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Abstract

To obtain the benefits of aggressive, wide-issue, archi-
tectures, a large window of valid instructions must be avail-
able. While researchers have been successful in obtaining
high accuracies with a range of dynamic branch predictors,
there still remains the need for more aggressive instruction
delivery.

Loop bodies possess a large amount of spatial and tem-
poral locality. A large percentage of a program’s entire ex-
ecution can be attributed to code found in loop bodies. If
we retain this code in a buffer or the cache, we do not have
to refetch this code on subsequent loop iterations. Loops
tend to iterate multiple times before exiting, thus providing
us with the opportunity to speculatively issue multiple iter-
ations.

While some loops can be unrolled by a compiler, many
contain conditional branches. The number of times a loop
iterates may be dependent on a program variable. These
issues can hinder our ability to speculatively issue multiple
iterations of a loop. If we are able to profile loops during
runtime, we can use this information to more accurately is-
sue speculative paths through loop bodies.

In this paper we present a characterization of loop exe-
cution across the SPECint2000 benchmark suite. We intend
for this study to serve as a guide in the selection of design
parameters of a loop path predictor. We characterize the
patterns exhibited during multiple visits to a loop body. We
present the design of a table that records path-based loop
execution history and allows us to predict multiple loop it-
erations dynamically.

1 Introduction

Branch prediction has been studied extensively over the
past 20 years [2, 4, 8, 11, 14, 18]. The goal of a dynamic

branch predictor is to predict the address of the next instruc-
tion to be fetched. When the prediction is correct, the target
instruction stream can be fetched prior to the resolution of
the branch; when the prediction is wrong, a penalty will
be imposed to squash the speculatively fetched/executed in-
structions and to compute/fetch the correct instruction ad-
dress. Fortunately, present conditional branch predictors
produce accurate predictions [18].

We are presently designing a very aggressive, high-IPC,
machine architecture [17]. We have found that the success
of our design will rest on our ability to provide a wide win-
dow of valid instructions to issue. While branch predictors
can greatly aid instruction delivery, there still remains the
need to increase the window of available instructions.

Programmers frequently use loop constructs to imple-
ment iterative algorithms. The instruction level parallelism
(ILP) contained in loops represents a large percentage of the
total ILP in the program. For this reason it is important to
consider how best to explore this ILP and provide a large
window of instructions to the processor.

To exploit the ILP present in a loop, we need to effec-
tively unroll the loop at runtime, providing multiple itera-
tions of the loop to the instruction window. Loop unrolling
has been well studied [1, 9, 12]; compiler writers have
clearly demonstrated the value of this technique [7, 10].
While compilers can unroll simple loop constructs, they are
not able to unroll a loop that contains data-dependent in-
dices, control-dependent loop bodies or irregular nesting.

In this paper we characterize the dynamic behavior of
loops. We attempt to capture important characteristics that
can be used to predict the paths executed through a loop
body upon each visit to a loop. We are particularly in-
terested in the probability that a loop will iterate, and the
particular path executed during a given iteration. This in-
formation will help to predict how to speculatively issue
multiple loop iterations. This can also be used to reduce
the burden of refetching the loop. Our ultimate goal is to
improve instruction delivery beyond aggressive branch pre-



diction so that wide-issue architectures do not stall, waiting
for instructions.

This paper is structured as follows. In Section 2 we re-
view related work on loop prediction and loop termination
prediction. In Section 3 we develop a set of terminology for
describing loop characteristics. In Section 4 we discuss the
methodology used to capture and evaluate loops, and Sec-
tion 5 presents results. Section 6 provides a discussion of
some of the design implications as a result of our study, and
Section 7 summarizes the paper.

2 Previous work

Sherwood and Calder [13] propose a technique to en-
hance the prediction accuracy of branches associated with
loops. Loop termination attempts to detect branch instruc-
tions that are associated with loops. When the inner loop
in a pair of nested loops terminates, a wrong branch predic-
tion is encountered. Since this termination may occur many
times (it is inside an outer loop), a number of mispredictions
can be encountered. Two-bit predictors will not capture the
termination since they can only capture a small number of
iterations (dependent upon the length of the pattern history
register). Sherwood and Calder describe a solution called
branch splitting, which splits loops with a large number of
iterations into two or more loops containing a smaller num-
ber of iterations.

