Thesis Title: Microarchitectural and Compile-Time Optimizations for Performance Improvement of Procedural and Object-Oriented Languages.

Author: John Kalamatianos.

Department: Electrical and Computer Engineering.

Approved for Thesis Requirements of the Doctor of Philosophy Degree:

Thesis Advisor: Professor David R. Kaeli

Date

Thesis Committee: Professor Waleed Meleis

Date

Thesis Committee: Dr. Joel Emer

Date

Thesis Committee: Professor Augustus Uht

Date

Chairman of Department: Professor Fabricio Lombardi

Date

Graduate School Notified of Acceptance:

Associate Dean of Engineering: Yaman Yener

Date
MICROARCHITECTURAL AND COMPILATE-TIME OPTIMIZATIONS FOR PERFORMANCE IMPROVEMENT OF PROCEDURAL AND OBJECT-ORIENTED LANGUAGES

A Thesis Presented
by

John Kalamatianos

to
The Department of Electrical and Computer Engineering

in partial fulfillment of the requirements
for the degree of

Doctor in Philosophy

in the field of
Electrical Engineering

Northeastern University
Boston, Massachusetts

September 2000
Abstract

Applications, and their associated programming models, have had a profound influence on computer architecture evolution. Programs developed in procedural languages (e.g., C and fortran) have traditionally served this role. The popularity of the Object Oriented Programming (OOP) paradigm has been growing rapidly, especially through the use of languages such as C++ and Java. OOP languages support the concepts of data encapsulation, polymorphism and inheritance, which promise to increase code reuse and result in more reliable code. Applications developed in object oriented languages exhibit different execution behavior compared to their procedural language counterparts.

We focus our work on two primary differences encountered as we move to applications developed in OO languages: i) the increased number of procedures and their higher calling frequencies, and ii) the increased use of indirect branches. Equipped with a set of C and C++ benchmark applications, we propose microarchitectural mechanisms and compiler optimizations to alleviate performance bottlenecks presented by both programming models. We perform our evaluation in the context of multiple-issue, dynamically scheduled, microprocessors, and their associated memory hierarchies.

To improve procedure layout on the memory space, we propose a graph-based model that exploits temporal procedure interaction at a broader scale than a traditional Call Graph. The model is used to guide a cache conscious procedure placement algorithm. We evaluate the effectiveness of this algorithm, when combined with intraprocedural basic block reordering. Our algorithm is aimed at reducing the number of conflict misses in a multi-level cache hierarchy.

In the field of indirect branches, we classify the statistical behavior and predictability of indirect branches based on their source code usage. We describe a hardware-based indirect branch prediction scheme that exploits both multiple path-length correlation and run-time selection of correlation type. We assess the performance of our scheme compared to a variety of predictors, and also address the cost-effectiveness of indirect branch prediction.
Contents

Bibliography iii

1 Introduction

1.1 Problem Statement ... 1
 1.1.1 Characteristics of Object-Oriented languages 2
1.2 Dealing with Instruction Memory Access 5
1.3 Dealing with Indirect Branches 6
1.4 Experimental Approach 7
1.5 Contributions ... 9
1.6 Overview .. 9

2 Code Reordering for Single Level Caches

2.1 Related Work ... 11
2.2 Capturing Temporal Procedure Interaction 16
 2.2.1 Procedure-based Inter-Reference Gap Modeling 21
2.3 Pruning Algorithm ... 28
2.4 Cache-Sensitive Procedure Reordering Algorithm 30
 2.4.1 Complexity Analysis 34
2.5 Main Memory-based Procedure Placement Algorithm 36
 2.5.1 Complexity Analysis 40
2.6 Intraprocedural Basic Block Reordering Algorithm 40
2.7 Experimental Results 47
2.8 Summary ... 59

3 Code Reordering for Multiple Level Caches

3.1 Related Work ... 60
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
</tr>
<tr>
<td>3.2.1</td>
</tr>
<tr>
<td>3.3</td>
</tr>
<tr>
<td>3.3.1</td>
</tr>
<tr>
<td>3.4</td>
</tr>
<tr>
<td>3.5</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>4.1</td>
</tr>
<tr>
<td>4.2</td>
</tr>
<tr>
<td>4.2.1</td>
</tr>
<tr>
<td>4.2.2</td>
</tr>
<tr>
<td>4.2.3</td>
</tr>
<tr>
<td>4.2.4</td>
</tr>
<tr>
<td>4.3</td>
</tr>
<tr>
<td>4.3.1</td>
</tr>
<tr>
<td>4.3.2</td>
</tr>
<tr>
<td>4.4</td>
</tr>
<tr>
<td>4.5</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>5.1</td>
</tr>
<tr>
<td>5.2</td>
</tr>
<tr>
<td>5.3</td>
</tr>
<tr>
<td>5.4</td>
</tr>
<tr>
<td>5.5</td>
</tr>
<tr>
<td>5.6</td>
</tr>
<tr>
<td>5.7</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>6.1</td>
</tr>
<tr>
<td>6.2</td>
</tr>
<tr>
<td>6.3</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>Section</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>Bibliography</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Call Graph used as an example towards highlighting different types of procedure interaction.</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>CMG construction algorithm.</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>LRU stack of size 4 and procedure list content snapshots for the profile information shown at the left column.</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>Edge ordering comparison between the TRG and CMG (upper left corner plot), the CG and the TRG (upper right corner plot) and the CG with the CMG (centered plot). All graphs are generated with profile information extracted from the ixx benchmark.</td>
<td>25</td>
</tr>
<tr>
<td>2.5</td>
<td>Edge ordering comparison between the TRG and CMG (upper left corner plot), the CG and the TRG (upper right corner plot) and the CG with the CMG (centered plot). All graphs are generated with profile information extracted from the eqn benchmark.</td>
<td>26</td>
</tr>
<tr>
<td>2.6</td>
<td>Computing the degree of overlap between procedures in the cache address space.</td>
<td>31</td>
</tr>
<tr>
<td>2.7</td>
<td>Single-level cache line coloring algorithm.</td>
<td>33</td>
</tr>
<tr>
<td>2.8</td>
<td>Popular procedure memory placement algorithm after performing single-level cache coloring.</td>
<td>37</td>
</tr>
<tr>
<td>2.9</td>
<td>Scenarios where code size can increase in the presence/absence of basic block reordering.</td>
<td>39</td>
</tr>
<tr>
<td>2.10</td>
<td>Basic block placement decisions during intraprocedural basic block reordering.</td>
<td>42</td>
</tr>
<tr>
<td>2.11</td>
<td>Algorithm that virtually partitions a procedure into a hot and a cold region after applying intraprocedural basic block reordering.</td>
<td>44</td>
</tr>
<tr>
<td>2.12</td>
<td>Code fix-up steps after applying intraprocedural basic block reordering.</td>
<td>45</td>
</tr>
<tr>
<td>2.13</td>
<td>Cycle count reduction/increase after applying single cache level code reordering to the default code layout. All results are generated via execution-driven simulation.</td>
<td>52</td>
</tr>
<tr>
<td>2.14</td>
<td>Memory cycle count reduction/increase after applying single cache level code reordering to the default code layout. All results are generated via trace-driven simulation.</td>
<td>53</td>
</tr>
<tr>
<td>2.15</td>
<td>L1/L2 cache miss ratios of both the optimized and the unoptimized executables. The number of references to L1/L2 is appended on top of every bar. All results are generated via execution-driven simulation.</td>
<td>54</td>
</tr>
</tbody>
</table>
2.16 L1/L2 cache miss ratios of both the optimized and the unoptimized executables. The number of references to L2 is also appended on top of every bar. All results are generated via trace-driven simulation. .. 55

3.1 Different coloring scenarios considering two cache levels where $k = |\log_2(L_{l2}) - \log_2(L_{l1})|$ and $l = |(\log_2(S_{l2}) + \log_2(L_{l2})) - (\log_2(S_{l1}) + \log_2(L_{l1}))|$. .. 63

3.2 Multiple-level cache line coloring algorithm. ... 65

3.3 Multiple-level cache line coloring algorithm (continued). ... 66

3.4 Popular procedure memory placement algorithm after performing two-level cache coloring (continued). ... 68

3.5 Popular procedure memory placement algorithm after performing two-level cache coloring. ... 69

3.6 Cycle count reduction/increase after applying two-level cache code reordering to the default code layout. All results are generated via execution-driven simulation. ... 73

3.7 Memory cycle count reduction/increase after applying two-level cache code reordering to the default code layout. All results are generated via trace-driven simulation. ... 74

3.8 Comparison of the cycle count reduction after applying single and two-level cache code reordering to the default code layout. The set of results shown on the left (right) is generated via execution-driven (trace-driven) simulation. ... 75

3.9 L1/L2 cache miss ratios of both the optimized and the unoptimized executables. The number of references to L1/L2 is appended on top of every bar. All results are generated via execution-driven simulation. .. 77

3.10 L1/L2 cache miss ratios of both the optimized and the unoptimized executables. The number of references to L2 is also appended on top of every bar. All results are generated via trace-driven simulation. .. 78

4.1 Object layout for class hierarchies with single, multiple and virtual inheritance. 85

4.2 Visibility rules for C++ virtual function call resolution. .. 87

4.3 Object layout in the presence of virtual functions, inside a class hierarchy with single, multiple and virtual inheritance. .. 88

4.4 Memory layout of the four VFT configurations for an object of a class that exercises both multiple and virtual inheritance. .. 91

4.5 Range of classes associated with a virtual function call: I is the introducing class for foo, E is the class that defines foo, S, D are the classes that the pointer calling foo points at compile and run-time respectively. .. 92
4.6 Example illustrating how the virtual function call mechanism invokes two different implementations of a function.

4.7 Dynamic counts of Monomorphic, Polymorphic and Megamorphic MT jmp, VF jsr and FP jsr branches.

4.8 Prediction ratio of MT jmp, VF jsr and FP jsr branches using a predictor where every per-branch entry consists of a 4-wide LRU buffer storing past targets for that branch.

4.9 Dynamic counts of LEB, MEB and HEB MT jmp, VF jsr and FP jsr branches.

4.10 Misprediction ratios of MT indirect branch classes with path correlation lengths of 0, 4, 8 and 12.

4.11 Cold-start misprediction ratios of MT indirect branches with path correlation lengths of 0, 4, 8 and 12.

4.12 Dynamic counts of Monomorphic, Polymorphic and Megamorphic ib-loads associated with VF jsr, FP jsr and MT jmp branches.

4.13 L1 D-cache misses due to ib-loads associated with VF jsr, FP jsr and MT jmp branches.

5.1 Prediction algorithm for a 4th order PPM predictor as it applies to conditional branch prediction.

5.2 Select-Fold-Shift-XOR-Select (SFSXS) indexing function as it applies to the contents of a PHR.

5.3 Single-level access implementation of a 4th order PPM predictor. It uses a set of BTBs to implement the Markov components. Each component is indexed with a variable number of targets, extracted from a single PHR.

5.4 PPM predictor with run-time selection of correlation type. Two PHRs are used to record path history of PIB and PB type. Two-bit counters, kept on an indirect branch basis, select the PHR at run-time.

5.5 State machine of a 2-bit up/down saturating counter. The counter is used to select one of the two available PHRs in a scheme that combines PPM prediction with run-time selection of path history type.

5.6 Indirect branch format in the Alpha ISA.

5.7 Ibload encoding scheme for the indirect branch instruction of the Alpha ISA. The example shows the encoding of two ibloads using the displacement field of the indirect branch.

5.8 Update protocol of the load tolerance counter. Solid lines model transitions triggered by a cache miss while dotted lines model transitions triggered by a cache hit.

5.9 Phase 1: when an ibload is executed the dependence between the ibload and the indirect branch is recorded in the DTBL.
5.10 Phase 2: when an ibload is executed we update the DTBL in case its dependence has not already
been recorded. The LMT is updated independently of the DTBL. 137
5.11 Phase 2: On a D-cache transaction we update the LMT. The DTBL is accessed with the address
being replaced from the D-cache. All branches found in the DTBL set may update the LMT. 138
5.12 Updating the TLR counters using both the newly arrived target and the target being displaced
from the TLR. .. 141
5.13 Cycle count reduction/increase when explicitly using IB predictors for predicting indirect branches
other than returns. All results are generated with execution-driven simulation and include spec-
culative traffic. .. 145
5.14 Conditional and Indirect branch misprediction ratio over time for the edg benchmark. The ratios
are for the base machine (left side) and a machine using a PPM predictor (right side). 146
5.15 Conditional and Indirect branch misprediction ratio over time for the perl benchmark. The
ratios are for the base machine (left side) and a machine using a PPM predictor (right side). 148
5.16 Conditional and indirect branch dynamic counts over time for perl (left side) and edg (right
side). All results are generated on a base machine (no IB predictor). 148
5.17 Misprediction ratios of various IB predictors. All results are generated with execution-driven
simulation. All predictors are updated speculatively. ... 150
5.18 Average I-fetch queue and instruction window occupancy in the presence of IB prediction.
Results are presented for a machine with either a conservative (lower 7 rows) or an aggressive
fetch unit (upper 7 rows). .. 153
List of Tables

1.1 C and C++ benchmark suite description. 8

2.1 Edge-related statistics: number of edges for CG, TRG and CMG (columns 2-4) and number of popular edges for CG, TRG and CMG (columns 5-7). .. 29

2.2 Procedure-related statistics: static procedure count (column 2), number of activated procedures (column 2 in parenthesis), average static popular procedure size in Kb for CG, TRG and CMG (columns 3-5) and number of popular procedures for CG, TRG and CMG (columns 6-8). . . . 30

2.3 Visiting frequency of each case in the single-level cache line coloring algorithm (columns 2-5). The number in parentheses in column 5 represents the number of times two procedures of the same compound node need to be recolored because of conflicts. 35

2.4 Size of memory gaps after single-level cache coloring and memory placement using the CG, TRG or the CMG. The total gap size is shown before (columns 2-5) and after (columns 6-8) mapping unactivated and unpopular procedures. Each column displays the gap size when basic block reordering does not apply and when it precedes cache coloring. 38

2.5 Statistics associated with basic block repositioning: number of introduced unconditional branches (column 2) and subset of those which form a basic block (column 2, in parentheses), number of deleted unconditional branches (column 3), number of conditional branches whose opcode has been switched (column 4), average DCFG size in basic blocks (column 5), average DCFG size in Kbytes (column 6), total HR size in Kbytes (column 7) and average HR size in bytes (column 8). .. 46

2.6 Dynamically scheduled, Out-Of-Order, multiple issue machine description. 48

2.7 Total number of executed instructions (column 2). Instructions per Cycle (IPC) for single cache level coloring code reordering configurations (columns 3-9, rows 1-5). Memory Cycles per Instruction (MCPI) for single cache level coloring code reordering configurations (columns 3-9, rows 6-11). 49
2.8 I-TLB misses and number of allocated pages for both the unoptimized case and the executables optimized with different configurations of single level cache code reordering. 56
2.9 Number of committed/executed instructions for both the unoptimized case and the executables optimized with different configurations of single level cache code reordering. 57
2.10 Average Instruction window and Instruction fetch queue size for both the unoptimized case and the executables optimized with different configurations of single level cache code reordering. 58
2.11 Number of conditional branches that were committed and found to be taken for both the unoptimized case and the executables optimized with different configurations of single level cache code reordering. 59

3.1 Size of memory gaps after two-level cache coloring and memory placement using the CG, TRG or the CMG. The total gap size is shown before (columns 2-5) and after (columns 6-8) mapping unactivated and unpopular procedures. Each column displays the gap size when basic block reordering does not apply and when it precedes cache coloring. 70
3.2 Total number of executed instructions (column 2). Instructions per Cycle (IPC) for two-level cache coloring code reordering configurations (columns 3-9, rows 1-5). Memory Cycles per Instruction (MCPI) for two-level cache coloring code reordering configurations (columns 3-9, rows 6-11). 72
3.3 Revealing the amount of L2 color reevaluation: total number of popular procedures for CG, TRG and CMG (columns 2-4), number of popular procedures subject to L2 color reevaluation for CG, TRG and CMG, when no bb-reordering has been performed (columns 5-7) and when bb-reordering precedes two-level cache coloring (columns 8-10). 76
3.4 I-TLB misses and number of allocated pages for both the unoptimized case and the executables optimized with different configurations of two-level cache code reordering. 79

4.1 Run-time statistics for indirect branches: number of instructions (column 2), average number of instructions per indirect branch (column 3), average number of conditional branches per indirect branch (column 4), number of static active VF jsr, FP jsr and MT jmp (columns 5, 7, 9), percentage of indirect branches that belong to the VF jsr, FP jsr, MT jmp class (columns 5, 7, 9, in parentheses), average number of targets per indirect branch class (columns 6, 8, 10), number of static indirect branches whose total dynamic count is 90% and 95% over all indirect branches (columns 11, 12). 97
4.2 Profile-guided indirect branch classes based on the number of visited targets. 98
4.3 Number of unique Self, PB, PIB and PCB path histories for VF jsr, FP jsr and MT jmp branches. 106
4.4 Statistics of ib-load instructions: number of executed loads (column 2), percentage of dynamic ib-loads over all dynamic loads (column 3), percentage of ib-loads due to VF jsr, FP jsr and MT jmp over all dynamic loads (columns 4, 6 and 8) and average number of targets per ib-load accompanying a VF jsr, FP jsr or MT jmp (columns 5, 7 and 9). .. 114

5.1 Breakdown of predictions for a Cascaded predictor. The classification includes the total number of lookups (column 2), the number of lookups made the long path (column 3) and the short path component (column 4), the number of filter lookups (column 5) and the number of filter mispredictions (column 6). ... 151

5.2 Number of mispredictions for a PPM predictor. Column 2 lists the number of tag mismatches and column 3 includes the number of target mispredictions. ... 152

5.3 Number of committed/executed instructions for machines employing IB prediction. The number of committed instructions is presented in column 2 while the number of executed instructions follows in columns 3-9. ... 154

5.4 L1 I-cache number of accesses and misses for a base machine (column 2) and machines employing IB prediction (columns 3-8). ... 155

5.5 Misprediction ratios for IB predictors with LRU (columns 2-4) and TLR/LMT replacement policies (columns 5-7). All results are generated using execution-driven simulation. 156

5.6 Breakdown of replacement decisions for IB predictors using the TLR/LMT replacement policy. Columns 2, 5 and 8 list the total number of replacement decisions. Columns 3, 6 and 9 present the number of times the TLR/LMT policy deviates from LRU and replaces a branch using the LMT counters. Columns 4, 7 and 10 present the number of times the TLR/LMT policy deviates from LRU and replaces a branch using the TLR counters. .. 157

x
Chapter 1

Introduction

Benchmark applications, and their associated programming models, have had a profound influence on computer architecture and compiler design. Architectural support in the form of microarchitectural mechanisms and instruction set architecture (ISA) extensions, as well as many compiler optimizations, have been motivated by studies performed on programs written in procedural languages such as C and/or Fortran [1, 2]. Program behavior [3, 4] has played and continues to play an important role in the evolution of modern architectures [5, 6]. Design decisions in several machines such as the IBM 801, Stanford MIPS and Berkeley RISC projects were guided by trends found in a set of C, Pascal and FORTRAN programs [2, 7]. The IBM System/360 ISA has been influenced by frequently used operations in COBOL and FORTRAN applications, such as string manipulation and floating-point operations [8]. Most recently, microprocessor performance has been evaluated based on the SPEC92 and SPEC95 benchmarks, a mixture of C and FORTRAN programs [9]. Over the years architectural trends tailored system design in order to support or directly execute certain programming languages or models [6, 10, 11]. Most current workload-driven design has focused on improving the performance of FORTRAN and C programs.

More recently, the Object Oriented Programming paradigm (OOP) has steadily grown in popularity, especially through the use of languages such as C++ and Java. Concepts such as information hiding, message passing, polymorphism, inheritance, data abstraction and data encapsulation promise to revolutionize the way software will be developed. The software community views OOP as the major vehicle to reduce software complexity, increase code reuse, reduce maintenance costs and improve the reliability of the delivered binaries [12]. However, applications developed with the OOP have been found to exhibit different execution behavior compared to their procedural counterparts, generating additional overhead.

In this work we attempt to investigate the instruction stream behavior of both procedural and object-oriented programs. We do this in the context of superscalar microprocessors and their associated memory hierarchies. In
the software domain, we propose profile-guided code reordering algorithms to reduce the cost associated with accessing instructions from a modern memory hierarchy consisting of multiple cache levels. Our motivation stems from the higher static and dynamic procedure count detected in object-oriented applications. In the hardware domain, we study mechanisms to reduce the penalty incurred by indirect branches, which, among their other uses, support polymorphic calls in object-oriented applications.

1.1 Problem Statement

The goal of our work is twofold: reduce the cost due to cache conflicts when fetching instructions from the memory hierarchy and reduce the effects induced by indirect branches in the presence of control speculation. Optimizing the overhead of cache conflicts is achieved by statically reorganizing the executable using profile data. The impact of indirect branches on the sequentiality of control flow is confronted with hardware-based prediction schemes. These two techniques are evaluated using benchmarks from both the OO and procedural language domain and experimental results are presented to verify their effectiveness on both types of applications.

1.1.1 Characteristics of Object-Oriented languages

Given the growing popularity of OOP, it is not surprising that many studies have focused on the behavior of programs written with object-oriented languages [13, 14, 15, 16, 17]. A significant amount of research has also dealt with compiler optimizations and architectural support to improve the performance of object-oriented software [18, 19, 20, 21, 22, 23, 24, 25, 26].

OOP is fundamentally built around the concept of an object and its underlying model. An object is fully described with its state and the necessary behavior to manipulate that state. Data encapsulation is the property of combining state and behavior together to represent an object. Objects sharing state and behavior are grouped into classes \(^1\). The behavior of an object is implemented with a set of procedures, while its state is modeled with a set of variables/data structures. Data encapsulation, enhanced with information hiding and data abstraction, promotes the separation between behavior implementation and use. This separation, supported by an Application Programming Interface (API), is used towards improving software maintainability and reliability [12, 27].

Inheritance allows different classes to share behavior and state, thus improving code sharing, reusability, consistency of interface and rapid software component prototyping. A class inheriting behavior and/or state is called a subclass while the class providing behavior and/or state is called a superclass. Polymorphism is the

\(^1\)We will use C++ terms throughout this thesis to maintain consistency
property of permitting an entity to hold values of different types during the course of execution. Polymorphism can be expressed either statically or dynamically. An object, a variable or a function can become a polymorphic entity \[12, 28\].

In OOP, data structures are typically encapsulated in objects while object behavior and communication implement functionality. Given the same programming task, (i.e., its algorithms and corresponding data structures), studies have shown that both the static and dynamic procedure count required to solve the problem tends to be larger in OOP, as compared to procedural programming. In \[13\], a detailed comparison between C and C++ applications was presented. The C++ applications were found to have 3 times as many static procedures and execute almost 90% more calls than C programs. Objects in OOP are often designed to be generic, allow code reuse and modularity, and promote information hiding and data abstraction. Each procedure implements a relatively small and specific part of the behavior for the objects of a class. Consequently, more procedures are necessary to implement a given task. In addition, programmers tend to fully define behavior in every class, leading to a larger static count of procedures (methods in C++ parlance). This same property can cause some procedures or data members to be unreachable or infrequently accessed in a given application \[29, 30\]. For example, in \[29\], up to 26% of procedures were found to be statically unreachable in C++ applications compared to only 6% for C applications.

Due to the larger static procedure count, procedures tend to possess a smaller average static size (78 instructions for C++ compared to 94 for C, \[13\]) and a smaller average dynamic size (48 instructions for C++ compared to 153 for C, \[13\]) \(^2\). In addition, C++ applications have a slightly smaller average basic block size (5.4 instructions for C++ and 5.9 for C, \[13\]). Distributing control flow of an algorithm across a larger number of procedures is a possible reason behind the smaller basic block size, since loops and if-then-else statements are frequently partitioned across procedure boundaries. Polymorphism is one feature that tends to substitute if-then-else constructs with a procedure call \[31\]. A direct consequence of this is the lower static and dynamic frequency of conditional branches in OOP \[12\] (the dynamic frequency of conditional branches was 61% for C++ and 80% for C in \[13\]).

Designing object-oriented software, with code reuse and modularity in mind, generated a smaller average size (3205 bytes for C programs and 171 bytes for C++ \[13\]) and a larger average count (85% more regions are allocated in C++ \[13\]) for dynamically allocated entities. Possible explanations for this phenomenon can be the heavier use of reusable components which return heap-allocated entities, the tendency of C programs to use the stack, and the syntactic and semantic conveniences provided by object-oriented languages for dynamic memory allocation (such as the \texttt{new} and \texttt{delete} operators and the constructor and destructor methods in C++) \[13\]. The larger dynamic procedure count also implies an increased call stack depth (9.9 is the median call

\(^2\) Dynamic procedure size is defined to be the average number of instructions executed, every time a procedure is called.
stack depth for C and 12.1 for C++ [13]). Moreover, the C++ programs examined in [13] were typically twice the size of C programs. Given that the comparison involved application with similar functionality the larger static code size may be due to the greater fixed calling overhead (percentage of load/stores for restoring/saving variables and call/return instructions with respect to total number of instructions) and the tendency to provide more behavior per object than what is actually needed in the application.

A large number of small procedures can have a serious impact on instruction cache performance since spatial locality tends to drop. Techniques such as code reordering and/or intelligent cache management are good candidates for improving performance. Dead code and data detection and elimination can help reduce the code size [29, 30]. Reducing procedure size is important because small procedures can benefit more from inlining [32] and cloning [33]. Notice, however, that the increased use of indirect branches (which will be explained below) makes call graph construction and inlining decisions more difficult [34]. The lower static count of conditional branches, along with the increased frequency of indirect branches, suggest that emphasis should be placed on indirect branch target prediction.

Furthermore, the data cache traffic and miss ratio is subject to increases due to the larger number of load/stores required for saving/restoring variables, polymorphic calls, data member accesses, etc. The larger number of return instructions and the growing call stack depth is also expected to increase the demand for hardware predictors such as a Return Address Stack [35]. The changes in size and creation rate of dynamically allocated objects may have a negative impact on data caches due to the expected decrease in temporal (i.e., shorter object lifetime) and spatial (i.e., smaller object size) locality of data references [36, 37]. Memory allocators for OOP may need to be redesigned in order to reduce the negative impacts of this trend [38]. A smaller procedure size indicates a greater need for exploiting inter-procedural ILP by instruction schedulers. In addition, the use of pointers for accessing object behavior and state makes aliasing and type analysis even more critical [22, 39].

Inheritance’s major side effect is that inherited behavior must be prepared to deal with arbitrary subclasses and therefore inherited methods are often slower than specialized code [12]. Inherited behavior may increase the object size by inserting pointers to permit access to inherited methods, by incorporating inherited data members into a child class object (which may introduce overhead as in the case of pure abstract base classes) and by activating padding to allow for aligned accesses to inherited state [40, 28]. Depending on the object layout construction rules, certain types of inheritance may require additional code overhead when activating behavior or accessing state [28, 40, 41]. Clearly, all of the above can have a negative impact on overall performance as they tend to stress instruction and data caches.

Polymorphism generates run-time overhead by utilizing specialized code sequences to activate behavior (accessing a data member of an object or calling a polymorphic function). The code sequence, often called
Dispatch code overhead depends on the underlying run-time mechanisms supporting polymorphic calls [31]. For C++ (which favors the Virtual Function Table (VFT) as a supporting run-time mechanism for polymorphic calls) the dispatch code sequence consists of a few non-branch instructions and an indirect branch [42]. The non-branch instructions are usually loads, though add operations may also be used, depending on the ISA [42, 43]. A significant amount of pressure can be applied on the instruction cache and instruction fetch unit if the dynamic frequency of those polymorphic calls is high [43, 44]. The data cache performance may also be affected due to the extra memory references. In applications written with dynamically typed languages, the overhead is even higher, since all operations in a program are implemented as polymorphic calls [45].

Indirect branches are also used to implement dynamically linked library calls (DLL calls), multi-way statements (such as switch statements in C/C++), function pointer-based calls, and calls resulting when the displacement field of conditional branches for a specific ISA can not hold the offset.

1.2 Dealing with Instruction Memory Access

Microprocessor performance continues to grow in part due to dynamically scheduling and out-of-order execution coupled with aggressive forms of control speculation 3. Currently, memory systems have been unable to keep up with processor request rates. Technology constraints have led to a growing gap between CPU and DRAM speeds [46]. Given current technology trends, it is likely that future processors will spend a greater percentage of their time stalled, waiting for data from memory. While latency of data requests can be partially masked with a plethora of techniques such as prefetching, non-blocking caches, etc., uninterrupted instruction supply remains a challenge. As processors employ more aggressive forms of control speculation to reveal and exploit higher degrees of ILP, the number of instructions that need to be supplied from memory in a single clock cycle will grow. This increased demand can be met by higher instruction cache bandwidth and lower average response time.

In a hierarchical memory system consisting of multiple cache levels, high-speed first level instruction caches have typically small degrees of associativity but suffer from a large number of conflicts. Cache misses can occur because of first-time references (cold-start misses), finite cache capacity (capacity misses) and memory address conflicts (conflict misses) [47]. Some of the methods that have been proposed for avoiding conflict misses

3Our discussion refers to dynamically scheduled, out-of-order machines with no support for multi-threading, data speculation or predication.
are: (i) preventing one code segment from being stored in the cache (cache bypassing [48]), (ii) finding an alternative place to store the conflicting code module in the cache [49], (iii) implement a mapping function in hardware so that fewer code modules map to the same cache location [50, 51] and (iv) reorder the code modules in the main memory address space at compile time so that fewer conflicts may occur at run-time [52, 53, 54]. We pursue the last method.

We first study the temporal interaction among procedures since accurate temporal information has not been used in the context of code reordering until recently [55]. We then attempt to improve code spatial locality and instruction fetch efficiency with intraprocedural basic block reordering. A procedure graph, weighted with temporal information, is subsequently employed to guide a procedure placement algorithm. The algorithm tries to provide a conflict-free mapping for a predetermined set of procedures in the target multi-level cache hierarchy of the system under investigation. It uses graph coloring to achieve cache-conscious procedure placement. Laying out code in the main memory address space is the final step. Special care is taken in order to keep the number of required pages minimal.

1.3 Dealing with Indirect Branches

Microprocessor microarchitecture has seen a long series of innovations aimed at producing ever-faster CPUs. Superscalar processing is just one of these mechanisms. Superscalar processors exploit Instruction Level Parallelism (ILP) in the form of issuing multiple instructions per clock cycle [56, 57]. Typically, the instruction fetch and decode unit constructs a window of instructions that are available for execution. Dedicated hardware checks for data dependencies between these instructions. The instructions that can be executed simultaneously are then issued to multiple functional units based on the availability of their operands (data-flow model of execution) rather than their original program order. This feature, found in most modern superscalar machines, is referred to as dynamic scheduling. Completed instructions may retire (update the machine state) based on the original program order. One of the factors affecting the amount of exploited ILP is the number of instructions fetched from memory in a single cycle [56]. A steady rate of instruction flow is critical for filling the instruction window of the processor. Sequential flow is ideal in sustaining a high rate but branches redirect the control flow breaking the sequentiality. A large number of cycles may then be wasted since the pipeline can not be fed with instructions until the branch is resolved. An indirect branch is a type of unconditional branch which always disrupts the sequentiality of the instruction stream.

Speculative execution is an important technique that has been used to overcome the problem of branch execution redirection. The basic idea is to fetch and execute (but not commit) operations earlier than their original program order dictates. The benefit may be expressed in the form of a better dynamic schedule or
greater tolerance for cache misses, long latency operations or branch redirections. Hardware and software speculation has been applied in many forms. One widespread form of hardware speculation is predicting the outcome and target of conditional branches [58]. In our work we describe a similar form of hardware control speculation, tailored for indirect branches. In particular, we propose an indirect branch predictor, whose basic design is guided by a data/text compression algorithm. The predictor achieves high levels of prediction accuracy by exploiting multiple length path correlation. We also enhance the basic design with run-time selection of the path correlation type.

In addition to the above, we introduce two supplementary approaches for improving indirect branch prediction. We consider using load latency tolerance to dynamically partition indirect branches into high and low tolerance and temporal reuse to distinguish between temporal and non-temporal branches. We demonstrate the effects of combining the above information to refine the replacement policies of several indirect branch predictors.

1.4 Experimental Approach

In order to evaluate the potential of the proposed algorithms we use trace and execution-driven simulation. In trace-driven simulation we use the ATOM tracing tool [59, 60] running under Compaq TRU64 Unix v4.0, to augment the application with code snippets that collect run-time data in the form of a trace as the application runs. The execution of the application is slowed down because of the extra code but proceeds normally. Subsequently trace post-processing is required to obtain any desirable data.

Execution-driven simulation utilizes an engine that can redirect control flow as the application runs, based on an execution model defined by the user. Depending on the desirable accuracy we can build a detailed machine simulator around the execution model. This form of simulation can be even slower than trace-driven simulation but will generate more accurate data. For example, the effects of wrong path instructions can be recorded if control flow speculation is supported by the execution model. The tool we use for this purpose is a modified version of the SimpleScalar v3.0 Alpha ISA tool-set running on an Alpha-based platform [61]. The execution model is that of a dynamically scheduled, out-of-order, multiple issue CPU with a 2-level cache hierarchy and a paged memory system.

We employ trace-driven simulation whenever we want to investigate issues that are not (or at least severely) affected by speculation. The time overhead for our experiments is not prohibitive, so we can run an application to completion and follow its behavior over long execution intervals. On the other hand, when we need to explore performance issues with high accuracy we use sampling on SimpleScalar. We basically select an instruction execution interval and activate the execution model only for that interval, therefore significantly reducing the
Another critical factor in presenting accurate results is to select a representative set of benchmarks. The implementation language is also an issue since our goal is to provide results for both procedural and object-oriented languages. We select C from the procedural language domain and C++ from the object-oriented domain as the two programming languages under investigation. Our decision is not driven solely by engineering issues such as the lack of real applications, tracing tools and compilers for other languages. It is also motivated by the popularity of C and C++, and the ever-increasing concern regarding the performance overhead of the object-oriented paradigm, even for efficient languages such as C++. Our benchmark suite is also defined based on source code availability, code size, implemented functionality and their behavior with respect to the microarchitectural issues we want to investigate. Hence, most of the applications come from the public domain. They are relatively large and currently in widespread use (they are not artificial). The selected benchmarks exhibit a working set that applies some pressure on an 16KB I-cache and do activate a significant number of indirect branches. Table 1.1 describes the applications used throughout this thesis.

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
<th>Tracing tool</th>
<th>Oper. system</th>
<th>Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>perl(C)</td>
<td>script language</td>
<td>ATOM</td>
<td>Compaq TRU64 Unix</td>
<td>Alpha</td>
</tr>
<tr>
<td>gcc(C)</td>
<td>C compiler</td>
<td>ATOM</td>
<td>Compaq TRU64 Unix</td>
<td>Alpha</td>
</tr>
<tr>
<td>edg(C)</td>
<td>C/C++ front end</td>
<td>ATOM</td>
<td>Compaq TRU64 Unix</td>
<td>Alpha</td>
</tr>
<tr>
<td>gs(C)</td>
<td>postscript interpreter</td>
<td>ATOM</td>
<td>Compaq TRU64 Unix</td>
<td>Alpha</td>
</tr>
<tr>
<td>troff(C++)</td>
<td>document formatter</td>
<td>ATOM</td>
<td>Compaq TRU64 Unix</td>
<td>Alpha</td>
</tr>
<tr>
<td>eqn(C++)</td>
<td>equation formatter</td>
<td>ATOM</td>
<td>Compaq TRU64 Unix</td>
<td>Alpha</td>
</tr>
<tr>
<td>ixx(C++)</td>
<td>IDL parser</td>
<td>ATOM</td>
<td>Compaq TRU64 Unix</td>
<td>Alpha</td>
</tr>
<tr>
<td>eon(C++)</td>
<td>ray-tracing tool</td>
<td>ATOM</td>
<td>Compaq TRU64 Unix</td>
<td>Alpha</td>
</tr>
<tr>
<td>porky (C++)</td>
<td>SUIF scalar optimizer</td>
<td>ATOM</td>
<td>Compaq TRU64 Unix</td>
<td>Alpha</td>
</tr>
<tr>
<td>bore (C++)</td>
<td>SUIF code transf.tool</td>
<td>ATOM</td>
<td>Compaq TRU64 Unix</td>
<td>Alpha</td>
</tr>
<tr>
<td>lcom (C++)</td>
<td>HDL compiler</td>
<td>ATOM</td>
<td>Compaq TRU64 Unix</td>
<td>Alpha</td>
</tr>
</tbody>
</table>

Table 1.1: C and C++ benchmark suite description.

Perl is a script language interpreter v4.0 from the SPECINT95 benchmark suite. Gcc is the GNU C compiler v2.5.3 from the same suite. Edg is the C/C++ front end v2.42 provided by EDG Corp. while gs is the postscript interpreter v5.50. Troff is a document formatter from the GNU groff project 1.10 while eqn is an equation typesetter from the same software package. Eon is a ray-tracing tool developed at Cornell University. Ixx is an interface generator from the version of Fresco distributed with X11R6. Lcom is a compiler for a hardware description language developed at the University of Guelph. Porky and bore are parts of the SUIF v1.1.2 compiler. Porky performs scalar optimizations and code transformations on a SUIF intermediate file and generates
expression trees while bore performs miscellaneous code transformations without building expression trees but by maintaining low-level instruction ordering.

1.5 Contributions

In this thesis we make the following contributions:

- We propose a graph-based model that records temporal interaction between procedures. We evaluate its effectiveness and compare it with two other models proposed in the literature using a profile-guided code reordering framework and cycle-based simulations.

