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Abstract- This paper applies vibrational f d  
back control to time lag systems. Both stabi- 
liiation and transient hues are d k m s e d  . An 
illustrative example is given which demonstrates 
that the proposed controller: 1) provides s-e- 
rior system gain and phase margin in comparison 
to time invariant controllers when applied cop 
rectly, 2) is not robust with respect to unknown 
delays and 3) does not have zero placement ca- 
pabilities, in the sense defined in the paper. 

I. INTRODUCTION 

Recently, there has been a great deal of research in- 
terest in showing that systems with time varying pe- 
riodic controllers can have superior robustness prop- 
erties in comparison to time invariant controllers [I- 
31, [9]. In particular, periodic controllers, for both 
continuous and discrete systems, have demonstrated 
capabilities of arbitrarily improving the gain mar- 
gins for classes of LTI plants [2-41, [9]. Likewise, 
periodic controllers have been shown to stabilize sys- 
tems with decentralized ked modes 111, [5]. 

This paper proposes to  use the techniques of vi- 
brational feedback control, introduced in [6], to  d e  
sign periodic controllers for time delay systems. The 
results of this paper can be obtained due to recent 
advances in open loop vibrational control [7] and 
new stability results for delay equations [8]. 

It should be noted that most of the literature for 
periodic controllers centers around stabilization is- 
sues for finite dimensional plants [2], [MI, [9]. This 
research differs from these types of results in two sig- 
nificant ways. First, the possibility that the plant 
includa a measurement and/or actuator delay is ex- 
amined. Hence, the problem becomes infinite di- 
mensional. Second, new methods to control the 
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transient behavior of the system are introduced. For 
example, using the proposed techniques, it is now 
possible t o  control the rise time (in the sense de- 
scribed below) of a periodically controlled delayed 
plant with a step input. Of course, all results in this 
paper can be applied to  the ODE czwe by setting the 
delay equal to  zero. Hence, the results of this paper 
represent new techniques in the control of ODE’S as 
well. 

The formulation and the design of vibrational 
feedback control for time lag systems is presented 
in Sections 11 and 111. The results obtained are, a t  
times, surprising. For example, much of the research 
on periodic controllers centers around apparent zero 
placement capabilities [2-4, 61. However, this re- 
search demonstrates that vibrational feedback con- 
trollers do not have zero placement capabilities, in 
the sense discussed in this paper, even for the ODE 
case. 

Another important, and perhaps surprising, result 
is the lack of robustness that the vibrational feed- 
back controllers proposed in [6] have with respect to  
time delays. In Section IV, an example from [4], [6] 
is reworked and shown to  be unstable with delay of 
T = 0.02, even though the system has gain margin 
over 20 for zero delay. Perhaps more unusual is the 
f a d  that for larger delay, e.g., T = 0.12566, the sys- 
tem becomes stable again. New control algorithms 
are presented in this paper to  compensate for the 
delay, and applications to  robustness problems are 
also introduced in Section 111 and IV. An example is 
given t o  demonstrate that the algorithms in this pa- 
per can have superior performance over known finite 
dimensional time invariant controllers. 

11. Controllers and Problem Formulation 

Consider a S S 0  time-invariant plant with time de- 
lay having open loop transfer function Gp(s)e-sr. 
In state space form, this system can be written as 

k(t)  = As(t)  +Bu(t) 
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- 
y(t) = Cx(t - T )  + du(t - T), (2.1) where q(t) limT,, f Jy q(s)ds. The above 

conditions are used for technical reasons in order 

pi(t) that 

Where 2 E Qn is the state, U E 8 is the input, and to simplify the presentation. One set of a(t) and 
y E 92 is the output. In this research, all delays are 
lumped together in the output equation as above. 
That is, the sum of the measurement, computation, 
and actuator delay is equal to T in (2.1). 

A. Controller 

Consider a periodic controller with unity feedback 
in the form of [6] 

the conditions are [6] 

a($) = cos(t) 

if T is even 
if r is odd. 

In this case, the closed loop equation of (3.1) and 
controller (3.2) is given as 1 

&(t) = [ F +  ;F~(t/~)]x~(t) +Ge(t)  

(2.2) 
1 

~ ( t )  = [K + z K P ( t / ~ ) ] x c ( t )  

e( t )  = - Y ( 4  
where I E Q is the reference input, Fo(~/E) and 
K, (~ /E )  are periodic zero average matrices, xc E Bn, 
0 < E << 1, and r is the relative degree of the system 
defined as 

0 i fd#O 
= { min{k : CA"lB # 0, k = l , - . . , n }  if d = 0. 