Kobayashi [6] describes a technique to detect loops at
runtime. More recently, Tubella, Gonzalez and Marcuello
[3, 16] study loop detection in the context of multithreaded
processors. In [16], they propose a method to dynamically
detect the presence of loops. In [3], they propose to execute
different iterations of a loop in different threads to provide
improved fetch bandwidth.

The goal of this work is to evaluate whether it is possible
to predict the paths that will be followed over multiple iter-
ations of a loop. Profiling is performed at runtime. Besides
computing statistical information on many loop features, we
also study the correlation between subsequent visits to the
same loop. We begin by attempting to build a taxonomy for
loop characteristics, then present a series of results for the
SPECint2000 benchmark suite.

3 Loop Characteristics

Loops occur in program flow whenever control resumes
at a negative displacement. Programmers utilize loops to
carry out iterative algorithms or repetitive actions, looping
multiple times to carry out the desired operation. The col-
lective set of instructions contained inside the loop is called
the loop body. The first instruction in the loop body is called
the loop head.

Well-structured loops iterate for a constant number of
times and always execute the same loop body (i.e., the
loop body is absent of any non-deterministic control flow).
Ill-structured loops contain conditional control flow inside
their loop bodies. These loops are difficult to unroll at
compile time, so we will use profiling to establish the pre-
dictability of these loops.

Variable-dependent loops iterate a variable number of
times, determined by a run-time dependent variable. These
loops are also difficult to unroll at compile time, so we will
again use profiles to speculate on the number of iterations
on subsequent loop visits.

Visiting a loop is defined as entering a loop body from
outside of the loop body. A loop iteration is defined as
traversing a path through the loop body one time. A loop
path defines the sequence of instructions executed during a
single iteration of a loop. Typically a loop will iterate mul-
tiple times during a single loop visit. A loop pattern defines
the sequence of paths taken during a single visit to the loop,
capturing the sequence of paths taken through the loop body
on each iteration.

Now that we have defined these terms, we will begin to
use them to discuss the loop characteristics present in a set
of programs. These characteristics include the number of
iterations per loop visit, as well as the path traversed (mea-
sured in the number of instructions executed) per iteration.
We also study the predictability of the number of iterations
and the predictability of the number of instructions executed
per iteration.

This information will allow us to predict how future loop
visits and iterations will behave. The behavior of loops is
somewhat diverse; some loops exhibit a strictly static be-
havior across multiple iterations or multiple visits, while
others behave radically different (making them more diffi-
cult to predict). We have also identified correlation between
different visits to a loop, as well as the effects of loop nest-
ing on predictability.

4 Methodology

In this work we study the looping characteristics present
in the SPECint2000 benchmarks. While other programs
may contain a larger number of well-structured loops, our
goal is to understand loop behavior present in general pur-
pose programs. This class of the programs tends to present
more ill-structured and variable-dependent loops.

We leverage the method proposed by Tubella and Gonza-
lez [16] to detect loops at run time. Once a loop is detected,
we can then record a significant amount of information at
run time.

We compile and run our programs on the Compaq Al-
pha 21264 processor. We use the native DEC C V5.9-008
compiler with the -non shared -O2 options. The -O2



switch enables loop unrolling, inlining and code replication.
These options play a critical role in determining the pre-
dictability of loops. Loop unrolling will unroll loops that
are deterministic in nature, leaving the ill-structured and
variable-dependent loops to be predicted by a loop predic-
tor.

To capture loop characteristics, the ATOM instrumenta-
tion tool [15] is used. We capture statistics, avoiding pro-
gram initialization (the first 100M-250M instructions), and
capture a sample of 500M-1B instructions, depending on
the benchmark being studied.

5 Results

Table 1 shows the benchmarks and input files used, the
instructions executed and the number of unique dynamic
(i.e., executed) loops analyzed for each benchmark pro-
gram.

Table 1. Benchmarks from SPECint2000 se-
lected, input datasets used, number of in-
structions analyzed and number of unique
loops captured.