- We introduce a unified methodology so that we can accurately and efficiently rearrange code modules in a memory hierarchy with arbitrary cache levels and individual cache organizations.

- We study the behavior, predictability and path-based correlation of indirect branches based on their source code usage.

- We propose a hardware-based indirect branch predictor designed after a probabilistic model guiding a data/text compression algorithm. We show how this implementation exploits multiple length path correlation and how it can be enhanced with run-time path correlation-type selection.

- We describe an implementation that combines load latency tolerance and branch temporal reuse to improve the replacement decisions in an indirect branch predictor.

1.6 Overview

The remaining of this thesis is presented in 5 chapters.

In chapter 2 we describe our code placement framework targeting a memory hierarchy with a single cache level. We discuss our proposal for capturing temporal interaction at the procedure level and compare it to two other models proposed in the literature. We also discuss the details of the intraprocedural basic block reordering, cache sensitive procedure placement and page conscious memory allocation algorithms. Finally, we present experimental results comparing a variety of code reordering configurations. Although we keep the procedure placement step the same, we vary the graph model that captures procedure interaction in memory. We also conditionally employ basic block reordering for each case.

Chapter 3 extends the approach described in chapter 2 for a memory hierarchy with multiple levels of cache. We present the necessary conditions for conflict free mapping on caches with arbitrary degrees of associativity,
sizes and line sizes. The same configurations are simulated and results are presented and compared to those of chapter 2.

Chapter 4 presents a characterization of the behavior of indirect branches. We partition branches based on source code usage and discuss the mechanisms that are supported by indirect control flow changes. We extend the classification using profile data. We study path-based correlation, target predictability, temporal locality and entropy. Finally, we discuss the predictability of the load instructions that are linked via true dependencies with indirect branches.

Hardware mechanisms for reducing the penalty related to indirect branches are described in chapter 5. Most of our effort focuses on predictors that will provide the next target of an indirect branch when the branch is detected in the dynamic instruction stream. The basis for our proposed predictor lies in a probabilistic model introduced from a data and text compression algorithm, the Prediction by Partial Matching (PPM) algorithm. We describe one feasible implementation of the PPM predictor that serves indirect branch prediction and show that it effectively exploits multiple length path correlation. We also extend the PPM predictor using run-time selection of the type of path correlation.

Finally, we describe a mechanism that attempts to reduce the penalty associated indirect branch mispredictions. The idea is that indirect branch resolution time varies based on their dependent load service time. We show how to partition branches at run-time based on their expected resolution time and temporal locality in order to improve the replacement policy of an indirect branch predictor. Chapter 6 concludes the thesis and discusses open problems and future work.
Chapter 2

Code Reordering for Single Level Caches

Applications developed under the OOP execute more procedure calls than procedural language programs. Code reordering is a technique that has been successfully applied to reduce the number of cache conflicts that occur between procedures. In this chapter we present a link-time, profile-guided code reordering framework reducing first-level I-cache conflict misses. Profile information on a basic block basis is gathered from a typical application run and a graph is built that captures the temporal interaction between procedures. A pruning step filters out edges with minimum size weights and a cache line coloring algorithm is employed to place the highly interacting procedures in the cache in a conflict-free manner. Heuristics attempt to allocate these procedures in the main memory address space so that the number of necessary pages remains low. Intraprocedural basic block reordering is also performed in order to improve the sequentiality of the instruction stream and to decrease the procedure footprint in the cache.

2.1 Related Work

Code repositioning has been successfully applied to many areas of computer architecture research. We can fundamentally separate code reordering approaches into three groups based on the granularity of the code module under consideration: page, procedure and basic block. Traditionally page repositioning algorithms have targeted the improvement of the average memory access time [62, 63, 64, 65]. Some of them require some form of operating system support. Procedure reordering also focuses on improving the memory access time [52, 54, 55, 66, 67, 68]. Basic block techniques can be roughly characterized as intra or interprocedural. Intraprocedural rearrange blocks strictly within the procedure boundaries while interprocedural move block globally.

Branch alignment is a form of basic block positioning technique that attempts to minimize the effects of
branch mispredictions and misfetches [69, 70, 71]. Most other related work on basic block reordering has targeted improving fetch unit effectiveness and memory access time [53, 54, 66, 72, 67]. The main idea behind all these strategies is to rearrange code units so that conflicts between them at different levels of the memory hierarchy (1st and 2nd level caches, main memory) are reduced. In addition, the new ordering of code should improve spatial locality and cache utilization. We next discuss some of the aforementioned work, as it relates to our algorithm.

In [53], McFarling proposes a profile-guided algorithm which captures control flow in the form of a Directed Acyclic Graph (DAG). A DAG consists of loop, procedure and basic block nodes. Loops are labeled with their average execution frequency. Arcs between the nodes in the DAG are weighted with transition frequencies. An algorithm labels the graph except those nodes that will not be allowed in the cache (cache exclusion). The labeling step ensures that instructions with the same or numerically lower label do not interfere when positioned in the cache. The algorithm partitions the graph into subgraphs, with the goal of fitting each subgraph in the cache without any conflicts.

Pettis and Hansen [54] employ procedure and intraprocedural basic block reordering, as well as procedure splitting, based on frequency counts. They first build a call graph (CG) and generate a new procedure ordering by traversing the CG edges in decreasing edge weight order using a closest-is-best placement strategy. Then they measure basic block transition frequencies and reorder basic blocks intraprocedurally using a bottom-up algorithm. The idea is to form chains (of basic blocks) so that the number of taken conditional and unconditional branches is minimized. The algorithm starts from the arc with the heaviest weight and continues forming chains until all arcs are visited. Chains are merged based on a precedence relation defined as to making non-taken conditional branches forward. Chains that contain loops are merged based on the highest execution count between them. Basic blocks that are not activated during the profile run are placed immediately after the chains in the procedure body. Procedures are then split into two regions, the primary that includes all the frequently accessed chains of basic blocks and the fluff that includes the infrequently executed blocks. The linker forces all fluff procedures to the end of the code area in the modified executable.

Torrellas et al. [72, 73] propose an algorithm for repositioning operating system code. They identify the reference and miss patterns and characterize the spatial, temporal and loop locality of operating system code. They propose an interprocedural basic block repositioning algorithm, where spatial locality is exploited by identifying repeatable sequences of instructions. The starting point of a sequence is called a seed, and is usually the start of a page fault or system call service routine. Sequences are generated using a greedy algorithm that traverses basic blocks, based on the most frequently executed path between basic blocks. The generation of sequences stops either when all blocks have been traversed or when a threshold has been reached on the branch transitional probability. By gradually lowering the thresholds, all activated basic blocks can be grouped
into sequences. The cache address space is then partitioned into two parts: 1) the most frequently executed parts of the most frequently executed sequences and the rarely or non-executed code and 2) the basic blocks of loops that have been dynamically executed some minimum number of iterations, along with any remaining sequences.

Hwu and Chang [66] suggest combining intraprocedural basic block reordering, procedure reordering, and in-lining to improve instruction cache performance. They first collect procedure and basic block execution frequencies, as well as the transition frequencies between procedures (CG edge weights) and basic blocks. Then they sort call sites based on decreasing execution count and inline the functions at the call sites with a calling frequency higher than a given threshold. Following the inline expansion step, they reorder basic blocks by forming traces. Basic blocks are sorted based on their execution count and a trace is generated starting from the block with the highest execution weight that has not been visited. The next block is selected by the arc with the highest execution count if the ratio of the edge weight over both the current and the destination block is larger than or equal to a threshold. Traces are placed sequentially in memory as they are generated, so a procedure’s body can be virtually separated into active and non-active regions (the characterization is similar to that of primary and fluff, as described in [54], but no procedure splitting is performed). Then procedures are laid out in memory using a Depth-First-Search (DFS) traversal of the call graph.

Hashemi et al. [52] use a call graph to guide a procedure placement algorithm based on coloring. They collect calling frequencies and use the dimensions of the target instruction cache in a thresholding algorithm to prune procedures. The threshold is used to concentrate on the procedure pairs that interact the most (we label these as popular procedures). Subsequently, they employ a cache line coloring algorithm on the popular procedures. The coloring algorithm partitions every procedure’s body into cache lines, and places popular procedures into the cache address space so that interacting procedures do not overlap. Any gaps generated by the coloring step are filled with unpopular or non-activated procedures. Their approach targets a single level cache.

Cohn et al. in [67] present a code reordering framework where intraprocedural basic block and procedure reordering are combined with procedure splitting and code specialization (called Hot Cold Optimization in [74]). Their basic block reordering algorithm is similar to trace picking as it is used in trace scheduling [75]. The goal is to arrange the blocks so that the fall-through path is followed most often. They weight control-flow graph edges with execution counts to determine the order by which basic blocks will be traversed. Procedures are placed, based on a weighted call graph, so that procedures that call each other frequently are placed next to each other in the cache. Basic blocks are also characterized as hot and cold, based on a global threshold and their execution count. The set of hot basic blocks for a procedure constitutes its hot region and procedure splitting separates hot and cold regions so that the procedure can be more easily fitted in the cache without
conflicts with its callers and callees. Finally, the hot part of the procedure is optimized (independently of the cold part) by eliminating all instructions that are needed only by the cold part.

Gossman et al. [76] assign spatial and temporal costs to program modules which are smaller than the cache. These sets of code are labeled as activity sets. A search function is used to guide an iterative process to find a minimum cost for the code layout. Their search function is chosen so that a large number of combinations are covered on each experiment.

In [77], three basic block algorithms are compared: 1) DFS, 2) skew and 3) pack. Four variations of the DFS algorithm are tested. The first one reorders only procedures. The second adds intraprocedural basic block reordering, while the third additionally moves non-executed basic blocks to the end of procedures. The final version performs a DFS-based interprocedural basic block reordering. In skew, the algorithm selectively switches between a breadth-first and a depth-first traversal, depending on the relative weight of the fall-through and taken paths of a branch. In pack, the algorithm naively packs frequently executed basic blocks. All of the above algorithms utilize execution frequencies and/or transitional counts to guide code repositioning.

Two other approaches discussed in [78] and [79] reorganize code, based on compile-time information. In [79], code replication is performed based on the structure of the control flow graph (augmented with loop and procedure call information). The graph is partitioned into subgraphs, smaller or equal in size to the cache, using heuristics. In [78] a similar approach to [52] is presented, where a call graph is constructed statically and weighted based on program estimation. The weighting process takes into account loops and recursive calls. A cache line coloring algorithm, similar to the one introduced in [52], is used to guide procedure placement in the single level cache.

In [80] an interprocedural basic block reordering algorithm is presented. A greedy traversal of the control flow graph of the program is used to lay out basic blocks. The next block to be traversed is selected based on the edge execution count. The algorithm starts with the most frequently executed basic block and continues with the next highest edge weight until a cycle is detected as the control-flow graph is traversed.

Gloy et al. in [55] present a procedure reordering algorithm that uses temporal information. They introduce the Temporal Relationship Graph (TRG), which measures the number of times a procedure follows another in a finite-size window. The size of the window depends on the cache size so that finite cache effects are considered when recording the temporal interaction between two procedures. A TRG edge weight models the temporal relationship between two procedures. A pruning step eliminates TRG edges with minimal information, in an effort to focus on carefully placing procedures that interact the most (popular procedures). The authors also use a variation of the TRG, where a node represents a chunk (instead of the whole procedure body), and they record the temporal interaction between chunks. This information is used when placing popular procedures in the cache address space. The relative position between two procedures is decided using a local search guided by
a cost function that considers conflicts due to chunk overlapping in the cache address space. Placing procedures in the memory address space involves a traversal over all popular procedures, where the next procedure to be placed is selected so that any gap left is minimized. This selection is done in order to reduce any TLB or paging problems that may occur due to procedure repositioning.

A different approach to code reordering is discussed in [81] and [82]. Instead of statically defining the code layout, a dynamic approach is pursued. The approach in [81] decides upon the initial procedure placement at run-time. No repositioning of procedures is performed. When a procedure is first called, it is placed next to its caller. A similar heuristic is used in [82], where the run-time system is extended to handle dynamic procedure repositioning. The decision to restart procedure positioning is either under user control, or is periodically activated. In [82], run-time profiling is also possible after modifying the loader. The loader not only identifies the new location for the procedure, but also updates the code pointing to the procedure to preserve the semantics of the program (code fix-up). Dynamic procedure placement triggers new optimizations but also has significant overhead. First, the loader interferes with the program execution and second the code layout may not be as good as the one generated by profile-guided static techniques because run-time placement decisions must be simple to keep the run-time overhead low.

Several studies have been done to compare the effectiveness and performance potential of code reordering [83, 84, 85]. In [84] the effectiveness of procedure reordering is compared against various victim buffer configurations. The performance improvement of combining the two techniques is also presented. The authors found that the combination of the two techniques can further improve performance mainly because the victim buffer acts as a correction mechanism when code reordering errors due to differences between test and training inputs. Furthermore, they concluded that code reordering allows stale data to remain longer in the victim buffer and thus increases their temporal reuse. The code reordering algorithm they employed is described in [55].

In [83] several code transformations, including procedure inlining and intraprocedural basic block reordering, are examined, as they relate to instruction cache design. They used the algorithm described in [66, 86] to form traces and reduce a function’s most frequently executed part. Their approach was found to increase code sequentiality, as well as code size, improving performance when the application’s working set did not fit in the instruction cache.

In [85], the authors compare profile-guided code reordering with a hardware trace cache (HTC) [87]. They consider an interprocedural basic block reordering algorithm, described in [72, 73], which they name a Software Trace Cache (STC). Their goal is twofold: 1) provide a cache conscious algorithm and 2) maximize code sequentiality. Their findings show that, for applications with few loops and deterministic execution sequences, that span a large set of basic blocks (e.g., databases, compilers, etc.), a STC is able to even outperform a HTC. When the STC is combined with a small HTC, performance is similar to that of a large HTC.
2.2 Capturing Temporal Procedure Interaction

Traditionally, code reordering research efforts have focused on recording execution frequencies or transition frequencies between code modules [52, 53, 54, 67, 66, 72]. The most popular model used as input to cache-sensitive procedure reordering is that of a Call Graph (CG). A CG is a procedure graph, where an edge exists between procedures that call each other [88]. Every edge is weighted with the call/return frequency captured in the program profile. Each procedure is mapped to a single vertex, with all call paths between any two procedures condensed into a single edge between the two vertices in the graph. The CG can be constructed statically or using profile information. For static constructions, there is an edge between any caller-callee pair, and the edge weight is estimated based on the program control flow graph [78, 89]. Using dynamic information, we record edges and calling/return frequencies only for the activated call sites. The resulting graph, called Dynamic Call Graph (DCG) [90], is a subgraph of the static CG with edges weighted with actual execution frequency data. In this thesis we discuss profile-based CG edge weights.

The major reason to use a CG is that procedures that tend to frequently call each other will compete for the same cache address space if allowed to overlap in the main memory address space. If the cache’s degree of associativity cannot accommodate all of the conflicting code segments, then conflict misses will occur. A CG-guided cache conscious procedure placement algorithm will try to avoid cache conflicts between callers and callees only. We label these conflicts as first generation. However, conflicts can occur between procedures many procedures away on a call chain, as well as on different call chains [53, 55, 90]. These will be called higher generation. Procedure interaction depends on the time ordering in a call chain. The CG, although the most space efficient structure for representing calling behavior, causes a great loss in precision because it compresses all call paths between any two procedures into a single edge. Figure 2.1 illustrates the concept.

Figure 2.1: Call Graph used as an example towards highlighting different types of procedure interaction.

\footnote{A call chain is defined as the time-ordered sequence of procedures called.}
Let us assume that we have the CG shown in Fig. 2.1 and a direct-mapped cache to map a given set of procedures. The size of each procedure (in cache lines) is shown in the upper right corner. One possible calling sequence generating the given CG could be the following: \((AB)^{50} (AC)^{50}\) where \(XY\) implies that code from procedure \(Y\) immediately follows code from procedure \(X\) at run-time. If procedure \(C\) activates 1 cache line on each of its activations then the worst-case number of conflict misses \(^2\) between \(C\) and \(B\) is 1. However, the same CG could have been recorded from the following calling sequence: \((ABAC)^{50}\). In the second sequence, the worst-case number of conflict misses between \(B\) and \(C\) will be 99. An algorithm that uses the CG can not distinguish between these two cases.

Aside from being unable to capture the phenomena described above, a CG edge weight does not accurately predict the number of misses between two procedures. It is the relative positioning of the code segments activated every time a call is made that determines the interaction of a procedure pair. Let us revisit the example in Figure 2.1 and focus on the interaction of the caller-callee pairs \(C, D\) and \(C, E\). We can easily verify that the trace \((CD)^{40} (CE)^{30}\) generates the CG of Fig. 2.1. If procedure \(D\) activates 1 line, \(E\) activates 3 lines and \(C\) activates 2 cache lines, the worst-case number of conflict misses is 40 between the \(C; D\) and 60 between \(C; E\). Obviously, the interaction between \(C\) and \(E\) is higher than that of \(C\) and \(D\). The CG model suggest that it is beneficial to first consider the \(C; D\) pair when placing procedures in the cache. This differentiation may be crucial when considering greedy algorithms to guide procedure placement. Since the success of such algorithms heavily depends on the order by which CG edges will be considered, the relative difference between edge weights becomes important.

The goal of the above analysis is to motivate the need of capturing not only temporal information but on considering using finer resolution as well. Our solution is to estimate the worst case number of conflict misses that can occur between any two procedures found in a profile. Our model is not strictly guided by the control flow of the program (e.g. loops, procedure calls, etc.). It uses the liveness of a procedure’s basic blocks to guide the conflict miss estimation algorithm. This worst case behavior model weights edges in a procedure graph. We call this graph a Conflict Miss Graph (CMG) [68]. We use a CMG to place procedures in the cache address space so that conflict misses between critically interacting procedure pairs is minimized. Cache allocation is performed by a cache line coloring algorithm, similar to the algorithm introduced in [52]. The CMG edge weights determine the ordering by which procedures will be considered. By utilizing the CMG information, we manage to not only accurately predict procedure interaction at a finer level of granularity, but also explore higher order generation conflicts.

To estimate the worst case number of conflict misses that can occur between two procedures, we assume that on each activation, procedures completely overlap in the cache address space. Based on the cache configuration

\(^2\)The worst-case scenario implies maximum overlap in the cache address space between interacting procedures.
(cache size and line size), we determine the number of cache lines each procedure will occupy. We also compute the number of unique cache lines spanned by every basic block executed by a procedure. We identify the first time each basic block is accessed in the trace, and label those references as globally unique accesses. A single trace entry contains the procedure name \(P_i \), the number of unique cache lines accessed during the execution of a basic block \(l_i \), and the number of (globally unique) cache lines accessed during the execution of a basic block \(g_i \). Notice that \(g_i \leq l_i \) for every record and \(g_i \neq 0 \) only when a basic block is executed for the first time.

The next step is to build the CMG edges where every edge is weighted according to the worst case miss model. Every edge is undirected and models the temporal interaction between two activated procedures. Since we are not considering the interaction of basic blocks within a procedure’s body, we do not generate self-loop edges.

Edge weights are incremented as we work through each record in the profile. There are two important questions raised at this step: (i) which procedures interact and (ii) how do we estimate the worst-case number of misses between those procedures. Clearly, updating weights between any two procedures is not necessary because it is very unlikely that procedures would live in the cache for the entire execution of the application. Our worst-case model keeps a finite-size stack (FIFO) of previously activated cache lines. The stack is maintained with an LRU replacement policy. We refer to lines in the LRU stack as live cache lines. When a procedure \(P_i \) appears in the trace, we update the weights between \(P_i \) and all procedures that have at least one live cache line and were activated since the last activation of \(P_i \) in the profile (if this last activation is captured in the LRU stack). The LRU stack models a fully associative cache with the same size as the simulated cache and is maintained using an LRU replacement policy. Our stack model allows us to estimate the finite cache effect, since not all procedures in the program can fit in the instruction cache. We keep track of the number of unique cache lines that are currently active in the cache, and only consider conflicts with those that would fit in a fully associative cache (we refer to this as a worst-case analysis). This helps us approximate the liveness of procedures as they move through the cache.

When a procedure \(P_i \) is activated, the worst-case number of misses is calculated based on the accumulated number of unique live cache lines of each procedure (since \(P_i \)'s last recorded occurrence) and the number of unique live cache lines of \(P_i \)'s current activation (excluding cold-start misses). For the rest of this thesis we will denote the number of unique live cache lines of a procedure \(P_j \) with respect to \(P_i \) (i.e., those that have been activated since the last occurrence of \(P_i \)) as \(\bigcup_{P_i}^{P_j} \). If \(P_i \) is not present in the LRU stack, then \(\bigcup_{P_i}^{P_j} \) is equal to the total number of unique live cache lines for \(P_j \). The pseudo-code for the CMG construction algorithm is shown in Fig. 2.2.

We will demonstrate our estimation model by processing the trace sample shown in Fig. 2.3 assuming that
for every trace entry P_i

Let l_i = number of unique cache lines activated by P_i
Let $g l_i$ = number of global cache lines activated by P_i
insert P_i in the procedure list
insert P_i’s new cache lines in the LRU stack
remove LRU cache lines if stack is full
remove procedures with no live cache lines
for every P_j in procedure list
 Create edge between P_i, P_j
 $W(P_i, P_j) + = min(l_i - g l_i, \bigcup_{P_j}^l)$
endfor
endfor

Figure 2.2: CMG construction algorithm.

our target cache is direct mapped with 4 cache lines. We will show the state of a 4-entry LRU stack and its corresponding procedure list. The shaded box denotes the most recently activated cache line (i.e., the top of the stack). The profile information (see the first column in Figure 2.3) has the following four fields:

1. the name of the procedure being invoked,
2. the number of cache lines associated with this activation,
3. the number of globally unique cache lines associated with this activation, and
4. a list of the cache lines activated (listed in the order in which they were activated).

Next, we will step through the sample trace entries to illustrate the details of our algorithm.

On the first procedure activation, no edge weight is updated since P_1 is the only procedure in the procedure list. When P_2 is activated, the weight of the $P_2 - P_1$ edge is incremented by $min(l_2 - g l_2, l_1)$, which represents the following worst-case scenario: P_1 and P_2 overlap in the cache address space and their activated blocks map onto the same cache lines. Thus the worst-case number of misses is equal to the maximum overlap of P_1 and P_2 footprints in the cache. Since we are interested in conflict misses, we subtract the $g l_i$ value for P_2 to account for cold-start misses. In our example, the $P_2 - P_1$ edge weight will not be modified since $min(l_2 - g l_2, l_1) = min(2 - 2, 1) = 0$ (all of the potential misses are cold-start). Notice also that the cache line activated last (P_{20}) becomes the MRU in the LRU stack, to accurately indicate the liveness on a cache line basis.

When P_1 is re-activated in the trace, we update the $P_2 - P_1$ edge weight since both procedures P_1 and P_2 are still live and procedure P_2 has been activated since procedure P_1’s last activation. Accordingly, $\bigcup_{P_1}^{P_2} = 2$.

19
Figure 2.3: LRU stack of size 4 and procedure list content snapshots for the profile information shown at the left column.
and the estimated worst case number of misses is $min(l_1 - g_1, \cup P_1^I) = min(1 - 1, 2) = 0$. When procedure P_2 is activated a 2nd time, $\cup P_2^I = 1$ because only one cache line of procedure P_1 was activated since the last occurrence of P_2. Thus the algorithm will increment the $P_2 - P_1$ edge weight by $min(l_2 - g_2, \cup P_1^I) = min(1 - 0, 1) = 1$. Procedure P_3 is activated next, so both $P_3 - P_2$ and $P_3 - P_1$ CMG edge weights will be incremented by $min(l_3 - g_3, \cup P_3^I) = min(1 - 1, 2) = 0$ and by $min(l_3 - g_3, \cup P_3^I) = min(1 - 1, 1) = 0$, respectively. Notice that $\cup P_3^I = 2$ because P_{2a} and P_{2b} cache lines are still live while $\cup P_3^I = 1$, because there is only one live cache line P_{1b} from P_1. Cache line P_{1a} has been replaced from the LRU stack.

When procedure P_1 is reactivated, both $P_3 - P_1$ and $P_2 - P_1$ edge weights are incremented by $min(l_1 - g_1, \cup P_1^I) = min(1 - 0, 1) = 1$ and $min(l_1 - g_1, \cup P_1^I) = min(1 - 0, 1) = 1$, respectively. Notice that although procedure P_2 has two live cache lines (i.e., P_{2a} and P_{2b}), only one is considered for the edge weight (P_{2a}) since it is the only one activated by P_2 (the 4th trace entry) during the time window of the current and last appearance of P_1 (the 6th and 3rd trace entries, respectively). The subsequent P_3 activation increments only the $P_3 - P_1$ edge weight by $min(l_3 - g_3, \cup P_1^I) = min(1 - 1, 1) = 0$, because procedure P_2 has not been activated during the time span between the last two activations for procedure P_3. Following procedure P_3, the first appearance of procedure P_4 increments only the $P_4 - P_3$ edge weight by $min(l_4 - g_4, \cup P_3^I) = min(3 - 3, 1) = 0$, since procedures P_2 and P_1 currently do not have any live cache lines. Finally, at the next occurrence of procedure P_1, we do not update the edge weight for $P_4 - P_3$ since procedure P_3 was not activated since the last activation of procedure P_1.

The CMG captures procedure interaction beyond the caller-callee limit. Procedures may interact even when they lie on either the same, or different, call chain(s). In addition, since the liveness of code is used to record this interaction, temporal proximity of procedure invocations is the critical parameter that determines the degree of procedure interference. To contrast the differences between a CG, TRG and a CMG, we develop new characterization streams based on the Inter-Reference Gap (IRG) model [91].

2.2.1 Procedure-based Inter-Reference Gap Modeling

There has been a significant amount of prior work on modeling the interaction and locality of code segments, with most of them focusing on page [92, 93, 94] and/or cache line [95, 96, 97] locality and liveness.

In [96], Quong presents an estimation model that predicts miss rates for caches of arbitrary associativity using profile information. This model requires a compressed form of the trace in order to approximate the cache miss ratio, thus allowing trace compaction. Moreover, the model quantitatively measures the expected cache interference between basic blocks by providing miss count estimates. He defines a gap G as the interval between successive references to a block b. The gap ends with the current reference to b. The size of G is defined as the number of unique addresses references occurring during G, and since the block ordering is preserved, its
contents are very similar to those of the LRU stack used for the CMG. Consider the gap G shown below:

$$\ldots b_1 b_2 b_1 b_3 b_4 b_2 b \ldots$$

in which b_1, b_2, b_3, b_4 are the unique blocks referenced inside G. Assume that every block b_i occupies s_i cache lines. When b is referenced again, each address of b has a $(1 - s_i \cdot x)$ chance of surviving a conflict with b_i block. x is defined as the probability that two different addresses will collide. If X is a random variable, equal to the number of cache lines, occupied by b, that are replaced during G, then the expected number of conflict misses for b is:

$$E[X] = s \cdot \left[1 - \sum_{b_i \in G} (1 - x \cdot s_i) \right]$$ \hspace{1cm} (2.1)

If a block b_i appears more than once in G, it is considered only once in (2.1) since no more misses between b and b_i can occur. By summing all the expected values for all the gaps in the trace, we get the miss count estimate proposed in [96]. By exempting all pairs of blocks in (2.1) that belong to the same procedure, we take into account the fact that most blocks of the same procedure do not collide in cache (assuming the procedure fits in the cache). This last assumption is also taken into account in our CMG model, because we do not create CMG self-edges. Since we want to estimate the number of misses between two different basic blocks, b, b_i for the current gap G, (2.1) becomes:

$$E[X] = s \cdot \left[1 - (1 - x \cdot s_i) \right]$$ \hspace{1cm} (2.2)

The total number of estimated misses between b and b_i is the sum over all gaps G of both blocks found in the trace. The CMG model has several similarities and differences with the gap model. First, both models function independent of any address mapping. For example, the size of a basic block is determined as the average number of cache lines it occupies over all starting positions. Second, both models assume that a block has equal probability of mapping to each cache line. Also, all cache misses are uniformly modeled based on the LRU stack depth of each block reference. The only exception is cold-start misses. These are not handled differently in the gap model but are excluded from the CMG edge weight.

In the CMG we measure procedure interference in the cache by looking at the cache lines of live procedures. In other words, we record potential misses between blocks that do not belong to the same procedure, as is the case with the gap model. As a consequence, each trace entry is not a basic block, but a procedure chunk p_i, consisting of s_i cache lines. If we replace b_i with p_i, we can derive a new formula, similar in spirit to (2.2). Notice that the gap definition changes in the CMG. A gap, G' in a CMG, is equivalent to a gap G (as described in [96]), but only if the size of G is smaller or equal to the cache size L. Otherwise, G' includes all past block references whose total size is equal to the cache size, starting from b. This is done to account for the finite-cache effect.

$$\mathcal{G} = \{b, b_i, b_j, b_k, \ldots, b_l, b\}$$
\[G' = \begin{cases} G & \text{if } \text{size}(G) \leq L \\ G_n \subseteq G & \text{if } \text{size}(G) > L \text{ and } \text{size}(G_n) \leq L \end{cases} \] (2.3)

The CMG model follows a worst-case scenario and sets the survival probability of \(p \) for any gap \(G' \) to 0 \(((1 - s_i \cdot x) = 0) \). Therefore, the number of misses between \(p \) and \(p_i \) in the CMG graph, is equal to \(E[X] = \sum_{G'} (s) \) according to (2.2). Assuming a maximum overlap between \(p, p_i \) for every gap \(G' \), the number of misses becomes

\[E[X] = \sum_{G'} (\min(s, s_i)). \] (2.4)

Notice that (2.4) represents the CMG edge weight computed in Fig. 2.2. Cold-start misses are not accounted for in (2.4). The \(\bigcup_{p_i} \) quantity is equivalent to \(s_i \).

Another approach that measures locality of references is described in [95, 98], where Phalke and Gopinath define the Inter-Reference Gap (IRG) for an address as the number of memory references between successive references to that address. An IRG stream for an address in a trace is the sequence of successive IRG values for that address. IRG modeling is important since it isolates temporal from spatial locality, and it can be used to convey important information to memory deallocation and replacement algorithms. It also exploits memory reference correlation so we can identify the usually small fraction of references that capture the temporal behavior of a trace. Trace compaction and memory management algorithms can benefit from such information. Inter-cluster locality (spatially distant addresses that correlate) can be studied via IRG streams and improve the performance of prefetching techniques. Finally, the IRG stream behavior can signal program behavior changes which could help prefetching schemes adapt at run-time [95].

The original IRG model definition measures the temporal locality of a single code module, but not the temporal interaction between different modules. We can redefine an IRG value as the number of memory references between two successive references to procedures \(A \) and \(B \). This new IRG definition captures the temporal interaction between the two different code modules. The accuracy of the stream contents depends on the granularity of the intervening code between the references to \(A \) or \(B \). We will refer to this code as the interval. Although the original interval definition in [95] is the number of intervening memory references between two module references we could redefine it as the number of references to any program granule, such as an individual address, basic block, cache line, procedure, page, etc.. Based on the definition of the CG, TRG and CMG, the program unit under study is always a procedure, though the interval granularity varies among them.

One way of redefining the interval is to make it equal to the number of procedures activated between successive invocations of \(A \) and \(B \). The new IRG stream is called the Inter-Reference Procedure Gap (IRPG)
in [91]. The CG graph records part of the IRPG stream by capturing all gaps of length 1. The IRPG stream for procedures A and B in the trace \((A, C, D, C, B, A, F, E, A, B)\) is \(3, 1, 1\), assuming a value of 1 every time A directly follows B (or B follows A).

In the TRG, every node represents a procedure and every edge is weighted by the number of times procedure A follows B and vice versa, only when both of them are found inside a moving time window. The window includes previously invoked procedures, and its maximum size is equal to twice the L1 cache size [55, 99]. Once a procedure is activated, the window size is increased by the total number of cache lines that procedure occupies. The window is organized as an LRU FIFO queue. Procedures are eliminated from the window once the window size exceeds the upper limit. The IRG stream captured by the TRG redefines the interval between two IRG values as the number of cache lines occupied by procedures activated between successive A and B invocations. We call this new IRG stream the Inter-Reference Intermediate Line Gap (IRILG) [91]. The TRG edge weight is simply the count (and not the sum) of all IRILG values that are less than the window size. The TRG edge weights are more accurate than the CG weights because the IRILG stream is richer in content than the IRPG (primarily due to the IRILG interval definition). The new interval definition takes into account the number of cache lines instead of the number of procedures. In a way, the IRILG values depend on both the application calling behavior and the cache parameters, while the IRPG values depend only on the former. The TRG edge weights also permit the recording of procedure interaction at a wider range than the CG.

The CMG edge weight between procedures A and B is updated only when A and B follow one another inside a moving time window. The window is managed as an LRU FIFO queue. Every time a procedure is activated only the unique activated cache lines that belong to that procedure are inserted in the window. A procedure is replaced only if the total number of cache lines in the window exceeds the window size and there are no cache lines of that procedure in the window. The upper limit of the window is set to be equal to the number of available cache lines in the L1 cache. In order to record the window contents for a CMG, we define the Inter-Reference Active Line Set (IRALS) for a procedure pair as the sequence of the number of unique live cache lines referenced between any successive occurrences of A and B. A CMG edge weight is updated whenever the IRALS value is less than the window size and both A and B are live.

In both the TRG and the CMG, procedures interact as long as they are found inside the time window. A CMG, however, replaces procedures in the time window based on the liveness of cache lines that belong to either A or B [68], while a TRG manages replacement on an entire procedure basis [55]. Also, the contents of the window in the CMG are not defined based on the total size of a procedure’s body as in the TRG but based on the individual activated cache lines. In addition, the CMG edge weight between A and B is incremented by the minimum of the unique live cache lines of the successive invocations of A and B. The TRG simply counts the number of times A and B follow each other.
Figure 2.4: Edge ordering comparison between the TRG and CMG (upper left corner plot), the CG and the TRG (upper right corner plot) and the CG with the CMG (centered plot). All graphs are generated with profile information extracted from the ixx benchmark.
Figure 2.5: Edge ordering comparison between the TRG and CMG (upper left corner plot), the CG and the TRG (upper right corner plot) and the CG with the CMG (centered plot). All graphs are generated with profile information extracted from the eqn benchmark.
In order to compare the contents of the three graphs, we sorted the edge lists for all graphs in decreasing weight order and plotted the relative positioning of the first 100 edges of one graph against another. Figs. 2.4 and 2.5 show the relative positions for eqn and ixx. We provide 3 plots per benchmark. Each plot shows the relative edge ordering between two graphs \((G_1, G_2)\). A mark at location \((i, j)\) means that the edge under consideration was found \(i\)th in the \(G_1\) graph’s ordered edge list and \(j\)th in the \(G_2\) graph’s ordered edge list. Points on the straight line correspond to edges with the same relative position in both edge lists. Points lying above (below) the straight line indicate edges with a higher priority in the \(G_1\) (\(G_2\)) edge list. The figures compare the ordering of the first 100 CG edges with the TRG and CMG edge list and the ordering of the first 100 TRG edges with the CMG edge list.

As we can observe, the contents of the CG are significantly different than those of the TRG or the CMG. More specifically, both the CMG and the TRG promote other procedure pairs in the edge list. Those are either found to have lower significance (edge weight) in the CG, or they are not recorded at all because they simply do not exhibit the caller-callee relationship. The TRG and CMG contents though are found to be similar since most points tend to lie around the straight line. This is expected since both graphs investigate temporal procedure interaction at a wider range than the CG. Differences are due to the way procedure liveness and edge weights are computed.

If we look at the computational complexity of building these graphs, the CG is the fastest one to construct. If \(n\) is the number of trace entries, the CG simply needs one pass of the entire trace. For every pair of consecutive trace entries, we compare the procedure ids. If the ids are different we increment the edge weight between the two procedures. The algorithm has a running time of \(n\) and a complexity of \(O(n)\). A single pass is also required when building the TRG. For every trace entry we search a list of previously executed procedures. If the currently invoked procedure, \(p\), is found in the list we update the TRG edges between \(p\) and the procedures in the list starting based on the TRG algorithm. If the procedure is not in the list we append it and properly update the list to keep the size of its procedures equal to twice the cache size. Although the number of list entries is not fixed, the maximum number of procedures can be \(c\) where \(c\) is the number of cache sets in the instruction cache under consideration. Since we need two passes over the list the running time is \(2 \cdot c \cdot n\) and the complexity becomes \(O(n)\).

The CMG also requires a single pass over the trace. For each trace entry we need to first search an array of lists for every activated cache set of \(p\). Theoretically, the maximum number of activated cache sets is equal to the procedure size divided by the cache set size. However, we keep information only for the cache sets of the instruction cache. Therefore, the maximum number of iterations is \(c\). In reality, this is never the case because each trace entry corresponds to a basic block. Only one cache set is activated for the vast majority of trace entries. Each entry of the array of lists points to a list of procedures that have accessed that cache set.
maintain this data structure in order to keep track of globally unique accessed cache sets. The maximum size of each procedure list can grow as large as \(ap \) where \(ap \) is the number of active procedure in the profile. This phase takes a total of \(ap \cdot c \) steps although in reality a very accurate approximation is \(ap \).

We also need to search the procedure list for a match. The maximum size of the procedure list is \(c \). If the procedure is live we iterate over all cache sets accessed by the current procedure invocation in order to update the LRU list and certain other data structures. As we mentioned above this number is approximately 1. In addition, we need to adjust the size of the LRU list so that it is always equal or less than the instruction cache size. The live procedure list must also be updated. Either of those steps requires a maximum of \(c \) steps. The final step consists of a single pass over all live procedures in order to update the CMG edge weights between the procedure pairs that qualify. The maximum number of iterations is again \(c \). On each iteration we need to update a square bit matrix which keeps the number of unique cache sets accessed between any two activated procedures. Although each size of the bit matrix has a length equal to the number of activated procedures in the trace, we only iterate over the number of activated cache sets of the currently invoked procedure. Again, this number is approximately constant. The total running time becomes \(n \cdot (ap + 4 \cdot c) \) which is \(O(n \cdot ap) \) given that the number of activated procedures is not bound. In practice, \(n \gg ap \) so the complexity becomes \(O(n) \).