(2.3) 
Addit ionally, r 0 1 e.. 0 1 

. .  
F = 1 0 :.: , (2.4) 

fi fi fn 

y o  ... o o 1 

G = [ 0 0 l IT ,  

and 

K = [kl k2***k,], (2.5) 
t 

K,(E) = lo,@/€) ... p,-,(t/E) 0 ... 01- 

Note that E is proportional to the period of F o ( t / ~ )  
and Kr ( t / ~ ) .  

It is assumed that a(t) and p(t) as well as -yi(t) 
J-. .  JPi( t ) (dt)"  and p ( t )  ~exp{Ja ( t )d t}  areal1 
scalar functions satisfying the following conditions: 

Definition 3.1: Open loop system (2.1) with 
the above controller (2.2) will be referred to  as cl. 
B. Time Invariant System 

Along with cl and the closed loop equation (2.6), 
introduce the SISO LTI closed loop delay system 
with unity feedback given by 

i (t) = At@) +sa@) 
#(t) = &(t-?-) (2.7) 
C ( t )  = i(t) - k%(t - T), 

where 2 E B2,, ii E 8, i E B is the reference, 9 E B 
is the output, and T is as defined in (2.1). Assume 
that %(t) = [xT( t ) ,  $(t)lT = 6(t)  for t E [-T,O], 
where x and xc are as defined in (2.1) and 6 is a 
continuous function. 

Definition 3.2. Closed loop system (2.7) will be 
referred to as C2. 

Utilizing the technique of averaging, this research 
demonstrates that the output of Cl can be "approx- 
imated" by the output of a time invariant system in 
the form C2. In this manner, robustness properties 
of Cz can be used as a measure of robustness of 
corresponding time varying systems. 
Definition 3.3. Let Q(t ,s)  be a 2n  x 2 n  pe- 

riodic matrix with bounded inverse, and let, in 
(2.6), [xT(t),xT(t)lT = Q ( t , ~ ) c ( t ) .  Assume that this 
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change of variables transforms (2.6) into an alge- 
braically equivalent dynamical system 

<(t) = A o ( t , ~ ) ~ ( t )  + Ai(t ,~)<(t  - -7) + Go(t,&)l(t) 
Y(t) = CO@, E ) C ( t  - 4, 
where Ao, A I ,  GO and CO are of appropriate dimen- 
sions. 

For any given fixed 6 > 0 and any L > 0, cl and c2 are said to be 6-equivalent if Ig(t) - @(t)l < 6, 
t E [0, L], where y(t) is the output of c2 and 

CO(S,E)S(~ - 7)ds. 
t+T 

g ( t )  = lim 1 
T+oo T 

When L = co, C1 and c2 are said to be globally 
6-equivalent . 

Remark 3.1. The concept of &equivalence gives 
a measure of how closely the moving averaged output 
of the time varying system cl is approximated by 
the output of the time invariant system c2. There 
are few general classes of time varying systems in 
which substantial information on dynamic behavior 
can be gained. By approximating the behavior of a 
time varying system to the behavior of a time invari- 
ant system, controller parameters can be designed 
based on the time invariant system. This simpli- 
fies the problem. Comparisons between y(t) of (2.1) 
with y(t) and y(t) reveal the change of transient be- 
havior due to periodic control. 

In an effort to develop concepts of performance 
for time varying system Cl, consider the following 
definitions. 

Definition 3.4. C1 is said to  have 6-equivalent 
rise time, t&, if: 1) cl is &-equivalent to  c2 and 
2) C2 has a rise time tr- 

Definition 3.5. Cl is said to have a 
&-equivalent zero at z E C if: 1) C1 is 
6-equivalent to C2 and 2) has a zero at 
z. (In this paper, we say that c2 has a zero at z 
when its transfer function %ebsr has n(z) = 0.) 

111. 6-EQuivalence 

This section will demonstrate how it is possible to 
relate properties of C l to  a time invariant system 
given by cl, in the sense of &-equivalence. Con- 
troller parameters can then be chosen through the 
analysis of the time invariant systems. 

A. Controller With Relative Degree Zem 

For simplicity, first consider Cl when d # 0 and 
r = 0. 