Benchmark Input Instrs Loops

300.twolf ref 1000M 130
go 5stone21.in 500M 498

176.gcc 166.i 500M 1192
164.gzip input.random 500M 23
256.bzip2 input.random 500M 31
197.parser ref.in 500M 302

Figure 1 shows the distribution of control-flow related in-
structions. The graph shows the contribution of each type of
branch/jump/call/return instruction. Instructions types pro-
filed are as follows:

� Forward conditional branches,
�������	�
�

� Backward conditional branches, � ����	�
�
� Forward unconditional branches,

��������
�
� Backward unconditional branches, � ������
�
� Forward jumps,

�����
� Jumps to subroutine, ������� �������
� Branches to subroutine, ������� �������
� Returns from subroutine, ��� �
The instructions of particular interest in our study

are backward conditional and backward unconditional
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Figure 1. Mix of control flow instructions.

branches. These branches mark the end of loop bodies. The
frequency of these branches in relation to other instructions
in a program gives us a good sense of the loop density in
each benchmark.

In most cases, programs containing loops that iterate a
large number of times, also contain fewer loops. A good
example of this case is in gcc, where the number of dy-
namic loops is large (as we can see in Table 1), but each
loop executes a much smaller number of times (as we can
see in Table 2). The opposite case can be observed for gzip.

The history we record about each loop includes the num-
ber of loop visits, the different patterns present in the loop
body, and the number of iterations executed. The major-
ity of the loops found in our set of benchmarks follow a
small number of repeating patterns, and these patterns are
constructed from subpatterns. This is the premise for us to
consider aggressive path prediction utilizing hardware re-
sources.

Figure 2 shows the ratio of conditional to unconditional
branches that control the studied loops. We can see that
the mix of instructions varies across the different bench-
marks. Go and bzip2 mainly consist of backward uncondi-
tional branches, versus twolf and gzip which contain a larger
proportion of backward conditional branches.

Figure 3 shows the distribution of loop visit frequencies.
As stated before, the benchmarks that contain a smaller
number of loops also contain loops that are visited a large
number of times (e.g., twolf, gzip and bzip contain 130, 23,
31 static loops, respectively, and produce the highest num-
bers of loop visits).

Table 2 shows the average and weighted mean of the
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Figure 2. Instruction mix of conditional
and unconditional instructions that terminate
loops.
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Figure 3. Distribution of loop visit frequen-
cies.

number of iterations per loop iteration for the set of bench-
marks. The weight used in column 3 is the frequency that
each loop is iterated. We can also notice the trend that more
frequently iterated loops contain a small number of instruc-
tions.

Table 2. Average number of iterations per loop
visit and weighted average (weighted by the
number of iterations).

Benchmark Avg. # of its Weighted
per loop visit Avg.

twolf 790.61 6.05
go 14.61 3.45
gcc 22.58 3.43
gzip 5816.76 8.90

bzip2 73846.64 5.76
parser 477.13 4.83

Figure 4 shows a breakdown of the number of loop it-
erations on a per loop visit basis. We can see that for go,
gcc and gzip, more than 90% of the loops iterate between
0 and 50 times. For twolf and parser, close to 60% of their
loops perform between 0 and 50 iterations. This will make
the design of a hardware-based loop prediction mechanism
more challenging since temporal locality will be high, but
not as high as we would like. Bzip is a special case, since
more than 80% of its loops iterate more than 10000 times.

Figure 5 shows the distribution of the number of instruc-
tions executed per iteration. One thing to note here is the
difference between gzip and the rest of the applications.
gzip contains a few short, hot paths. For 4 out of 6 applica-
tions, larger loops (greater than 1000 instructions per itera-
tion) dominate the statistics. While this may seem surpris-
ing, remember that the compiler is performing unrolling and
inlining at compile time. This will substantially increase the
length of a loop body, and will also eliminate many of the
easy to predict loops.

Table 3 shows the prediction rate for the number of in-
structions executed on average per iteration. Notice that the
prediction rate is at or below 50% in some benchmarks (i.e.,
go and gcc). To generate these results we measured only the
last value seen (similar to a single bit of history used in some
early dynamic branch predictors) [5]. This suggests that we
might need to utilize a more sophisticated mechanism, so
that the accuracy can be improved. The main purpose of
this measurement was to show that even a simple loop pre-
dictor can predict the number of iterations most of the time.