2.3 Pruning Algorithm

Both the CMG and the TRG generate a significantly larger number of edges compared to a CG. This is because both graphs look for procedure interference inside a larger time window than a CG does. However, only a small percentage of these edges carry important information. This section describes the pruning algorithm we employed in order to concentrate on the highly interacting procedure pairs. Pruning also reduces the running time of the placement algorithm since fewer edges have to be considered. Finally, cutting edges from the original graph creates a pool of procedures that can fill gaps left in the memory space after procedure placement.

To prune the graph, we select a threshold value by first sorting the edge weights in descending order, and then starting at the heaviest edge, sum the edge weights until their sum is equal to or greater than 80% of the total sum of all edge weights. The value of the last edge added becomes the threshold value. Every edge weighing less than the threshold value is cut. The pruning step reduces the CMG into (usually) one strongly connected subgraph that includes all heavily interacting procedures.

This threshold calculation is different from the adaptive algorithm used in [52] which partitioned the CG into subgraphs. The partitioned CG in [52] was mapped in the cache by independently placing each one of its subgraphs in the instruction cache without any conflicts. The idea was to facilitate mapping by considering a subgraph at a time. In our case, the CMG can not be effectively partitioned due to its high connectivity. Thus,
although the pruned CMG does not usually fit in the cache, the increased accuracy of its edge weights imply an edge ordering that can avoid more conflict misses after the mapping.

After pruning is performed, any procedure that remains connected to any other procedure is called a popular procedure. Any remaining edges are called popular edges. The procedures that have no incident edge after pruning are called unpopular. The unvisited procedures are those that do not appear in the program profile.

Table 2.1 contrasts several edge-related statistics for the three graph models, CG, TRG and the CMG. Columns 2-5 and 6-8 show the number of edges and popular edges respectively. Table 2.2 is associated with procedures. Column 2 shows the total number of procedures in the program (the number in parentheses is the total number of activated procedures during profiling) while columns 3-5 list the average size in Kb of popular procedures for each of the graphs. Columns 6-8 present the total number of popular procedures for each graph.

<table>
<thead>
<tr>
<th>Program</th>
<th># edges</th>
<th># pop edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>perl</td>
<td>155</td>
<td>2502</td>
</tr>
<tr>
<td>gcc</td>
<td>3122</td>
<td>547081</td>
</tr>
<tr>
<td>edg</td>
<td>3789</td>
<td>1057644</td>
</tr>
<tr>
<td>gs</td>
<td>2027</td>
<td>390259</td>
</tr>
<tr>
<td>troff</td>
<td>1642</td>
<td>139531</td>
</tr>
<tr>
<td>eqn</td>
<td>898</td>
<td>40121</td>
</tr>
<tr>
<td>ixx</td>
<td>712</td>
<td>14945</td>
</tr>
<tr>
<td>eon</td>
<td>179</td>
<td>9045</td>
</tr>
<tr>
<td>porky</td>
<td>1698</td>
<td>165025</td>
</tr>
<tr>
<td>bore</td>
<td>1607</td>
<td>155508</td>
</tr>
<tr>
<td>lcom</td>
<td>1642</td>
<td>147980</td>
</tr>
</tbody>
</table>

Table 2.1: Edge-related statistics: number of edges for CG, TRG and CMG (columns 2-4) and number of popular edges for CG, TRG and CMG (columns 5-7).

It is clear from Table 2.1 that the CG captures code interference at a much smaller scale than either the TRG or the CMG. On the average, the TRG creates a larger number of edges than the CMG since it defines a window with a size double that of the CMG (twice the cache size). The difference between the CG and the CMG, TRG popular edge sets is significant. The popular edges, and their associated procedures shown in columns 6-8 of Table 2.2, define the application working set according to each graph model. The CG, as expected, defines the smallest working set. Even in perl, where the popular procedure set among the three graphs is essentially the same, the number of CG popular edges is significantly smaller. The CMG detects a noticeably smaller popular procedure group than the TRG only in gcc, edg and eqn. In all other benchmarks, the set is approximately the
same in size. Their intersection (not shown here), showed that a majority of the popular procedures is found in both sets.

<table>
<thead>
<tr>
<th>Program</th>
<th># procs</th>
<th>pop procs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CG</td>
</tr>
<tr>
<td>total (active)</td>
<td></td>
<td>CG</td>
</tr>
<tr>
<td>perl</td>
<td>671 (91)</td>
<td>2.50</td>
</tr>
<tr>
<td>gcc</td>
<td>2328 (1056)</td>
<td>1.54</td>
</tr>
<tr>
<td>edg</td>
<td>3486 (1512)</td>
<td>0.92</td>
</tr>
<tr>
<td>gs</td>
<td>4400 (1198)</td>
<td>0.48</td>
</tr>
<tr>
<td>troff</td>
<td>1818 (703)</td>
<td>0.54</td>
</tr>
<tr>
<td>eqn</td>
<td>850 (387)</td>
<td>0.82</td>
</tr>
<tr>
<td>ix</td>
<td>1581 (294)</td>
<td>1.21</td>
</tr>
<tr>
<td>eon</td>
<td>2763 (135)</td>
<td>0.27</td>
</tr>
<tr>
<td>porky</td>
<td>3478 (575)</td>
<td>0.32</td>
</tr>
<tr>
<td>bore</td>
<td>2471 (559)</td>
<td>0.40</td>
</tr>
<tr>
<td>lcom</td>
<td>1527 (692)</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Table 2.2: Procedure-related statistics: static procedure count (column 2), number of activated procedures (column 2 in parenthesis), average static popular procedure size in Kb for CG, TRG and CMG (columns 3-5) and number of popular procedures for CG, TRG and CMG (columns 6-8).

2.4 Cache-Sensitive Procedure Reordering Algorithm

After pruning, the next step is to map the popular procedures in the cache address space so that potential conflicts between them are minimized. To map procedures, we employ a cache line coloring algorithm, similar to the one originally proposed in [52]. We modified the algorithm in [52] so that a proper mapping could be enforced for caches of arbitrary organization (the algorithm in [52] was proposed for direct-mapped caches, although an extension for associative caches was suggested).

In order to properly define cache conflicts for caches of arbitrary associativity, size and line size, we changed the view of the cache address space from the one traditionally used in [52] and [55]. We define the cache address space as the group of cache sets for a specific cache organization. A color is equivalent to a cache set (and not a cache line as it was the case in [52]). We will use the term cache set and cache color interchangeably throughout the remainder of this chapter. A procedure is mapped (colored) in the cache as follows: first, it is partitioned into cache lines and then it is assigned a starting cache set in the cache address space. If two procedures have at least one cache line being mapped to the same cache set, then they overlap. The degree of overlap (\(ovd\))
for a given cache set and set of procedures, is equal to the number of cache lines of all the procedures that are being mapped onto that same cache set. The maximum degree of overlap is defined as the maximum value of ovd for all cache sets in the cache address space. If the maximum degree of overlap for a set of procedures (over all cache sets in a given cache) is greater than the degree of associativity of that cache ca, then there exist potential conflicts between those procedures. Thus, we must relocate at least ovd / ca procedures in order to fully eliminate conflicts for this set of procedures. Note that if the test between the degree of overlap and that of associativity fails, conflicts will occur, independent of the replacement policy used in the cache (we assume that all instruction accesses are allocated in the instruction cache and no bypassing is employed).

\[
\begin{align*}
P1, P2 & \text{ size : 3 cache lines} & \text{2-way set associative cache} \\
P3 & \text{ size : 2 cache lines} & \text{cache address space : 12 cache sets} \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>cache address space</th>
<th>P1</th>
<th>P1</th>
<th>P1</th>
<th>P2</th>
<th>P2</th>
<th>P2</th>
<th>P2</th>
<th>P3</th>
<th>P3</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree of overlapping</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{cache address space} & \quad \text{P1, P2 size : 3 cache lines} \\
& \quad \text{P3 size : 2 cache lines} \\
& \quad \text{2-way set associative cache} \\
& \quad \text{cache address space : 12 cache sets} \\
& \quad \text{degree of overlapping : 1 2 3 1 1 0 0 0 0 0 0 0} \\
\end{align*}
\]

Figure 2.6: Computing the degree of overlap between procedures in the cache address space.

Fig. 2.6 presents an example of how we compute ovd. We assume a 2-way set associative cache, with a total of 12 cache sets. Initially, procedures p1, p2, and p3 are mapped in such a way so that the maximum ovd is equal to 3. Since ovd > ca = 2, conflicts can occur in the shaded cache area of the cache address space. By moving one of the three procedures (p3 in Fig. 2.6), we can decrease the maximum ovd to 2 and avoid any conflicts between the three procedures. Notice that this approach works for any cache size, line size, or degree of associativity.

A direct consequence of altering the cache address space concept is a modification on the definition of the unavailable set for a given procedure. In [52], the unavailable set for a procedure p was defined as the cache lines occupied by p’s parents and children in the CG which have already been mapped. We redefine the unavailable set as the range of cache sets occupied by p’s neighbors in the CMG which have already been mapped, and for which there exist conflicts in the cache address space. The main body of the coloring algorithm consists of a loop, iterating over all popular edges in descending edge weight order. The pseudo-code is shown.
in Fig. 2.7.

As the algorithm traverses the sorted popular edge list, four possible cases may be encountered (see Fig. 2.7):

- **Case I** : Procedures src and dst are not mapped. In this case we place them sequentially in the cache address space, the larger procedure first. Sequential placement guarantees that the number of conflicting colors between the two procedures are minimized. If both of them fit in the cache, then conflicts are eliminated. The two procedures form a compound node. A global index pointer is advanced by the compound node size to allow the next pair of procedures to be placed in different colors in the cache address space.

- **Case II** : Both procedures src are mapped, but to different compound nodes, C_{dst} and C_{src}. In this case, we merge the compound nodes together, concatenating the smaller (e.g. C_{src}), to the larger, (e.g. C_{dst}). The side of C_{dst}, where C_{src} will be placed, is the one with the shortest distance from dst to either end of C_{dst}. After placing the small compound node, we check for color conflicts between src and dst. If conflicts still occur, we move the small compound node away from the large one in an attempt to find a conflict-free mapping. If this is not possible, we restore the original mapping, leaving the small procedure adjacent to the large one. After the placement search is complete, we update the colors for all procedures in the small compound nodes and merge the two nodes.

- **Case III** : Only one of the procedures is mapped. Suppose that procedure src is mapped and dst is not. In this case, we merge dst into C_{src} by placing it on the end of C_{src}, which is the shortest distance from the src from either side of C_{src}. This heuristic is selected because the probability of being able to map dst with no conflicts is increased, as the distance between src and dst is reduced. After placing dst, we check for color conflicts between dst and src. If there are conflicts, we insert space between one end of C_{src} and dst until the mapping is conflict free. If a conflict free mapping is not possible, we restore the original mapping where dst was adjacent to C_{src}.

- **Case IV** : If both procedures are mapped and belong to the same compound node, we first check for color conflicts between src and dst. If there exist conflicts, we move the procedure closest to either end of the compound node (e.g., src) to the side of the node, creating a space or gap. We then check again for color conflicts between src and its unavailable set. If conflicts exist, we move src further away from the node to eliminate those conflicts. If conflicts are inevitable, the original location inside the compound node is used.

3The compound node size is measured in total number of cache lines occupied by its procedure-members.
Input: list of popular edges edge.
Sort edge on decreasing weight order; $l_1_\text{color} = 0$;

foreach e in edge
 $\text{src} = \text{source}(e), \text{dst} = \text{destination}(e)$;
 if ($\text{src} \neq \text{mapped}$ and $\text{dst} \neq \text{mapped}$) /* Case I */
 Form a compound node by placing the smaller procedure after the larger in L1 cache;
 Assign l_1_color to the large and $l_1_\text{size}(\text{large})$ mod L1_CACHE_SETS to the small procedure;
 $l_1_\text{color} += (l_1_\text{size}(\text{src}) + l_1_\text{size}(\text{dst}))$ mod L1_CACHE_SETS;
 elseif (($\text{src} == \text{mapped}$) and ($\text{dst} == \text{mapped}$) and ($C_{\text{src}} \neq C_{\text{dst}}$)) /* Case II */
 select $p = \text{dst}$ or src based on minimum size of their compound node;
 Place small compound node on the left side of the large one;
 if ($\text{color_conflicts}(\text{src}; \text{dst})$ exist)
 move small compound node so that src is next to dst;
 endif
 endif
 merge C_{src} with C_{dst};
elseif (only one procedure is mapped (e.g. src)) /* Case III */
 Place dst on the side of C_{src} so that distance between src and dst is minimized;
 if ($\text{color_conflicts}(\text{src}; \text{dst})$ exist)
 place dst next to src;
 if ($\text{color_conflicts}(\text{src}; \text{dst})$ exist)
 restore previous mapping;
 endif
 endif
 incorporate dst into C_{src};
 adjust compound node size if gap is required;
elseif (($\text{src} == \text{mapped}$) and ($\text{dst} == \text{mapped}$) and ($C_{\text{src}} == C_{\text{dst}}$)) /* Case IV */
 if ($\text{color_conflicts}(\text{src}; \text{dst})$ exist)
 select $p = \text{dst}$ or src based on their minimum distance from either side of the compound node;
 place p, on that side;
 if ($\text{color_conflicts}(p, \text{neighbors}(p))$ exist)
 compute unavailable set(p) and find minimum area to place p with no conflicts;
 if (area does not exist)
 restore original mapping for p;
 endif
 endif
 endif
 adjust compound node size if gap is required;
endif
endfor

Figure 2.7: Single-level cache line coloring algorithm.
A more elaborate discussion and an analytical example on the procedure cache coloring algorithm can be found in [52]. Table 2.3 shows the number of times each case is encountered in our benchmark suite when no basic block reordering is applied. If basic block reordering is permitted, then the procedure sizes that need to be colored change and so do the statistics in Table 2.3. The numbers in parentheses in column 5 represent how many times two procedures from the same compound node had color conflicts between them, given their original relative position in the node. Notice that although most of the times two procedures are found in the same compound node, no color conflicts are found and the next procedure pair is examined. The algorithm spends most of its time attaching an unmapped procedure to a compound node (case 3). This trend is also observed when basic block reordering is used before coloring.

2.4.1 Complexity Analysis

The first step of the procedure placement algorithm is to sort popular edges pe_i in decreasing weight order. That takes $pe \cdot \log pe$ steps. During the main loop of the algorithm we iterate over all popular edges. Cases I is implemented in constant time. Cases II and III are more expensive than Case I, since they require a loop over all L1 colors to compute the ovd and check for conflicts. Furthermore, Case II needs to iterate over all nodes of the compound node that is being repositioned, cnp, to adjust the L1 coloring of its member procedures once the compound node’s new position has been finalized. A similar loop is necessary to merge the two compound nodes. Case IV computes the available set for the procedure under consideration. It also finds a best fit among all available cache regions for the candidate procedure. The first step requires iterating over all mapped neighbors, np, of the procedure to find any non-conflicting spaces in the cache. We also need to iterate over all cache colors of each neighbor to compute the ovd for the entire set of neighbors. Let us call the total number of cache colors $csets$. Best fit is accomplished by sorting all non-conflicting contiguous regions in the cache in increasing size order. This process requires $csets \cdot \log(csets)$ steps. Overall, the complexity of the algorithm becomes:

$$pe \cdot (np + cnp + np \cdot csets + csets \cdot \log(csets))$$

Although $csets$ can be large, it is a constant and does not depend on the application. On the other hand, pe, cnp and np depend on the number of edges and procedures. In the worst case, $pe = np^2, np = cnp = p$ (p is the number of activated procedures), leading to a complexity in the order of $O(p^3 + p^2 \log(p^2)) = O(p^3)$. Based on the experimental results of Tables 2.2 and 2.1, np is much smaller than the total number of activated procedures. Also, cnp is smaller than p because we form and merge compound nodes only at the beginning. The algorithm very quickly converges to a state where a single large compound node has been formed. The only subsequent changes are either add a new procedure or reshuffle its current members. In addition, the number
<table>
<thead>
<tr>
<th>Program</th>
<th>Case I</th>
<th>Case II</th>
<th>Case III</th>
<th>Case IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>perl (CMG)</td>
<td>4</td>
<td>1</td>
<td>15</td>
<td>107 (12)</td>
</tr>
<tr>
<td>perl (TRG)</td>
<td>3</td>
<td>1</td>
<td>15</td>
<td>96 (12)</td>
</tr>
<tr>
<td>perl (CG)</td>
<td>6</td>
<td>3</td>
<td>8</td>
<td>1 (0)</td>
</tr>
<tr>
<td>gcc (CMG)</td>
<td>36</td>
<td>31</td>
<td>409</td>
<td>6753 (291)</td>
</tr>
<tr>
<td>gcc (TRG)</td>
<td>63</td>
<td>58</td>
<td>531</td>
<td>25186 (953)</td>
</tr>
<tr>
<td>gcc (CG)</td>
<td>54</td>
<td>41</td>
<td>146</td>
<td>74 (9)</td>
</tr>
<tr>
<td>edg (CMG)</td>
<td>14</td>
<td>7</td>
<td>110</td>
<td>3731 (7)</td>
</tr>
<tr>
<td>edg (TRG)</td>
<td>31</td>
<td>24</td>
<td>296</td>
<td>10312 (27)</td>
</tr>
<tr>
<td>edg (CG)</td>
<td>27</td>
<td>21</td>
<td>52</td>
<td>27 (1)</td>
</tr>
<tr>
<td>gs (CMG)</td>
<td>31</td>
<td>25</td>
<td>353</td>
<td>13322 (0)</td>
</tr>
<tr>
<td>gs (TRG)</td>
<td>32</td>
<td>28</td>
<td>316</td>
<td>30662 (0)</td>
</tr>
<tr>
<td>gs (CG)</td>
<td>40</td>
<td>25</td>
<td>119</td>
<td>34 (0)</td>
</tr>
<tr>
<td>troff (CMG)</td>
<td>18</td>
<td>16</td>
<td>146</td>
<td>2121 (5)</td>
</tr>
<tr>
<td>troff (TRG)</td>
<td>28</td>
<td>26</td>
<td>145</td>
<td>3990 (4)</td>
</tr>
<tr>
<td>troff (CG)</td>
<td>21</td>
<td>13</td>
<td>29</td>
<td>9 (0)</td>
</tr>
<tr>
<td>eqn (CMG)</td>
<td>12</td>
<td>9</td>
<td>75</td>
<td>1089 (27)</td>
</tr>
<tr>
<td>eqn (TRG)</td>
<td>14</td>
<td>11</td>
<td>117</td>
<td>1944 (54)</td>
</tr>
<tr>
<td>eqn (CG)</td>
<td>11</td>
<td>6</td>
<td>19</td>
<td>1 (1)</td>
</tr>
<tr>
<td>ixx (CMG)</td>
<td>10</td>
<td>8</td>
<td>67</td>
<td>734 (22)</td>
</tr>
<tr>
<td>ixx (TRG)</td>
<td>8</td>
<td>7</td>
<td>66</td>
<td>802 (12)</td>
</tr>
<tr>
<td>ixx (CG)</td>
<td>9</td>
<td>4</td>
<td>18</td>
<td>11 (0)</td>
</tr>
<tr>
<td>eon (CMG)</td>
<td>6</td>
<td>5</td>
<td>78</td>
<td>2069 (0)</td>
</tr>
<tr>
<td>eon (TRG)</td>
<td>15</td>
<td>14</td>
<td>59</td>
<td>2293 (0)</td>
</tr>
<tr>
<td>eon (CG)</td>
<td>13</td>
<td>6</td>
<td>29</td>
<td>4 (0)</td>
</tr>
<tr>
<td>porky (CMG)</td>
<td>15</td>
<td>14</td>
<td>260</td>
<td>9113 (3)</td>
</tr>
<tr>
<td>porky (TRG)</td>
<td>23</td>
<td>22</td>
<td>250</td>
<td>11394 (1)</td>
</tr>
<tr>
<td>porky (CG)</td>
<td>23</td>
<td>21</td>
<td>129</td>
<td>103 (0)</td>
</tr>
<tr>
<td>bore (CMG)</td>
<td>14</td>
<td>13</td>
<td>280</td>
<td>9226 (4)</td>
</tr>
<tr>
<td>bore (TRG)</td>
<td>24</td>
<td>23</td>
<td>251</td>
<td>10703 (0)</td>
</tr>
<tr>
<td>bore (CG)</td>
<td>24</td>
<td>18</td>
<td>123</td>
<td>72 (0)</td>
</tr>
<tr>
<td>lcom (CMG)</td>
<td>7</td>
<td>3</td>
<td>26</td>
<td>431 (0)</td>
</tr>
<tr>
<td>lcom (TRG)</td>
<td>8</td>
<td>4</td>
<td>27</td>
<td>469 (0)</td>
</tr>
<tr>
<td>lcom (CG)</td>
<td>8</td>
<td>3</td>
<td>14</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

Table 2.3: Visiting frequency of each case in the single-level cache line coloring algorithm (columns 2-5). The number in parentheses in column 5 represents the number of times two procedures of the same compound node need to be recolored because of conflicts.
of edges, e, is significantly lower than p^2. This difference is even larger after pruning. Most importantly, the step of computing the unavailable set and fitting candidate procedures inside the cache address space specified by the set, is infrequently performed (column 5 in Table 2.3, number in parentheses).

2.5 Main Memory-based Procedure Placement Algorithm

After placing procedures in the cache address space the next step is to assign procedures to main memory offsets. Notice that in the previous step we do not assign absolute memory addresses since we want to be able to generate a relocatable memory map. The main memory placement algorithm first assigns a memory offset to all procedures and then to every basic block inside a procedure’s body. The pseudo-code of the procedure assignment algorithm is shown in Fig. 2.8.

As a first step, the algorithm distributes all popular procedures to slots, based on their assigned cache color. Then we select a cache color, find a procedure assigned to the selected cache color, place that procedure in memory and advance the pointer to the next available color. Initially we start with cache color 0. In case there is no candidate assigned to the selected color, we proceed with the next sequential cache color. That way, we guarantee the algorithm will complete, since the entire cache address space is scanned until an unmapped procedure is found. If there exists more than one procedures for mapping, we select the one connected via the heaviest CMG edge weight to the previously mapped procedure. This is done in order to allow procedures with high temporal interaction to be placed close to each other in memory and to prevent the working set of the application from increasing. If none of the candidates is connected via a CMG edge with the previously mapped procedure, we select one by random.

As we map popular procedures, we record gaps created in memory. Suppose that prev_color and color are the starting cache sets for two successively mapped procedures. The size of the gap between them, expressed in L1 cache lines, is shown below:

$$\text{gap} = \begin{cases}
\text{color} - \text{prev}_\text{color} & \text{if} \text{color} \geq \text{prev}_\text{color} \\
L1_\text{CACHE}_\text{SETS} - \text{prev}_\text{color} + \text{color} & \text{if} \text{color} < \text{prev}_\text{color}
\end{cases} \quad (2.6)$$

After mapping a popular procedure, we sort the gaps in increasing size order, and all unpopular procedures in decreasing size order. Placement of unpopular procedures takes place using a best fit algorithm so that the empty space among popular procedures is minimized. We then perform the same task for any unactivated procedures in case gaps remain. The remaining unmapped unpopular and unactivated procedures are appended at the end of the executable.

Table 2.4 lists the total memory gap space in Kb remaining after code reordering for each graph model.
Input: list of popular procedures \(l_{prop} \),
array of lists of procedures \(ca[L1_CACHE_SETS] \)

\[\text{foreach } \text{proc in } l_{prop}\]
\[\quad \text{Insert proc in } ca[l1_cache_color(proc)];\]
\[\quad /* l1_cache_color returns the color of proc in L1 cache */\]
\[\text{endfor}\]

\[l1_color = 0, \text{mm_index} = 0, \text{mapped_procs} = 0;\]

\[\text{while (mapped_procs \neq size(l_{prop}))}\]
\[\quad \text{find_candidate} = \text{FALSE};\]
\[\quad \text{while (find_candidate == \text{FALSE})}\]
\[\quad \quad \text{proc} = \text{select_proc}(l1_color, \text{prev_proc})\]
\[\quad \quad \text{if (proc == NULL)}\]
\[\quad \quad \quad l1_color = (l1_color + 1) \mod L1_CACHE_SETS;\]
\[\quad \quad \text{else}\]
\[\quad \quad \quad \text{find_candidate} = \text{TRUE};\]
\[\quad \text{endwhile}\]

\[\text{compute gap between proc and previously assigned procedure;}\]
\[\text{memory_offset(proc) = mm_index + gap;}\]
\[\text{mm_index = mm_index + gap + size(proc);}\]
\[\text{delete proc from } ca[l1_color]; \text{mapped_procs}++;\]
\[l1_color = \text{cache_set(mm_index);}\]
\[\text{prev_proc} = \text{proc};\]
\[\text{endwhile}\]

\[\text{function select_proc(int l1_color, node \text{prev_proc})}\]
\[\quad \text{if (ca[l1_color] == NULL)}\]
\[\quad \quad \text{return(NULL);}\]
\[\quad \text{else}\]
\[\quad \quad \text{find proc so that CMG edge weight(proc, prev_proc) = minimum;}\]
\[\quad \quad \text{if (proc == NULL)}\]
\[\quad \quad \quad \text{return(randomly selected proc);}\]
\[\quad \quad \text{return(proc);}\]
\[\text{end function}\]

Figure 2.8: Popular procedure memory placement algorithm after performing single-level cache coloring.
Columns 2-5 show the gap size left after mapping popular procedures and the last three columns show the total amount of extra empty space inserted in the reordered executable after mapping all procedures. For each graph model, there exist two numbers, one with and another without basic block reordering.

<table>
<thead>
<tr>
<th>Program</th>
<th>Gap after pop (in Kb)</th>
<th>Final gap size (in Kb)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CG</td>
<td>TRG</td>
</tr>
<tr>
<td>perl</td>
<td>5.3/25.6</td>
<td>9.8/14.1</td>
</tr>
<tr>
<td>gcc</td>
<td>33.0/65.3</td>
<td>133.3/104.0</td>
</tr>
<tr>
<td>edg</td>
<td>21.4/31.7</td>
<td>27.8/61.3</td>
</tr>
<tr>
<td>gs</td>
<td>22.9/46.8</td>
<td>21.5/49.4</td>
</tr>
<tr>
<td>troff</td>
<td>16.3/39.9</td>
<td>24.2/27.1</td>
</tr>
<tr>
<td>eqn</td>
<td>5.6/40.6</td>
<td>17.8/36.0</td>
</tr>
<tr>
<td>ixx</td>
<td>12.7/19.2</td>
<td>23.4/20.6</td>
</tr>
<tr>
<td>eon</td>
<td>23.5/17.5</td>
<td>13.9/17.7</td>
</tr>
<tr>
<td>porky</td>
<td>11.5/29.3</td>
<td>9.9/46.7</td>
</tr>
<tr>
<td>bore</td>
<td>14.8/41.4</td>
<td>14.9/46.4</td>
</tr>
<tr>
<td>lcom</td>
<td>11.8/26.9</td>
<td>14.2/20.3</td>
</tr>
</tbody>
</table>

Table 2.4: Size of memory gaps after single-level cache coloring and memory placement using the CG, TRG or the CMG. The total gap size is shown before (columns 2-5) and after (columns 6-8) mapping unactivated and unpopular procedures. Each column displays the gap size when basic block reordering does not apply and when it precedes cache coloring.

The total gap area remaining after mapping popular procedures is important since it determines the degree of memory fragmentation on the working set of the application. Notice that the working set is approximated by the popular procedure set in our approach. If large gaps occur, we may experience poor page locality and a higher number of I-TLB misses. As we can see from Table 2.4 the CG-based layout tends to produce smaller gaps since it considers a smaller number of popular procedures. The final executable size is almost never increased since the number of unused/unpopular procedures available is sufficient to fill any gaps.

When basic block reordering is used, the amount an executable grows can be smaller or larger than when using strictly procedure reordering. Fig. 2.9 illustrates two different cases and shows the corresponding code layout. In both scenarios, we are given a cache placement and its equivalent memory placement. Although we assume only a single cache level, the same principles apply to multi-level cache coloring algorithms presented in chapter 3.

We assume a cache with a size of 8 lines. The first scenario considers procedures P_1, P_2, P_3, with 3, 4 and 4 cache lines sizes, respectively. In the top left and top right sides of Fig. 2.9 we show the relative placement for these 3 procedures in the cache address space. We assume that intraprocedural basic block reordering has been
applied to them and all their frequently executed sequences of basic blocks have been moved to the beginning of their address space, forming the shaded area which we call Hot Region (HR). The top left arrangement is based on coloring the HR of each procedure, while the top right assumes a coloring of the entire procedure body (no basic block reordering). The main memory layout lies below the cache layout. Although the HR allows overlapping of the procedure bodies in the cache and leads to a more compact layout in the cache, it creates gaps in main memory. When the HR is not considered in coloring, the purely sequential cache layout shown in the top right of Fig. 2.9 leads to a memory layout with no gaps. This layout actually represents the ideal case, but does occur in practice. The example illustrates a scenario where the code size is increased when basic block reordering is employed.

In the second scenario, procedures P_1 and P_2 are placed in the cache in two different ways. Again, in the first approach, only the HRs are colored, while the second approach considers the entire procedure body. In the later, we assume that P_2 is placed on the side of the compound node of P_1 leading to the layout of Fig. 2.9. The generated memory gap is larger when no basic block reordering is applied. In general, the gap size depends on the HR size relative to the procedure size as well as to the relative placement in the cache between

Figure 2.9: Scenarios where code size can increase in the presence/absence of basic block reordering.
two procedures.

2.5.1 Complexity Analysis

The memory placement algorithm initially places popular procedures based on their assigned L1 cache color into a one-dimensional array. Every array element points to a list of procedures mapped to the same color in the cache. The assignment process takes \(pp\) steps, where \(pp\) is the number of popular procedures. The main loop that assigns a starting memory address consists of two steps. During the first step we look for a procedure to be mapped by performing a linear search over the array. The search wraps around when the end of the array is reached and ends either when it reaches its starting point, or when it detects an array element pointing to a non-empty list. The first case indicates the end of the algorithm since all procedures have been mapped. In the second case, we search the procedure list to find the procedure that is connected via the heaviest CMG edge with the procedure that has just been mapped. Once a procedure is found, we compute its new memory address, find out the gap size that may have been created and continue with the search for another procedure. The new search starts from the end of the newly mapped procedure. Let \(l\) be the number of procedures in an array element and \(csets\) the number of available cache colors. The worst-case scenario is to have all popular procedures mapped to a single location in the array (i.e., \(l = pp\)). The first step will take \(csets \cdot pp\) time (each time we will iterate over the entire array and we will search the entire list of popular procedures). Since we need to map all \(pp\) procedures, the complexity of the algorithm becomes \(O(pp \cdot (csets \cdot pp)) = O(pp^2)\), since \(csets\) is a constant. However, the distribution of procedures in the cache is much more uniform. Thus, we seldom have to search a large part of the array to find non-empty elements. Also we rarely find that \(ll = pp\). The actual running time of the algorithm is close to linear, especially since \(ll\) tends to be independent of \(pp\).

2.6 Intraprocedural Basic Block Reordering Algorithm

This section describes an intraprocedural basic block reordering algorithm. In order to perform this task, we record transition frequencies between activated basic blocks. The trace contents, as they are described in section 2.2, provide this information. We then build a graph, called the Dynamic Control Flow Graph (DCFG), for every popular procedure. A DCFG is a directed graph, where every node represents a basic block, and every edge is weighted by the number of transitions between two blocks. The number of edges recorded in the DCFG depends on the number of transitions between basic blocks, as recorded in the profile. Hence, a DCFG is always a subgraph of a procedure’s CFG (the relationship is similar to that between a DCG and a CG). Notice that we count edge frequencies to record basic block interaction. We could have weighted the edges using temporal information (based on the TRG or the CMG edge weight algorithm), or using path profiling.
Although there are cases where path profiling can be more accurate than edge profiling [101], this approach is out of the scope of this thesis. On the other hand, we did not compute CMG edges on a basic block basis since a CMG graph captures interaction between units that are at least as large as a cache line (assuming that the CMG would be used to record interaction in a cache). Since most basic blocks are smaller than a cache line, constructing another CMG on a basic block basis is not necessary.

Since the DCFG records intraprocedural basic block interaction, we take special care when basic blocks transfer control flow outside procedure boundaries (usually via procedure calls). Whenever such a block is found, we create an edge between that block and the block where the control flow returns after the call completes. The edge is weighted with the number of times the block making the call is executed. Finally, we do not record transitions for short loops, where the source and the destination is the same basic block.

After building the DCFGs for all popular procedures, we sort the DCFG edges in decreasing weight order. Then we reorder the blocks by forming compound nodes as we traverse the sorted list of edge weights. There are four possible cases the algorithm encounters during the traversal:

- **Case I**: Both basic blocks are unmapped. In that case it forms a new compound node by placing the source followed by the destination basic block.

- **Case II**: The source block is mapped and the destination is unmapped. Then if the source lies on the tail of its compound node, we append the destination to the end of the compound node (immediately after the source). If this is not the case, we create a new compound node with the destination block as the only member.

- **Case III**: The destination block is mapped and the source is unmapped. If the destination is the head of its associated compound node, we append the source to the beginning of the compound node (immediately before the source). If this is not the case, we create a new compound node with the source block as the only member.

- **Case IV**: Both blocks are mapped, but belong to different compound nodes. If the source is the tail and the destination is the head of their compound nodes respectively, then we concatenate the blocks of the two compound nodes by placing the node of the source block before the node of the destination. The two compound nodes are merged into a single node.

Fig. 2.10 illustrates the four different cases.

At the end of the reordering step there may be several compound nodes remaining. We traverse the sorted edge list again and apply case IV in order to merge all the nodes together. The primary motivation, behind basic block reordering, is to provide uninterrupted control flow. Hence, we move basic blocks to allow branches to
Figure 2.10: Basic block placement decisions during intraprocedural basic block reordering.

fall through most of the time. In case a branch is not biased towards one of its possible targets, then we try to position both targets (the fall through and taken targets) close to each other, in order to allow sequential (or forward-based) prefetching to bring the taken target closer to the CPU. The algorithm is very similar to the one proposed in [54]. All unactivated basic blocks are appended after the final compound node, in the order they are found in the original executable.

Subsequently, we apply a partitioning algorithm that separates a procedure’s body into a hot and a cold segment. No procedure splitting is performed. The procedure body remains intact, residing in a contiguous address segment. However, we virtually bisect a procedure into two areas, the cold and hot region. The idea is to use the hot segment as the effective procedure body that needs to be colored. The hot region needs to include the most frequently accessed basic blocks (in the order specified by the basic block reordering step). The cold region includes the rarely accessed and unactivated portions of a procedure’s body.

The partitioning step, as shown in Fig. 2.11, works as follows: we first compute the total sum of DCFG edge weights. We define an upper bound that is equal to a fixed percentage of the total sum. We set this threshold to
90% for all the experiments in this thesis. We then sort all DCFG edges in decreasing weight order and traverse the sorted list until the sum of the weights of the visited edges reaches the upper bound. The weight of the last edge to be included in the sum computation is called \(\text{min_weight} \). The idea is to filter out the edges carrying the least frequent transitions between blocks.

The next step is to determine the hot region of a procedure. This is done by iterating over all basic blocks in the reordered basic block list. On each iteration we assign a basic block to the hot region if the block has not been visited. We then mark the block as visited and check whether the next basic block will be examined for inclusion in the hot region. We find the incoming and outgoing DCFG edges of the current basic block. We compute the sum of edge weights for all incoming and outgoing edges that are above the edge threshold and have not been visited before. This sum is computed over all basic blocks. The process of adding basic blocks to the hot region stops either when all activated blocks have been visited or when the sum of edge weights exceeds the upper bound.

The basic block reordering algorithm requires a code fix-up step, where unconditional branches are inserted whenever needed to maintain correct program semantics. The 5 different cases we implemented are shown in Fig. 2.12.

- **Case I:** The last instruction of a basic block is a conditional branch and the positions of the two target blocks have been switched. In this case we need to replace the branch with its dual to properly redirect control flow.

- **Case II:** The last instruction of a basic block is a conditional branch and the two target blocks have both been moved away from the parent block. The solution is to keep the same conditional branch opcode and insert a new basic block, consisting of an unconditional branch which will redirect control flow to the next sequential target block when the conditional branch falls through.

- **Case III:** The last instruction of a basic block is a non-branch instruction and the target block has been moved away from its parent. Fixing the code requires augmenting the parent block with an unconditional branch that will transfer control flow to the target.

- **Case IV:** The last instruction of a basic block is a procedure call (direct or indirect) and the return block has been moved away from its parent. Again, we insert a new basic block consisting of an unconditional branch, which points to the return basic block. The basic block is inserted right after the procedure call instruction.