Theorem 3.1 : Assume Z(t) is a step input, and 
d # 0. Suppose that @(t) is a fundamental m a t k  for 
the ODE i( t)  = Fo(t)z(t), where Fo(t) is defined in 
(2.4). Then, for any L 2 0 and any 6 > 0, them 
exi-sts an EO = ~ o ( 6 , L )  > 0 such that, for 0 < 
E 5 EO, cl is 6-equivalent to C2 as given by (2.6) 
with 

K = p - l ( t / ~ ) C  d [ K p - l ( t / E ) @ ( V )  

B = [ ; ] , i(t) =p-l(t/E)z(t). 

3. Cmtmller With Nonzero Relative Degree 

Theorem 3.2 : Assume Z(t) is a step input, and 
d = 0. Suppose that @(t) is a fundamental mat& 
for the ODE k( t )  = Fo(t)z(t), where Fo(t) is defined 
in (2.4). For any L 2 0 and any 6 > 0 there &ts 
an €0 = ~ ( 6 ,  L) > 0 such that, for 0 < E 5 eo, Cl 
is 6-equivalent to c2 as given by (2.7) with 

1 A= [ A B K m ) + V  
0 W ( t / E ) F @ ( t / E )  

i, = [ 4 , C = [ C  0 1 ,  

i(t) = p-l(t/E)l(t). (3.5) 

Where V = (-l)'-lBLr(t/~)FP-l@-l(t/~)F@(t/~) 
and L;+l(t) = sLi(t)dt, i = 1,2 ,..., T - 2, 
&(t) = Kp(t), and p ( t )  is given in (2.5). 

C. &-Etpiadent Zem3 

In the results of [6], it is proposed to use vibrational 
feedback control to move the open loop zeros of a 
corresponding averaged equation. In this sense, vi- 
brational feedback control (when 7 = 0) was demon- 
strated t o  be helpful in problems of finite gain mar- 
gin and decentralized ked modes. However, in this 
subsection it is shown that the 6-equivalent zeros 
of C1 always contain the open loop zeros of (2.1). 
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This implies that vibrational periodic control does 
not actually have zero placement capabilities in the 
sense of 6-equivalence. 

Theorem 3.3: The zeros of the open loop 
system (2.1) are contained in the 6-equivalent 
zeros of the closed loop time varying system 

Remark 3.1: The results of Theorem 3.3 are sur- 
prising. Several authors have claimed that periodic 
controllers have arbitrary zero placement capabili- 
ties [2, 3, 61. In fact, such a claim was made in [6] 
for vibrational feedback control when r = 0. Clearly, 
such claims rely heavily on what is meant by zeros 
of a time-varying system. 

We suggest that the averaged output of the pe- 
riodic controlled system should be closely approxi- 
mated by the output of a time invariant system in 
order to introduce a notion of a "zero" of a time- 
varying periodic system. In this manner, this r e  
search is proposing a new definition for zeros of p e  
riodic systems. 

D. Controller Design 

In this section, techniques are proposed that may 
be used to select the parameters in (2.2)-(2.5) in 
order to  obtain a desired response for Cl. First, 
conditions for global 6-equivalence between E, and 
C2 are presented. The controller gains are designed 
based on the response of C2 which is time invariant. 
In this way it is possible to control 6- equivalent 
time domain specifications for c2. 

Theorem 3.4: Assume l ( t )  is a step input and 
d # 0. Let A , B , K ,  and 1̂  be as given in (3.1) 
and assume r > 0 is &ed. Suppose that there d t  
constants 71 and 772, 0 <, 71 < %, such that for 
any E E [ql, 721, det[sI - A + k k e - 7 3 ]  = 0 has all 
solutions with negative real parts. Then f o r  any fied 
6 > 0 there mis ts  an EO = ~ o ( 6 )  > 0 such that, when 
E E [711,712] and E < EO, C1 and C2 are globally 
6- equivalent. 

Theorem 3.5: Assume l ( t )  is a step input and 
d = 0. Let A , B , K ,  and I^ be as given in (3.2) and 
assume r > 0 is fied. Suppose that there exist con- 
stanb 71 and %, 0 < 71 < %, such that for any 
f o r  E E [711,772], det[sI - A + k k e - " ]  = 0 has 
all solutions with negative real parts. Then for any 
$?xed 6 > 0, there M t s  an EO = ~ o ( 6 )  > 0 such 
that, when E E [711,72] and E < EO, C1 and C2 are 
globally 6- equivalent. 

