some- 
times on infinite) time intervals. 

In  the 1960’s. authors such as Hale [4] and Halanay [5] stu- 
died averaging for delay differential equations in forms similar 
to 

X ’ W  = E m ,  471, X ( t  - 4, E ) ,  (1.3) 

where r 5 0 is the constant delay. These authors [4,5] gave 
conditions in which, for sufficiently small E ,  stability properties 
of solutions of ( I  .2) are the same as stability properties of the 
equilibrium points of the ODE 
Y ‘ W  = EfOCv(t),Y(d), (1.4) 

where once again, f o  is an ‘average value’ of given by 
t + T  

so(z,z) = pil ,I, f(s,z,z,O)ds 

Recently Hale and Verduyn Lune1 [6,7] and Lehman et. al. 
[8,9] have examined the delay differential equation 

X ’ ( 4  = f ( t / E 3 4 t ) , &  - TI,&), (1.5) 

and have related stability and transient properties of (1.5) to the 
corresponding autonomous system 

Y’(0  = foCv(O,Y(r - 4) 

where fo(z,,z2) = lim - f(s,z,,z,,O)ds . Here, the in- 

formation on the delay is retained in the averaging process, as 
opposed to (1.3) and (1.4) 

Themain purposeofthispaperistoextend theKBM meth- 
od of averaging to both (1.3) and (1.5). By this, we mean that 
near identity transformations in 9,“ will beused torelate stability 
properties of time varying differential delay equations to corre- 
sponding autonomous differential delay equations. An interest- 
ing consequence of this new technique is an improvement on al- 
ready existing averaged models. In particular. this paper shows 
that a more accurate averaged equation of (1.3) is given by 

(1.61 
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Y ' W  = &fO.foCv(T),Y(t - r)), (1.8) 

where once again, fo is an 'average value' of/; given by 
i+r 

f O ( Z l 9 Z 2 )  = !@+\, f(s,zlJ2p)ds 

We believe that the techniques and proofs presented in this 
paper are simplerthan standardaveraging techniques and proofs 
for delay equations. More importantly, new averaging algo- 
rithms are proposed which provide amanner to estimate the first 
harmonic (ripple estimate) of the time varying system. These 
ripple estimates can not be obtained using the approaches to av- 
eraging suggested by [4-91. Ripple estimates have found nu- 
merous applications in important physical problems, most re- 
cently, in dc-dc pulse width modulatedvoltage converters [ 1 o]. 

Section 2 of the paper presents preliminary lemmas and 
definitions. Section 3 gives the main theoreticalresults. Section 
4presentsexamples. Thejoumal version ofthispaperwillpres- 
entaveragingalgorithmssimilarto thoseusedinODE's[ll] and 
will also discuss transient behavior. 

Notation. Let C = C([ - r, O],%"),where r 2 Oisagiv- 
en positive constant. Let 

x, = x,(e) = x(t + e), - t- c e c o . 
We will use the notation that tpl represents the norm of vector 

ty in %", and (1  ty is a corresponding n o m  on C given by 

(1 J ,  ( I r =  sup tp(u)l. Similarly, we will sometimes use 

11 ty = sup . eo will always be used to denote a 

- r & 6 < 0  

-2rso<o 

forall (t,x,,x2)incompactsubsetsof% x %" x %"andforall 

T Z  0 .  
Using Definition 2.1, it is possible to define a function 

d : % x %" x %" + a", with zero mean value as 

d(s,x,,x2) = S(s,x,,x2,0) - . f ( X I . X * )  ' (2.1) 
Furthermore, if d is periodic, then it is known that 
y(7) = a/T, where a is some non-negative constant. 

The following Lemma is an adaptation from Lemmas4.2.1 
and4.2.2ofSastryandBodson [ 121, which, in turn, wereadapta- 
tions from the classical results of Bogoliubov and Mitropolskii 
[2, page 4501 and Hale [3, Appendix]. 

LEMMA 2.1. Suppose 
d(s,xl ,x2) : % x Q x Q + %" 

is a continuousfirnction on W, has continuous partial deriva- 
tives with respect to xi and d(s, 0,O) = 0 . 