- **Case V:** The last instruction of a basic block is an unconditional branch and the target block has been appended to the end of the parent. In this case, we can delete the branch from the parent block. This is
upper_bound = (∑_e (weight(e))) \cdot \text{THRESHOLD}; /* weight(e) returns the DCFG weight of edge e */
ledge = \text{Sort(list of DCFG edges)} in decreasing weight order;
e = \text{first_element(ledge)}; temp_sum = 0;
while (temp_sum \leq upper_bound)
 temp_sum += weight(e);
 min_weight = weight(e);
e = \text{next(ledge, e)}; /* get next DCFG edge in sorted list */
endwhile
lbb = list of reordered basic blocks; hot_region_size = 0;
foreach bb in lbb
 if (bb has been activated)
 if (bb \neq visited)
 hot_region_size += size(bb);
 bb \leftarrow visited;
 endif
 llin = list of in-going edges of bb;
 foreach e in llin
 if ((temp_sum < upper_bound) and (source(e) \neq visited) and (weight(e) > min_weight))
 temp_sum += weight(e);
 endif
 endfor
endfor
lout = list of outgoing edges of bb;
foreach e in lout
 if ((temp_sum < upper_bound) and (destination(e) \neq visited) and (weight(e) > min_weight))
 temp_sum += weight(e);
 endif
endfor
if (temp_sum \geq upper_bound)
 break;
endif
endfor

Figure 2.11: Algorithm that virtually partitions a procedure into a hot and a cold region after applying intraprocedural basic block reordering.
Figure 2.12: Code fix-up steps after applying intraprocedural basic block reordering.

case of optimizing the reordered executable and is not required for correct program execution.

Although our code fix-up solutions are not unique, we believe they preserve program semantics and do not significantly hurt performance. We do not check for long branches (branches whose range is insufficient). The range of conditional branches for our example architecture (for Alpha AXP is ± 1Mb of instructions) should be enough to cover all selected applications. Long branches can cause significant code bloat, especially when procedure splitting is applied [102]. Since we only move basic blocks within procedure boundaries, and no procedure has a size larger than the maximum range of conditional branches, the only case we need to check for are long procedure calls. These are usually transformed into indirect calls with a minimum instruction overhead.
<table>
<thead>
<tr>
<th>Program</th>
<th>Extra UncBr</th>
<th>UncBr-Del</th>
<th>CBr-swi</th>
<th>DCFG</th>
<th>Pop proc</th>
<th>HR size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>#</td>
<td>bbs</td>
<td>avg (Kb)</td>
<td>total (Kb)</td>
<td>avg (bytes)</td>
</tr>
<tr>
<td>perl (CMG)</td>
<td>118 (21)</td>
<td>27</td>
<td>102</td>
<td>20</td>
<td>2.24</td>
<td>8.8</td>
</tr>
<tr>
<td>perl (TRG)</td>
<td>115 (20)</td>
<td>27</td>
<td>98</td>
<td>21</td>
<td>2.42</td>
<td>8.5</td>
</tr>
<tr>
<td>perl (CG)</td>
<td>112 (20)</td>
<td>26</td>
<td>93</td>
<td>21</td>
<td>2.51</td>
<td>8.1</td>
</tr>
<tr>
<td>gcc (CMG)</td>
<td>3511 (1463)</td>
<td>510</td>
<td>3578</td>
<td>39</td>
<td>1.30</td>
<td>345.7</td>
</tr>
<tr>
<td>gcc (TRG)</td>
<td>4123 (1675)</td>
<td>603</td>
<td>4229</td>
<td>33</td>
<td>1.11</td>
<td>408.2</td>
</tr>
<tr>
<td>gcc (CG)</td>
<td>2222 (1002)</td>
<td>307</td>
<td>2250</td>
<td>48</td>
<td>1.57</td>
<td>222.7</td>
</tr>
<tr>
<td>edg(CMG)</td>
<td>1023 (330)</td>
<td>139</td>
<td>827</td>
<td>32</td>
<td>0.84</td>
<td>64.8</td>
</tr>
<tr>
<td>edg(TRG)</td>
<td>2400 (666)</td>
<td>355</td>
<td>2254</td>
<td>28</td>
<td>0.85</td>
<td>169.0</td>
</tr>
<tr>
<td>edg(CG)</td>
<td>937 (302)</td>
<td>119</td>
<td>741</td>
<td>37</td>
<td>0.95</td>
<td>55.3</td>
</tr>
<tr>
<td>gs (CMG)</td>
<td>844 (195)</td>
<td>196</td>
<td>940</td>
<td>12</td>
<td>0.37</td>
<td>110.8</td>
</tr>
<tr>
<td>gs (TRG)</td>
<td>796 (181)</td>
<td>190</td>
<td>872</td>
<td>12</td>
<td>0.38</td>
<td>102.4</td>
</tr>
<tr>
<td>gs (CG)</td>
<td>595 (135)</td>
<td>150</td>
<td>612</td>
<td>17</td>
<td>0.49</td>
<td>69.1</td>
</tr>
<tr>
<td>troff (CMG)</td>
<td>412 (103)</td>
<td>104</td>
<td>378</td>
<td>14</td>
<td>0.38</td>
<td>43.6</td>
</tr>
<tr>
<td>troff (TRG)</td>
<td>418 (105)</td>
<td>109</td>
<td>382</td>
<td>13</td>
<td>0.36</td>
<td>45.4</td>
</tr>
<tr>
<td>troff (CG)</td>
<td>209 (45)</td>
<td>43</td>
<td>193</td>
<td>17</td>
<td>0.55</td>
<td>20.1</td>
</tr>
<tr>
<td>eqn (CMG)</td>
<td>260 (56)</td>
<td>50</td>
<td>227</td>
<td>16</td>
<td>0.54</td>
<td>30.6</td>
</tr>
<tr>
<td>eqn (TRG)</td>
<td>299 (63)</td>
<td>58</td>
<td>264</td>
<td>14</td>
<td>0.44</td>
<td>39.3</td>
</tr>
<tr>
<td>eqn (CG)</td>
<td>169 (46)</td>
<td>37</td>
<td>126</td>
<td>22</td>
<td>0.83</td>
<td>16.1</td>
</tr>
<tr>
<td>ixx (CMG)</td>
<td>121 (34)</td>
<td>51</td>
<td>171</td>
<td>16</td>
<td>0.65</td>
<td>28.8</td>
</tr>
<tr>
<td>ixx (TRG)</td>
<td>115 (32)</td>
<td>49</td>
<td>166</td>
<td>16</td>
<td>0.67</td>
<td>27.1</td>
</tr>
<tr>
<td>ixx (CG)</td>
<td>90 (27)</td>
<td>38</td>
<td>126</td>
<td>24</td>
<td>1.22</td>
<td>18.2</td>
</tr>
<tr>
<td>eon (CMG)</td>
<td>61 (7)</td>
<td>23</td>
<td>56</td>
<td>6</td>
<td>0.29</td>
<td>19.1</td>
</tr>
<tr>
<td>eon (TRG)</td>
<td>58 (6)</td>
<td>23</td>
<td>54</td>
<td>6</td>
<td>0.24</td>
<td>18.8</td>
</tr>
<tr>
<td>eon (CG)</td>
<td>48 (4)</td>
<td>20</td>
<td>46</td>
<td>8</td>
<td>0.27</td>
<td>13.0</td>
</tr>
<tr>
<td>porky (CMG)</td>
<td>344 (40)</td>
<td>548</td>
<td>184</td>
<td>11</td>
<td>0.42</td>
<td>87.0</td>
</tr>
<tr>
<td>porky (TRG)</td>
<td>351 (41)</td>
<td>577</td>
<td>188</td>
<td>11</td>
<td>0.43</td>
<td>89.6</td>
</tr>
<tr>
<td>porky (CG)</td>
<td>159 (23)</td>
<td>272</td>
<td>103</td>
<td>9</td>
<td>0.31</td>
<td>41.0</td>
</tr>
<tr>
<td>bore (CMG)</td>
<td>400 (50)</td>
<td>609</td>
<td>191</td>
<td>10</td>
<td>0.43</td>
<td>90.9</td>
</tr>
<tr>
<td>bore (TRG)</td>
<td>378 (50)</td>
<td>586</td>
<td>183</td>
<td>10</td>
<td>0.42</td>
<td>86.2</td>
</tr>
<tr>
<td>bore (CG)</td>
<td>226 (36)</td>
<td>324</td>
<td>127</td>
<td>10</td>
<td>0.40</td>
<td>48.5</td>
</tr>
<tr>
<td>lcom (CMG)</td>
<td>160 (27)</td>
<td>55</td>
<td>75</td>
<td>20</td>
<td>0.93</td>
<td>15.2</td>
</tr>
<tr>
<td>lcom (TRG)</td>
<td>164 (28)</td>
<td>58</td>
<td>78</td>
<td>20</td>
<td>0.88</td>
<td>15.8</td>
</tr>
<tr>
<td>lcom (CG)</td>
<td>49 (9)</td>
<td>10</td>
<td>30</td>
<td>9</td>
<td>0.23</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Table 2.5: Statistics associated with basic block repositioning: number of introduced unconditional branches (column 2) and subset of those which form a basic block (column 2, in parentheses), number of deleted unconditional branches (column 3), number of conditional branches whose opcode has been switched (column 4), average DCFG size in basic blocks (column 5), average DCFG size in Kbytes (column 6), total HR size in Kbytes (column 7) and average HR size in bytes (column 8).
Table 2.5 lists statistics gathered after applying the basic block reordering algorithm on the popular procedure set of each graph. The statistics vary between the graphs because the popular procedure sets are different. Column 2 presents the total number of unconditional branches inserted, while the number of unconditional branches inserted as independent basic blocks is listed in parentheses in the same column. Column 3 presents the number of unconditional branches deleted as a side-effect of the reordering, and column 4 shows the number of conditional branches whose opcode has switched. Column 5 shows the average DCFG size in basic blocks, while column 6 lists the average size of popular procedures in Kbytes. This average for the DCFG is computed over popular procedures only. Note that the average popular procedure size is slightly different from the one shown in Table 2.2 because extra instructions have been inserted, and some instructions have been deleted as an outcome of moving basic blocks. Columns 7 and 8 list the total and average hot region (HR) size. The total size of HR regions is a critical parameter because it approximates the working set of the application. Its relationship to the L1 cache illustrates the degree of difficulty encountered by the cache coloring algorithm in achieving an optimal solution, (i.e. a conflict free mapping for all HRs). Moreover, by comparing the numbers in columns 7 and 9, we can estimate the importance of basic block reordering. If the average popular procedure size is comparable to the average HR size, then the main source of any possible performance improvement should come from procedure reordering.

2.7 Experimental Results

To evaluate the merit of our approach, we use a code reordering framework that can utilize as a base model any of the three graphs described, CG, TRG and the CMG. The following six different configurations are simulated:

- CMG-based procedure reordering \(P_{sc}^{cmg}\)
- CMG-based procedure and intra-procedural basic block reordering \(P_{bb}^{sc}cmg\)
- TRG-based procedure reordering \(P_{sc}^{trg}\)
- TRG-based procedure and intra-procedural basic block reordering \(P_{bb}^{sc}trg\)
- CG-based procedure reordering \(P_{sc}^{cgn}\)
- CG-based procedure and intra-procedural basic block reordering \(P_{bb}^{sc}cgn\)

The \(^{sc}\) superscript denotes that procedure reordering is performed for a memory hierarchy with a single cache level. For benchmarks that could be executed with SimpleScalar v3.0 [61], we provide cycle-based results with and without code reordering. The modified code layout is simulated properly at all pipeline stages.
of an out-of-order CPU simulator. The effects of any extra unconditional branches inserted to preserve code semantics, and any deleted unconditional branches, are also taken into consideration. When code reordering is not enabled, the standard layout generated by the Compaq C/C++ compilers is assumed. The native compilers perform a DFS traversal of the call graph without utilizing any profile information. We will refer to this version as unoptimized, U_{unopt}.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 I-cache</td>
<td>16Kb, 32 byte line size, 2-way (LRU), write back, 1 cycle hit, 32 byte wide bus to L2</td>
</tr>
<tr>
<td>L1 D-cache</td>
<td>16Kb, 32 byte line size, 2-way (LRU), write through, 1 cycle hit, 32 byte wide bus to L2</td>
</tr>
<tr>
<td>Write buffer</td>
<td>12 entries, 32 byte entry size, retire-at-8, read-from-WB load hazard policy</td>
</tr>
<tr>
<td>L2 unified cache</td>
<td>256Kb, 64 byte line size, 2-way (LRU), write back, fetch-on-write on write miss, 7 cycles hit</td>
</tr>
<tr>
<td>Main Memory</td>
<td>85 cycles, 8 byte wide bus, 8KB page size, 2 memory ports</td>
</tr>
<tr>
<td>Instruction, Data TLB</td>
<td>32 entries, 4-way (LRU), 30 cycle miss latency</td>
</tr>
<tr>
<td>I-fetch unit</td>
<td>up to 8 insts/cycle from the same cache line, 8 Ins-queue, hybrid predictor(8Kb bimodal + 8Kb gshare, 12-bit HR + 8Kb 2-bit selector), 16 entry RAS, 4KB 2-way (LRU) tagged BTB, 2 cycles misfetch penalty, 6 cycles extra misprediction penalty, speculative update on ID stage</td>
</tr>
<tr>
<td>Register File</td>
<td>32 Integer & 32 FP registers</td>
</tr>
<tr>
<td>Decode unit</td>
<td>4 insts/cycle</td>
</tr>
<tr>
<td>Issue unit</td>
<td>4 wide out-of-order integer operation issue, 2 wide out-of-order FP operation issue, 64 instruction window size, 32 entry load/store queue</td>
</tr>
<tr>
<td>Execute unit</td>
<td>4 Integer ALUs, 1 Mul/Div Integer unit, 2 FP ALUs, 1 Mul/Div FP unit</td>
</tr>
<tr>
<td>Commit unit</td>
<td>4 inst/cycle</td>
</tr>
</tbody>
</table>

Table 2.6: Dynamically scheduled, Out-Of-Order, multiple issue machine description.

We modified the SimpleScalar v3.0 framework to extend the capabilities of its simulated memory system. More specifically, we fully model bus contention at all levels of the memory hierarchy and provide write buffer support between the L1 data and the L2 unified cache. We also modified the cache module so as to be able to simulate the most widely used types of write hit and write miss policies. A brief description of the machine model used is shown in Table 2.6. For the benchmarks that could not be executed via SimpleScalar due to the lack of sufficient support (lcom, gs, ixx, porky, bore and eon) we developed an ATOM-based model with the extended SimpleScalar memory system. The ATOM memory system model considers timing constraints
and models bus and cache line access contention. It also considers the side effects of code reordering (extra branches being inserted/deleted), but it does not simulate the effects of wrong path instructions.

In order to reduce the time needed for the simulations, we limited our simulations to a maximum of 300M executed instructions for both SimpleScalar and the ATOM-based model. If an application required less than 300M instructions, we ran it to completion. Perl, gcc, edg, eon, porky and bore were profiled and tested using 300M instructions, starting at an offset of 50M instructions. All applications are compiled with the Compaq C V5.2 and C++ V5.5 compilers, with full optimizations turned on, on an Alpha-based 3000 AXP workstation running Compaq Tru64 Unix v4.0.

<table>
<thead>
<tr>
<th>Program</th>
<th># of Instr.</th>
<th>(U_{noop})</th>
<th>(P_{cm,q}^{tie})</th>
<th>(P_{fr,q}^{tie})</th>
<th>(P_{c,q}^{tie})</th>
<th>(P_{cm,q}^{tie_{bb}})</th>
<th>(P_{fr,q}^{tie_{bb}})</th>
<th>(P_{c,q}^{tie_{bb}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>perl</td>
<td>300M</td>
<td>1.25</td>
<td>1.28</td>
<td>1.44</td>
<td>1.49</td>
<td>1.45</td>
<td>1.55</td>
<td>1.55</td>
</tr>
<tr>
<td>gcc</td>
<td>300M</td>
<td>1.02</td>
<td>0.99</td>
<td>0.97</td>
<td>0.98</td>
<td>1.15</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>edg</td>
<td>350M</td>
<td>0.66</td>
<td>0.68</td>
<td>0.67</td>
<td>0.67</td>
<td>0.69</td>
<td>0.81</td>
<td>0.68</td>
</tr>
<tr>
<td>troff</td>
<td>162M</td>
<td>1.59</td>
<td>1.78</td>
<td>1.81</td>
<td>1.74</td>
<td>1.91</td>
<td>1.92</td>
<td>1.77</td>
</tr>
<tr>
<td>eqn</td>
<td>82.5M</td>
<td>1.93</td>
<td>1.65</td>
<td>2.00</td>
<td>1.99</td>
<td>2.05</td>
<td>2.05</td>
<td>1.97</td>
</tr>
<tr>
<td>gs</td>
<td>99.6M</td>
<td>1.43</td>
<td>1.43</td>
<td>1.43</td>
<td>1.42</td>
<td>1.40</td>
<td>1.41</td>
<td>1.41</td>
</tr>
<tr>
<td>ixx</td>
<td>48.7M</td>
<td>1.53</td>
<td>1.64</td>
<td>1.58</td>
<td>1.47</td>
<td>1.43</td>
<td>1.43</td>
<td>1.45</td>
</tr>
<tr>
<td>eon</td>
<td>300M</td>
<td>1.69</td>
<td>1.64</td>
<td>1.62</td>
<td>1.67</td>
<td>1.57</td>
<td>1.58</td>
<td>1.65</td>
</tr>
<tr>
<td>porky</td>
<td>300M</td>
<td>1.70</td>
<td>1.68</td>
<td>1.69</td>
<td>1.68</td>
<td>1.66</td>
<td>1.66</td>
<td>1.69</td>
</tr>
<tr>
<td>bore</td>
<td>300M</td>
<td>1.64</td>
<td>1.63</td>
<td>1.64</td>
<td>1.62</td>
<td>1.62</td>
<td>1.63</td>
<td>1.64</td>
</tr>
<tr>
<td>lcom</td>
<td>32.2M</td>
<td>1.46</td>
<td>1.46</td>
<td>1.46</td>
<td>1.48</td>
<td>1.45</td>
<td>1.45</td>
<td>1.49</td>
</tr>
</tbody>
</table>

Table 2.7: Total number of executed instructions (column 2). Instructions per Cycle (IPC) for single cache level coloring code reordering configurations (columns 3-9, rows 1-5). Memory Cycles per Instruction (MCPI) for single cache level coloring code reordering configurations (columns 3-9, rows 6-11).

Table 2.7 shows the IPC and MCPI for all single cache level coloring configurations. The IPC statistics are generated with the SimpleScalar simulator. The higher the IPC, the better. MCPI is the average number of Memory Cycles Per Instruction (MCPI). The lower the MCPI, the better. Procedure reordering improves the IPC since it reduces the number of conflict misses in the L1 cache, therefore allowing more instructions to be executed in a given number of cycles. It also reduces MCPI due to the smaller number of misses in the L1 cache. In some cases, (e.g., eqn), performance drops. This is because the execution frequency of basic blocks is not uniform across a procedure body. In addition, the frequently accessed paths are not contiguously laid out. Basic block reordering solves these problems by placing all frequently activated chains of blocks at the beginning of every procedure. In the absence of basic block reordering, large procedures will pose a problem.
The relative placement of smaller procedures may become worse and performance degrades. The original work introducing the TRG [55] and the CMG [68] dealt with this problem indirectly. In the former, a second TRG is built, this time for procedure chunks instead of procedure bodies. A chunk can be defined as a cache line or a small set of cache lines. When placing procedures in the cache, the new TRG edge weights are used to approximate the interaction of procedures at a finer level of granularity. The best respective placement of two procedures is found iteratively, using a local optimal search.

In [68], we partition a procedure into cache lines, measure their respective execution frequencies and find the largest group of frequently executed cache lines that are laid out contiguously in the procedure’s body. We then use this group as the procedure’s effective body during coloring. When basic block reordering is employed, the IPC is consistently increased across all graph models. Since procedures will occupy a smaller number of colors, a better coloring can be found and the cache is better utilized.

If we compare the 3 graph models, we can see that temporal code reordering using either the CMG or the TRG can be beneficial. If the amount of work done between calls/returns is sufficient to replace from the I-cache other procedures lying further away in the call chain, then the benefit of using the CMG or the TRG (instead of the CG) is limited. This is the case with perl (see Fig. 2.13). On the other hand, edg requires interaction over a wide temporal window to be recorded in order to improve performance. Recording accurate edge weights, as in the CMG, is not of primary concern. Notice from Table 2.2 that the average popular procedure size is the same for both the CMG and the TRG, although the CMG defines a much smaller set (138 compared to 358 of the TRG). That, along with the small average procedure size (0.82Kb), indicates that it is beneficial to record the interaction (perhaps with less accurate metrics) between more procedures instead of trying to focus on a smaller procedure set by generating more accurate edge weights.

The TRG leads to the best performance improvement due to the larger scope of its temporal window (twice the size of the target cache). This can also be verified by inspecting the number of popular procedures in Table 2.2 (358 for the TRG, 138 for the CMG and 106 for the CG), the number of popular edges in Table 2.1 (10665 for the TRG, 3862 for the CMG, 127 for the CG) and the total size of the popular procedure’s hot regions in Table 2.5 (169Kb for the TRG, 65 Kb for the CMG and 55Kb for the CG). In gcc, the opposite scenario occurs. The more accurate CMG edge weights produce a better code layout, although placement focuses on a smaller popular procedure set (481 compared to 657 in TRG) with a higher average CMG procedure size (1.27Kb compared to 1.09Kb in TRG).

Temporal-based code reordering may also degrade performance because it is more aggressive in capturing and eliminating code interaction. When a CG is used, the edge weights do not account for the procedure size. Hence, if there exist several large procedures in the application, the CG-dependent edge ordering may give priority to the interaction between small procedures over the interaction between large and small procedures.
The placement algorithm achieves a better placement for small procedures, especially since no prior placement decisions are undone during coloring. When using either the TRG or the CMG, the interaction between large and small procedures is assigned a higher priority than that between small procedures. Then the coloring algorithm tends to first place small procedures with respect to the large ones, leading sometimes to a worse placement among small procedures compared to that of the CG (see ixx, bore, gs). This situation is detected most often in a CMG, because of the accuracy represented in its edge weights which tend to magnify this phenomenon (see eqn).

Fig. 2.13 and 2.14 show the performance improvement of different single cache coloring configurations over the baseline. Our comparison metric is the ratio of the total number of cycles for the optimized case over the standard layout. Fig. 2.13 corresponds to the SimpleScalar results and Fig. 2.14 to the ATOM-based experiments. The ATOM-based results include only the cycles to satisfy memory requests. A positive ratio implies improvement. Code reordering reduces the number of execution cycles by more than 15% in some cases. Besides improving the cache hit ratio, performance also improves due to a lower BTB miss ratio and reduced misfetch penalty (less branches are taken and less targets are stored in the BTB).

In the absence of basic block reordering, performance may degrade for the same reasons explained above. It is interesting to notice that in two cases (gs and lcom), the CG-guided configuration failed to improve performance with basic block reordering. This is because the CG does not always capture all the heavily interacting procedure pairs. The CMG/TRG are more aggressive in defining the popular procedure set. The CG is by definition more conservative due to its limited range when recording code interaction. Performance can also degrade because highly interacting procedures are defined as unpopular, and no cache-conscious placement is found for them in either L1 or L2 cache. For example, in lcom, performance degradation is more severe when basic block reordering is applied than when it is omitted. This is despite the fact that the size of popular procedure set after basic block reordering drops to 4.5Kb from 6.6Kb. The main reason behind this drop is that more L2 cache misses occur when basic block reordering is applied, as it can be seen in Fig. 2.16 which is described next.

Fig. 2.15 and 2.16 display the L1/L2 cache miss ratios for all simulated configurations. The L2 cache miss ratio is computed over all references serviced by the L2 cache only, and so L1 cache hits are not considered in the denominator. The impact of reordering on L1 cache miss ratios is obvious. A higher number of L1 cache hits means that the traffic to L2 is reduced. This can be verified by inspecting the number of L2 references provided next to the L2 cache bars. The number of L1 references for the SimpleScalar experiments are shown since speculative execution can increase the traffic to L1. In the case of strict procedure reordering, the difference is negligible and it can either increase or reduce the traffic to L1. There are several reasons behind this. First, when both procedures and basic blocks are moved, basic blocks are laid out to improve the sequentiality of code.
Figure 2.13: Cycle count reduction/increase after applying single cache level code reordering to the default code layout. All results are generated via execution-driven simulation.
Figure 2.14: Memory cycle count reduction/increase after applying single cache level code reordering to the default code layout. All results are generated via trace-driven simulation.
Figure 2.15: L1/L2 cache miss ratios of both the optimized and the unoptimized executables. The number of references to L1/L2 is appended on top of every bar. All results are generated via execution-driven simulation.
Figure 2.16: L1/L2 cache miss ratios of both the optimized and the unoptimized executables. The number of references to L2 is also appended on top of every bar. All results are generated via trace-driven simulation.
The branch predictor will most of the time choose the next sequential address. The simulated fetch unit does not store a target for a non-taken branch so aliasing in the BTB drops (fewer misfetches). Second, a number of L1 accesses is eliminated because of unconditional branches that are deleted after basic block reordering, though extra L1 accesses will be introduced by the unconditional branches that are added to preserve program semantics. These branches can also put some pressure on the BTB, since they are always taken, and their targets have to be fetched from the BTB to prevent bubbles in the pipeline.

<table>
<thead>
<tr>
<th>Program</th>
<th>I-TLB misses/Allocated pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>perl</td>
<td>24/2423</td>
</tr>
<tr>
<td>gcc</td>
<td>1797/870</td>
</tr>
<tr>
<td>edg</td>
<td>10532/651</td>
</tr>
<tr>
<td>gs</td>
<td>91/302</td>
</tr>
<tr>
<td>troff</td>
<td>53/181</td>
</tr>
<tr>
<td>eqn</td>
<td>29/58</td>
</tr>
<tr>
<td>ix</td>
<td>36/181</td>
</tr>
<tr>
<td>eon</td>
<td>40/73</td>
</tr>
<tr>
<td>porky</td>
<td>78/239</td>
</tr>
<tr>
<td>bore</td>
<td>75/277</td>
</tr>
<tr>
<td>lcom</td>
<td>43/202</td>
</tr>
</tbody>
</table>

Table 2.8: I-TLB misses and number of allocated pages for both the unoptimized case and the executables optimized with different configurations of single level cache code reordering.

Table 2.8 shows the number of I-TLB misses and the number of allocated pages for each application. The number of I-TLB misses can increase after code reordering based on the final distribution of popular procedures in the memory address space. Our results show that only in some cases (gcc), single cache coloring caused more I-TLB misses. Even in gcc, the increase was substantial when procedure reordering was used alone. If we observe Table 2.4, we see that the largest memory gaps were created for gcc. A solution to this problem would be to adjust the memory placement algorithm to perform software-based page coloring [65]. Instead of trying to place procedures as close to each other as possible, we could place them in pages that correspond to different I-TLB entries. The remaining benchmarks show a significant decrease in I-TLB misses since popular procedure mapping improved page placement. The number of allocated pages also decreases denoting that our layout is both cache-conscious and page-sensitive.

Table 2.9 shows the number of instructions that were committed and those that were executed. The difference between the two occurs because our simulated machine employs speculative execution and certain
instructions will be erroneously executed (but will not affect the machine state). The simulation interval for gcc, perl and edg was set to a fixed number of executed instructions (300M for gcc and perl). Troff and eqn were simulated until completion. That is why the number of executed instructions for these benchmarks differs across configurations. If we look at gcc, perl and edg, we see that fewer instructions are committed, for the same execution interval, when code reordering is applied. This difference (executed/committed) is even smaller with basic block reordering configurations because a large dynamic number of unconditional branches is deleted from the instruction stream. This is despite the extra number of unconditional branches inserted to fix the code. Experimentally we have found that the number of deleted branches was always larger than the extra instructions by a factor 2 to 3.

Troff and eqn, which complete execution, show the same number of committed instructions when no basic block reordering is employed. This result is expected since the code size is not changed. Within the bb configurations, the number of committed instructions drops because there are more unconditional branches deleted than inserted. In terms of executed instructions, code reordering executes and squashes more speculative instructions due to the slightly lower prediction ratio produced by the conditional branch predictor. In the case of pure procedure reordering, branch behavior remains the same, though more accesses hit in the L1 I-cache, and more lookups can be issued in the same period of time. This tends to also put more pressure on the conditional branch predictor.

When basic block reordering is employed, the number of conditional branch predictor lookups drops because most conditional branches are non-taken. The I-fetch unit continues fetching over a cache line until it finds a branch predicted taken, or it reaches the end of the line. Since most conditional branches are non-taken most of the time, the I-fetch unit brings more instructions to the I-fetch queue on the average. This can be verified by inspecting the average occupancy of the I-fetch queue shown in Table 2.10. The response from the L1 I-cache is also better due to its lower miss ratio. Thus, more code is brought to the CPU in the same period

<table>
<thead>
<tr>
<th>Program</th>
<th>U_{nopt}</th>
<th>P_{sc}^{cmg}</th>
<th>P_{sc}^{trg}</th>
<th>P_{sc}^{cg}</th>
<th>P_{bb}^{cmg}</th>
<th>P_{bb}^{trg}</th>
<th>P_{bb}^{cg}</th>
</tr>
</thead>
<tbody>
<tr>
<td>perl</td>
<td>258.6/300.0</td>
<td>258.4/300.0</td>
<td>253.7/300.0</td>
<td>254.1/300.0</td>
<td>246.7/300.0</td>
<td>242.2/300.0</td>
<td>242.0/300.0</td>
</tr>
<tr>
<td>gcc</td>
<td>230.1/300.0</td>
<td>232.3/300.0</td>
<td>232.6/300.0</td>
<td>232.1/300.0</td>
<td>225.2/300.0</td>
<td>226.6/300.0</td>
<td>226.5/300.0</td>
</tr>
<tr>
<td>edg</td>
<td>304.2/350.0</td>
<td>301.9/350.0</td>
<td>303.1/350.0</td>
<td>302.0/350.0</td>
<td>300.1/350.0</td>
<td>297.8/350.0</td>
<td>300.0/350.0</td>
</tr>
<tr>
<td>troff</td>
<td>144.4/158.4</td>
<td>144.4/159.4</td>
<td>144.4/159.4</td>
<td>144.1/162.0</td>
<td>144.1/161.4</td>
<td>144.0/160.4</td>
<td></td>
</tr>
<tr>
<td>eqn</td>
<td>70.1/80.9</td>
<td>70.1/79.9</td>
<td>70.1/81.2</td>
<td>70.1/81.3</td>
<td>69.5/82.3</td>
<td>69.5/82.1</td>
<td>69.6/81.4</td>
</tr>
</tbody>
</table>

Table 2.9: Number of committed/executed instructions for both the unoptimized case and the executables optimized with different configurations of single level cache code reordering.
of time. If the branch is mispredicted (misfetches are usually less of a problem due to lower aliasing in the BTB), more instructions will be flushed from the pipeline on the average.

An additional issue we have to address is the difference between the number of L1 accesses and the number of executed instructions. This occurs because not all wrong path instructions execute before a misprediction is detected. Some will still be waiting in the window buffer or in the I-fetch queue, and will be flushed from the pipeline before entering the issue stage.

<table>
<thead>
<tr>
<th>Program</th>
<th>U_unopt</th>
<th>P_sc</th>
<th>P_cm</th>
<th>P_tr _</th>
<th>P_tr _</th>
<th>P_tr _</th>
<th>P_tr _</th>
</tr>
</thead>
<tbody>
<tr>
<td>perl</td>
<td>27.7/3.3</td>
<td>28.6/3.4</td>
<td>34.5/4.0</td>
<td>36.0/4.2</td>
<td>37.5/4.4</td>
<td>41.2/4.8</td>
<td>42.5/4.8</td>
</tr>
<tr>
<td>gcc</td>
<td>22.2/2.6</td>
<td>21.5/2.5</td>
<td>20.9/2.4</td>
<td>21.3/2.5</td>
<td>26.6/3.1</td>
<td>25.2/3.0</td>
<td>25.4/3.0</td>
</tr>
<tr>
<td>edg</td>
<td>13.3/1.4</td>
<td>14.2/1.5</td>
<td>13.8/1.5</td>
<td>14.1/1.5</td>
<td>15.1/1.6</td>
<td>17.9/2.0</td>
<td>14.6/1.6</td>
</tr>
<tr>
<td>troff</td>
<td>22.3/2.9</td>
<td>27.6/3.6</td>
<td>27.7/3.6</td>
<td>26.2/3.5</td>
<td>31.2/4.1</td>
<td>32.6/4.3</td>
<td>29.2/3.9</td>
</tr>
<tr>
<td>eqn</td>
<td>26.3/3.4</td>
<td>18.6/2.5</td>
<td>26.9/3.5</td>
<td>27.5/3.6</td>
<td>30.8/4.1</td>
<td>30.3/4.0</td>
<td>28.7/3.8</td>
</tr>
</tbody>
</table>

Table 2.10: Average Instruction window and Instruction fetch queue size for both the unoptimized case and the executables optimized with different configurations of single level cache code reordering.

Table 2.10 displays the average occupancy of the I-fetch queue and the centralized window buffer of the processor. Both statistics are expressed in number of instructions. The I-fetch queue occupancy is listed to highlight the effect of basic block reordering on the front-end of the processor. As we can see, whenever overall performance improves, the average number of instructions found in the I-fetch queue increases. If strict procedure reordering is employed, performance still improves because the average latency of fetching data from the memory hierarchy drops. When we apply basic block reordering, the occupancy of the fetch unit increases even more. Given the size of the queue (8 instructions), only perl, eqn and troff managed to fill at least half of the fetch queue. There is definitely room for improvement, but this seems to be more dependent on the design of the instruction fetch unit and the relative positioning of the basic blocks.

The average occupancy of the instruction window buffer provides us with some insight into the degree of ILP exploited by the simulated machine when we use code reordering. The original layout underutilizes the window buffer, obtaining an occupancy less than 50% for all benchmarks. When procedure reordering is applied, the window size increases (whenever performance improves) but not significantly. This improvement is a secondary effect, since the window is fed from the I-fetch queue. With basic block reordering, the average occupancy increases, but still only fills less than half of the window (except for perl). A higher number of instructions in the window should not be interpreted as a performance improvement since the reordered layouts squash a larger number of speculative instructions.
Table 2.11: Number of conditional branches that were committed and found to be taken for both the unoptimized case and the executables optimized with different configurations of single level cache code reordering.

<table>
<thead>
<tr>
<th>Program</th>
<th>U_{nopt}</th>
<th>$T_{cm,q}$</th>
<th>$T_{tr,q}$</th>
<th>T_{eq}</th>
<th>$P_{bb_{cm,q}}$</th>
<th>$P_{bb_{tr,q}}$</th>
<th>$P_{bb_{eq}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>perl</td>
<td>30.2/16.7</td>
<td>30.2/16.7</td>
<td>29.7/16.4</td>
<td>29.7/16.5</td>
<td>28.9/9.3</td>
<td>28.4/9.1</td>
<td>28.4/10.3</td>
</tr>
<tr>
<td>gcc</td>
<td>30.6/14.8</td>
<td>30.9/14.9</td>
<td>30.9/14.9</td>
<td>30.8/14.9</td>
<td>29.9/6.4</td>
<td>30.1/6.3</td>
<td>30.1/7.1</td>
</tr>
<tr>
<td>edg</td>
<td>34.2/19.3</td>
<td>34.0/19.2</td>
<td>34.1/19.3</td>
<td>34.0/19.2</td>
<td>33.9/12.9</td>
<td>33.7/9.7</td>
<td>33.9/13.5</td>
</tr>
<tr>
<td>troff</td>
<td>14.5/7.4</td>
<td>14.5/7.4</td>
<td>14.5/7.4</td>
<td>14.5/7.4</td>
<td>14.5/2.7</td>
<td>14.5/2.7</td>
<td>14.5/3.7</td>
</tr>
<tr>
<td>eqn</td>
<td>8.1/3.1</td>
<td>8.1/3.1</td>
<td>8.1/3.1</td>
<td>8.1/3.1</td>
<td>8.1/1.5</td>
<td>8.1/1.5</td>
<td>8.1/1.7</td>
</tr>
</tbody>
</table>

Table 2.11 displays the number of committed conditional branches, as well as the branches that were found to be taken. The difference in the number of taken branches between the schemes that move basic blocks and the ones that do not shows the effectiveness of our reordering algorithm in improving spatial locality. In most cases, the number of taken branches is reduced by almost 50%. This improvement has a direct effect on the I-fetch unit efficiency, as well as on the predictor components, as explained in previous paragraphs.

2.8 Summary

We have introduced a new, profile-guided, graph-based model, the CMG, that captures temporal procedure interaction within a cache. The cache organization is exposed to the CMG for increased accuracy. A link-time reordering algorithm is presented where cache-conscious procedure coloring, intraprocedural basic block repositioning and page-sensitive placement are combined to generate an optimized code layout. We show how to adapt procedure layout in order to take advantage of the cache line size, size and degree of associativity.

Simulations on a dynamically scheduled, out-of-order, multiple issue machine employing control speculation showed that optimized executables improve the total cycle count up to 25% compared to an unoptimized version. This holds even when using different test and training inputs. Experimental results also revealed that basic block reordering most often boosts performance by enabling a better procedure coloring assignment to be found and by improving the spatial locality of the code. Exploiting temporal procedure interaction via a model like the TRG or the CMG also led to higher performance compared to a CG-guided code layout. A TRG-based code layout outperformed a CMG-based layout in applications when the average number of executed instructions per procedure call (dynamic procedure size) is small and interaction needs to be captured along a larger procedure set. The CMG-based layout was found to be superior when the dynamic procedure size is larger and is more important to record procedure interaction on an more accurate basis.
Chapter 3

Code Reordering for Multiple Level Caches

Object-Oriented applications tend to execute more procedure calls than procedural language programs. One technique that has been successfully applied to reduce the number of cache conflicts that occur between procedures is code reordering. This chapter presents a link-time profile-guided code reordering algorithm that attempts to reduce the number of conflict misses between procedures in a multiple level cache hierarchy. The algorithm is based on the one described in chapter 2 and can record procedure interaction using any of the CG, TRG or CMG graphs. In addition, it may optionally utilize intraprocedural basic block reordering. The novelty is that procedures are now colored in a multi-level cache hierarchy instead of a single level cache. This task complicates the coloring algorithm, and initiates further modifications in the main memory placement step in order to keep the working set of the application within reasonable limits.