Table 4 shows the average probability that a loop will
iterate. Our prediction is only based on the last behavior
of the loop. Although we might expect the accuracy to be
above 95% for most benchmarks, the results obtained show
that many loops in SPECint2000 are hard to predict accu-



0

10

20

30

40

50

60

70

80

90

100

twolf go gcc gzip bzip parser
Applications

P
er

ce
n

ta
g

e 
o

f 
al

l l
o

o
p

 it
er

at
io

n
s

0-50
51-100

101-500
501-1000

1001-10000

>10000

Figure 4. Loop iteration distribution. Each
bar indicates a range in the number of loop
iterations.
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Figure 5. Distribution of the number of in-
structions per iteration. Each bar indicates a
range in the number of instructions executed
per iteration.

Table 3. Average prediction rate that the num-
ber of instructions per iteration will repeat
(last iteration-value predictor).

Benchmark Prediction rate

twolf 0.70
go 0.37
gcc 0.50
gzip 0.65

bzip2 0.62
parser 0.52

Table 4. Average prediction rate that a loop
iterates again.

Benchmark Prediction rate

twolf 0.82
go 0.70
gcc 0.68
gzip 0.87

bzip2 0.81
parser 0.74

rately. The main reason for this is that some nested loops
are hard to predict. The prediction accuracy can be im-
proved using a more elaborate methodology, as was sug-
gested in [13]. We also are investigating more elaborate
predictors for nested loop branches.

Table 5. Maximum, average and, weighted
mean nesting depths of loops.

Benchmark MaxNL AvgNL WeightNL

twolf 2 0.51 1.06
go 10 3.06 2.54
gcc 7 1.92 1.61
gzip 2 0.86 1.04

bzip2 5 1.25 1.51
parser 6 1.61 1.21

Table 5 presents loop nesting depth information for our
set of benchmarks. While obtaining this data, we observed
that loops with higher nesting depths (e.g., 5-6), exhibit
a more predictable behavior than those with smaller loop
depth values. In addition, it was observed that it is easiest to
predict the innermost loops (these loops typically have the
highest frequency of execution in the loop nest, and thus,
have a highly predictable nature). Table 6 presents pre-
dictability versus loop nest depth for gcc. As we can see,
loops at a nesting depth of 6 are highly predictable.

To improve upon the predictability of the number of it-



Table 6. Predictability of the number of itera-
tions versus loop nest depth.

Nesting Depth Prediction rate for
the # of its

1 40.52
2 62.73
3 71.67
4 77.68
5 90.28
6 98.96

erations and the predictability of the number of instruc-
tions per iteration, we attempt to identify patterns exhibited
across multiple iterations of a single loop visit. For all visits
of a single loop, there exist a sequence of one or more pat-
terns, and within each pattern there exist one or more (in-
struction executed per iteration, number of iterations) pairs.
The number of instructions executed will be replaced in our
loop predictor hardware with a shift register that records
branch outcomes contained in this loop iteration. To deter-
mine the predictability of a loop, we record the frequency
of each pattern and the frequency of each pair within the
pattern. We then use the frequency of the entire loop visit
pattern to predict the sequence of patterns to be exhibited
upon future loop visits. The loop visit history is updated
upon loop exit. We use the most frequently exhibited pat-
tern to predict future behavior. We call this technique self-
correlating loop visit prediction.

One loop characteristic which we exploit in our strategy
is that the most frequently executed loops are also the most
predictable loops. A loop is less predictable if it contains a
large number of patterns or contains a large number of pairs.
Similarly, a loop is more predictable if it contains a small
number of patterns, with a small number of pairs within
each pattern, and these pairs vary largely in frequency (i.e.,
a few loop patterns dominate).

Figure 6 shows the distribution of iteration predictability.
The predictability of the number of iterations for each itera-
tion is based on using a complete loop history, as described
above. These results differ from the predictability values
in Tables 3 and 4, since now we utilize a loop pattern cap-
tured on a per loop visit to predict individual loop iteration
characteristics. We report on predictability on an individ-
ual iteration basis. We divided the predictability distribu-
tion into 10 ranges, from 0 to 100%, in increments of 10.
The bar for twolf shows that, when using self-correlating
loop visit prediction, close to 63% of the loop iterations are
predicted correctly 90-100% of the time. Nearly 13% ex-
hibit a predictable pattern 80-89% of the time. While it was
clear from Tables 3 and 4 that there exists predictability in
a single loop, we can now see that by capturing correlation
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Figure 6. Distribution of iteration predictabil-
ity. Predictability is computed on a per itera-
tion basis.

patterns for a single loop, we can increase the predictability
of the entire loop.