Suppose, furthe,: that d(s, xI, x2) has zero mean value. with a 

convergence,function y( T)o(lrl I + b21) and the mean values of 

, i = 1,2, are both equal to zero with convergence '") 

function y(T)  

tionu(s,r,,x,,e) : % x D x Q x ( 0 ~ ~ 1 -  %"such that 

(i) 

Then. there exists &) E X and a ,fk- 

(E~~/E,xI,x~,E)I 5 &)[CXII + kI3 
d positiveconstant. All derivatives,denotedby" '"or;ii,areas- 

sumed to be right hand derivatives. Let 5, denote the closed (ji) I at E a u ( t / E , x l  r x 2 P E )  - d([ /&,  I ,  x2)l 

neighborhood Bh = {x : M c h, h > 0 )  and let 5 S(E)[bII + b2ll 

E ~ u ( I I E , x ~ , x ~ , E ) ~  5 ( E )  , I = 1.2.  
J ,  E QH = [ty E cl- r,OI : \ \ ty\ lr< H ,  H >  0 ) .  
Let W be the Banach space of absolutely continuous func- 

tions on [-r,O] with absolute integrable derivative, with norm 

11 ty ( I w =  [ tp(0)l + [,(O)ldO ] . Let Q, C W be a ball 

(iii) I axi 
Remark 2. I .  The fknction U in Lemma 2.1 can be chosen 

as 

u(LxI.x~,E) = [ 9 ' ~ - " ' f ( . ~ , x , , x z , O )  - .fo(xI.x,)]d.~. 

ty E e, = (v : II v --I IIw< 4 .  Functions wi E % II. 
I 

or in the special case when,fis periodic, U can also be chosen as 
( w ,  E 9G) are nondecreasing (increasing) functions with 

w,(O) = 0 and w,(s) > 0 for s > 0. ~ ( 2 ,  xi. 1 2 )  = [r(L X I .  ~ 2 ~ 0 ) -  ./&l,x2)ld~ - &xi.  ~ 2 )  (2.3) 
2. PRELIMINARY RESULTS 

where g ( x l , x 2 )  is selected so that U has zero average. Note that, 
in(2.31, U is independentof&. Additionally, forthe periodiccase 
with U given as in (2.3), the bound in (ii) of Lemma 2.1 is given 

Before proceeding with the main results, it is necessary to 

will primarily develop averaging theory for( 1.5). However, the 
introduce several definitions and lemmas, In what follows, we 

same techniquescan beapplied to( I .3) toobtain similaraverag- 
ing results. Because of the strong similarity, the proofs for (1.3) as I at 

E a u ( i / E ,  x lr  x2) - d(t /&,x l ,x2) l  = 0 .  

will not be given. In most applications (2.3) is used for U. In general, howev- 
er, U in (2.3) is not guaranteed to be bounded, even iffis almost 
periodic. Therefore, fortheproofsoftheabove Lemma, itisnec- 
essary to define U as in (2.2). 

In order for us to proceed further, i t is necessary to introduce 
the following assumptions on/in (1 3) (or equivalently (1.3)). 

DeJinifion 2.1. The function , f ( s , x I , x 2 ,  0), wherefisasde- 

fined in ( 1  3, is said to have mean valuefo(xl,x2)if there exists 
a continuous function y ( 7 )  : [0, m )  + [0, a), monotonically 
decreasing, such that y(7) + 0 as T + 00 and 
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ASSUMPTIONS. For some 

Q C %",O E 0, and c0 > 0 

(A I )  ./( . , 0, 0,O) = 0 and f is Lipschitz with respect to its 
second and third arguments, i.e.,for all (s ,xI,  x,, E )  in compact 
sets of % x Q x 52 x (O,E~] ,  there exist constants 

k ,  2 0 and k, 2 0 such that 

~ / ( s , x ~ , x ~ , E )  - . f( .s , i i3i2,~)l  5 kibi - i l l  + kzP2 - X 2 l .  

(A2) , fis Lipschitzin E ,  un(formly with respecttoitsfirst ar- 
gument and linearlv with respect to its second and third argu- 
ments. i.e.. ,/br all ( S , X ~ , X , , E )  in compact sets of 

W x Q x Q x ( O , E ~ ] ,  there exist constants 

k, 2 0 and k, 2 0 
sitch that 

l/k x,.x2. I) - .f(S,XI,X*, E2)l  

[k,bil + k&211 ' ki  - 621. 