3.1 Related Work

To the best of our knowledge, code placement for a memory hierarchy of multiple levels has only recently been considered [99, 103]. The work in [103] is an extension of the algorithm presented in [55]. Code is placed in a multiple level cache hierarchy in a conflict free manner. The main idea is to extend a cache-conscious placement algorithm used for a single cache to multiple caches. The authors in [99] use profile information, build a graph model (TRG) using explicit knowledge of a target cache, find an ordering for a subset of the activated procedures and place them in all caches pursuing a conflict free mapping at each level. They start from the L1 I-cache and find a mapping for every two procedures. Given the L1 mapping they find all valid positions in the L2 cache where procedures can be placed and preserve the L1 mapping. Then they iterate over all L2 positions and select one using heuristics. This algorithm can be extended to more cache levels. Although the number of valid positions grows exponentially with increasing cache levels, most modern memory systems
employ up to 3 levels of cache, with the 3rd one being large enough to accommodate a very large working set. Therefore, this algorithmic approach is computationally viable.

One shortcoming of the approach in [103] is that their mapping techniques guarantee a conflict free mapping only if the cache lines between two successive cache levels, are equal. In addition, their algorithm does not explicitly take into account the degree of associativity when searching for potential conflicts between any two procedures. They do though state that their algorithm is not sensitive to the degree of associativity and provide improved heuristics for reducing paging conflicts on the final code layout.

One question that arises when dealing with multiple caches is the following: Since the graph model is build using explicit information upon a specific cache organization, which cache should be considered for constructing the TRG? The solution and results in [103, 99] showed that a TRG based on the L1 I-cache is sufficient. Thus, we follow the same approach and construct both the CMG and the TRG using knowledge of the L1 I-cache.

3.2 Cache-Sensitive Procedure Reordering Algorithm

The cache reordering algorithm for multiple levels of cache hierarchy has to guarantee a conflict free mapping between interacting procedures for caches of any size, line size or degree of associativity.

The most important issue that needs to be addressed when mapping a program to multiple levels of cache is to ensure that the mapping at cache levels \(0, \ldots, i\) is maintained when mapping at cache level \(i + 1\). In this section we present the necessary and sufficient conditions for preserving the mapping between any two successive cache levels. When we place a procedure in the L1 cache, there exist a fixed number of valid L2 cache positions that maintain the L1 cache mapping. Assume that \(L_{1s}\) and \(L_{2s}\) are the L1 and L2 cache line sizes, \(S_{L1}\) and \(S_{L2}\) are the total number of cache sets for L1 and L2, and \(l_1\) and \(l_2\) are the starting cache sets in the L1 and L2 cache address spaces for a mapped procedure. \(l_1\) and \(l_2\) are basically the colors of the procedure in L1 and L2, respectively. We present the valid \(l_2\) indices, given an \(l_1\) index, in all cases. Depending on the cache organization, after fixing the \(l_1\) and \(l_2\) cache set indices, we may limit the range of valid memory addresses a procedure can occupy. This is recorded with the formulas for \(L_{2tag}\) and \(L_{2cl}\), which denote the valid values for the tag and cache line index field of an address accessing the L2 cache. We assume that both caches are virtually addressed.

- **Scenario I:** \(L_{2ts} \geq L_{1ts}, S_{L2} \geq S_{L1}\)

\[
l_2 = \frac{l_1}{2^k} + \frac{S_{L1}}{2^k} \cdot i, i = 0, 1, \ldots, 2^l - 1
\]

\[
L_{2cl} = (l_1 \& (2^k - 1)) \ll \log_2(L_{1ts}) + i, i = 0, 1, \ldots, 2^\log_2(L_{1ts}) - 1
\]
• Scenario II: $L_{2L_2} < L_{1L_2}, S_{L_2} < S_{L_1}$

$$l_2 = l_1 \& (2^{\log_2(S_{L_2}) - k} - 1) + i, i = 0, 1, ..., 2^k - 1$$ \hspace{1cm} (3.2)

$$L_{2l_2g} = (L_1 >> (\log_2(S_{L_2}) - k) + i \cdot 2^l, i = 0, 1, ..., 2^{\text{size} - \log_2(S_{L_2}) - \log_2(L_{2L_2}) - l}$$

• Scenario III: $L_{2L_2} \geq L_{1L_2}, S_{L_2} < S_{L_1}$

1. IIIa: $\log_2(L_{1L_2}) + \log_2(S_{L_1}) \leq \log_2(L_{2L_2}) + \log_2(S_{L_2})$

$$l_2 = \frac{l_1}{2^k} + \frac{S_{L_1}}{2^k} \cdot i, i = 0, 1, ..., 2^l - 1$$ \hspace{1cm} (3.3)

$$L_{2cl} = ((l_1 \& (2^k - 1)) <<< \log_2(L_{1L_2})) + i, i = 0, 1, ..., 2^{\log_2(L_{1L_2})} - 1$$

2. IIIb: $\log_2(L_{1L_2}) + \log_2(S_{L_1}) > \log_2(L_{2L_2}) + \log_2(S_{L_2})$

$$l_2 = (l_1 \& (2^{\log_2(S_{L_2}) + k} - 1)) >> k$$ \hspace{1cm} (3.4)

$$L_{2cl} = ((L_1 \& (2^k - 1)) <<< \log_2(L_{1L_2})) + i, i = 0, 1, ..., 2^{\log_2(L_{1L_2})} - 1$$

• Scenario IV: $L_{2L_2} < L_{1L_2}, S_{L_2} \geq S_{L_1}$

1. IVa: $\log_2(L_{1L_2}) + \log_2(S_{L_1}) \leq \log_2(L_{2L_2}) + \log_2(S_{L_2})$

$$l_2 = (l_1 <<< k) + i + j \cdot 2^{\log_2(S_{L_1}) + k}, i = 0, 1, ..., 2^j - 1, j = 0, 1, ..., 2^l - 1$$ \hspace{1cm} (3.5)

2. IVb: $\log_2(L_{1L_2}) + \log_2(S_{L_1}) > \log_2(L_{2L_2}) + \log_2(S_{L_2})$

$$l_2 = l_1 \& (2^{\log_2(S_{L_2}) - k} - 1) + i, i = 0, 1, ..., 2^k - 1$$ \hspace{1cm} (3.6)

$$L_{2log} = (L_1 >> (\log_2(S_{L_2}) - k) + i \cdot 2^l, i = 0, 1, ..., 2^{\text{size} - \log_2(S_{L_2}) - \log_2(L_{2L_2}) - l}$$
Figure 3.1: Different coloring scenarios considering two cache levels where \(k = | \log_2(L_{2ls}) - \log_2(L_{1ls}) | \) and \(l = | (\log_2(S_{L2}) + \log_2(L_{2ls})) - (\log_2(S_{L1}) + \log_2(L_{1ls})) | \).

where \& denotes a bit-wise AND operation, \(\gg \) a right shift operation, \(\ll \) a left shift operation, \(k = | \log_2(L_{2ls}) - \log_2(L_{1ls}) | \), \(l = | (\log_2(S_{L2}) + \log_2(L_{2ls})) - (\log_2(S_{L1}) + \log_2(L_{1ls})) | \) and size is the address width in bits. Fig. 3.1 illustrates the above cases.

Given a L3 cache, the number of valid L3 cache indices is given by the exact same formulas presented above, provided that we replace L1 with L2, and L2 with L3. We can extend this further to provide a valid mapping for an arbitrary number of cache levels. However, the number of valid colors increases as the level of the cache increases. For example, the total number of valid L3 indices becomes: \(| (l_1, l_2) | : 2^l \) where \(l = | (\log_2(S_{L3}) + \log_2(L_{3ls})) - (\log_2(S_{L2}) + \log_2(L_{2ls})) | \) and \(| (l_1, l_2) | \) is the number of valid \(l_1, l_2 \) pairs of colors for the procedure under investigation.

If the L1 and L2 caches have the same cache line size then \(k = 0 \) and \(l = | \log_2(S_{L2}) - \log_2(S_{L1}) | \). Cases
I, IIb and IVa become equivalent and provide the following valid L2 colors as follows:

\[l_2 = l_1 + S_{L1} \cdot i, i = 0, 1, ..., \frac{S_{L2}}{S_{L1}} - 1 \] (3.7)

which agrees with the findings in [103]. Cases II, IIIa and IVb lead to a single L2 valid color, given by:

\[l_2 = L_{1} \& (S_{L2} - 1) \] (3.8)

Multiple cache line coloring is accomplished by traversing the sorted popular edge list. The L1 cache coloring process is equivalent to that presented in chapter 2. L2 cache line coloring is performed after fixing the L1 colors for a given procedure pair. L2 cache placement is performed only after L1 placement. Whenever we place a procedure in L1 we place it in L2. Whenever we reposition a group of procedures in L1, we reposition the same group in L2. Since we do not form compound nodes in the L2 address space as we do in L1, we reposition one procedure from the group at a time. This demand-driven approach for L2 coloring is primarily enforced in order to keep the algorithmic complexity low. Furthermore, popular procedures should be mapped in L2 with no conflicts to ensure that any remaining L1 conflicts between them will be serviced by the L2 cache instead of the main memory or the L3 cache. The pseudo-code of the algorithm is shown in Fig. 3.2.

During the edge traversal we encounter four cases:

- **Case I:** Procedures \(P_1 \) and \(P_2 \) are not colored. We place them in the L1 cache using the first available L1 colors. The larger procedure is placed first. A new compound node is formed consisting of these two procedures. L2 cache mapping is also performed using the numerically lowest valid L2 valid color.

- **Case II:** Both procedures \(P_1 \) and \(P_2 \) are mapped but belong to different compound nodes. After placing the smaller node according to the heuristics described in section 2.4, we consider L2 cache placement. Suppose that \(P_1 \) belongs to the smaller compound node. We first select an L2 valid color for \(P_1 \) so that L2 cache conflicts, and the total distance between procedures in the larger compound node and \(P_1 \), are minimized. We then remap the remaining procedures in the smaller compound node so that L2 color conflicts, and the distance between this node and \(P_1 \), become minimal. Finally, the two compound nodes are merged into a single node.

- **Case III:** One procedure is mapped and the other is not. We first place the unmapped procedure, (e.g., \(P_1 \)) in the L1 cache, as in the original algorithm. We then iterate over all valid L2 cache colors for \(P_1 \), and select the one generating minimum number of L2 cache conflicts and having the shortest distance between \(P_1 \) and \(P_2 \).

64
Input: list of popular edges edge.
Sort edge on decreasing weight order

foreach e in edge
 $\text{src} = \text{source}(e), \text{dst} = \text{destination}(e)$;
 if ($\text{src} \neq \text{mapped}$ and $\text{dst} \neq \text{mapped}$) /* Case I */
 Assign L1 cache colors to src and dst;
 Both procedures are assigned to their valid L2 colors closest to the start of L2 cache address space;
 else if ($\text{src} = \text{mapped}$ and $\text{dst} = \text{mapped}$ and $(C_{\text{src}} \neq C_{\text{dst}})$) /* Case II */
 select $p = \text{dst}$ or src based on minimum size of their compound node;
 Re-assign L1 cache colors to src and dst; $\text{setproc} = \text{NULL}$;
 $\text{best}_x = \text{find_color_list}(p, \text{list of nodes in large compound node});$ assign p to best_x color in L2;
 Insert p to list setproc;
 foreach procedure $s \neq p$ in small compound node
 $\text{best}_x = \text{find_color_list}(s, \text{setproc});$ assign s to best_x color in L2;
 Insert s to list setproc;
 endif
 elseif (only one of the src, dst is mapped (e.g. dst)) /* Case III */
 Assign L1 cache colors to src;
 $\text{best}_x = \text{find_color_pair}(\text{src}, \text{dst});$ assign src to best_x color;
 elseif ($\text{src} = \text{mapped}$ and $\text{dst} = \text{mapped}$ and $(C_{\text{src}} = C_{\text{dst}})$) /* Case IV */
 if (color_conflicts(src, dst) exist)
 Select one procedure p from src, dst and re-assign L1 cache colors;
 if (p has been recolored in L1)
 $\text{best}_x = \text{find_color_list}(p, C_{\text{src}});$ assign p to best_x color;
 endif
 endif
 endif
endfor

Figure 3.2: Multiple-level cache line coloring algorithm.

- **Case IV:** Both procedures P_1 and P_2 are mapped and belong to the same compound node. If L1 cache color conflicts occur, the algorithm attempts to reorganize the nodes in the L1 address space, as described in section 2.4. If the selected procedure has been remapped in L1, we adjust the L2 cache coloring for both P_1 and P_2 by finding the pair of valid L2 colors that minimize both the number of L2 cache conflicts, and the distance between procedures in the compound node.

No backtracking from the L1 cache coloring decisions is performed when searching for an L2 color assignment. This is done in order to give priority to the L1 mapping. Notice also that the selection of the L2 mapping is subject to both coloring and page locality constraints. Every time we search through valid L2 colors, we are looking for the color that minimizes (or eliminates) both conflicts and distance in the L2 cache address space between the procedures under consideration.
function find_color_pair(node a, node b)
 min_distance = ∞; min_overlap = ∞;
 foreach (valid l2_color(a))
 overlap = find_L2_overlap(a, b); distance = abs(l2_color(a) - l2_color(b));
 if (overlap ≤ min_overlap and distance ≤ min_distance)
 best_color = l2_color(a); min_distance = distance; min_overlap = overlap;
 endif
endfor
return(best_color);
endfunction

function find_color_list(node a, list s)
 min_distance = ∞; min_overlap = ∞;
 foreach (valid l2_color(a))
 overlap = find_L2_overlap(s); distance = ∑∈∈ abs(l2_color(a) - l2_color(b));
 if (overlap ≤ min_overlap and distance ≤ min_distance)
 best_color = l2_color(a); min_distance = distance; min_overlap = overlap;
 endif
endfor
return(best_color);
endfunction

Figure 3.3: Multiple-level cache line coloring algorithm (continued).

3.2.1 Complexity Analysis

The complexity of the two-level cache coloring algorithm attains the same complexity as the algorithm for single level cache coloring, except for the terms associated with coloring on the 2nd level cache. As discussed in section 2.4.1, the computational order of the single level cache coloring is $pe \cdot (np + np \cdot L_1 + L_1 \cdot \log(L_1))$, where pe is the number of popular edges, np is the number of neighboring procedures and L_1 is the number of L1 cache sets (or colors). Case I takes a constant number of steps. Case III needs to iterate over all L1 colors to compute overlap in L1 cache and check for conflicts between the two procedures. In order to perform L2 coloring, we have to check every valid L2 color for color conflicts (between the two procedures) and select the color according to the heuristic described in section 3.2. The complexity of this step depends on (3.7). For a cache hierarchy that falls under scenario I, the complexity of this step becomes $2^l \cdot L_2$, with $l = \lceil (\log_2(S_{L2}) + \log_2(L_{L2})) - (\log_2(S_{L1}) + \log_2(L_{L1})) \rceil$, and L_2 being equal to the number of L2 colors. Since this term solely depends on the L1 and L2 cache organizations, it is considered independent of the problem size.

In case II we iterate over the L1 colors to check for conflicts, iterate over the members of the selected compound node to adjust the L1 colors once a new node position has been found, and perform a similar loop to merge the two compound nodes. When L2 coloring has to be performed some additional factors must be added. First, we must iterate over all valid L2 colors (see scenario I in (3.7)), where in each iteration we check
for conflicts between the procedure of the smaller node (that is being remapped) and all members of the larger node. In addition, each iteration includes a loop over all large node members to compute the distance between them and the procedure under investigation. The total complexity is $2^l \cdot (cnp + (L_2 + cnp \cdot L_2))$. Given that l and L_2 are independent of the problem size, the complexity becomes $2^l \cdot cnp(L_2 + 1) + 2^l \cdot L_2 = O(cnp)$.

An additional step is involved with adjusting the L2 colors of the remaining procedures in the small node so that conflicts between them are minimized. Notice that the small node may be repositioned in L1, so adjusting the position of its members in L2 is essential. This step requires a pass over all the members of the node. In each step, an amount of work equivalent to $2^l \cdot (cnp + (L_2 + cnp \cdot L_2))$ is required (for all valid L2 colors check for conflicts and compute the distance). The complexity is $cnp \cdot (2^l \cdot cnp(L_2 + 1) + 2^l \cdot L_2) = O(cnp^2)$. Overall, Case II is in the order of $O(cnp^2)$.

Case IV requires a number of steps equal to $np + cnp + np \cdot L_1 + L_1 \cdot \log(L_1)$ for L1 cache coloring. In order to perform L2 coloring in Case IV we iterate over all valid L2 colors, check for conflicts between the selected procedure and the remaining members of the compound node and compute the distance between them. The total cost is $2^l \cdot (cnp + cnp \cdot L_2)$. Overall, Case IV is in the order of $O(cnp)$. Given the complexities of each case and the main loop (which is pe), the complexity of the multiple cache coloring algorithm becomes $O(cnp^2 \cdot pe)$. The upper bound is $O(p^3)$, assuming that $cnp \approx p$ and $pe \approx p^2$. The first assumption is asymptotically true because after a point, a single compound node will hold all popular procedures. However, for a large number of iterations, cnp will be smaller than p. As we mentioned above, pe, is significantly smaller than p^2 first because of the nature of the graph (even a CMG is not fully connected), and second because of our pruning step which eliminates 90% of the generated edges on the average.

3.3 Main Memory-based Procedure Placement Algorithm

The next step after placing procedures in the cache hierarchy is to determine their main memory position by assigning memory offsets. The memory placement algorithm must now consider all colors assigned to a procedure before selecting a memory address. The pseudo-code for the popular procedure placement algorithm is shown in Fig. 3.4.

Our algorithm places popular procedures in a memory hierarchy containing two cache levels and uses the same main loop as the one shown in Fig. 2.8. Popular procedures are allocated to array slots based on their assigned L1 and L2 cache colors. We use two arrays, each equal in size to the address space of a cache. Two indices, $l1_color$ and $l2_color$, are initialized to 0. We traverse the two arrays in an attempt to find a procedure to map. Given a pair of values for the indices, we find the set of procedures that are assigned to the cache colors corresponding to the index values. If the set is empty we advance by 1 the index that corresponds to the cache...
Input: list of popular procedures \(l_{prop} \),
array of lists of procedures \(ca1[L1_CACHE_SETS] \),
array of lists of procedures \(ca2[L2_CACHE_SETS] \)

foreach \(proc \) in \(l_{prop} \)
 Insert \(proc \) in \(ca1[\text{cache_color}(proc)] \); /* \text{cache_color} \) returns the color of \(proc \) in L1 cache */
 Insert \(proc \) in \(ca2[\text{cache_color}(proc)] \); /* \text{cache_color} \) returns the color of \(proc \) in L2 cache */
endfor

\(l1_color = l2_color = 0, mm_index = 0, mapped_procs = 0; \)
while (mapped_procs \# size\((l_{prop}) \))
 find_candidate = FALSE;
 while (find_candidate == FALSE)
 proc = select_proc\((l1_color, l2_color, \text{prev_proc}) \);
 if (proc == NULL)
 if \((L1_CACHE_LINE_SIZE > L2_CACHE_LINE_SIZE) \)
 \(l2_color = (l2_color + 1) \) mod \(L2_CACHE_SETS; \)
 get next valid \(l1_color; \)
 else if \((L1_CACHE_LINE_SIZE \leq L2_CACHE_LINE_SIZE) \)
 \(l1_color = (l1_color + 1) \) mod \(L1_CACHE_SETS; \)
 get next valid \(l2_color; \)
 endif
 else
 find_candidate = TRUE;
 endif
 endwhile
 compute gap between proc and \(\text{prev_proc}; \)
 memory_offset\((proc) = mm_index + \text{gap; } \)
 \(mm_index = mm_index + \text{gap + size}(proc); \)
 delete proc from \(ca1[l1_color], ca2[l2_color] \) lists; mapped_procs++;
 \(l1_color = \text{extract_color}(mm_index); l2_color = \text{extract_color}(mm_index); \)
 \(\text{prev_proc} = \text{proc}; \)
endwhile

Figure 3.4: Popular procedure memory placement algorithm after performing two-level cache coloring (continued).

with the minimum cache line size, find the next valid value for the other index and try again. Notice that we can not advance the other index by 1 since the two partially define each other, as is shown in Fig. 3.1. If we advance \(l1_color \), we have to advance \(l2_color \) to point to the next valid value according to the formulas listed in section 3.2. If we advance \(l2_color \) we have to find its unique equivalent \(l1_color \) in the L1 cache.

If the set of procedures mapped to a specific \((l1_color, l2_color) \) pair contains multiple candidates, we select the one that is connected by the smallest CMG edge weight to the previously mapped procedure. If there are no CMG edges between the candidates and the previously mapped procedure, we select one procedure from the available pool of candidates by random. When an candidate has been found, we compute the memory gap between the candidate and the procedure previously mapped. The gap size is computed as follows: assume
function select_proc(int $l1$_color, $l2$_color, node prev_proc)
set $s = ca1(l1_color) \cap ca2(l2_color)$;
if ($s == \emptyset$)
 return(NULL);
else
 find $proc \in s$ so that CMG edge weight($proc, prev_proc$) = minimum;
endif
if ($proc == NULL$)
 randomly select $proc$ from s;
endif
if (gap($proc, prev_proc$) > PAGE_SIZE)
 foreach (valid $l2$_color($proc$))
 if (gap($proc, prev_proc$) \leq PAGE_SIZE)
 $l2$_color = $l2$_color($proc$); break;
 endif
endif
return($proc$);
end function

Figure 3.5: Popular procedure memory placement algorithm after performing two-level cache coloring.

that $l1$ and $l2$ are the colors of the candidate procedure. Let mm_index be the memory address associated with the end of the previously mapped procedure, and k the difference in bits between the line sizes of L1 and L2 caches, $k = | \log_2(L2_{ls}) - \log_2(L1_{ls}) |$. The gap size is computed by specifying the memory address, new_mm_index, for the candidate procedure. new_mm_index has to be as close as possible to mm_index to minimize the gap size. The address must also be valid since it has to satisfy both the L1 and L2 cache coloring. The high order (tag field) bits of new_mm_index are specified by mm_index:

$$
max_size = \max(\log_2(L1_{ls}) + \log_2(S1_{ls}), \log_2(L2_{ls}) + \log_2(S2_{ls}))
$$

$$
hobits = (mm_index \gg max_size) \ll max_size
$$

The low-order bits are specified by the $l1$ and $l2$ colors. The line index bits are set to 0 to maintain cache alignment for the procedure. The new memory address is then computed by combining the high and low order bits. The gap is the difference between new_mm_index and mm_index.

$$
min_size = \min(\log_2(L1_{ls}) + \log_2(S1_{ls}), \log_2(L2_{ls}) + \log_2(S2_{ls}))
$$

$$
lowbits = \begin{cases}
(l2 \ll k) \ll min_size & \text{if } \log_2(L2_{ls}) \geq \log_2(L1_{ls}) \\
(l1 \ll k) \ll min_size & \text{if } \log_2(L1_{ls}) > \log_2(L2_{ls})
\end{cases}
$$
If the gap size is larger than the page size, then we iterate over all available L2 cache colors for that procedure and select the one that creates a gap that is smaller than a page. If this is not possible, we keep the original L2 mapping. This step is taken since popular procedures approximate the most frequently executed part of the application and we prefer to place procedures as close to each other as possible to avoid causing extra TLB misses or page faults. This is accomplished at the expense of selecting an inferior L2 mapping for certain procedures.

After assigning memory offsets to all popular procedures, the algorithm fills the memory gaps with unpopular and unactivated procedures. Any remaining unpopular and unactivated procedures are appended to the end of the modified executable. Table 3.1 shows the total gap size in Kb after mapping popular (columns 2-5) and all procedures (columns 6-8). The numbers in columns 6-8 represent the total amount of extra empty space inserted in the reordered executable. The two numbers per column correspond to the reordering configuration without and with basic block reordering.

<table>
<thead>
<tr>
<th>Program</th>
<th>Gap after pop (in Kb)</th>
<th>Final gap size (in Kb)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CG</td>
<td>TRG</td>
</tr>
<tr>
<td>perl</td>
<td>5.3/25.6</td>
<td>23.6/22.1</td>
</tr>
<tr>
<td>gcc</td>
<td>837/600</td>
<td>2221/2160</td>
</tr>
<tr>
<td>edg</td>
<td>302/186</td>
<td>1020/748</td>
</tr>
<tr>
<td>gs</td>
<td>485/382</td>
<td>1137/903</td>
</tr>
<tr>
<td>troff</td>
<td>146/79.9</td>
<td>406/535</td>
</tr>
<tr>
<td>eqn</td>
<td>70.4/56.6</td>
<td>295/263</td>
</tr>
<tr>
<td>ixx</td>
<td>132/84.2</td>
<td>296/234</td>
</tr>
<tr>
<td>eon</td>
<td>87.5/113</td>
<td>161/177</td>
</tr>
<tr>
<td>porky</td>
<td>471/488</td>
<td>740/823</td>
</tr>
<tr>
<td>bore</td>
<td>481/401</td>
<td>852/590</td>
</tr>
<tr>
<td>lcom</td>
<td>51.8/66.9</td>
<td>54.1/60.3</td>
</tr>
</tbody>
</table>

Table 3.1: Size of memory gaps after two-level cache coloring and memory placement using the CG, TRG or the CMG. The total gap size is shown before (columns 2-5) and after (columns 6-8) mapping unactivated and unpopular procedures. Each column displays the gap size when basic block reordering does not apply and when it precedes cache coloring.
If we compare the numbers with those extracted from single cache coloring in Table 2.4, we can verify that placing procedures in 2 levels of cache spreads procedures in the memory address space even more so. Although the final size of the executable is not severely increased (except for the TRG/CMG-based layouts on gcc), the number of gaps among the popular procedure set is quite significant. The numbers are larger for the temporal-based orderings since they have to color and place a larger number of popular procedures. Perl and lcom does not cause a significant increase because the size of the popular procedure set (with or without basic block reordering) is small and fits in the L1 cache. The amount of space depends, not only on the heuristics we used, but also on the L1 cache size and the ratio between L1 and L2 cache sizes, as it can be seen from (3.7).

3.3.1 Complexity Analysis

The number of steps needed to allocate procedures to their array elements is still \(pp \), where \(pp \) is the number of popular procedures. The skeleton of the algorithm that places procedures in memory under L1 and L2 constraints is essentially the same as the algorithm described in section 2.5. The major difference between the two algorithms lies in the search step, where a candidate procedure must be found to be placed next. Instead of looking at one array, we must now simultaneously query two arrays to satisfy both L1 and L2 cache assignments. This adds a constant factor to the complexity of the algorithm since both indices are updated in each iteration of the searching algorithm. Instead of traversing all L1 colors, we now visit a number of colors equal to \(\max(L_1, L_2) \) where \(L_1 \) and \(L_2 \) are the total number of L1 and L2 colors, respectively. Recoloring in L2 in order to avoid large gaps in the executable requires iterating over all L2 valid colors. According to the upper bound of the algorithm described in subsection 2.4.1 and scenario I in (3.7) where \(\max(L_1, L_2) = L_2 \), the cost of the algorithm becomes \(L_2 \cdot 2^t \cdot pp^2 \), which is still on the order of \(O(pp^2) \).

3.4 Experimental Results

To assess the performance improvement of multiple level cache coloring we used our modified version of SimpleScalar v3.0 Alpha AXP tool-set to get cycle-based results for the optimized application images. We also used the ATOM-based model for those applications which lack of adequate support in SimpleScalar. We compare results for all three graph models (CG, TRG and CMG), considering the following combinations:

- CMG-based procedure reordering for multiple cache levels \((P_{cmg}^{mc}) \)
- CMG-based procedure and intra-procedural basic block reordering for multiple cache levels \((P_{bbcmg}^{mc}) \)
- TRG-based procedure reordering for multiple cache levels \((P_{trg}^{mc}) \)
• TRG-based procedure and intra-procedural basic block reordering for multiple cache levels (P_{bb}^{mc})

• CG-based procedure reordering for multiple cache levels (P_{cg}^{mc})

• CG-based procedure and intra-procedural basic block reordering for multiple cache levels (P_{bb}^{mc})

The mc superscript indicates that procedure reordering was performed for multiple caches levels. The machine configuration simulated is the same as the one described in Table 2.6.

<table>
<thead>
<tr>
<th>Program</th>
<th># of Instr.</th>
<th>IPC/MCPI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>U_{nopt}</td>
</tr>
<tr>
<td>perl</td>
<td>300M</td>
<td>1.25</td>
</tr>
<tr>
<td>gcc</td>
<td>300M</td>
<td>1.01</td>
</tr>
<tr>
<td>edg</td>
<td>350M</td>
<td>0.66</td>
</tr>
<tr>
<td>troff</td>
<td>162M</td>
<td>1.59</td>
</tr>
<tr>
<td>eqn</td>
<td>82.5M</td>
<td>1.93</td>
</tr>
<tr>
<td>gs</td>
<td>99.6M</td>
<td>1.43</td>
</tr>
<tr>
<td>ixx</td>
<td>48.7M</td>
<td>1.53</td>
</tr>
<tr>
<td>eon</td>
<td>300M</td>
<td>1.69</td>
</tr>
<tr>
<td>porky</td>
<td>300M</td>
<td>1.70</td>
</tr>
<tr>
<td>bore</td>
<td>300M</td>
<td>1.64</td>
</tr>
<tr>
<td>lcom</td>
<td>32.2M</td>
<td>1.46</td>
</tr>
</tbody>
</table>

Table 3.2: Total number of executed instructions (column 2). Instructions per Cycle (IPC) for two-level cache coloring code reordering configurations (columns 3-9, rows 1-5). Memory Cycles per Instruction (MCPI) for two-level cache coloring code reordering configurations (columns 3-9, rows 6-11).

Table 3.2 lists the IPC and MCPI for the mc configurations. The higher the IPC, the better. The lower the MCPI, the better. The experimental results show that coloring for multiple caches can be beneficial. Both basic block reordering and temporal-based procedure reordering improve performance for the same reasons, as was the case for the single cache level coloring scenario. The only difference is that a better L2 cache miss ratio will improve the average number of cycles needed to satisfy a memory request, since fewer misses will occur in the L2.

Fig. 3.6 and 3.7 display the performance improvement obtained versus the standard layout. All plots show the ratio of the number of cycles of the optimized executable over the standard layout. A positive bar implies an improvement. As we can see, multiple level cache coloring improves performance, especially when assisted by basic block reordering. A number of instances are experiencing a performance degradation. There are two reasons for this: 1) an increased number of I-TLB misses, and 2) differences between the test and training input.
Figure 3.6: Cycle count reduction/increase after applying two-level cache code reordering to the default code layout. All results are generated via execution-driven simulation.
Figure 3.7: Memory cycle count reduction/increase after applying two-level cache code reordering to the default code layout. All results are generated via trace-driven simulation.
Performance for gs is improved since reordering in the L2 cache paid off, even for the CG-based scenario. The only benchmark for which execution time increases when basic block reordering is enabled is lcom (mc−bb−cg configuration). This is because the limiting factor in lcom is its small working set captured by the CG (4.5Kb), compared to that found by either the TRG (15.8Kb) or the CMG (15.2Kb). Multiple level cache coloring does not redefine the working set of the application.

![Graph](image)

Figure 3.8: Comparison of the cycle count reduction after applying single and two-level cache code reordering to the default code layout. The set of results shown on the left (right) is generated via execution-driven (trace-driven) simulation.

Fig. 3.8 compares the performance improvement of single cache coloring against the multiple cache coloring algorithm in terms of number of saved clock cycles. CMG-based results are shown only. Multiple level cache coloring does not always improve upon single level, and the best configuration depends on the application. We identified three reasons for this. First, a large number of popular procedures are recolored in the L2 cache during memory placement in order to minimize memory gaps. Although the new L2 colors preserve the L1 coloring, they may result in a higher number of L2 cache misses at the expense of better page locality. The amount of L2 re-coloring depends on an application’s popular procedure set size, average popular procedure size and graph edge weights. Table 3.3 shows the total number of popular procedures (columns 2-5), and the number of popular procedures (columns 6-14), whose L2 color has been reevaluated in an attempt to reduce code size bloat. The significant number of procedures recolored in L2 (shown in Table 3.3), indicates that most of the L2 coloring work has been undone.

The second reason is related to the first. The number of I-TLB misses and allocated pages varies across the code reordering configurations we examined. The greater the code size increase, the higher the probability that the number of I-TLB misses will rise. As mentioned above, rearranging code in the L2 cache lowers
Table 3.3: Revealing the amount of L2 color reevaluation: total number of popular procedures for CG, TRG and CMG (columns 2-4), number of popular procedures subject to L2 color reevaluation for CG, TRG and CMG, when no bb-reordering has been performed (columns 5-7) and when bb-reordering precedes two-level cache coloring (columns 8-10).

<table>
<thead>
<tr>
<th>Program</th>
<th>Pop procs</th>
<th>Pop procs with L2 color reevaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CG</td>
<td>TRG</td>
</tr>
<tr>
<td>perl</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>gcc</td>
<td>254</td>
<td>657</td>
</tr>
<tr>
<td>edg</td>
<td>106</td>
<td>358</td>
</tr>
<tr>
<td>gs</td>
<td>199</td>
<td>380</td>
</tr>
<tr>
<td>troff</td>
<td>71</td>
<td>201</td>
</tr>
<tr>
<td>eqn</td>
<td>41</td>
<td>145</td>
</tr>
<tr>
<td>ixx</td>
<td>36</td>
<td>82</td>
</tr>
<tr>
<td>eon</td>
<td>55</td>
<td>89</td>
</tr>
<tr>
<td>porky</td>
<td>175</td>
<td>296</td>
</tr>
<tr>
<td>bore</td>
<td>171</td>
<td>299</td>
</tr>
<tr>
<td>lcom</td>
<td>30</td>
<td>43</td>
</tr>
</tbody>
</table>

The third reason is that both data and instructions are sharing the L2 cache resource. Interference between the two is not taken into account in this work. Applications with large data sets that do not fit in the L2 cache will cause a large number of misses, possibly replacing instructions. Therefore, someone has to rearrange both code and data in the L2 cache address space in order to improve its utilization. Furthermore, we believe that if we consider jointly data and instructions we may be able to relieve some of the pressure applied from the page sensitive heuristics on the L2 coloring process. Although data reordering is outside the scope of this thesis it should be considered as future work.

Fig. 3.9 and 3.10 display the L1/L2 cache miss ratios for all simulated configurations. The L2 cache miss ratio is computed over all references serviced by the L2 only and does not include L1 cache hits in the denominator. Again, the impact of the coloring algorithm is obvious on both L1 and L2 caches. Notice that we should not expect to see a lower L2 cache miss ratio when transitioning from the sc to the mc specification due to the way the L2 cache miss ratio is computed. Even if we recompute the L2 cache miss ratio, data and code interference will prevent us from detecting any noticeable variations due to better code placement in the L2.
Figure 3.9: L1/L2 cache miss ratios of both the optimized and the unoptimized executables. The number of references to L1/L2 is appended on top of every bar. All results are generated via execution-driven simulation.
Figure 3.10: L1/L2 cache miss ratios of both the optimized and the unoptimized executables. The number of references to L2 is also appended on top of every bar. All results are generated via trace-driven simulation.
However, multiple cache coloring affects the L1 cache miss ratio. Notice that our simulated model does not supply any form of explicit instruction prefetching between the L1 I-cache and the unified L2 cache. Therefore, no improvement occurs because L2 hits, that would otherwise miss in L2, prefetch useful data into L1.

However, speculative execution supported by branch prediction, is modeled. Speculative execution is known to have a rather positive effect on I-cache miss ratio via implicit prefetching of wrong path instructions [104]. The extra amount of speculation detected, after transitioning to multiple cache level coloring (gcc executes 300K more speculative instructions in the mc – bb – cmg configuration compared to the sc – bb – cmg configuration) is responsible for the slight improvements in the L1 I-cache miss ratio. Code reordering also negates the negative effects of reads, from the wrong speculative path, producing cache pollution. The small increases in the number of speculative I-cache accesses is due to the conservative nature of the I-fetch unit which stops fetching at the boundaries of a cache line or when a conditional branch is predicted taken.

<table>
<thead>
<tr>
<th>Program</th>
<th>I-TLB misses/Allocated pages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U_{noopt}</td>
</tr>
<tr>
<td>perl</td>
<td>24/2423</td>
</tr>
<tr>
<td>gcc</td>
<td>1797/870</td>
</tr>
<tr>
<td>edg</td>
<td>10532/651</td>
</tr>
<tr>
<td>troff</td>
<td>53/181</td>
</tr>
<tr>
<td>eqn</td>
<td>29/58</td>
</tr>
<tr>
<td>gs</td>
<td>91/302</td>
</tr>
<tr>
<td>ixx</td>
<td>36/181</td>
</tr>
<tr>
<td>eon</td>
<td>40/73</td>
</tr>
<tr>
<td>porky</td>
<td>78/239</td>
</tr>
<tr>
<td>bore</td>
<td>75/277</td>
</tr>
<tr>
<td>lcom</td>
<td>43/202</td>
</tr>
</tbody>
</table>

Table 3.4: I-TLB misses and number of allocated pages for both the unoptimized case and the executables optimized with different configurations of two-level cache code reordering.