Remark 3.2: The above two theorems allow for 
the control of both transient response and stability 
of cl by examining c2 and either (3.1) or (3.5) 
(depending on the relative degree). For example, 

Cl. 

it is possible to  design a 6-equivalent rise time by 
controlling the rise time of C2. Asymptotic stability 
of Cl is equivalent t o  designing a controller so that 
the conditions in Theorem 4.4 and Theorem 3.5 are 
satisfied. In fact, under the conditions of Theorem 
3.4 and 3.2, y ( t )  of Cl will approach a periodic orbit 
in the vicinity of the steady state value of fj(t). 
In terms of v(t), this implies that limt+,g(t) M 

C(-A +kk)-'I%(t), where i(t) = constant. 
Alternatively, the technique [6] can be modified 

to  design a stabilizing controller. 
Theorem 3.6: Assume l ( t )  is a step input, and 

define Gk(s) = K(s1-  A ) ~ ,  where A,k and 
K are as given in (3.1) or (3.2) (depending on re& 
ative degree). Suppose that there exkt positive con- 
stants p,ql and 712, O,< 71 5 %, such that for any 
E E [VI, 7121, the plant G ~ ( s )  has positive phase mar- 
gin, $m, satisfying & > p. Finally suppose that 
0 I r < p/wb, where w4 is the smallest frequency 
satisfying IGk(jw4) = 1, and r is the delay of the 
system. 

Then for any 6 > 0, there exkb an EO = 
~ ( 6 )  such that, for E E [ q l , ~ ]  and E < co,C1 is 
globally 6-equivalent to C2. 

Remark 3.4: An algorithm for controlling (2.1) 
can now be derived. Parameters for the periodic 
compensation can be selected so that the condi- 
tions of Theorem 3.6 are true. It should be noted 
that when r = 0, [6] has shown that the zeros 
of Gk(s) can be arbitrarily placed provided that 
(A,B,C) in (2.1) is controllable and observable. 
This in no way implies that 6-equivalent zeros 
of C1 can be arbitrarily placed, as we previously 
showed. However, zero placement of Gk(s) does 
allow for the phase margin of &!k(s) to  increase, 
making global 6-equivalence possible when r = 0. 
When r # 0, this statement is not necessarily true 
unless the controller is "tuned" in a special man- 
ner, as below. In order to apply these methods, it 
is beneficial to fh E to  be a specific value, related to  
the period and delay. This is demonstrated in the 
following theorem. 

be as in Theorem 
3.6. Assume that Fo(t) and K,(t) are T-per-iodic, 
and suppose that (A,B,C) in (2.1). is controllable 
and observable when r = 0. Then the zeros 
of G ~ ( s )  can be arbitrarily placed provided that 
TIE = nT, where n is any non-negative inte- 
ger and r is the fied non-negative constant delay. 

I 

Theorem 3.7: Let Gk( s )  

Remark 3.5: When r / E  # nT, zero placement 
capabilities of G ~ ( s )  may not be possible. How- 
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eve!, by tuning E in a sufficient manner, the zeros 
of GR(s) can be moved arbitrarily. Often this will 
permit an increase in 4m so that 4m > W&T in The- 
orem 3.7. While there are no guarantees (necessary 
and sufficient algorithms) that this procedure always 
works for general systems, in many applications it 
is successful. To summarize, one possible design 
procedure is: 

Stepl: Assume T = 0, and select controller gains 
so that Gk(s) has large phase margin and small 
w+. This can usually be accomplished by using the 
techniques of zero placement proposed in [SI. 

Step 2: Verify that 4m > W+T where r is the hed 
positive delay. If not, change the controller parame- 
ters and repeat step 1. 

Step 3: Select E = € 1  such that T / E ~  = nT, where 
€ 1  is sufficiently small and n is a positive integer. 

IV. Example And Robustness 

A. &ample 

Consider the system 

k( t )  = .(t) +U@) 

y(t) = -22(t - T )  + U(t  - T) ,  

which has transfer fundion given by G(s) 
~ ~ ( ~ p - 7 ~  = 9-3 e-7' 

For T = 0, this plant was examined in [6]. Since 
the plant has a delay, a zero in the right half plane, 
and a pole in the right half plane, time invariant con- 
trollers have limited capabilities [4], [7]. In fact, the 
delay in the system makes stabilization of this plant 
by previously known finite dimensional techniques 
extremely difficult (we could find no previously pub- 
lished techniques in the literature that could ade- 
quately stabilize and control this plant with finite 
dimensional unity output feedback). We will now 
show that the proposed vibrational feedback con- 
trollers can robustly stabilize this system. Employ 
periodic controller (2.2) with P = 0 in the form of 

= 

-*. 