(A3) 
satisfies the conditions of Lemma 2.2. 

The.fitnctiond(s, x , , x2)  = , f(s,x,,x,,  0 )  - ,fo(xI,x2) 

LEMMA 2.2. Suppose,/satisfies assumptions (AI)-(A3). 
Then. there exists a,function U. as defined in Lemma 2.1. and 

> 0 such that the transformation 

x(t) = 41) + Eii(t/&,z(t),z(t - r), E )  (2.4) 
is a homeomorphism in B,for all 0 <: E 5 . 

Consider the two delay differential equations 

Y'W = g(t,y(t),y(t - rl), ... ,At - r" (2.5) 

z'(t) = g(t,z(t),z(t - r,) .  ..., z(t - r,,,)) + 
h(t,z(t),z(t - dj), ..., ~ ( t  - d,,),z'(t - do)) (2.6) 

where 
g : % x Q x Q  ... x Q - % "  

and h : % x Q x Q ... x 52 +an 
are both continuous on Wand satisfy sufficient conditions such 
that the solutions to (2.5) and (2.6) exist. Constants 
r, (j = I ,  ... , m) and di (i  = 0,1, ... , n)are in the interval 
[O,r], where r 2 0. We will further assume that 
g(t,O, ... ,0) = 0 and h(t,O, ... ,0) = 0 for all t. 

LEMMA 2.3. Suppose that the trivialsolution to 
(2.5) is exponentially stable (exponentially unstable). Suppose, 

,further, that there exist nomegative constants K and N such 
that,for (t.2,) E % x Q, 

I h ( t , ~ ( t ) , ~ ( t  - d i l  ... ~ ( 1  - dn),X'(t - 4J)I 
5 K(II X I  IIr + k(t - dol) 

and 

l g t t , ~ ( t X ~ ( t  - r l ) .  ... , X @  - rmNI 5 N 11 x I  /Ir. 
Then there exists apositive constant, a, suflciently small, 

such that i f  K < a,  the trivial solution of (2.6) is uniformly as- 
ymptotically stable (unstable). 

3. AVERAGING OF DIFFERENTIAL DELAY 
EQUATIONS 

Wearenow inaposition topresentthemain results. Were- 
mark, onceagain, thatthemaincontributionsofthe theoremsare 
actually in the technique in which they are proved. These tech- 
niques permit the development of an averaging algorithm simi- 
lar to those which have been developed for ODE'S. This is fur- 
ther explained in Section 4 and Section 5. 

This section will show that it is possible to introduce the 
change of variables x(t) = 41) + EU(I/E, z(t), z(r - r), E )  into 
(1.5) in order to transform (1.5) into (1.6) plus small perturba- 
tions (if functionfsatisfies specified properties). Then the lem- 
mas ofthe previous section will be applied to relate the stability 
properties of (1.6) to (1 -5). 

Often [ 1-71, it is assumed that the function to be averaged, 
is almost periodic in t. Then the existence of the mean value 

is guaranteed, and Fredholm altemativescan be applied to prove 
existence of almost periodic orbits. In this paper, instead of as- 
suming almost periodicity, it is assumed that the mean value of 
fexists and satisfies certain properties. This approach to averag- 
ing is a popular method in engineering applications (see Sastry 
and Bodson, Chapter 4 [ 12]), from which we have been greatly 
influenced, due to its simplicity. For results on the existence of 
almost periodic orbits, the reader is referred to Hale and Verduyn 
Lune1 [6,7]. 

THEOREM 3.1. Assume that f in (1.5) satisfies assump- 
tions ( A I )  - (A3). If 

has all solutions with real parts less than zero (wheR.h is de- 
fined in (1.6)). then there exists an > 0 such that, ,for 

0 < E 5 E ~ ,  the trivialsolution of (IS) is ungormly asymptot- 
ically stable. 

Likewise, if 

has at least one solution with real part greater than zero, then 
there exists an c0 > 0 such that, for 0 < E 5 E ~ ,  the trivial 
solution of (1.5) is unstable. 