Table 3.4 shows the number of I-TLB misses and the number of allocated pages for each application. Due to the aggressive reordering produced by the multiple cache coloring algorithm, the number of I-TLB misses and number of allocated pages increased in several experiments. The sharp rise of I-TLB misses in certain cases, such as edg and gcc, clearly motivates the need for further tuning of the page-sensitive heuristics. Previous work on page coloring has successfully utilized temporal information in [65], and thus could be employed to assist popular procedure memory placement. Page locality tends to be worse before basic block reordering, although that depends on the memory gaps left after placing popular procedures in both caches (see Table 3.1).
3.5 Summary

We have modified the cache conscious procedure placement algorithm presented in chapter 2 to consider coloring procedures on multiple cache levels. The sufficient and necessary conditions for preserving the \(i \)th-level cache mapping when mapping to the \(i + 1 \)th-level cache are also described. These conditions guarantee that mapping between two successive cache levels is retained regardless of the caches organizations. We have also presented a modified memory placement algorithm that both takes into account coloring constraints from multiple cache levels and attempts to prevent deterioration of page locality.

Experimental results showed that optimized code layouts based on multiple cache level mapping, raised performance to levels similar to those achieved by single cache level configurations. Only in some cases, performance improvement over the single cache coloring approach is noticeable. Prefetching between successive cache levels, page coloring, larger working sets and instruction/data combined placement are some of the issues that can further exploit the benefits from an improved mapping across multiple cache levels.
Chapter 4

Indirect Branch Classification and Characterization

Applications developed under the OOP execute a large number of indirect branches. These branches support polymorphic procedure calls in OOP and depending on the implementation language, their frequency can be substantial. At the same time, indirect branches impose a natural impediment in microprocessors that explore ILP via control speculation because they always disrupt sequentiality. In this chapter we study the behavior of indirect branches found in C and C++ applications. We characterize branches using both static analysis and profile information. The static analysis is based on instruction opcode and code source usage.

Using profile information, we classify branches based on their target locality, target entropy, type and length of path correlation, and load predictability. The goal of both partitioning schemes is to categorize branches in a way so that each group has well-defined behavior and run-time predictability characteristics. We can then use this information to design compiler-assisted, hardware-based hybrid indirect branch predictors consisting of multiple components, where each component is best suited for one (or more) groups of branches.

4.1 Related Work

The concept of branch classification for improving branch prediction accuracy is not new. A generic form of branch classification has already been proposed: a Return-Address Stack (RAS) for return instructions, a CBT for branches generated by switch statements and a conventional branch predictor (e.g. BTB with 1-bit of history) for conditional branches. P.Y. Chang et al. classified conditional branches using profile information in order to design better hybrid predictors [105, 106]. They partitioned conditional branches based on their dynamic taken rate into mostly-one-direction (either taken or non-taken) and mixed-direction branches. They
examined the performance of various two-level predictor configurations (PAs, GAs and gshare) and found that highly biased branches were best predicted using a short history register length, while the remaining required a long history length. They proposed several hybrid designs that took into consideration profile information. One of them used a two-level branch predictor that selects between short and long history length when accessing a PHT entry. Their selection was based on profile-guided classification. Another design used a static approach for highly biased branches and a gshare predictor for the remaining branches. They also described solutions based on run-time classification of branches using a table of 2-bit selector counters, similar to the approach proposed in [107]. Each counter decides which of the two components of the hybrid design will be used for making a prediction. Finally, they discussed a hybrid design, where highly biased branches are predicted using profile data, and non-biased branches are fed to a predictor that uses selector counters and two component predictors.

Driesen et al. focused on identifying the predictability and correlation length of indirect branches [31, 108, 109]. They measured the correlation length by determining the number of targets (full or partial) that have to be recorded in a Path History Register (PHR) for the branch to be best predicted. Simulation results showed that most indirect branches are biased towards one end of the spectrum. They need either a large or a small number of targets in order to achieve good prediction accuracy. The authors also provide data for indirect branches that implement polymorphic calls. Their findings show they change their target infrequently in time. A mechanism that uses the previously seen target to predict the next one is usually adequate for achieving high prediction accuracy for those branches. However, they also detected polymorphic calls that visit many targets with a high degree of interleaving (the targets changes frequently in time). These branches require more sophisticated mechanisms to be accurately predicted.

There are also have been several studies on the nature of polymorphic calls [19, 20, 110]. The most profound conclusion is that polymorphic call sites tend to visit only a few targets during the execution of the program, with only a few sites jumping to more than 4 targets.

An empirical static analysis study of C function pointers was presented in [111, 112]. Investigating function pointers is of interest to us because a procedure call via a function pointer is implemented with an indirect procedure call. Although the goal of the study in [112] was to examine function pointer usage within the context of alias and interprocedural analysis, we benefit from the type of available information in several ways. The results in [112] show that most applications use mainly global function pointers that are assigned in many places throughout the program. Similar results are presented in [111]. Due to extensive aliasing, it is not only difficult to statically disambiguate calls made with these pointers, but also to predict them correctly at run-time. This is because frequent assignments will hurt the temporal locality of the target associated with an indirect branch, even if the actual number of individual targets is small. Another finding was that arrays of function pointers are implemented as jump tables. A call made via an element of that array would make run-time
prediction difficult, even if the target visited by each individual array element is unique. This is because the history for the part of the array being accessed must be recorded in hardware. Also, heap-based indirect call sites tend to have a small number of resolved callees, whereas parameter and statically initialized global call sites have more callees [111].

4.2 Opcode and Source Code-based Indirect Branch Classification

In this section we classify indirect branches based on their opcode and source code usage. The Alpha AXP ISA, which is used in our study, has the following unconditional indirect branches: \texttt{jsr} for indirect procedure calls, \texttt{jmp} for indirect jumps and \texttt{ret} for subroutine returns \footnote{We will not discuss \texttt{ret} instructions any further since they are handled properly by a RAS. After examining the source code we concluded that most of the \texttt{jsr} instructions implement polymorphic calls (virtual function calls in C++ parlance), calls through function pointers and function calls that require the use of Global Offset Tables (GOTs). A GOT is used to implement global variable accesses and long function calls in applications running on the 64-bit address space of the Alpha CPU [113]. A long function call is one whose caller and callee are laid out far apart in the image so that the offset of a direct procedure call (\texttt{bsr}) has inadequate support. \texttt{Jmp} instructions mostly resolve switch statements although certain \texttt{jmp} instructions were found to access run-time tables holding various types of addresses.}

4.2.1 Conventional function calls

A GOT is a run-time data structure used to collect global addresses [113]. GOTs are generated for each separately compiled module, but the linker can merge multiple GOTs as an optimization. GOT-based accesses are those corresponding to global and static data. GOT accesses are made via the global pointer (\texttt{gp}) register together with a 16-bit displacement in the Alpha AXP ISA [114]. If multiple procedures share the same GOT, they can use the same value of \texttt{gp} to perform all GOT-based accesses. Otherwise, on every procedure call, the \texttt{gp} must be saved and restored. The size of the application is not the only reason behind the use of separate GOTs values for different routines. A dynamically linked module has its own GOT which can be placed far away from the global GOT. Access to DLL functions may be implemented via a GOT.

Conventional function calls are implemented with indirect branches that transfer control flow to an address that is loaded from the GOT via the \texttt{gp}. The following sequence illustrates the concept:

\begin{verbatim}
ldq pv, o3(gp) // Load the procedure value of the caller
jsr ra, (pv) // Make the procedure call
\end{verbatim}

\footnote{The \texttt{jsr} coroutine was not found in our traces so we will not refer to it.}
\(pv \) is the procedure value register which holds the starting memory address for the caller. \(ra \) is the return address register which saves the return address during the call. In order to avoid this overhead, the linker attempts to optimize the call by merging the GOTs of the caller and the callee. GOT merging eliminates the instructions resetting the \(gp \) value of every procedure (two \textit{ldo} instructions, not shown here, are used to reset \(gp \)). Also, if the callee is near enough to the caller, there is no need for the indirect branch, and a direct call (\textit{bsr}) can be used instead [114]. There exist a few additional optimizations that can be used, but we only describe the schemes that involve an indirect branch. The linker provided with the Compaq Unix operating system optimizes most of those calls.

Indirect branches also implement procedure calls made through function pointers. The function pointer is loaded with the target function address from the GOT or from some other data structure of the application. It may be a field of struct/union in C, a global/local variable, a parameter, etc. Therefore, it can be assigned the actual function address anywhere in the program. The code sequence is identical with that shown above. The only difference is that the \(gp \) register is used only if the pointer is accessing the GOT to locate the function address.

4.2.2 Virtual function calls

In order to understand the run-time mechanism behind a polymorphic call, we must first examine the underlying object model and the inheritance properties. We will focus on C++ since some of our benchmarks are written using this language. A class \(D \) that inherits data or behavior from a class \(B \) is called subclass of \(B \) or a derived class of \(B \) (see Fig. 4.1). Class \(B \) is called a superclass of \(D \) or a base class. If a subclass inherits from only one (multiple) base class, then we have a case of \textit{single (multiple)} inheritance. The Class Hierarchy Graph (CHG) has a node for every class, and an edge for every inheritance relationship between two classes. Two classes that are connected via an edge are directly related. Therefore, \(B \) is a direct superclass of \(D \), but \(S \) is just a superclass of \(D \). The object model defines the memory layout of an object. An object of class \(D \) consists of subobjects for every superclass (direct or not) of \(D \), and one subobject for \(D \) [28, 42, 40]. The subobject of a superclass \(X \) holds, among other things, the data members inherited from \(X \). The subobject of \(D \) includes all data members defined locally in \(D \). Additional space may be inserted between the components of an object to satisfy alignment requirements of individual components [115].

The uppermost part of Fig. 4.1 illustrates an example of a CHG with single inheritance, and shows the underlying object layout for classes \(B \) and \(D \) on the right side. Besides identifying the subobjects for each object, it is important to discuss the order of the subobjects in the object layout. Base class subobjects are always laid out first (with the exception of a virtual base class that will be described later). For example, the data members of \(S \) are always found at the beginning of an object of class \(B \), or an object of class \(D \). In single
inheritance class hierarchies, objects of subclasses inherit the layout of their superclasses’s objects. Notice that the B object has an identical layout to part of the D object. This allows the same code to be used when accessing inherited data members.

In the case of multiple inheritance, the order of subobjects in the derived object cannot be the same as if the derived object inherited data/behavior from each of its superclasses individually. Some C++ compilers use the leftmost class rule to decide which subobject will be laid out next to the derived subobject. In Fig. 4.1, the leftmost class in the CHG for class D is C_1 class. Thus the C_1 subobject is laid out before the D subobject. In addition, the code accessing the data members defined in the C_2 class cannot be reused and all offsets have to be adjusted by a constant amount. The details of this approach is beyond the scope of this thesis.

Figure 4.1: Object layout for class hierarchies with single, multiple and virtual inheritance.

Now consider the CHG found at the bottom of Fig. 4.1. Class D directly inherits from both C_1 and C_2, which in turn directly inherit from V. In order to allow proper sharing of data/behavior of class V in an object of class D, class V must be declared as a virtual base class and the inheritance relationship between V and its direct subclasses, C_1 and C_2, is defined as virtual inheritance [116]. This is denoted by the letter v over the
CHG edges in Fig. 4.1. Virtual inheritance dictates that there should be one and only one \(V \) class subobject in a \(D \) class object. In general, the virtual base class subobjects are always laid out last in the object layout. In order to access the data members/behavior of virtual base class subobjects, pointers are supplied for every subobject in an object of class \(D \). Each such pointer is called a Virtual Base PointeR (VBPTR), which points to the beginning of the \(V \) subobject. A VBPTR is considered to be part of its associated subobject. If there exist more than one virtual base classes, every subobject has a pointer to a table of VBPtrs, each VBPTR pointing to a different virtual base class subobject. An alternative way of implementing VBPtrs is with offsets. Instead of pointing to the beginning address of the virtual base class subobject, the VBPTR of a subobject holds an offset from the beginning of that subobject to the beginning of the virtual base class subobject. In case of multiple virtual base classes, the VBPTR is a pointer to a table of offsets. The offset implementation requires an arithmetic operation to access the virtual base class subobject at the expense of extra space, while a pointer implementation requires less space but uses a memory indirect reference via a load. If a class is both an ordinary and a virtual base class in the same object, then the object will contain two subobjects, one virtual (that will be laid out at the end of object) and one non-virtual (which is going to be laid out according to the leftmost class rule).

The most common way to express polymorphism in C++ is via polymorphic functions, called virtual functions in C++ parlance. A virtual function is a member function whose invocation via a public base class reference or pointer is resolved at run-time [116]. The particular function implementation that will be invoked at run-time is decided upon predetermined visibility rules. Fig. 4.2 displays the different scenarios, while the corresponding decisions are listed below. We assume that the call to be resolved is \(b \rightarrow \text{foo()} \), \(\text{foo()} \) is a virtual function, \(b \) is a pointer to an object of class \(B \) and \(rt(b) \) is the run-time type of pointer \(b \).

- **Case I**: \(b \rightarrow \text{foo()} \Rightarrow B :: \text{foo()} \)
- **Case II**: \(b \rightarrow \text{foo()} \Rightarrow \begin{cases}
B :: \text{foo()} & \text{if } (rt(b) = B) \vee ((rt(b) = C) \wedge (\text{foo()} \text{ is not defined in class } C)) \\
C :: \text{foo()} & \text{if } (\text{foo()} \text{ is defined in class } C) \wedge (rt(b) = C)
\end{cases} \)
- **Case III**: \(b \rightarrow \text{foo()} \Rightarrow \begin{cases}
A :: \text{foo()} & \text{if } (\text{foo()} \text{ is not defined in class } C) \vee (rt(b) = B) \\
C :: \text{foo()} & \text{if } (\text{foo()} \text{ is defined in class } C) \wedge (rt(b) = C)
\end{cases} \)

If an object of class \(B \) has a local implementation of function \(\text{foo()} \) that is also defined as non-virtual, then this is the only function body to be invoked via \(b \rightarrow \text{foo()} \) (case I). If the local definition becomes virtual then \(b \rightarrow \text{foo()} \) can invoke the local copy of \(\text{foo()} \) if \(b \) points to an object of class \(B \) at run-time. If \(b \) points
to an object of a subclass (case II), then the implementation of that subclass will be invoked. If there is no such implementation, then the original local copy will be called (case II). If class B does not have a local implementation of $\text{foo}()$, then the implementation of its superclass will be invoked if none of B’s subclasses have a local copy, or if b points to an object of class B at run-time. If b points to an object of a subclass and the subclass has a local implementation, then that function body will be invoked. Summarizing, if $\text{st}(b)$ is the static type of pointer b then $\text{rt}(b)$ can be $\text{st}(b)$ or a subclass of $\text{st}(b)$. The actual function called is always the one that is inherited or overridden by $\text{rt}(b)$.

If a virtual function is called from an object (in C++ syntax this is equivalent to $B :: \text{foo}()$), then there is no run-time overhead since the function implementation is known at compile-time [28]. A run-time resolution mechanism is needed only if the call is made through a pointer or a reference. The actual function body that is invoked is decided based on the run-time type of the pointer making the call. In other words, accurately predicting the branch making a polymorphic call is equivalent to finding the type of the object where the pointer points to at run-time.

For C++ and Java, the most widely used run-time mechanism supporting virtual function calls is the Virtual Function Table (VFT) [28]. Although other mechanisms have been proposed in the literature (see [31] for a long list), the VFT seems to be the most time and space efficient. It can be used only for programming languages where the set of virtual functions available to a class is fixed at compile-time [40]. We will discuss VFT implementations in detail since VFTs have been adopted by commercial C++ compilers such as the Compaq C++ used in this thesis. Conceptually, the compiler generates a VFT for every class that defines or inherits a virtual function in the CHG. A VFT can be thought of as a table of function addresses. If an object of a class X is permitted to invoke virtual functions either via inheritance or locally, it must have access to the VFT providing access to those functions. This is usually done with a pointer to a VFT, widely known as a Virtual
PoinTeR (VPTR). An object must have a number of VPTRs, equal in number to the number of accessible VFTs. In general, the number of VPTRs is equal to the number of superclasses plus one more for the derived class, except that a derived class can share a VPTR with its leftmost base class \[40, 116]\(^2\). A derived class cannot share its VPTR with a virtual base class. In single inheritance, there is a single instance of each virtual function to which any call can be resolved. This is true whether the function is called through a pointer to an object of the derived class, or to one of its base classes. Hence, the single set of functions associated with the derived class can be indexed by only one VPTR shared by all subobjects in the derived class object \[116\].

Fig. 4.3 illustrates the CHGs shown in Fig. 4.1, modified with virtual function definitions. The corresponding object layouts are again shown on the right side of the figure, with the VPTRs explicitly displayed.

Assume that we again need to resolve the call \(b \rightarrow \text{foo}()\). If \(E\) is the class defining the function \(\text{foo}()\) that will be actually called at run-time, given the rules in (4.2), we have to perform two basic tasks: 1) transfer

\(^2\)When two subobjects share a VPTR, they usually share their VBPTR as well, if a VBPTR is needed.
control flow to the proper function body, and 2) adjust the this pointer to point to the subobject of the E class. The basic steps for accomplishing the two goals are as follows [42]:

- Adjust the this pointer to the subobject X, in the object of type rt(b), whose VFT contains the address of E :: foo(). This adjustment is called an early cast.

- Access the VFT entry using the VPTR of the X subobject.

- Adjust the this pointer to point to the E subobject within the object of type rt(b), only if E and X are different. This adjustment is called a late cast and is independent of an early cast.

- Access E :: foo() function via the VFT entry.

Steps 2 and 4 are always required, while steps 1 and 3 are only necessary if the inheritance is multiple and/or virtual. Adjustments to the this pointer are necessary because the this pointer is the base address based upon which all data members, VPTRs and VBPTRs are accessed. The implementation of the casts depends on the VFT layout. A VFT is usually characterized by two parameters: 1) its height, and 2) its width. Height indicates the number of VFT entries, while width specifies the contents of each entry. There exist two VFT configurations based on the VFT height. The first one is Visible, where a VFT for a class contains all virtual functions visible in that class. According to the rules explained above, the VFT will include all virtual functions declared in that class or inherited by that class. When a VPTR is shared by subobjects of two different classes, the VFT will contain the union of virtual functions that are visible in these classes.

The second VFT configuration is called Introduced, where a VFT for a class contains all introduced virtual functions by that class. In other words, all virtual functions that are declared by that class, but not declared by any of its base classes, are included in the VFT. Again, when a VPTR is shared by subobjects of two different classes, the VFT will contain the union of virtual functions that are visible in these classes. In both schemes, when a virtual function is overridden, the virtual function in the VFT is the one that is in the most derived class of the object. The introduced scheme does not duplicate VFT entries as the class hierarchy gets larger. The total number of VFT entries for the introduced option is equal to the total number of virtual functions in the application. If virtual or multiple inheritance occurs, the visible configuration duplicates VFT entries.

Although the introduced scheme saves space by creating the minimum number of VFT entries, it requires additional instructions to find the VFT entry in the introducing base class's subobject. Those instructions perform an early cast, as mentioned before. An early cast is always a cast to a base class's subobject. The visible alternative never requires an early cast.

3 Initially, the this pointer for an object points to the beginning address of the object.
The width of a VFT can contain two items: 1) the address of the virtual function to be invoked at runtime, and 2) an offset, called \(\delta \), that serves as an adjustment to the \(\text{this} \) pointer when a late cast needs to be performed. Late casting is done by adding \(\delta \) to the \(\text{this} \) pointer. We call this a 2-Column configuration. An alternative scheme allows each VFT entry to contain either the address of the virtual function to be invoked (if no late cast is required), or the address of a code snippet, called thunk code, when a late cast is necessary. The thunk code performs the late cast and transfers control to the starting function address. The thunk alternative allows the thunk code to be shared among virtual function call sites that require a late cast with the same \(\delta \). The 2-Column alternative generates late cast code at every call site.

Based on the different schemes for VFT height and width, we have four possible VFT layouts. The virtual dispatch code sequence depends not only on the selected VFT layout, but also on the inheritance in the CHG of the \(st(b) \) class. Fig. 4.4 shows the VFT layout for all four possible cases given the CHGs of Fig. 4.3. The examples are taken from [42]. Stub code for performing the late cast whenever necessary is also shown in the middle of Fig. 4.4. \(\delta_1 \) and \(\delta_2 \) are offsets inside the object of class \(D \), and are used to adjust the \(\text{this} \) pointer. \(\delta_1 \) is equal to the distance between the \(D \) and \(C_2 \) subobjects, and \(\delta_2 \) is equal to the distance between \(C_2 \) and \(V \).

Since the Compaq C++ compiler uses the thunk/visible VFT layout [115], we will focus on the dispatch code sequences for this configuration. No early cast is ever required for this layout because the visible scheme is used. In addition, a late cast is issued only if necessary. Let us assume that we want to resolve the \(b \rightarrow \text{foo()} \) virtual function call, and \(D = rt(b) \) and \(S = st(b) \) are the dynamic and static types of the object pointed by \(b \), respectively. Let us also use the label \(I \) as the class that introduces \(\text{foo()} \) (no base of \(I \) defines \(\text{foo()} \)) and \(E \) as the class which defines the actual \(\text{foo()} \) implementation that will be invoked at run-time. Fig. 4.5 clarifies these definitions. \(I \) and \(E \) do not have to be the same class. If we use the inequality operators to denote the positioning of classes in a CHG, then \(I \leq E \leq D \) (\(E \) can be any class between \(I \), because \(I \) is the introducing class for \(\text{foo()} \), and \(D \), because \(D \) is the type of the object where \(b \) points to when the call is made). In addition, \(I \leq S \) because any superclass of \(S \) can define \(\text{foo()} \), and \(S \leq D \) because it is not allowed to cast \(b \) to a superclass object.

When we have single and non-virtual inheritance, we have only one VPTR per object. No late cast is then required. The dispatch code sequence using the Alpha ISA is the following:

```c
ldq VPTR, o1(this) // load the VPTR
ldq VF_addr, o2(VPTR) // load the function address from the VFT
jsr VF_addr // procedure call
```

where \(o_1 \) is the offset of the VPTR from the beginning of a \(D \) subobject, and \(o_2 \) is the offset of the \(\text{foo()} \) function address from the beginning of the VFT pointed by the VPTR of the \(D \) subobject.

When we have multiple inheritance, the condition for issuing a late cast is \((S \neq E) \land (VPTR(S) \neq \)
Figure 4.4: Memory layout of the four VFT configurations for an object of a class that exercises both multiple and virtual inheritance.
Figure 4.5: Range of classes associated with a virtual function call: \(I \) is the introducing class for \(\text{foo} \), \(E \) is the class that defines \(\text{foo} \), \(S, D \) are the classes that the pointer calling \(\text{foo} \) points at compile and run-time respectively.

\(VPTR(E) \), where \(VPTR(X) \) denotes the VPTR of a class \(X \) and \(VPTR(X) \neq VPTR(Y) \) means that the \(X, Y \) classes do not share the same VPTR. The same condition holds in the case of virtual inheritance. The dispatch code sequence with a late cast is the following:

```
ldq VPTR, o1(this) // load the VPTR
ldq thunk_addr, o2(VPTR) // load the address of the thunk from the VFT
jsr thunk_addr // late cast: transfer control to the thunk
thunk_addr : addq this, \( \delta \), this // late cast: adjust the this pointer
br VF_addr // procedure call
```

Clearly, if no late cast is needed, the dispatch sequence is equivalent to that of the single inheritance case.

The instruction adjusting the this pointer in the thunk code could be a subtract (\(\text{subq} \) in the Alpha ISA) if the offset was negative. If the virtual function is inherited from a virtual base class, the VBPTR for the virtual base class under consideration must be used to adjust the this pointer as follows:

```
ldq VBPTR, o3(this) // load the VBPTR
addq this, VBPTR, this // access the virtual base subobject
```

\(o3 \) is the offset of the VBPTR from the beginning address of the \(D \) subobject. Notice that this code snippet is generated, not because of a virtual function call, but due to a pointer casting operation. Therefore, it is not uniquely associated with the virtual dispatch code. If more than one virtual base class exist, then the VBPTR access code becomes:

```
ldq tpointer, o3(this) // load the pointer to the table of VBPTRs
```
ldq VBPTR, o4(tpointer) // access the offset from the table of VBPTRs
addq this, VBPTR,this // access the virtual base subobject

o4 is the offset of the VBPTR from the beginning address of the table holding all VBPTRs for the subobject
under consideration. If the VBPTR is implemented as a pointer (instead of an offset), the _addq_ instruction
becomes:

ldq this, 0(VBPTR)

The dynamic frequency of these cases depends on the run-time type of the pointer making the call. We will
try to illustrate the way a virtual function call works with the example shown in Fig. 4.6. We will revisit the
CHG with multiple and virtual inheritance of Fig. 4.3, and its corresponding thunk-visible VFT implementation
of Fig. 4.4. We will extend the CHG with another class A that directly inherits from D, as shown in Fig. 4.6. We
will focus on resolving the virtual function call _d_ \rightarrow _foo()_, where _d_ has a static type of class _D_ (_st(d) = D)._
We will assume that the call $d \rightarrow \text{foo()}$ is made twice, once with d pointing to an object of class D, and another time with d pointing to an object of class A (that requires a casting operation). The compiler has to generate code for the $d \rightarrow \text{foo()}$ call, no matter where the d pointer points to at run-time (as long as it is pointing to a valid object). The compiler, knowing the static type of d, issues the standard 3-instruction code sequence shown below:

```c
ldq VPTR, 0(this) // load the VPTR
ldq VF_addr, 8(VPTR) // load the function address from the VFT
jsr VF_addr // procedure call
```

where the offsets are set to $o_1 = 0$ and $o_2 = 8$, assuming we use 32-bit pointers. This sequence requires that the $this$ pointer points to the beginning address of the D class object. The 1st instruction of the dispatch code will access the VPTR shared by the D and C_1 subobjects, while the 2nd will load the 3rd entry of the VFT which points to thunk code. Remember that a late cast is required because $S = D$ when $E = C_2$, so when $S \neq E$, $VPTR(S) \neq VPTR(E)$. The indirect call transfers control to the thunk, where the $this$ pointer is adjusted by o_1, and a direct procedure call is then made to $C_2 :: \text{foo()}$. Let us now consider the case where d is cast to class A. The side effect of casting is to set the $this$ pointer at the beginning of the D subobject in the A object. Since A and D subobjects share the same VPTR, the $this$ pointer will contain the beginning address of the A class object. Thus, the 1st instruction of the virtual dispatch will load the VPTR using the exact same offset. The 2nd instruction will now load the 3rd entry in the VFT, which contains the address of the function to be invoked, $A :: \text{foo()}$. The indirect call will transfer control flow directly to the function, and no late cast is required. This is because $S = D$ (the static type of the pointer did not change) and $E = A$, since the object belongs to class A and A redefines foo(). The compiler lays out the VFT in such a way so that the offset of foo() in the VFT of a D subobject (used in the 2nd instruction of the virtual dispatch code) remains the same in both D and A class objects.

A similar approach is taken if the d pointer needs to first load the VBPTR. The VBPTR is loaded using the fixed offset from the $this$ pointer (the offset will be 4 in our example). This offset remains the same because the VBPTR position, relative to the beginning of a D subobject, remains the same in the A object. The $this$ pointer is then adjusted with the offset included in the VBPTR, to point to the beginning of the virtual base class subobject. If the VBPTR is implemented as a pointer, the address of the virtual base class subobject will be loaded from memory.

4.2.3 Switch statements

There exist several methods for resolving a switch statement. The simplest way is a linear search of comparisons against each case statement. This resolution mechanism is usually efficient for switches with up to
4 cases. A more sophisticated approach is to use a series of comparisons, organized as a binary tree [117]. The most common implementation is a Jump Table (JTBL), where every JTBL entry holds either the direct address of the case or a relative address. Combinations of the above methods have also been employed. The method adopted by the Compaq C/C++ compiler is the linear search method, when the number of cases is less than or equal to 4 (excluding the default case) and a JTBL for switches with more than 4 cases. The Alpha code sequence that transfers control flow to the appropriate case statement for a JTBL implementation is shown below:

```
ldq reg, (JTBL - o) (gp) // Load the beginning of the segment
s4addq selector, reg, reg // Compute the address of the JTBL entry
ldl reg, o (reg) // Access the JTBL entry
addq reg, gp, reg // Compute the final text segment address
jmp (reg) // Transfer control flow to the computed address
```

\(o \) is an offset from the beginning of the section, where all constants (including JTBLs), are stored in the text segment. The \(gp \) pointer points to the beginning of this section. Each JTBL entry holds the address of the case statement with respect to the \(gp \) value (this is why the 4th instruction is needed). The 2nd instruction allows the case selector, (also called switch variable), to pick the JTBL entry.

4.2.4 Target-based compile-time classification

Our static classification algorithm is further extended by categorizing indirect branches into two classes: Single Target (ST) and Multiple Target (MT). A Single Target indirect branch is one that has only one possible target. GOT-based conventional function calls, that could not be transformed into direct ones by the linker, belong to this group. A polymorphic call is classified as MT because it can have multiple targets. Polymorphic calls can be transformed into direct procedure calls under certain conditions. If there is only one function implementation in the CHG, then all virtual function calls to this function can be transformed into direct calls, invoking the single implementation in the CHG. Detecting such a scenario requires static class hierarchy analysis [22] (apply the language’s visibility rules to the CHG). Another optimization is to statically identify that the pointer making the call has a unique type (compile-time identification of the run-time type of the pointer) [20, 118, 119]. If this can be done, we can use class hierarchy analysis to find the target implementation to be invoked and issue a direct procedure call.

In addition, we may detect that the pointer can hold a set of types at run-time (instead of only one). Again, if class hierarchy analysis shows that there is only one function implementation to be called, we can eliminate the indirect branch. Even if there exist multiple function implementations, we can replace the dispatch code with a series of run-time class tests, each branching to a direct procedure call implementing that case [44, 120].
Profile data can be used to issue tests for the most frequently visited targets of the virtual function call [19, 110]. In general though, tracking the run-time pointer type requires some kind of type or alias analysis, which is known to be NP-complete [39]. The version of the Compaq C++ compiler we use does not provide any specific optimization for virtual function calls, although it does employ alias analysis [121]. Therefore, we conservatively classify all virtual function calls as MT.

Function pointer-based calls and switch-based jmp instructions also qualify as MT branches since they can visit multiple targets. Identifying that a call made through a function pointer goes to a single target is a process similar to that of resolving polymorphic calls. For example, in [122], an interprocedural, flow-insensitive pointer analysis framework is presented. This framework provides us with some conservative estimates of the possible callees for function calls made via function pointers. Optimizing a call to a single callee is straightforward, since it involves transforming the indirect procedure call into a direct one. Optimizing a call to multiple callees may be specialized with a series of comparisons, as with virtual function calls. Switch statements can be partially optimized when the frequency or locality of access to the case statements is available via profiling. Branching to the most frequently accessed case, guarded by a conditional, would be one possible optimization. Since we have not detected any such optimizations in our benchmark code, we classified all function-pointer calls and all switches as MT.

Table 4.1 shows the static and dynamic counts of the different indirect branch classes. We start with the total number of instructions executed (column 2), the number of instructions and conditional branches executed for every dynamic instance of an indirect branch (columns 3 and 4). The next 6 columns include the static and dynamic counts of the 3 different indirect branch classes (the dynamic count is expressed as a percentage over all dynamic indirect branches) and the average number of visited targets per class. The last two columns list the number of static indirect branches that contribute to 90% and 95% of all dynamic indirect branches.

As we can observe from Table 4.1, the dynamic frequency of indirect branches in the instruction stream is low. A similar conclusion can be drawn for their relative frequency, when compared against conditional branches, although in some cases an indirect branch is executed every 3-4 conditional branches (porky and bore). In general, C++ applications tend to execute more indirect branches than C applications. This is mainly because of polymorphic calls. In terms of indirect branch static and dynamic frequency, these benchmarks represent the conservative part of the spectrum, since they are statically linked (no indirect branches are present due to DLL calls) and are relatively small in size (no indirect branches due to limited range of direct call instruction offsets). C++ applications also do not utilize the polymorphic call mechanism for all of their method invocations, as would have to be used in pure object-oriented languages such as Self.

The average number of targets visited by each class of indirect branches clearly shows that polymorphic calls tend to visit only a few targets. This is because usually only a few implementations of the same virtual
<table>
<thead>
<tr>
<th>Program</th>
<th>insns in M</th>
<th>insns per IB</th>
<th>CB per IB</th>
<th>VF jsr Act/Dyn t</th>
<th>FP jsr Act/Dyn t</th>
<th>MT jmp Act/Dyn t</th>
<th># IB 90%</th>
<th># IB 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>perl</td>
<td>3024</td>
<td>182</td>
<td>19</td>
<td>0 (0%)</td>
<td>29 (21.6%)</td>
<td>25 (78.4%)</td>
<td>7.5</td>
<td>3</td>
</tr>
<tr>
<td>gcc</td>
<td>1300</td>
<td>228</td>
<td>31</td>
<td>0 (0%)</td>
<td>76 (5.4%)</td>
<td>160 (94.6%)</td>
<td>5.8</td>
<td>41</td>
</tr>
<tr>
<td>edg</td>
<td>304</td>
<td>173</td>
<td>19</td>
<td>0 (0%)</td>
<td>347 (40.3%)</td>
<td>184 (59.7%)</td>
<td>6.4</td>
<td>104</td>
</tr>
<tr>
<td>gs</td>
<td>193</td>
<td>103</td>
<td>12</td>
<td>0 (0%)</td>
<td>717 (37.8%)</td>
<td>37 (62.1%)</td>
<td>5.6</td>
<td>45</td>
</tr>
<tr>
<td>troff</td>
<td>135</td>
<td>145</td>
<td>15</td>
<td>148 (89.9%)</td>
<td>44 (3.1%)</td>
<td>13 (6.9%)</td>
<td>4.5</td>
<td>23</td>
</tr>
<tr>
<td>eqn</td>
<td>70</td>
<td>233</td>
<td>27</td>
<td>106 (33.8%)</td>
<td>37 (36.2%)</td>
<td>8 (29.8%)</td>
<td>8.6</td>
<td>16</td>
</tr>
<tr>
<td>ixx</td>
<td>52</td>
<td>253</td>
<td>28</td>
<td>202 (33.5%)</td>
<td>4 (1.9%)</td>
<td>14 (64.5%)</td>
<td>8.0</td>
<td>33</td>
</tr>
<tr>
<td>eon</td>
<td>2918</td>
<td>175</td>
<td>12</td>
<td>50 (68.3%)</td>
<td>38 (31.7%)</td>
<td>7 (0.0%)</td>
<td>1.5</td>
<td>15</td>
</tr>
<tr>
<td>porky</td>
<td>2352</td>
<td>127</td>
<td>4</td>
<td>62 (2.4%)</td>
<td>197 (95.6%)</td>
<td>9 (1.6%)</td>
<td>3.7</td>
<td>30</td>
</tr>
<tr>
<td>bore</td>
<td>3775</td>
<td>117</td>
<td>3.5</td>
<td>64 (2.3%)</td>
<td>191 (96.8%)</td>
<td>8 (0.9%)</td>
<td>3.3</td>
<td>5</td>
</tr>
<tr>
<td>lcom</td>
<td>206</td>
<td>119</td>
<td>10</td>
<td>321 (63.5%)</td>
<td>40 (1.9%)</td>
<td>15 (34.5%)</td>
<td>5.8</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 4.1: Run-time statistics for indirect branches: number of instructions (column 2), average number of instructions per indirect branch (column 3), average number of conditional branches per indirect branch (column 4), number of static active VF jsr, FP jsr and MT jmp (columns 5, 7, 9), percentage of indirect branches that belong to the VF jsr, FP jsr, MT jmp class (columns 5, 7, 9, in parentheses), average number of targets per indirect branch class (columns 6, 8, 10), number of static indirect branches whose total dynamic count is 90% and 95% over all indirect branches (columns 11, 12).

function exist in a class hierarchy. These numbers also depend on the programming style and the application. Calls made through function pointers also frequently access a single target. Ixx is an outlier due to the low dynamic frequency of its FP jsr. Switch-based jumps exercise a large number of case statements, since the switch variables usually hold characters, integer values or enumerated data types. For example, in perl two of the most frequently executed switch-based jmp branches are found in the main command loop routine. They serve the purpose of parsing strings and their switch variable is taken from two fields of the cmd data structure, which is passed as a parameter (via a pointer) to that routine. The significantly large number of strings being passed to the main routine forces most cases to be visited at least once during the execution of the program. Eon is an outlier due the very low dynamic frequency of switch-based indirect branches present in the code.

4.3 Profile-based Classification

In this section we discuss a profile-based approach for indirect branch classification. We study branches based on their target population, locality and entropy, as well as their type and length of correlation. Moreover, we check for the behavior of their dependent load instructions. We focus solely on MT indirect branches since ST

97
branches visit only one target by definition. Hence, whenever we mention indirect branches for the remainder of this chapter, we are referring to MT indirect branches.

4.3.1 Target-based profile-guided classification

We first classify branches into the 3 groups listed in Table 4.2. Our classification is based on the number of targets visited. Let \(t \) be the number of targets visited by the branch 90% of the time. *Mono* branches transfer control flow to one target \((t = 1, \text{ monomorphic branches}) \), *Poly* branches visit 2 to 4 targets \((1 < t \leq 4, \text{ polymorphic branches}) \) and *Mega* branches activate more than 4 targets \((t > 4, \text{ megamorphic branches}) \).

<table>
<thead>
<tr>
<th>Classes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mono</td>
<td>(t = 1)</td>
</tr>
<tr>
<td>Poly</td>
<td>(1 < t \leq 4)</td>
</tr>
<tr>
<td>Mega</td>
<td>(t > 4)</td>
</tr>
</tbody>
</table>

Table 4.2: Profile-guided indirect branch classes based on the number of visited targets.