Figure 7 shows the predictability of the number of in-
structions contained in each loop iteration, again using our
self-correlating loop visit predictor. Again, we can see that
twolf exhibits high predictability. Results are strikingly sim-
ilar to Figure 7, which demonstrates that we can accurately
predict both the number of iterations and the paths executed.

6 Discussion

The main goal of this study was to produce statistical
results of dynamic loop characteristics and use them to pro-
pose reasonable design parameters for a hardware-based
loop predictor. We have purposely not constrained the num-
ber of patterns or loops that we can record information for,
just so we have an indication of the amount of predictability
present in the loop patterns present in these applications.

The objective of dynamically unrolling more loops is to
maximize the throughput of the fetch unit and to increase
the utilization of the available processing units. In our cur-
rent high-ILP design [17], instruction fetch bandwidth is
presently a limiting factor. A loop path predictor provides
the capability to speculatively execute several iterations of
a loop.

In this study we observed that in 5 of the 6 benchmarks,
more than 50% of the loop iterations are easy to predict
(having a predictability rate above 90%) and that for all of
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Figure 7. Distribution of instructions per iter-
ation predictability.

the benchmarks more than 50% of the loop iterations have
predictability rates of more than 80%. Our results also sug-
gest that we can predict the number of iterations and the as-
sociated path for more than half of the loops visited. In ad-
dition, the study also showed that many loops contain loop
bodies that exhibit more complicated iteration patterns. We
are proposing that we can detect these patterns at run time
using pattern-based correlation.

6.1 Design parameters of loop predictor

From the results obtained in this study it is observed that
the vast majority of loops execute more than 50 instructions,
and in many cases, more than 1000 instructions. Construct-
ing dedicated loop buffers of this size is possible, but may
consume a considerable amount of real estate. We instead
suggest augmenting either the instruction fetch and/or the
instruction window logic to retain these instructions, rec-
ognizing that their execution is currently within an iterative
structure, and that there is a high probability that we will
reissue these same instructions shortly.

Figure 8 shows the preliminary design of a dynamic self-
correlating loop predictor. The mechanism contains a two-
level table design. The first level allows us to index into the
table using the loop head address. When an instruction fetch
is issued for a block containing a loop head address, we
will then use the loop predictor mechanism for predicting
branches.

Loop Head Address Path History *
0000000043004800 10100100 2

*
1

0000000043002000 4

0000000013004220 3 8

5

6

7

0

0

0

201

133

1

22

43

1

1001

133

1111xxxx

1xxxxxxx

101111xx

0001xxxx

0011xxxx

101110xx

10100100

Iters

Figure 8. Hardware design of a self-
correlating loop predictor.

The second level of the table contains a sequence of en-
tries, each storing the unique patterns exhibited by the loop.
From our characterization of loops, we have found that the
most frequently executed loops contain only a few patterns,
and that these patterns tend to repeat a number of times.
Repetitions of a single pattern of a loop iteration are cap-
tured in the Iters entry in the table. We can chain together
entries in the second level table using indices. This effec-
tively captures state transitions during a single loop visit.
Entries are updated on each execution of this loop. Once
we have recorded a complete loop visit history, we can use
it upon subsequent loop visits. In future work we plan to
provide multiple first-level table entries for a single loop
head address, using the pattern of branch outcomes exhib-
ited prior to entering the loop to select a particular first-level
table entry.

7 Conclusions

The locality present in loops makes them attractive to
propose more aggressive strategies to improve instruction
delivery. While compilers have recognized the benefits pro-
vided by unrolling loops, many loops can not be unrolled at
compile time due to their structure. In this paper we have
investigated the runtime predictability of these ill-behaved
and variable-dependent loops. We have looked at both us-
ing a last value approach, as well as a self-correlating loop
visit predictor. Predicting entire loop visits has the poten-



tial to expose substantial amounts of ILP. We have also in-
cluded the design of a mechanism called a self-correlating
loop predictor, that will allow us to accurately detect loop
patterns.

Future studies on the predictability of loops should not
only focus on the predictability of loop branches, but also
produce the right path through the loop body and the total
number of iterations for the entire loop visit. The combi-
nation of branch prediction, compiler-based loop unrolling
and procedure inlining, coupled with hardware-based loop
prediction and loop unrolling promises to improve instruc-
tion delivery to wide-issue microprocessors.
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