ProofofTheorem3.1. Let d(s,x,,x,)in Lemma2.1 begiv- 
en as 

d(S,xI,x,) = f ( s ,x~ ,x2 ,0)  -SO(XI*XZ) 
and let u(s,x,,x,, E )  be as given in Lemma 2. I with this d. Sup- 

pose 41) = x(t;to,qj) denotes the solution to (1.5) with 

41) = $( I )  on t E ( - m, to], and $ is a continuous function 
in a sufficiently small neighborhood of the origin, to be defined 
later. (If qj  is only continuous on the interval of 
I E [to - r, to], then, it can be assumed that $( I )  = 0 for 

t < to - r). Introduce substitution 41) = z(t) + ~ u ( t / ~ , z ( t ) ,  

z(t - r), E )  into (1  S). By Lemma 2.2, this change of variables 
is a homeomorphism in a neighborhood Bh of the origin for suf- 
ficiently small E ,  0 < E I . Then, (1.5) becomes 
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(ii) 

Similarly, it is easy to show [9] that Assumption (AI) implies 
that, for z E Sa, Y,(z(f),z(f - r))l I kllz(r)l + k2(I(t - r)l, 

and 

vTr/-E, z(0 + E W - E , Z ( t ) , z ( ~  - T),E), 

&U(?, z f r  - r), z(f - 2r), E),  E )  

For sufficiently small E , O  5 E 5 E ~ ,  the inverse of 

[I + E au(f'E":$ - r)'E)]exi~t~forallf(and isclosetothe 
identity). Therefore, we have 

We now will obtain a bound on terms in both the right and 
left-hand side of ( 3 .  I b), which will then permit the application 
of Lemma 2.3 .  

From Lemma 2.1, we deduce for 
z E f2 E B ,  and 0 c E 5 E ,  that 
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+ 51(~)(kiIz(t)l + k,Mt - r)l)l 5 tq(&) (1 z(t) ( (2r  (3.2) 

where t4(.5) E 36. 

Likewise, we can obtain a bound on the term multiplying 
the derivative of the delayed state in the right had side of (3.1). 
Define 

f l ( t /&.  ~ ( 0 ,  z(t - r). E )  

has all solutions with real parts less than zero (at least one solu- 
tion with positive real part). Theny = 0 of (1.6) is exponentially 
stable (exponentially unstable). Hence, by Lemma 2.3, (3.l), 
(3.2) and (3.3) there exists a sufficiently small 
E ~ , O  < E c 5 min [ E ~ , E ~ , E , ]  such that (3.3) has a uni- 
formly asymptotically stable (unstable) trivial solution. Q.E.D. 

As previously mentioned, the above averaging techniques 
can be applied to (1.3). An interesting consequence of these 
techniques is that a new averaged model, (l.8), is obtained 
instead of the classical model, (1.4), introduced by [4,5]. Classi- 
cal averaging techniques for (1.3) suggest that it is not necessary 
to consider the effects ofthe delay in the averaged model. How- 
ever, the following theorem suggests that it is more accurate to 
include the delay in the averaged model: 

THEOREM 3.2. Assume that f in (1.3) satisfies assump- 
tions (AlHA-3). !f 

has all solutions with real parts less than zero (wherefo and is 

defined in (I.@), then there exists an E ,  > 0 such that, for 

0 < E c E , ,  the trivialsolution of (1.3) isuniformlyasymptot- 
ically stable. 

Likewise, If 

has at least one solution with real part greater than zero, then 
there exists an E ,  > 0 such that. for 0 < E I E,, the trivial 
solution of (1.3) is unstable. 

The proof of Theorem 3.2 is almost identical to the proof 
of Theorem 3.1. In this case, the near identity change of vari- 
ables is given as 

x( t )  = z ( t )  + E U ( T , Z ( ~ ) , Z ( ~  - r) ,&) 
Remark 3.1. Theorem 3.2 suggests that a more accurate av- 

eraged model of (1.3) is given by (1.8) instead of the classical 
model (1.4) described in [4,5]. However, there is a strong rela- 
tionship between (1.8) and (1.4). Note that the transcendental 
characteristic equation given inTheorem 3.2 can be rewritten as 

AS E becomes smaller, approaches the number I ,  and 
the transcendental characteristic equation given above ap- 
Droaches the nort-transcendental characteristic equation given 

when linearizing (1.4) about its zero equilibrium. This can be 
formalized by the followingcorollary, which reduces to the re- 
sults of [5,6]. 