Fig. 4.7 presents dynamic counts for the 3 classes. As we can see, VF jsr branches oscillate between monomorphism and polymorphism, accessing, on the average, 2 targets. FP jsr branches also exhibit this dual nature but with a smaller average number of visited targets (1.47 if we exclude ixx which has a very low dynamic FP jsr count). Gs is the only benchmark in our suite with a significant number of megamorphic FP calls. Notice that this behavior was impossible to detect by looking at the average number of targets per FP jsr branch. The rather abnormal behavior of indirect calls in gs is due to the way they are used in the source code. In the main interpreter routine, there exist indirect function calls that invoke the same procedure name using different function pointers such as in the example shown below:

```c
#define call_operator(proc, op) (*((proc))(op))
#define real_opproc(pref) ((pref)->value.opproc)
#define op_index_proc(index) (op_def_table[index]->proc)
switch (code = call_operator(real_opproc(pvalue), iosp))
switch (code = call_operator(op_index_proc(index), iosp))
```

In the first switch, the function pointer `opproc` changes based on the object data structure `pvalue`. The object is passed as a parameter to the main interpreter routine and changes frequently, causing the target of the indirect procedure call to change as well. In the second switch, the index inside an array of function pointers is defined by the previous control flow and the object under interpretation. Based on the index, a different function pointer is accessed and a different function is called. Since the value returned by the called function indirectly,
Figure 4.7: Dynamic counts of Monomorphic, Polymorphic and Megamorphic MT jmp, VF jsr and FP jsr branches.

and uniquely, specifies the switch variable for both switch statements, this is an example of correlated indirect branches.

On the other hand, MT jmp branches display a strongly polymorphic nature. The fact that we do not see a large percentage of jmp instructions to be in the megamorphic range shows the tendency of switch statements to visit a limited range of cases very frequently (2-4). However, the behavior of switches varies more from benchmark to benchmark, since it heavily depends on the programming style. As we can verify from the examples described in the previous paragraph, the target range of switches can vary widely due to their dependence on other branches or on the data processed (the objects in the gs main interpreter loop, or the strings in the perl main interpreter loop).
We also study the temporal reuse of targets of indirect branches. We measure the number of unique targets visited, the target entropy and the target locality. We define target entropy of an indirect branch as the number of times the target address of an indirect branch changes from its previous value. Target locality is defined as follows: we assign a 4-entry LRU history buffer to every branch. Every entry in the buffer holds a unique target address visited by that branch. Assuming a perfect mechanism to select the next target from those stored in the buffer, we measure the number of times the next target is found in the history buffer. The percentage of correct predictions is the target locality for the branch under consideration. Although target entropy measures temporal reuse between successive indirect branch executions, target locality records temporal reuse of the targets of an indirect branch within a window size determined by the size of the LRU buffer. The higher the target locality, the lower the range of targets visited in a given number of branch executions. The lower the target entropy, the higher the predictability of the branch. Fig. 4.8 displays the locality of MT indirect branches with a 4-entry LRU buffer.

![Indirect branch classification based on Locality](image)

Figure 4.8: Prediction ratio of MT jmp, VF jsr and FP jsr branches using a predictor where every per-branch entry consists of a 4-wide LRU buffer storing past targets for that branch.

The ratios presented in Fig. 4.8 correspond to the prediction ratios achieved by the 4-entry LRU buffer. The targets found in the buffer form its working set, the group of addresses where the branch transfers control flow most often within a time window. The size of the buffer approximates the working set size. The prediction ratio shows how accurately the buffer can estimate the working set of each branch. As we can see, virtual function calls are well predicted with the 4-entry buffer. That was expected since they visit 2 different targets on the average. The strong monomorphic nature of FP jsr branches is also obvious. Only the FP jsr branches
of gs have a low prediction ratio, showing that it will be rather difficult to design a predictor capturing their working set. Switch-based indirect branches have misprediction ratios up to 35%. The temporal window of those branches is hard to capture, even with an oracle selection mechanism and a 4-entry LRU buffer.

We separate indirect branches based on their target entropy into two main categories: Low Entropy Branches (LEB) and High Entropy Branches (HEB). A LEB branch is one that can achieve at least 90% prediction accuracy when predicted with its most recent target. A HEB branch is the one which is predicted with at most 10% prediction accuracy using its most recent target. The branches having a prediction accuracy between 10 and 90% are called Medium Entropy (MEB) branches. Notice that monomorphic and LEB branches are not necessarily the same. For example, assume we have two branches visiting targets a, b as follows: (i) a, a, a, a, a, a, a, b and (ii) $a, a, a, a, a, b, b, b, b$. Both branches have the same target entropy (10%) and can be characterized as LEB, but only the first one is monomorphic. Value predictors which attempt to capture the working set of an indirect branch at run-time should use this information to partition branches [123]. Fig. 4.9 shows the dynamic frequency of MT LEB, MEB and HEB branches. Notice that in some applications, a significant portion of VF and FP jsr branches will be hard to predict with a last target (BTB) structure.

The majority of VF jsr’s in eon, eqn, troff and FP jsr’s in gcc have medium levels of entropy. The situation is even worse for MT jmp branches since they tend to access different targets frequently. The worst benchmark within this context is perl, in which the switches parse strings in the main loop of the interpreter. More than 80% of the associated indirect branches are found to have high entropy. An outlier is lcom, where the majority of MT jmp belong to the LEB category. Experiments with different inputs showed that most of these branches were MEB and HEB, as is the case with the remaining benchmarks. We examined the individual branches exercised with that particular input in order to explain the phenomenon. One of the most frequently accessed switches has the following syntax:

```java
boolean isCommutativeOptr(int opToken) {
    switch(opToken) {
    case PLUS:
    case MULTIPLY:
    case COMPEQUALS:
    case AND:
    case NAND:
    case OR:
    case NOR:
    case XOR:
    case XNOR:
        result = True;
    }
```
Figure 4.9: Dynamic counts of LEB, MEB and HEB MT jmp, VF jsr and FP jsr branches.
case LSQRBRACE:
 case NOT:
 result = False;
 break;
 default:
 Compiler_Error("Undefined Operator (%s)\n", getTokenStr(opToken));
 break;
 }
return(result);
};

Although there exist only two actual targets, the number of case statements in the switch forced the compiler
to implement a JTBL. A series of comparisons would have been too costly due to the exceedingly high number
of conditional branches needed. At run-time though, the branch visits 2 targets and so is classified as LEB and
Monomorphic. Another example is shown below.

char *getBinOpstr(int operationToken, boolean flagError) {
 char *id;
 switch(operationToken) // get the token strings
 {
 case PLUS: id = "+"; break;
 case MINUS: id = "-"; break;
 case MULTIPLY: id = "*"; break;
 case DIVIDE: id = "/"; break;
 case MOD: id = "mod"; break;
 case COMPEQUALS: id = "=="; break;
 case LT: id = "<"; break;
 case LTE: id = "<="; break;
 case GT: id = ">"; break;
 case GTE: id = ">="; break;
 case NOTEQUAL: id = "!="; break;
 case AND: id = "and"; break;
 case NAND: id = "nand"; break;
 case OR: id = "or"; break;
 case XOR: id = "xor"; break;
 case XNOR: id = "xnor"; break;
 case NOR: id = "nor"; break;
 case ROL: id = "rol"; break;
 case ROR: id = "ror"; break;
 case SHL: id = "shl"; break;
 case SHR: id = "shr"; break;
 case LSQRBRACE: id = "$array$"; break;
 default:
 id = nullptr;
 break;
 }
 return(id);
}
if (flagError == True)
 Compiler_Error("Binary Operation (%s) Undefined!",operationToken);
else
 id = NULL;
break;
}
return(id);
}

Procedure `getBinOptStr` returns a string, based on the type of the token passed as a parameter. The switch statement is serviced by a JTBL and is characterized as LEB and Monomorphic with the input used in Fig. 4.9. When we changed the input it is found to be MEB and Polymorphic. Its behavior depends on the contents of the parameter `operationToken`, which in turn depends on the particular input. In the experiment of Fig. 4.9, procedure `getBinOptStr` mostly returns the `+` sign since it is the most frequently issued by the icom compiler for that input. With a different input, more symbols are utilized, and the switch changes behavior.

Another conclusion we can draw from Fig. 4.9 is that there is no significant difference in the behavior of FP jsr and MT jmp branches between C and C++ applications. The differences stem from the algorithm where they are used, rather than the language paradigm.

4.3.2 Correlation-based classification

In this subsection we use profile information to reveal the nature of indirect branch correlation. Depending on the type of branches with which an indirect branch is correlated, we characterize the nature of its correlation. Some of the possible types of an indirect branch correlation are `Per Branch` correlation (PB), `Per Indirect Branch` correlation (PIB), `Per Conditional Branch` correlation (PCB) and `Self` correlation (Self). A PB indirect branch is best correlated with its previously executed branches. Similarly, a PIB and a PCB are best correlated with the previously executed indirect and conditional branches, respectively. A Self branch is best predicted using its own past path history.

Finding the nature of branch correlation is performed as follows: we simulate oracle predictors, each one exploiting a certain type of branch correlation. We record full target history paths for every type of correlation (PB, PIB, PCB and Self). Self correlation requires keeping one PHR for every individual branch, while the rest need a global PHR. We keep track of all unique path histories of a predefined length for every indirect branch. A target is associated with every path history and is used to predict the next target for the branch under investigation. If the prediction is incorrect, the associated target is updated.

Such an oracle predictor will mispredict in two cases: (i) when a path history is first recorded (cold-start misprediction) and (ii) when the same path history leads to different targets (conflict misprediction). Increasing
the path length decreases conflict mispredictions since long-term correlation is exploited, but increases cold-start mispredictions because more unique path histories have to be recorded. Alternatively, decreasing the path length increases conflict mispredictions because only short-term correlation is exposed. But this also decreases the number of conflicts due to the smaller number of unique paths.

Thus, when the number of conflict mispredictions is greater than 0, either some amount of correlation remains undetected or the branch is not correlated. The number of cold-start mispredictions indicates the upper bound of a minimum sized table holding all the activated targets for a branch along with their associated path histories. It is the upper bound because the number of cold-start mispredictions is equal to the number of unique path histories recorded for the branch. Also, since we may have two or more different paths linked with the same target for an individual branch, there is target redundancy.

In addition to determining the type of branch correlation, we experiment with various path lengths to find the correlation length that achieves best prediction accuracy for each branch. We can then partition branches into short, medium and long length correlated if the optimal number of targets is less than or equal to 2, between 2 and 8, and greater than or equal to 8, respectively. Table 4.3 lists the number of unique path histories required to predict MT indirect branches, based on a specific type of path history of a certain length.

From Table 4.3, we can see that, as the length of path history increases, the number of recorded unique paths and thus the number of cold-start mispredictions, increases. This is expected due to the larger number of target combinations found in the PHR. In general, the number of unique paths for Self path history is larger compared to all other classes. This is because the number of distinct control flow paths leading to the indirect branch is usually smaller than the patterns created from the execution of the branch itself. This difference diminishes if the branch is monomorphic. For example, in lcom, eon and eqn, FP jsr branches have the smallest number of unique path histories. If we examine Fig. 4.7 and Fig. 4.9, we will see the strong monomorphic, and low entropy, nature of such branches. If branches are monomorphic or low entropy, Self history does not necessarily produce the smallest number of unique path histories since whenever a branch accesses the same target, its past history tends to repeat (e.g., VF jsr and MT jmp of lcom, FP jsr of troff and perl). PB path history generates the minimum number of unique path histories on the average, since it provides full coverage of past control flow. PIB and PCB lie somewhere in between Self and PB path history, and PCB generally leads to a somewhat smaller number of paths due to the limited number of targets visited by conditional branches (taken and non-taken).

The control flow found in the source code is the critical factor affecting the populations of unique paths. For example, although MT jmps visit more targets, they do not necessarily have the highest number of unique paths. Consider the following example of a switch statement in eqn:

```c
while (*s != ' \0') {
```
<table>
<thead>
<tr>
<th>Program</th>
<th>VF jsr</th>
<th>FP jsr</th>
<th>MT jmp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Self</td>
<td>PB</td>
<td>PIB</td>
</tr>
<tr>
<td>perl (4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>perl (8)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>perl (12)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gcc (4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gcc (8)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gcc (12)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>edg (4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>edg (8)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>edg (12)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gs (4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gs (8)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gs (12)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>troff (4)</td>
<td>2541</td>
<td>384</td>
<td>749</td>
</tr>
<tr>
<td>troff (8)</td>
<td>14840</td>
<td>806</td>
<td>1566</td>
</tr>
<tr>
<td>troff (12)</td>
<td>50300</td>
<td>1278</td>
<td>2524</td>
</tr>
<tr>
<td>eqn (4)</td>
<td>4113</td>
<td>450</td>
<td>892</td>
</tr>
<tr>
<td>eqn (8)</td>
<td>14295</td>
<td>931</td>
<td>1972</td>
</tr>
<tr>
<td>eqn (12)</td>
<td>24299</td>
<td>1601</td>
<td>3514</td>
</tr>
<tr>
<td>ix (4)</td>
<td>1404</td>
<td>330</td>
<td>694</td>
</tr>
<tr>
<td>ix (8)</td>
<td>3407</td>
<td>596</td>
<td>1288</td>
</tr>
<tr>
<td>ix (12)</td>
<td>5410</td>
<td>927</td>
<td>1731</td>
</tr>
<tr>
<td>eon (4)</td>
<td>490</td>
<td>120</td>
<td>205</td>
</tr>
<tr>
<td>eon (8)</td>
<td>2731</td>
<td>152</td>
<td>400</td>
</tr>
<tr>
<td>eon (12)</td>
<td>13323</td>
<td>179</td>
<td>759</td>
</tr>
<tr>
<td>porky (4)</td>
<td>1144</td>
<td>81</td>
<td>88</td>
</tr>
<tr>
<td>porky (8)</td>
<td>5436</td>
<td>91</td>
<td>125</td>
</tr>
<tr>
<td>porky (12)</td>
<td>10861</td>
<td>98</td>
<td>177</td>
</tr>
<tr>
<td>bore (4)</td>
<td>1504</td>
<td>84</td>
<td>89</td>
</tr>
<tr>
<td>bore (8)</td>
<td>12334</td>
<td>92</td>
<td>122</td>
</tr>
<tr>
<td>bore (12)</td>
<td>34662</td>
<td>98</td>
<td>191</td>
</tr>
<tr>
<td>lcom (4)</td>
<td>4436</td>
<td>751</td>
<td>1447</td>
</tr>
<tr>
<td>lcom (8)</td>
<td>13879</td>
<td>1434</td>
<td>3293</td>
</tr>
<tr>
<td>lcom (12)</td>
<td>21911</td>
<td>2182</td>
<td>5666</td>
</tr>
</tbody>
</table>

Table 4.3: Number of unique Self, PB, PIB and PCB path histories for VF jsr, FP jsr and MT jmp branches.
Previous control flow in PB and PCB path history can be summarized in a few paths, since the outcome of the while loop branch rarely changes.

Fig. 4.10 compares the misprediction ratios of path-based ideal predictors using 4, 8 and 12 past branch targets of a specific type. The MRT label corresponds to prediction using the Most Recent Target. This prediction mechanism models an infinite BTB. The full set of results can be found in Appendix A. Fig. 4.10 includes a representative sample of MT indirect branch classes from selected benchmarks.

The results in Fig. 4.10 represent the highest performance to be expected by path-based predictors because target entries are maintained on a branch basis (i.e., no aliasing occurs). Furthermore, we record full target paths and allow perfect mapping between the contents of the PHR and the target to be employed. Obviously, the predictability achieved by path-based prediction varies from application to application. With this ideal implementation, the prediction ratio improves if correlation exists at some degree, (i.e., the control flow path can uniquely identify the next target for the indirect branch under consideration). All indirect branch classes show a tendency to improve with increasing path length for all types of path history. No destructive aliasing occurs due to imperfect hashing or partial targets occurs in our ideal predictors. The only difference is that with larger paths, cold-start mispredictions increase, at the expense of correct predictions. For example, assume a path for length of 4, \(t_4, t_3, t_2, t_1 \) that always leads to target \(t_5 \), and with \(t_1 \) being the MRU. For a length of 8, \(t_5 \) may be visited by either \(t_8, t_7, t_6, t_5, t_4, t_3, t_2, t_1 \) or \(t_{10}, t_9, t_6, t_5, t_4, t_3, t_2, t_1 \) path histories. Since both 8-target paths are distinct, there will be two cold-start mispredictions instead of one as in the case of length 4. Cold-start mispredictions increase because either the branch exhibits correlation with a shorter length than the current path length and longer paths do not further improve predictability or the branch is not correlated and longer paths simply increase the number of unique paths that are stored in our predictor. In either case, as the path length increases, we approach the point where prediction ratio levels off. This point may be considered as the optimal path length for the given type of path history.

Self path history tends to level off at a path length of 8 for the plots of Fig. 4.10, because the number of unique paths recorded increases at a much higher rate than the number of correct predictions. In other words, the pattern cycle (if any) of indirect branch executions tends to be short. PB history, on the other hand, seems to benefit from longer path lengths, especially for the MT jmps of gcc and eqn. This is probably because, as
Figure 4.10: Misprediction ratios of MT indirect branch classes with path correlation lengths of 0, 4, 8 and 12.

more targets are inserted in the PHR, patterns of switch-based jmps are gradually recorded and predictability improves. The same phenomenon is seen with PCB history, mainly because it is a subset of PB history. If we look at the absolute prediction ratios, Self path history has a better prediction ratio for the MT jmp branches compared to PCB or PB, and a poorer accuracy when it comes to indirect calls (VF and FP jsr). We investigated this issue by looking at the source code usage of switches in gcc and eqn. The following example is taken from gcc.

```c
mark_set_resources(rtx x, ...) {
  ...
  restart:
  code = x->code;
  switch(code) {
    ...
    case INSN:
```
...
x = x->fld[3].rtx;
if (...) goto restart;
...

case SET:
 mark_set_resources(x->fld[0].rtx,...);
...

case CALL_INSN:
 for (...) {
 mark_set_resources((x->fld[3].rtx)->fld[0].rtx,...);
 }
...
...

The switch statement is executed via either the goto statement or via loop-nested recursive invocations of procedure mark_set_resources. Additional examples, not shown here, revealed recursive calls inside two nested loops. Note that the next target of the switch is determined by a field extracted from the pointer \(x \), which is passed as a parameter. The value of \(x \) is assigned inside the for loop or when visiting some of the individual case statements. Therefore, this particular MT jmp branch requires previous self history and/or past history from procedure calls.

On the other hand, PB and PCB history need longer path lengths to record the pattern of the MT jmp targets, since conditional branches (such as those from the for loop) interfere. This is not the case with PIB history, where performance is better. With PIB history, we record all targets coming from the switch statement as we do in Self history. In addition to switches, we also store indirect procedure calls and returns. This seems to be beneficial for the above example, where recursive invocations are interleaved with Self history and improve predictability. In eqn, the activity of past procedure calls is not instrumental in accurately predicting the next target for a switch statement. Frequently executed switch statements are found to be nested. Self path history does not interleave targets from different branches, and thus, fails to reach the accuracy of PIB history. The increased number of cold-start mispredictions for the Self path history predictor also verifies this weakness.

If we look at FP jsr branches, we see that this does not hold. Self path history does not produce with good prediction ratios, simply because indirect calls do not tend to access functions in patterns. In general, PIB history performs best across different path lengths. Notice though that in edg, the prediction ratio for FP jsr calls with PIB history drops with increasing path lengths. The rather unpredictable behavior of the remaining types of path history signifies that the optimal type of control flow depends on the programming style. For
example, one FP jsr in edg calls a termination function that decides on the pruning of Intermediate Language (IL) entries. This function pointer points to different termination functions at different parts of the program. Setting the terminating function pointer is either controlled by the outcome of a conditional or set to NULL. Long PB and PCB history are the best methods for predicting this branch. Another example is when edg uses function pointers to traverse the IL. Nested switch statements specialize the traversal based on the type of the IL module, and for each case, the pointer is cast to a function that relates to the IL construct currently investigated. In certain cases, extra conditional branches are used to further extend the IL classification scheme.

Recording the return instructions and the switch-based targets (PIB history), improves the process of distinguishing between the different targets of the pointer. Considering conditional branches, as we do in PB history, causes some pollution, but after a certain path length, PB history seems to improve predictability. PCB history also helps since the outcome of conditional branches differentiate between some of the cases. Sample source code for the example just discussed follows.

case iek_scope:
 ...
 if (walk_remap_func != NULL) {
 ptr->next = (a_scope_ptr) walk_remap_func((char *)(ptr->next),(iek_scope))
 }

In Fig. 4.11, we present the breakdown of mispredictions into cold-start and conflict. With edg, more than 55% of mispredictions are cold-start, independent of history type. PIB history reaches 100% with just 8 targets. That means that either the existing path history is adequate for predicting the next target, or that FP jsr branches are strongly monomorphic and so increasing path length does not really contribute to their predictability. Given the prediction ratios in Fig. 4.10, either justification seems reasonable.

VF jsr branches tend to be more predictable using previous control flow history, although Self history is still inadequate in most cases. In troff, a frequently detected example of using polymorphism is a linked list traversal via a for or while loop. The list consists of objects, and on every iteration, a virtual function is called. Based on the run-time type of the object, a different function implementation can be invoked. Two examples from troff are shown below where procedures _tprint and _spread_space are virtual.

while (n != 0) {
 n->tprint(this);
 n = n->next;
}

for (node *tem = n; tem; tem = tem->next)
 tem->spread_space(&nspaces,&desired_space);
If the linked list has not been modified between different traversals, or within the same traversal, Self history can detect patterns of virtual function call targets very quickly. However, the path length is fixed and cannot scale with the period of target patterns, since the linked list can become arbitrarily large or small. A single insertion/deletion can destroy the links between patterns and targets established over time. On the other hand, PIB history performs the best since both indirect calls and returns fill the PHR. This seems to be a better adaptation mechanism, since for a fixed path length, the PIB records less history than the Self PHR (the call/return pair identify the virtual function implementation the same way the call does). Pollution for intervening calls/returns/switches does not seem to be a problem, since in C++, a large number of member functions (such as *tprint* or *spread_space* of the examples above) are either leaf functions or rarely call another procedure (the rarely invoked callees usually implement error-detecting functionality). If they frequently invoke another procedure they tend to call the same procedure every time they are invoked. If the branch is monomorphic, the smaller number of unique paths recorded by PIB history also helps. The effectiveness of PB and PCB history depends on intervening conditional branches (such as the backward branch of the for/while loop). PCB history is not effective if only loop branches are recorded. Loop branch history does not expose anything about the polymorphic call nature. PB history combines all branches and gives results that lie between those of PCB and PIB history.

A more complicated scenario in troff occurs when a recursive virtual function A, invokes some other virtual function B. The recursive call of A to A modifies the type of the object pointed to by the pointer making the call to B. On the other hand, B calls different implementations of A based on the type of its parameter, which is an pointer to an object. We illustrate this scenario with the following source code from troff.

```c
node *kern_pair_node::merge_glyph_node(glyph_node *gn) {
  node *nd = n2->merge_glyph_node(gn); /* n1, n2 = static pointers to object */
  if (nd == 0) return 0;
  n2 = nd;
  nd = n2->merge_self(n1);
  if (nd) {
    nd->next = next;
    n1 = 0; n2 = 0; delete this;
    return(nd);
  }
  return(this);
}

node *glyph_node::merge_self(node *nd) {
  return(nd->merge_glyph_node(this));
}
```
Recursion is terminated by invoking different implementations of procedure \textit{merge}_\textit{glyphnode} (not shown here). The indirect call inside procedure \textit{merge}_\textit{self} is correlated with other indirect branches (PIB history with call/returns from different implementations of \textit{merge}_\textit{glyphnode}). Recording the previous targets of the indirect call does not provide us with any added accuracy. PB history is successful since conditional branches are used in the remaining implementations of \textit{merge}_\textit{glyphnode} to control the flow. PCB history is not as successful as PIB or PB since conditional branches only do not capture the whole picture.

Fig. 4.11 shows cold start mispredictions for the same benchmarks, for the branch classes presented in Fig. 4.10. The cold start misprediction ratio is listed as a percentage of the total misprediction ratio. As path length increases, the cold-start ratio increases since more unique paths are recorded. The cold-start ratios foretell the effectiveness of prediction via path-based correlation. If a large number of mispredictions are cold-start misses then it is highly likely that branches of this class are not correlated via a specified type of path history (edg - FP \textit{jsr} - all types of history, gcc - MT \textit{jmp} - (PCB, PB)). It could also mean that path length is inadequate for capturing existing correlation, but this can be verified by looking at the ratio of cold-start mispredictions as the path length increases. If the cold-start ratio remains approximately the same as we increase the path length, and the misprediction ratio drops, then branches of this class tend to be correlated with longer path lengths (troff - VF \textit{jsr} - PIB, PCB, PB). If the cold start ratio increases with increasing path length, and the misprediction ratio drops, then we approach the point of optimal path length (gcc - MT \textit{jmp} - (PIB, Self), eqn - MT \textit{jmp} - PIB). Beyond that point, no correlation exists or can be exploited. The full set of results is in Appendix B.

4.4 Load-based Characterization

In this section we study the run-time behavior of the load instructions issued to support the statements implemented by indirect branches. We label these loads \textit{ib-loads}. The exact number and functionality of \textit{ib-loads} can be found in subsections 4.2.1, 4.2.2 and 4.2.3. We have developed a data-flow and control-flow analysis framework to detect these loads using the ATOM tracing tool [60]. Our analysis is intraprocedural, since it is highly unlikely that these loads, being true dependent upon their associated indirect branches, will be moved away from the procedure where the branch is issued. The only case where \textit{ib-loads} may lie in a different procedure, is that of the FP \textit{jsr} calls. A function pointer may be a parameter, a return value from a procedure call, a local or a global variable. A number of memory dereferences preceding the loading of the function pointer may be located at the caller site.

As the gap between memory access time and microprocessor clock cycle continues to grow, the need for
tolerating memory latency will steadily rise. Investigating the behavior of associated load instructions is important because the indirect branch is attached to the data dependence graph of those load instructions. Therefore, if the load misses in the D-cache, accurately predicting the branch may allow some of the memory latency to be overlapped by fetching useful instructions from the target address [124]. On the other hand, if the resolution of the indirect branch is delayed because of a D-cache miss (of the dependent load) then the misprediction penalty for that branch may be higher than normal. The goal of this section is to reveal the impact of ib-loads on the D-cache, and to study the locality with which they visit different memory locations.

Table 4.4 provides us with the total number of loads in each benchmark (column 2), and the percentage of dynamic loads that are classified as ib-loads (column 3). It also breaks down the dynamic count of ib-loads, based on the different indirect branch classes (columns 4,6,8). Each percentage is expressed over all dynamic
The dynamic frequency of ib-loads, relative to all loads, ranges from 3 to 10%. These numbers provide us with a lower bound, since not all ib-loads are determined intraprocedurally. The average number of targets accessed by an ib-load of a polymorphic call heavily varies, since one of these loads accesses the object making the call. These objects are often dynamically allocated entities, that may be allocated/deallocated multiple times during the execution of the program. The second type of load for a VF jsr accesses an entry in the VFT. Although VFTs are usually not relocated in the memory address space, these loads may access different VFTs if the type of the object changes. They access fewer targets than other types of ib-loads, but rarely exhibit a monomorphic nature.

Ib-loads, supporting function pointer-based calls, have a rather bimodal nature. They either access function pointers from one or two locations, or they spread out their references over a large set. The later may occur when the pointer traverses arrays of function pointers, while the former can occur with GOT-based calls. Ib-loads supporting the functionality of MT jmp branches traverse the JTBL associated with the switch statement. The JTBLs are usually stored in the read-only data area of the text segment, and are not relocated. The ib-loads associated with JTBLs present higher variability than the branch itself, since different JTBL entries may point to the same case statement (the JTBL is sparse).

Fig. 4.12 displays the dynamic count of monomorphic, polymorphic and megamorphic ib-loads. The

<table>
<thead>
<tr>
<th>Program</th>
<th>ib-loads</th>
<th>VF jsr</th>
<th>FP jsr</th>
<th>MT jmp</th>
</tr>
</thead>
<tbody>
<tr>
<td>perl</td>
<td>688</td>
<td>5.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gcc</td>
<td>307</td>
<td>3.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>edg</td>
<td>77</td>
<td>6.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gs</td>
<td>41</td>
<td>9.1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>troff</td>
<td>33</td>
<td>6.9</td>
<td>5.6</td>
<td>33.6</td>
</tr>
<tr>
<td>eqn</td>
<td>12</td>
<td>5.0</td>
<td>2.5</td>
<td>59.7</td>
</tr>
<tr>
<td>ixx</td>
<td>12</td>
<td>10.1</td>
<td>7.2</td>
<td>14.1</td>
</tr>
<tr>
<td>eon</td>
<td>393</td>
<td>10.2</td>
<td>7.5</td>
<td>5.5</td>
</tr>
<tr>
<td>porky</td>
<td>517</td>
<td>3.6</td>
<td>0.2</td>
<td>32.6</td>
</tr>
<tr>
<td>bore</td>
<td>827</td>
<td>3.9</td>
<td>0.2</td>
<td>43.2</td>
</tr>
<tr>
<td>licom</td>
<td>48</td>
<td>7.2</td>
<td>4.6</td>
<td>252</td>
</tr>
</tbody>
</table>

Table 4.4: Statistics of ib-load instructions: number of executed loads (column 2), percentage of dynamic ib-loads over all dynamic loads (column 3), percentage of ib-loads due to VF jsr, FP jsr and MT jmp over all dynamic loads (columns 4, 6 and 8) and average number of targets per ib-load accompanying a VF jsr, FP jsr or MT jmp (columns 5, 7 and 9).
breakdown of their dynamic counts comes into agreement with the results in Table 4.4. Predicting the targets of VF jsr and certain FP jsr ib-loads will be a challenge for traditional value/load address predictors, such as a last value predictor. Even with more sophisticated two-level adaptive structures [123], the misprediction ratio may not be satisfactory. On the other hand, the loads due to MT jmp branches are easier to predict, since more than 50% of them are monomorphic.

![Figure 4.12: Dynamic counts of Monomorphic, Polymorphic and Megamorphic ib-loads associated with VF jsr, FP jsr and MT jmp branches.](image)

On the left side of Fig. 4.13 we present the dynamic count of ib-loads broken down based on the indirect branch type. There are two bars, one for committed and another for executed ib-loads. These results are collected using the SimpleScalar simulator. The machine configuration was described in chapter 2. No explicit indirect branch prediction scheme has been used. Each count is expressed as a percentage computed over all committed/executed loads in the program. The plot on the right side, uses the same machine configuration to
measure the number of L1 D-cache misses due to ib-loads.

As we can see from Fig. 4.13, the number of D-cache misses due to ib-loads ranges from 5 to 16%. Polymorphic calls cause a large number of misses, mainly due to object accesses (from the 1st ib-load in the dispatch sequence) which appear to exhibit poor temporal locality. When the branch is polymorphic or megamorphic the 2nd ib-load of the dispatch code (accessing the VFT) also misses in the D-cache since it accesses different VFTs. Ib-loads supporting switch statements surprisingly cause a large number of misses for the entire spectrum of applications. This is due to both the sparseness of the JTBL (the number of entries is larger than the number of cases) and poor temporal locality of accesses to individual JTBL entries. Ib-loads of FP jsr instructions have a much better locality in the D-cache, contributing up to 2% of the D-cache miss ratio. One reason for this is that these ib-loads may retrieve the function address from a single location, therefore always visiting the same cache line. Furthermore, traversal of function pointer arrays is performed infrequently. When it is done the array is brought to the D-cache and does not seem to interfere with data accessed by the code executed after the indirect procedure call. If these traversals are frequently repeated, the access pattern seems to be linear (on successive array elements) and therefore exhibits excellent temporal and spatial locality. When a function pointer is loaded from a field of a data structure, it is followed by other loads that manipulate fields of the same node in the data structure. These loads effectively act as prefetches for the data visited by the ib-load which in turn hit in the D-cache. Notice though that our analysis fails to detect ib-loads of FP jsr branches in all the cases. Interprocedural analysis is required in order to increase the coverage of their D-cache behavior.

Figure 4.13: L1 D-cache misses due to ib-loads associated with VF jsr, FP jsr and MT jmp branches.
4.5 Summary

We have presented a characterization study of indirect branches for a set of C and C++ benchmarks. Indirect branches were partitioned in classes based on their source code usage and their predictability, target locality and entropy has been studied using ideal predictors. The idea was to examine the potential of the last-value and path-based prediction algorithms without considering side-effects such as finite table size and aliasing. We have also studied the behavior of loads that are true-dependent on indirect branches.

Results showed that different branches exhibit varying behavior. This behavior depends on the programming style and the input of the application. As expected, last-value prediction worked accurately only on monomorphic and low entropy branches while path-based prediction’s accuracy largely varied based on the path length and the type of path history. In general, PIB history was found to be the best type of path history for our benchmark suite. The optimal path length varied depending on the branch class and the type of path history.
Chapter 5

Indirect Branch Prediction Mechanisms

A large number of indirect branches is found in applications developed using the OOP model. The main reason is that these branches implement polymorphic calls. Depending on the programming language, the dynamic frequency of those branches can be substantial. On the other hand, indirect branches prevent microprocessors from exploiting ILP via control speculation because they always disrupt the sequential instruction flow.

This chapter presents a set of indirect branch prediction schemes that utilize past branch outcome or target history and/or load latency information to reduce the penalty associated with indirect branches. First, we introduce the Prediction by Partial Matching (PPM) algorithm as it applies to the field of indirect branch prediction. The PPM algorithm has been originally proposed for text/data compression and has also been considered for conditional branch prediction. We describe one possible implementation of a PPM-based indirect branch predictor and evaluate its performance in the context of an out-of-order superscalar microprocessor. In addition, we show how this design can be enhanced with dynamic selection of path correlation type on an individual indirect branch basis. The second part of the chapter is associated with a preliminary study on the effects of an alternative replacement policy for indirect branch predictors. We explore two options. The first one records the latency tolerance of ib-loads, and the second, the temporal locality of indirect branches. We also demonstrate one way of combining these two techniques.

5.1 Related Work

Past work on indirect branch prediction originally can be tracked back to [58, 125, 126], where the foundations behind the Branch Target Buffer (BTB) design were established. A BTB is a cache-like structure which stores targets of previously seen branches. In the context of value prediction, the simplest implementation of a BTB acts like a last-value predictor. It can replace logic used to compute the target whenever a branch is predicted.
to be taken in order to provide prediction at an earlier stage of the pipeline. In practice, it has been used to predict the targets of all branches. A BTB most often allocates a single entry for a branch and keeps its most recent target in that entry. Therefore, it can be very effective for conditional branches because these branches transfer control flow to only one target. A BTB is ineffective for predicting indirect branches which can jump to multiple targets. When the BTB mispredicts, the existing target address is replaced. A 2-bit counter can be used to limit the update of the target address to only after two consecutive mispredictions occur [120]. We will refer to this configuration as BTB2b. The BTB2b can produce a better branch prediction ratio for C++ applications by taking advantage of the locality exhibited by the targets of virtual function calls.

In [35], Kaeli and Emma describe a mechanism which accurately predicts the targets of subroutine returns. The mechanism is called a Call/Return Stack (RAS) and targets the prediction of subroutine returns by using the inherent correlation between procedure calls and returns to pair up the correct target address with the current return invocation. Due to its high prediction accuracy, a RAS is preferred when predicting the addresses of return instructions. Several studies have concentrated on techniques of properly updating a RAS and/or recovering its correct state during speculative execution mode [127, 128]. In our work, we will not address issues related with the predictability of return instructions.

In [129], the Case Block Table (CBT) is proposed for predicting the next target of a switch statement. If the compiler issues an indirect jump to implement the control transfer for a switch statement, the CBT becomes essentially an indirect branch predictor. It uses the switch variable values to find the next target of a switch statement. Since the switch variable value is an optimal predictor for a multi-way branch, the CBT accuracy can be very high. The problem with the CBT is that the value of the switch variable is not always known at the time the code for the switch statement reaches the instruction fetch stage of a multiple issue machine employing speculative execution [130].

In [109], Driesen and Holzle propose using two-level adaptive predictors for indirect branches similar in structure to the conditional branch predictor originally proposed in [131]. The first level consists of one global, or multiple (per branch) history registers that record partial previous targets of branches allowing path-based correlation to be exploited. Since every register records previous path history, it is called a Path History Register (PHR). The number of targets recorded in the PHR is called the path length. The second level consists of a table where each entry consists of a target and a 2-bit counter that controls the replacement of the target. Each entry can optionally include a valid bit, a tag, a confidence counter, etc. The 2nd level has been traditionally named as Pattern History Table (PHT) and is usually indexed with the branch address (PC). An alternative hashing scheme exclusive-ORs the branch address and the PHR contents (gshare). In [109, 108], the authors proposed grouping or interleaving bits of the PHR and the branch’s address to index the PHT.

Driesen and Holzle explored a large number of ideal two-level predictor configurations. They obtained
the best prediction accuracy using the GAP structure (Global PHR, Per-address PHT configuration) for their set of benchmarks. In more recent work [108], Driesen and Holzle explored realistic designs, varying the path length the size, the associativity and the hashing function used for the PHT. They also proposed a hybrid design, namely a dual-path predictor, where each component is a two-level predictor. The two components differ in path length. A set of confidence counters, placed in the PHTs (and not in a separate array, as originally proposed in [107]), was used to select which component would make a prediction. Their findings suggest that the best dual path predictor should have components containing both a short and a long path length, because most indirect branches tend to be either short or long length correlated.