&(t) = [f + cos( t /E>]ZC( t )  + e@) 

u(t) = [k + do) s in( t /~)~z~(t ) ,  

e@) = -Y(% 

where it is assumed that Z(t) is a step input. The 
following closed loop averaged equation is obtained 
a 

%(t) = [ ; ; ] 2(t)  + [ ; ] q t )  

and G(t) = f(t) - [ - 2 p ( t / ~ )  [ k p - l ( t / e ) p ( Y )  + 
+k(')sin( F ) p - l ( t / ~ ) p (  Y)]]Z(t  - r )  where 

where N = [ k m  + k(O)@q] 
and M = [ W 1 ( t / E ) P ( ? )  + 

~ 

k(O) s i n ( F ) p - 1 ( t / ~ ) p ( v ) ] .  Notice that the 
zero at  s = 3 has not been moved. This is 
consistent with Theorem 3.3 which states that the 
&equivalent mas contain the open loop plant 

In order to select proper parameters for a sta- 
bilizing controller, the steps of Remark 3.5 can be 
followed directly. 

zeros. 

STEP 1. Assume T = 0. Then 

GR(S) = [ -2p(t/E) k 3 
X [ 0 s-f  -[xl ] - I  [ y ]  (4.1) 

The goal, now, is to select the pole and zero of 
Gk(s) in such a manner as to  maximize the ratio 
&,/U+. Only the pole at s = -1 in (4.1) is hed. 
After a few trial and error iterations on MATLAB, 
it is found that choosing a pole at s = -3 and a zero at 
s= -4 has high ratio 4m/w+. Then straightforward 
calculations, utilizing (5.1), yields the parameters 
k = 1, k(O) = -5.743271,~~ = 1, f = -3, which, 
in turn, yields B = 1.26607 and Tj = 0.56515. This 
giVeS 

9+4 
GK(S) = 

(8 - l)(s + 3) , 
as desired. 

STEP 2. Calculate dm and a,+ In this case 4- = 
0.637 ( P Q ~ )  and W+ = 0.8486 . Therefore, #m > 
rw+ for any fked r satisfying 0 < r < 0.75. 

Choose E = € 1  hed  and sufficiently 
small to satisfy = 2?m, where n is a s&- 
ciently large positive integer. Then, y(t) is globally 
6-equivalent to @(t) for fixed positive T < 0.75, i.e., 
the system output is bounded, and S(t)  c m  be a p  
proximated by @(t). Hence, choosing the controller 
parameters as above will stabilize the system. 

STEP 3. 
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B. Lack of Robustness with Respect to De- 
lay 

When the delay in the above system is assumed to 
be zero and the reference input is zero, then the 
trivial solution in Cl is asymptotically stable for 
E = &. This has been shown in [6] for similar pa- 
rameters. However, for the case when T # 0, the 
transfer function for GK(s) is given by 

where M and x are defined previously in this sec- 
tion. Consider the case when T = 0.02. Then, for 
the controller parameters above, i.e., IC = 1, = 
-5.734271, f = -3, and E = &, the transfer func- 
tion is 

[5 - 0.232(~ - l)] 
(S - l ) ( ~  + 3) 

GK(+ 

There is both an open-loop zero and open-loop pole 
in the right half plane, obviously implying that 
the output of the system is unstable. However, for 
T = 2nns 5 0.75, n = 0, 1, ..., the output, y(t), a p  
proaches an asymptotically stable periodic orbit for 
k e d  E > 0 sufficiently small. That is, the system 
can be stable for ked delays larger than 0.02, even 
though it is unstable for T = 0.02. (As previously 
mentioned, the output is stable for T = 0.) This 
type of stability-instability sensitivity to  the delay 
appears to be unique to  fast time varying systems 
with delay and illustrates importance of exact mod- 
elling of the delay when employing vibrational feed- 
back control. In order to guarantee that the output 
remains bounded for T = 0.02 and a step input, the 
parameter E should be tuned so that E = &. For ex- 
ample, when T = 0.02, one value of E which guaran- 
tees stability is E = 0.003183. In this case, G ~ ( s )  is 
as given in (4.1) and y(t) becomes bounded. 

V. Conclusions 

This paper extends the technique of vibrational feed- 
back control to systems with delay. Averaging t h e  
ory for differential delay equations is presented and 
then applied to aid in the controller design. The 
method of control design is introduced and examples 
are presented to illustrate issues such as stability, 
gain margin, and robustness with respect to  delay. 
The results of this research indicate that vibrational 
feedback control for delay systems can substantially 
improve performance when applied correctly. 
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