COROLLARY 3. I .  Assume that f in (1.3) satisfies as- 

has allsolutions with realparts less than zero (where,fo and is 

defined in ( I . @ ) ,  then there exists an E, > 0 such that. .for 

0 < E I E,, the trivialsolution of (1.3) is uniformly asymptot- 
ically stable. 

least onesolution with realpart greater than zero, then there ex- 

ists an E ,  > Osuch that, for 0 < E 5 E,, the trivialsolution of 
(1.3) is unstable. 

4. EXAMPLES 
EXAMPLE4.1. Considerthenon-autonomous scalardif- 

ferential delay equation given by 

x’ ( t )  = E [ -  4cos2(t)x(t - r )  + ~ ( t ) ]  = &f(t,x(t),x(t - r)), 

(4.1) 
which, according to the classical results of [,5], has an average 
corresponding to (1.4) of 

y’(t)  = E [  - 2fit) + f i t ) ]  = - &fit) . (4.2) 

For sufficiently small E ,  0 < E 5 E,, the stability proper- 
ties of (4.1) are the same as those of (4.2). Therefore, for 
0 < E 5 E the averaging theory of [ 13,141 p m  

vial s o u o n  to (4.1) IS a1 wavs &rmlv W D  totically . .  F 
&!&. Note that all influence ofthe delay has been neglected in 
analysis. System(4.2) isanODEthatalways hasasymptotically 
stable trivial solution, and hence, for sufficiently small E, the 
trivial solution to (4.1) will be asymptotically stable. Further- 
more, if x(0) = NO), then the solutions to(4. I )  and (4.2) should 
remain close to each other provided 0 < E I Eo. 

Using Theorem 3.2, however, the newly developed aver- 
aged model is given by 

z’(t) = E [  - 2z(t - r)  + z(t)] = &(z(r),z(t - r))  . 
For sufficiently small E , O  < E 5 E~ one might expect that 
(4.3) more accurately estimates (4.1) than (4.2), due to the fact 

(4.3) 
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that informationon thedelay ismaintainedintheaversgedequa- 
tion. This, in fact, turns out to be true. 

A great deal of information has been lost by averaging out 
the delay in (4.2). For example, stability of(4.3) is governed by 
the location oftherootsofthe transcendental characteristic equa- 
tion 

s = E [ -  2e-” + I], 
or equivalently z = [- 2e-E” + 13 . It is a simple exercise 
(see [ 131) to show that all roots of this equations all have nega- 
tive real parts ifand only if Er < L. Additionally at least one 

of the roots will have positive real parts if Er > n. 
3 b  

3 5  
For the purpose of illustration, let r = 5 in (4. I). Then the 

transcendental characteristic equation predicts that, for 
0 < E 5 E @  the trivial solution of the original system (4.1) is 
asymptotically stable if E < 0 . 121 and is unstable when 
E =- 0 . I2 1. This prediction of instability for ranges of E can- 
not be determined by analyzing (4.2), as suggested by [4,5]. 

Computer simulationsshowthat thetrivial solution of(4.1) 
is asymptotically stable for 0 < E < 0 . 126 and is unstable 
for E > 0 . 126. These values closely correspond with the Val- 
ues predicted using the average (4.3). In summary, the classical 
averaging techniques [4,5] provide less information on the true 
behavior of the original system the newly proposed averaged 
model given by (1.8). 

EXAMPLE 4.2. Consider the non-autonomous scalardif- 
ferential delay equation given by 

x‘(t)  = [-  4cos2(t/~2r(t - r)  + x(t)] . (4.4) 
By Theorem 3.1 and 3.2, the average of (4.1) is given by 
y’(t) = [ - 2y(f - r)  + fit)] . (4.5) 

Forsufficiently small E,O < E I Theorem 3.2guar- 
antee that the asymptotic stability propertiesof(4.4) are the same 
as those of (4.5). 
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