Chang et al. proposed using a family of two-level predictors [130], named the Target Cache (TC), with a structure similar to the two-level adaptive scheme described in [109]. The novel feature of the TC predictor is that the PHR records partial targets from a selected group of branches. In [130], the TC selects branches based on their opcode, leading to the following types of path history: Per Branch path history (PB) from the targets of all branches, Per Conditional Branch (PCB) path history from the targets of only conditional branches, Per Indirect Jump (PIJ) path history from the targets of indirect jumps and Per Procedure Call/Return (PPCR) path history from the targets of procedure call and return instructions. Each TC configuration utilizes PHR(s) from only one group of branches. The different contents recorded in the PHR allows variance in the type of path correlation across multiple TC configurations. The simulation results clearly show the dependence of indirect branch predictability on the type of path-based correlation.

Driesen and Holzle in [132] proposed using a filter along with a main component to construct a hybrid indirect branch predictor, namely the Cascaded predictor. The authors present a path-based predictor (hybrid dual-path) as the main component and a BTB-like structure as a filter. The latter is used to dynamically classify and predict easily predictable branches while the former predicts the remaining branches. By filtering out the easy to predict branches in the main component, phenomena such as aliasing and capacity mispredictions due to path history can be significantly reduced.

The BTB structure of the filter permits the prediction of monomorphic and low entropy branches. Two different protocols were proposed to determine when and how prediction would be made by a filter: i) strict and ii) leaky. A strict filter disallows new entries to be inserted into the main component when the branch is not found in the filter and allows the creation of an entry in the main component when a branch is mispredicted by the filter. In order to distinguish between a miss and a misprediction, the strict filter must maintain tags. A leaky filter allows entries to be created in both components on a branch miss. Only correctly predicted branches (by the filter) do not update the main component. Since a leaky filter does not distinguish between a branch

1 A branch is monomorphic when it mostly accesses one target.
2 A branch has low entropy when its target changes infrequently.
miss and a misprediction no tags are necessary in its implementation. The authors found that a leaky filter led to overall lower misprediction ratios than a strict filter [132].

In [133], Stark et.al. proposed a branch prediction scheme that exploits profile-based variable path length correlation for both conditional and indirect branches. In their implementation, a set of hashing functions combining a variable number of targets, is implemented in hardware. A PHR records the N most recently encountered branch targets and feeds them to hashing function hardware. The latter generates a set of indices from which the target is selected via a multiplexer, controlled by information bits (called a hashing function index). These bits are set after extensive profiling of all branches is performed. The compiler/linker is responsible for communicating the hashing function indices to the hardware. The solution described in [133] uses the Instruction Set Architecture (ISA). The displacement field of the Alpha AXP indirect branches is used to store these indices. A table, indexed by the branch’s address, is used to store these bits in hardware. The profiling step guarantees that the hashing function selected for each branch is optimally tuned in terms of misprediction ratio. The index that goes through the multiplexer drives a 2nd-level table (similar to a PHT) that actually makes the prediction. Stark’s scheme can be used to predict both conditional and indirect branches.

Recently, Roth et.al. suggested using a dataflow engine, to complement conventional path-based predictors, in order to improve the predictability of virtual function calls [134]. Their solution detects the dispatch code sequence implementing a virtual function call. The engine records the corresponding dependencies and launches computations via a dataflow engine, in the order object references are made, in an attempt to predict the next target before the indirect call is executed. The authors also propose the use of a lookahead scheme, where stride-based address prediction can assist the launching of computations, early enough before their associated object references are detected in the dynamic instruction stream. Simulation results showed that their dependence-based prediction scheme can improve the misprediction ratio of a set-associative BTB and a two-level path-based predictor.

5.2 Data Compression Algorithms and Branch Prediction

The primary goal of data compression is to replace an original data sequence with another that has fewer data elements. Modern data compression techniques try to use fewer bits to represent frequent symbols, thus reducing the overall size of data. The text/data compression algorithm usually defines a probabilistic model that is used to predict the next symbol with high accuracy. The ability of a compression algorithm to accurately predict stems from the close relation between compression and prediction: a sequence that is compressed well is easy to predict. On the other hand, a random sequence is both non-compressible and unpredictable [135, 136].
Since accurately predicting branches is of great importance for modern microprocessors, applying compression techniques to branch prediction appears to be an attractive solution. In this section we present two compression algorithms as they apply to branch prediction: i) the Prediction by Partial Matching (PPM) [137, 138] algorithm and ii) the Context Weight Tree (CWT) [139].

The CWT method builds a binary tree of length d based on past branch outcomes. Every tree node is assigned a context, which is the unique bit sequence generated if we traverse the tree from the root to the node. The root always has a null context. A node is created only if its context has been seen in past branch history. Given a set of past branch outcomes S, the set of bits immediately succeeding the context of a node in S is called the subsequence of the node. The tree is called a context weight tree (CWT) because every node is assigned a weighted probability (P_w) which is derived from the conditional probability of finding the subsequence associated with the node (P_e) and the weighted probabilities of the node’s children. The weighted probability of the root weights the probabilities induced by all possible complete subtrees. In order to predict the next branch outcome we assume that is taken (1), append the new outcome in the branch history, recompute the weighted probabilities of all affected nodes in the path and find the ratio of the new over the old weighted probability of the CWT’s root node. A randomized predictor is used to make the final decision as follows:

- if ratio $> 0.5 + \epsilon \rightarrow$ prediction $= 1$ (branch is taken).
- if ratio $< 0.5 - \epsilon \rightarrow$ prediction $= 0$ (branch is non-taken).
- else prediction $= 1$ with probability $\Phi(P)$

where $\epsilon = \frac{1}{\sqrt{T}}$ and T is the branch history length.

The authors in [140] also discuss variations of the CWT algorithm, where they add bits from the branch address in the past branch history, to further increase the levels of the context tree. The original CWT construction algorithm assumes that a complete context tree is built, where the total number of nodes is determined only by the branch history. This version of the algorithm is called static. By setting a limit on the number of nodes (and levels), Federovksy et.al. create an adaptive version of the CWT algorithm. They limit the number of CWT nodes by deallocating nodes that no longer carry information within the branch history window. The number of CWT levels is controlled by not limiting the extension of a particular context at the leaf node when a threshold is reached. The original CWT algorithm carries the following per node information:

- a count of 1s (denoted by b) and 0s (denoted by a) of the node’s context,
- the probability estimate (P_e) of the node’s subsequence, and
- the weighted probability (P_w) of the node.
A static PPM algorithm based on a CWT is presented, where every PPM node carries only the count of 1s and 0s. No weighted probabilities are computed or saved. Prediction is made by traversing the tree path (from leaf to root), determined by the current branch history, until the number of 0s and 1s differ. The idea is to find the deepest context where sufficient prediction information exists. The conditional probability given by \(\frac{b+0.5}{a+b+1} \) makes a prediction using the same algorithm as in CWT. An adaptive PPM algorithm can also be derived if we consider generating and deallocating nodes, as in the adaptive CWT algorithm. In [140], idealized versions of these algorithms are applied to conditional branch prediction with some success. However, a realistic hardware implementation has not yet been described.

Another version of the PPM algorithm is described in [141]. It has been successfully applied to areas such as data compression [138], file prefetching [142] and cache replacement policies [98]. The PPM predictor computes probabilities for symbols (as is the case with the CWT and the CWT-based PPM algorithm). Its corresponding version for conditional branches computes probabilities for branch outcomes, coded as 1 (taken) and 0 (non-taken). It provides the next outcome given the past sequence of branch outcomes that have been observed (branch history) and their relative dynamic frequency.

The foundation for the PPM algorithm of order \(m \) is a set of \(m + 1 \) Markov predictors [138]. A Markov predictor of order \(m \) produces the next outcome using its \(m \) immediately preceding outcomes, acting like a Markov chain. It consists of \(2^m \) states, as every conditional branch has two outcomes. The frequency of branch outcomes guides the transitions among the different states. The predictor arrives at a certain state when it has seen the \(m \)-bit pattern associated with that state. It records the frequency counts by counting the number of times a 1 or 0 occurs in the \((m + 1) \)-th bit following the \(m \)-bit pattern. The predictor builds the transitional probabilities (determined by the frequency counts), and at the same time it predicts the branch outcomes. The prediction is made by selecting the next state that possessed the highest transitional probability (highest frequency count).

Figure 5.1 shows the state of a 3rd order Markov predictor that has processed the input sequence (previous conditional branch outcomes) 01010110101. Since the order of the Markov predictor is 3, we expect to see a maximum of \(2^3 = 8 \) states. However, based on the input sequence already seen, the model has recorded transitions to 4 out of the possible 8 states.

Edges between states are established when one state follows another. Every edge is labeled with a pair of numbers, the first number indicating the next predicted bit (that leads to the state at the end of the arc) and the other denoting the frequency count for that transition. For example, in Figure 5.1, state 110 has an outgoing edge to state 101, because the bit pattern 101 has been seen to follow the pattern 110 in the input sequence. Furthermore, since this transition has only been seen once, its frequency count is 1.

Given the input sequence shown at the top of Figure 5.1, the predictor has arrived at state 101 and needs to
Input sequence: 0 1 0 1 1 0 1 0 1 ?

Figure 5.1: Prediction algorithm for a 4th order PPM predictor as it applies to conditional branch prediction.

predict the value of the next bit. Pattern 010 has followed 101 twice, while pattern 011 has followed 101 only once. Therefore, the next state should be 010 and the predicted value of the bit will be 0.

As mentioned above, a PPM predictor of order m consists of a set of $m + 1$ Markov predictors. At step 1 the mth order Markov predictor is searched for a pattern, formed by the m immediately preceding bits in the input sequence. If a match is found (meaning that the state associated with the pattern has at least one outgoing edge), a prediction is made. If the Markov predictor fails to find the pattern (meaning that the state associated with the pattern has no outgoing edges), it looks into the next lower order Markov predictor for a pattern formed by the $m - 1$ immediately preceding bits. This process is continued until a prediction is made. Notice that a 0th order Markov predictor will always make a prediction based on the relative frequency of 0s and 1s in the input sequence. Returning to Figure 5.1, the PPM algorithm will first search for the 101 bit pattern in the 3rd order Markov predictor, then it will look for pattern 01 in the 2nd order Markov predictor, etc.

The update step of the frequency counts, across different order Markov models in the PPM algorithm, varies. Throughout this thesis, we will use an update exclusion policy [141]. This protocol excludes all predictors with a lower order (i.e., lower than the one that actually makes the prediction) from being updated. Only the predictor that makes the decision, and the predictors with a higher order, are updated. Implementations of the PPM algorithm are discussed in the following section.
5.3 PPM-based Indirect Branch Predictors

In [141], Chen et al. discussed how a PPM predictor of order \(m \) can be seen as a set of \(m + 1 \) two-level adaptive predictors, thus providing us with a theoretical basis for supporting the accuracy of the later. The key idea is that a Markov model, as shown at the top of Figure 5.1, is successfully emulated by a two-level adaptive predictor. The \(m \)-bit input sequence is recorded in an \(m \)-bit history register (HR). The same \(m \)-bit sequence can represent global or per branch history. The lookup of the pattern in the Markov model is simulated by the lookup of the PHT using the contents of the HR. The 2-bit up/down saturating counters, provided on a PHT entry basis, efficiently mimic the transitional probabilities. The states of the Markov model correspond to the entries in the PHT on a 1-to-1 basis.

The PPM algorithm of order \(m \) requires \(m + 1 \) adaptive predictors; each of the adaptive predictors uses an HR with a different length. Therefore, prediction is made using information from history lengths that range from \(m \) to 0. In other words, the PPM algorithm explores variable-length branch correlation. The 1st order Markov predictor is simply a 1-bit history predictor (predicts the next branch outcome using its previous outcome). The protocol of the PPM algorithm, as described above, assigns priority to long term correlation (assuming that \(m \) is large enough to reveal long-term branch correlation). This is because the PPM predictor always uses the highest order Markov predictor that detects the pattern in the HR. Although this is necessary when performing data compression, it may not be optimal when applied to branch prediction.

If we consider indirect branch prediction, a PPM predictor of order \(m \) will again consist of \(m + 1 \) Markov components, each one being indexed by a PHR of a different path length. The path length will range from \(m \) to 0, and therefore, the PPM predictor will also exploit variable path length correlation. The 1st order Markov predictor simply uses the previous target to predict the next one. A PPM predictor for indirect branches can utilize a global PHR to record past history. The only difference between ideal PPM models for conditional and indirect branch prediction is that the total number of states for an \(m \)-th order Markov component is not \(2^m \) but \(k^m \), where \(k \) is the maximum number of valid targets in the program.

The goal in indirect branch prediction is to correctly predict the target of the branch. Since indirect branch target address selection is not a binary decision, the application of the PPM algorithm is not straightforward. Accurately describing path history requires storing 32-bit or 64-bit addresses, versus storing a single bit (i.e., the branch direction) in the case of conditional branches. Indexing a state in the Markov chain with the contents of past history is not simple either. As was mentioned in Section 5.2, the maximum number of states in each Markov component is \(k^m \). A PPM predictor would require enormous hardware resources in order to represent all states of the Markov components.

Our solution is to use multiple BTB-like structures to implement the Markov chain states. These structures
are equivalent to PHT implementations in two-level predictors and we will refer to them as PHTs. We use a PHR to record past history and a hashing function to form indices accessing the multiple PHTs. By limiting the size of the PHTs, we are merging sets of the Markov chain states together. The final number of states after merging is equal to the number of PHT entries. The hashing function proposed in [108, 130] uses a gshare indexing scheme, where groups of bits from previous branches (conditional and/or indirect) are XOR’ed with the PC to form the index. In our case, we use a modified version of the Select-Fold-Shift-XOR (SFSX) hashing function described in [143].

![Figure 5.2: Select-Fold-Shift-XOR-Select (SFSXS) indexing function as it applies to the contents of a PHR.](image)

Figure 5.2 shows an example of how our new mapping function called Select-Fold-Shift-XOR-Select (SFSXS) forms an index from the path history. In this example, we show a path length of 10 and a 10th order PPM predictor, to illustrate how our indexing function works. The SFSXS mapping function selects the low-order 10 bits from target i^3, folds the selected value into 5 bits which are left shifted by i bits and XOR’ed together with the other values. The j high order bits of the outcome form the index for the j-th order Markov predictor. An alternative solution would select the j low order bits. From simulation results, we found little difference in the misprediction ratios when comparing these two schemes, so we decided to use the scheme shown in Figure 5.2.

Another major problem when implementing the PPM algorithm for indirect branches is the selection of the next target. The original Markov model requires multiple outgoing arcs from each state, keeping frequency counts for each possible target. Obviously, this step does not involve a binary decision and can not be modeled

3 Since instructions are word-aligned we always ignore the last two bits of their addresses.
by a 2-bit counter. It requires storing multiple targets per PHT entry, along with their frequency counts, and a majority voting mechanism to select the next target. Instead we store the most recently visited target and use it to make a prediction.

Figure 5.3: Single-level access implementation of a 4th order PPM predictor. It uses a set of BTBs to implement the Markov components. Each component is indexed with a variable number of targets, extracted from a single PHR.

The complete design for a 4th order PPM predictor is shown in Figure 5.3. We assume an implementation of the PPM predictor at the I-fetch stage of a processor employing speculative execution. The logical components forming the predictor are a Branch Identification Unit (BIU), that indicates that an indirect branch is being fetched. Most implementations assume two bits per entry to indicate whether the branch is conditional, a return or indirect [144]. We also need a PHR that records partial targets from a predetermined branch stream. To use the SFSXS mapping function, we will need to record 3 bits from each one of the last 3 targets. One possible scheme is to record the targets of all indirect branches (PIB path history) in a single PHR. The boxes labeled as Hashing function implement the indexing scheme described in Figure 5.2. The Markov predictors
are basically BTB-like structures, where every entry includes the most recently accessed target, a tag, a 2-bit up/down saturating counter for replacement and a valid bit. Using a 2-bit counter allows the target currently found in an entry to be replaced only on two consecutive misses. Control logic selects one target from the Markov components, according to the PPM protocol. Markov predictors can also be tagless. In the absence of tags the only way to indicate a non-zero frequency count for a state of the Markov model is the valid bit. If we allow an exclusive-update policy for the PPM predictor, most of the queries for a prediction will be directed to the highest order Markov component, leading to an underutilization of the available resources. For detailed simulation results on a tagless PPM predictor see [145]. The simulation results in this thesis will correspond to tagged implementations only.

The PPM predictor works as follows. The BIU unit is interrogated using the branch address every time the processor fetches instructions. At the same time, the PHR is used to generate the different indices and access all the Markov predictors in parallel. If an indirect branch (other than a return) is detected in the instruction stream, a tag comparison is made to examine if the entry in the Markov component belongs to the branch under consideration. The highest order Markov predictor “hit” provides the next target. If there is a miss, no prediction is made (this event is classified as a misprediction in our experimental results). Under such a scenario, after the branch is resolved, we only update the Markov component with the lowest 2-bit counter value. If there is more than one Markov component with the same value, we update the highest order one. Overall, the prediction step for the described PPM implementation requires a single level of table access, and thus, the predictor can be characterized as 1-level.

The update step starts by shifting the actual target to the PHR, independent of whether we had a misprediction or not. By keeping a bit string of \(m \) bits showing which component made a prediction, we can implement an update exclusion policy [141]. This bit string can be associated with an indirect branch as it goes through the different stages of the pipeline (one possible solution is to keep it as a separate entry in the reservation station of the branch unit, along with the indirect branch’s information). For each component that needs to be updated, we set the valid bit (if not set), and update the target (either speculatively or with the actual outcome). Timing issues related to updating the target are not discussed in this work. Finally, we update the state of the counter and the tag if the branch is being replaced in the PHT entry. All components can be updated in parallel.

Previous studies have shown that indirect branches have different characteristics than conditional branches, especially when it comes to inter-branch correlation [130]. The experimental results in chapter 4 revealed that most indirect branches were best correlated with either: 1) all previous branches or 2) with previous indirect branches (PB or PIB correlated respectively). Therefore we have combined the PPM predictor with a selection scheme that dynamically chooses between two types of path-based correlation of the same length : 1) PB and 2) PIB path-based correlation. Since we wanted to characterize the correlation of every individual indirect
branch, we introduce a set of 2-bit up/down saturating counters in the BIU module. Based on the contents of
the associated counter, the predictor selects between the two PHRs. The new design is shown in Figure 5.4.

![Image of PPM predictor with run-time selection of correlation type]

Figure 5.4: PPM predictor with run-time selection of correlation type. Two PHRs are used to record path
history of PIB and PB type. Two-bit counters, kept on an indirect branch basis, select the PHR at run-time.

Notice that this version of the PPM predictor requires two serialized table accesses (one for the BIU and
one for the PPM predictor), and therefore it should be considered a 2-level predictor. Depending on the physical
implementation of the processor, the prediction may have to be pipelined into two (or even more) phases. In
the first, the BIU structure is queried. If an indirect branch is found then one PHR is selected based on the the
associated 2-bit correlation counter. In the second phase, the selected PHR will then feed the multiplexer, and
the generated indices will index the Markov components of the main predictor body. The correlation selection
counters are updated at the same time with the Markov components. Every correlation selection counter follows
the state machine shown in Figure 5.5.

Each state of the counter is labeled with the contents of the counter and the PHR selected for that state.
The behavior of a branch can be characterized as Strongly PB correlated (state 00), Weakly PB correlated (state
01), Weakly PIB correlated (state 10) and Strongly PIB correlated (state 11). Dotted arcs represent a transition
triggered by a misprediction, while solid lines denote a change due to a correct prediction. The state machine
in Figure 5.5 models a normal 2-bit counter where the nature of correlation will change on two consecutive mispredictions. All counters are initialized to the *Strongly PIB correlated* mode.

![State machine of a 2-bit up/down saturating counter. The counter is used to select one of the two available PHRs in a scheme that combines PPM prediction with run-time selection of path history type.](image)

Figure 5.5: State machine of a 2-bit up/down saturating counter. The counter is used to select one of the two available PHRs in a scheme that combines PPM prediction with run-time selection of path history type.

5.4 Load Latency Tolerance and Indirect Branches

The penalty associated with indirect branches depends on the service time of their dependent load instructions. As we have seen from chapter 4, at least one load instruction accompanies an indirect branch. Switch-based jumps and virtual function calls have two loads. We renamed these loads as *ibloads* in chapter 4. An indirect branch is always truly dependent on one of the ibloads. If an ibload misses in the D-cache, then the time to resolve the dependent indirect branch depends on the time that load needs to be serviced by the memory hierarchy. The ibload latency also depends on the level of memory hierarchy which will service the read request. Since the time to resolve the branch depends on the ibload latency, the misprediction penalty of the branch also depends on the load latency. The misprediction penalty can vary even more if a sequence of ibloads lie on the same dependence chain. For example, a virtual function call is associated with two ibloads (see subsection 4.2.2) which lie on the same dependence chain. A similar situation arises with switch-based jumps. The number of ibloads that support pointer-based function calls depends on the source code. For example, if the function pointer is a field in a complex data structure, then a series of dependent ibloads may be issued to access the pointer. In general, the penalty differs among different indirect branches, as well as between dynamic instances of the same branch.
Thus, indirect branches can be categorized based on their misprediction latency. The same argument has been manifested for conditional branches [124]. In this section we study a method that attempts to improve the predictability of indirect branches by classifying them at run-time based on their misprediction latency. If we know whether an ibload/ibload sequence will miss/hit in the D-cache at the indirect branch is predicted, then we can use this decision to make a better prediction. We can also use this information when the IB predictor is updated to assist future predictions.

The predictors we have discussed so far, try to exploit the run-time target patterns in an attempt to accurately predict indirect branches. They do not consider the penalty each mispredicted branch will impose at runtime. Incorporating information such as anticipation of a D-cache miss in such predictors must be carefully designed. For example, we could modify the protocol of the cascade predictor as follows: the filter is assigned with branches whose ibloads are anticipated to hit in the D-cache. The remaining branches are fed to a more sophisticated component, since its prediction accuracy is higher. By accurately predicting such branches, out-of-order execution may be able to hide the load latency by fetching from the correct path. If we use a tagless BTB as a leaky filter, filtering will target monomorphic branches. However, there is no obvious correlation between such branches and the high hit ratio of their corresponding ibloads. Virtual function calls, which are frequently monomorphic, may invoke the same function body most of the time, but not necessarily via the same object or the same VFT. On the other hand, ibloads associated with switch-based jumps access the same statically allocated data structure, the JTBL. This table is not relocatable, and its presence in the L1 D-cache depends on how frequently the same static branch is called. The ibload behavior of function pointer-based calls is even more complicated. If the function pointer is loaded from a GOT, then the target temporal locality of the ibload is high, as long as the branch is executed closely in time. If the pointer is loaded from a data structure, then the latency of ibloads heavily depends on the access pattern, the algorithm and the type of the structure (tree, linked list, etc.). In addition to all of the above factors, there may exist distinct ibloads from different control-flow paths leading to the same static branch.

Our approach is to modify the replacement policy of the above predictors, in an attempt to lengthen the lifetime of the targets of indirect branches which are expected to miss in the D-cache. There are two mechanisms that are needed to accomplish this. The first mechanism records dependencies between loads and indirect branches, and the second captures D-cache transactions and associates them to indirect branches.

The mechanism we implemented for accomplishing the first requires one component called the dependence table (DTBL). Every entry of this table consists of a tag, a valid bit and info to identify an indirect branch. The tag is the PC of an ibload. The indirect branch PC can serve as an identifier for the branch. The valid bit indicates that a dependence has been recorded in the entry. Since the DTBL can be an associative structure (its implementation has to be tagged), there will be multiple dependencies in the same set. This allows for more
dependencies to reside simultaneously in the DTBL, as well as for more accurate updating of the branch load tolerance status. The later will be explained in detail later.

It is important to note here that this particular DTBL implementation captures static dependencies, not dynamic ones such as those described in [146]. A dynamic dependence would require associating an instance of a load with an instance of a branch. In [146], true dependencies between loads and stores needed to be identified and recorded in order to assist data dependence speculation and synchronization. Run-time load-store dependence detection is necessary because the compiler can not identify the dependencies between all possible pairs of loads and stores. In our case, the compiler is able to identify all static dependencies between ibloads and indirect branches. Every such data dependence is true. We use our intraprocedural data and control flow framework to identify and tag all ibloads found in the same procedure body. Hardware also needs to detect these dependencies in order to be able to distinguish between load-tolerant and load-intolerant branches. One way of conveying this information is to have the compiler label each ibload with part of its associated indirect branch PC. That means that either the ISA must support hint fields in the load instruction format or that the ISA must be extended with such an instruction. Alternatively, we could tag the indirect branch with information about the positioning of its ibloads. For example, in the Alpha ISA an indirect branch has the format displayed in Fig. 5.6.

\[
\begin{array}{cccc}
\text{Opcode} & \text{RA} & \text{RB} & \text{Displacement} \\
6\text{-bits} & 5\text{-bits} & 5\text{-bits} & 16\text{-bits}
\end{array}
\]

Figure 5.6: Indirect branch format in the Alpha ISA.

According to the Alpha Reference Manual [147] the PC of the instruction following the indirect branch is written to register \(RA\) and then the PC is loaded with the target virtual address (next PC). The target address is supplied by register \(RB\). Since the 14-bit displacement field is not used during the execution of the indirect branch, it can be filled by the compiler/linker with offsets that identify the relative positions of ibloads with respect to the branch. When an ibload is decoded (even for the first time) a small fully associative structure can be searched. The search will attempt to match the load PC with the tag of each entry in the structure. Each entry includes a tag, a valid bit, and the indirect branch PC. If a match is found, then we establish the dependence between the ibload and the branch PC, and the entry can be discarded from the table to preserve space for future entries. If no match is found, we proceed normally and the ibload does not modify the DTBL. When the indirect branch is decoded, we extract the information from its displacement field using some simple XOR hardware. Two entries must then enter the table. Fig. 5.7 shows an example.

We assume that two ibloads are associated with the branch. Their relative offsets from the branch PC are
encoded in the displacement field in such a form so that XORing the branch PC with each offset will generate the ibload PC. One disadvantage of this solution is that the size of the displacement field limits the number of encoded ibloads. However, most of indirect branches (VF jsr and MT jmp) have only two ibloads which can easily be accommodated in the indirect branch format. Most FP jsr have one or two ibloads associated with them. In the presence of additional ibloads, it is rather unlikely that recording D-cache transactions of the additional ibloads will greatly affect the classification of the branch at run-time. Moreover, it is also possible to schedule the ibloads early on by copying them on different control flow paths leading to the branch. In that case, we could have encoded the ibloads on one of the paths (the most frequently accessed). This code scheduling optimization can result after applying either value speculation instruction scheduling [148] or load data speculation [149]. Neither of these techniques is being incorporated in the Compaq compilers we used.

Another disadvantage is that the limited displacement field size does not allow encoding for large distances between an ibload and its branch. In practice, we did not find this to be a problem since the scheduler places the ibloads in the same basic block most of the time, or in close proximity to the branch. One possible way to utilize the 14 bits of the displacement field is to allocate one bit for determining the number of encoded ibloads (0 for 1 ibload, 1 for 2 ibloads). The remaining 13 bits can be used as follows: 6 bits for the ibload closest to the branch and 7 bits for the ibload furthest from the branch, or 13 bits for the closest ibload. If we encode both, then we permit the first ibload to be within \(2^6 = 64\) bytes, (i.e., 16 instructions from the branch in the linear memory address space). The second ibload can be within \(2^7 = 128\) bytes or 32 instructions away. If we encode only one (the closest one), the maximum allowable distance can be \(2^{13} = 8K\) or 2048 instructions.
Notice that with this range, we can encode ibloads that do not necessarily lie in the same procedure as the branch.

An additional solution would be to have dependence checking hardware identifying the two dependent instructions (ibload and branch) via their registers when they are decoded. Although this approach works even in the presence of register remapping it has a number of drawbacks. First, if the dependent instructions are not decoded in the same cycle, then we must have additional hardware to keep track of which ibloads have not yet been linked with a branch. Notice that the use of compiler tags relieves the hardware from the burden of finding ibloads. Second, even if they are decoded in the same cycle, there exist ibloads that are not directly dependent on the branch. They lie in the dependence chain of the branch, such as the first load shown in the following assembly code sequence:

\[
\begin{align*}
\text{ldq } r_b, & \quad o_1 (r_a) \\
\text{ldq } r_c, & \quad o_2 (r_b) \\
\text{jsr } & \quad (r_c)
\end{align*}
\]

Such code sequences are found in virtual function calls, switch statements implemented with JTBLs and even in function pointer-based calls. In the latter category, the number of ibloads varies from one to many, depending on the source code usage of the function pointer. Linking the first ibload with the branch is not straightforward and necessitates extra hardware support.

Another characteristic of the proposed DTBL implementation is that each entry represents a dependence between an ibload and its corresponding branch. We could have collapsed the dependencies of two or more ibloads with the same branch, into one DTBL entry. In a way, we would capture the entire dependence chain shown before in a single DTBL entry. That has the advantage of reducing space since the branch PC does not have to be copied into multiple DTBL entries. Also, for a fixed storage DTBL space, fewer dependencies would miss. On the other hand, space would be wasted if only one ibload is detected. If a chain has a variable length, then information would be lost since each DTBL entry can accommodate a fixed number of ibloads. Finally, forming a tag for such a dependence chain is complicated since multiple ibloads have to be detected, grouped and combined every time. In addition, recording multiple D-cache transactions of the ibloads in the chain would require complicated hardware support in contrast with the single ibload DTBL entry format.

The DTBL utilizes this dependence information to update the mechanism that monitors the D-cache transactions and uniquely links them to indirect branches. The Load Miss Table (LMT) is supporting the later task. The LMT is a tagless table, indexed by the PC of an indirect branch. Each entry contains information about the load tolerance of that indirect branch. We use a 2-bit up/down saturating counter to measure load tolerance. Fig. 5.8 shows the counter update protocol.

There are four possible states in the counter. States 2 and 3 indicate low load tolerance and states 0 and 1
Figure 5.8: Update protocol of the load tolerance counter. Solid lines model transitions triggered by a cache miss while dotted lines model transitions triggered by a cache hit.

High load tolerance. The counter decrements on a cache hit and increments on a cache miss. The initial state is 3 to account for cold-start misses.

The entire mechanism works in two phases. The first phase is used only when an ibload is detected in the instruction window. During this phase, the ibload accesses the DTBL with its effective address. This is done at the execute/issue stage of the pipeline since this is the stage where load addresses are usually computed. The goal of this phase is to update the DTBL with the dependence information. This implies that the dependence has already been identified. It also shows that the operations of detecting and recording a dependence are completely decoupled. The DTBL is indexed with the effective address of the ibload. The tag of the DTBL entry is formed by the ibload PC and not by the effective address (as is done with conventional caches). Therefore, we can distinguish between two different ibloads being dependent on the same indirect branch (i.e., ibloads that lie in the same dependence chain). A tag search is performed, as in regular caches, to look for the dependence in the DTBL set. If one is found, the phase is complete. If a miss occurs, then we update the DTBL. If there is an empty entry in the indexed set, we fill the entry with the current information, otherwise we the LRU dependence is replaced to make room for the new dependence. Fig. 5.9 illustrates phase one.

The second phase is triggered on two different events. The first is when an ibload is executed. The LMT is indexed with the branch PC and the corresponding counter is updated, indicating a hit for that branch. This is because any future references to this address will hit in the D-cache (assuming that the miss has been serviced by the time the next reference arrives). The branch PC can be taken from the ibload instruction that is being
Tagged (ib) load access

To L1 D-cache

Figure 5.9: Phase 1: when an ibload is executed the dependence between the ibload and the indirect branch is recorded in the DTBL.

executed (assuming that its entry in the instruction window has space for the branch PC). If special hardware is used to track dependencies on the fly we could have a miss (the hardware was not able to link the ibload with its branch). In that case, we could use the branch PC stored in the DTBL if we have a tag match. If we have a tag mismatch and the branch PC has not yet been defined, we will not update the LMT. Fig. 5.10 shows the scenario for updating the LMT from an ibload access.

A second phase is also triggered when a load misses in the D-cache and a replacement occurs. The DTBL is indexed with the address being replaced. Since this address is replaced from the L1 D-cache, it will miss next time it is referenced. Therefore, the status of all branches whose PC’s are found in that set should be updated. This implies that multiple accesses to the LMT have to be performed. Fig. 5.11 displays the process of updating the LMT on a D-cache miss for a 2-way set associative DTBL.

The number of LMT accesses is equal to the associativity of the DTBL. One possible solution is to discard updating all branches and select only one from the DTBL set, probably the one in the MRU dependence. Another solution is to perform all updates simultaneously (assuming a multi-ported LMT implementation). The number of ports can be equal to the associativity of the DTBL. Alternatively, we can assume a smaller number of ports and perform the updates in subsequent cycles. Requests for LMT updates will then need to be kept in a hardware queue, where each entry will include the branch PC and the cache miss transaction status. This solution has the advantage of being able to merge updates from the same branch. A final option is to keep
Figure 5.10: Phase 2: when an ibload is executed we update the DTBL in case its dependence has not already been recorded. The LMT is updated independently of the DTBL.

Notice that LMT updates can be initiated either after a first phase (ibload has caused another line to be replaced) or independently (a non ibload has triggered a cache miss, and a line is being displaced). Also, indexing the DTBL is a key component for our mechanism. The DTBL index is formed by applying the exact same bit selection as in the L1 D-cache. In other words, the same number of bits used for selection within the cache line is discarded. This does not necessarily mean that the DTBL has a line size equal to that of the L1 D-cache. The other essential property is for the DTBL to have the same number of sets as the L1 D-cache. Notice that this does not imply any restrictions on the degree of associativity, which can be different than the associativity of the L1 D-cache. The philosophy behind this approach is the following: we want the dependencies inside every DTBL set to correspond to the loads whose addresses are accessing the same set.
Figure 5.11: Phase 2: On a D-cache transaction we update the LMT. The DTBL is accessed with the address being replaced from the D-cache. All branches found in the DTBL set may update the LMT.

in the L1 D-cache. That way, whenever a cache line is replaced in the L1 D-cache, its address can be used to identify the dependencies (and thus the indirect branches) whose associated ibloads will miss in the cache. This mapping is guaranteed only when, for a given load address, the same set is selected in both the L1 D-cache and the DTBL.

This implementation suffers from certain inefficiencies. First, not all branches are updated on D-cache misses and cache line replacements. Only those branches recorded in the dependencies currently residing in the DTBL set will be updated. Any branches whose dependencies have been displaced from the DTBL will not be updated. A fully associative DTBL implementation would provide us with the most accurate results, although some dependencies would be displaced because of the DTBL's finite size. Second, the LMT has a finite size and its mapping is not conflict free. If two branches map to the same LMT entry, the counter will be erroneously updated and will not accurately measure the branch latency tolerance. In addition, all ibloads associated with a branch are updating the same LMT counter. Hence, we cannot measure load tolerance based on different ibload instances. For example, if an ibload visits memory locations at addresses 100, 200 and 300, the LMT counter will be updated with these 3 cache transactions. After the branch is updated for the last time, the LMT counter will reflect the tolerance of the branch with respect to those 3 load addresses. If the next time the branch is fetched, its associated ibload accesses memory location 400, the LMT counter will most probably indicate that the branch tolerance is low, while the ibload may miss in the D-cache. In other words, indirect
branch tolerance is specified by merging cache transactions from all addresses visited by its ibloads.

Coupling the LMT with the DTBL would partially solve this problem since the DTBL is indexed by the load effective address. But it would not merge the data from different ibloads since each counter captures the tolerance of the branch with respect to the load whose PC is in the DTBL entry. Most importantly, the LMT counter contents would be lost if the dependence had to be displaced from DTBL. Coupling the LMT with the indirect branch predictor entries would allow for a more accurate comparison between the LMT contents of the current branch and the branch residing in the table entry, during update. This is because the LMT counters would always be updated. The main problem with this solution is that path-based predictors allocate multiple entries for a single indirect branch. Therefore, it is impossible to find all of these entries every time the LMT must be updated. In addition, the increase in traffic to the indirect branch predictor is prohibitive.

The LMT information can be utilized in many ways. We can access the LMT with the PC of an indirect branch at the fetch stage of the pipeline, and use the LMT counter contents to improve predictability. For the reasons mentioned above, we decided to utilize LMT information to enhance the update policy of indirect branch predictors: If there is a tag mismatch in the indirect branch predictor and an entry must be displaced then we check the LMT counters of both branches. The LMT counter associated with the branch updating the predictor is taken directly from the LMT. The LMT counter associated with the branch currently residing in the predictor, can be retrieved by an additional LMT access or using a copy in the predictor (which will not be as recent as the one in the LMT table). Since we may not want to pay the penalty for another LMT table access, we can have a copy of the LMT counter in the predictor entry. In any case, the branch with the largest LMT counter is allocated in the predictor. In the case of a tie, we favor the branch updating the predictor.

If the predictor has a local copy of the LMT counter and the new branch replaces the old one, the local copy can be updated. If the old branch remains in the predictor (no replacement occurs), we can optionally update the local copy of the LMT counter by accessing the LMT. Notice that our approach works with all conventional replacement policies (e.g., LRU). The LMT counter associated with the LRU entry is compared to the LMT counter of the new branch. Alternatively, every time a new branch accesses a set, we could retrieve the LMT counters of all branches in the set (including the counter of the new branch), compare them and exclude the branch with the lowest overall value. The major disadvantage of this approach is that the number of LMT accesses for every predictor update is equal to the associativity of the predictor table. Even for 4-way set associative tables, the cost of building the LMT can be prohibitive. Another problem that arises only with the PPM predictor is that the number of update decisions that have to be made is equal to the number of components. The number of times the LMT table has to be consulted is equal to the number of tag mismatches in the Markov components of the PPM predictor. That increases the necessary number of ports of the LMT table and its design may become too costly. A solution is to allow only one or two Markov components (from
those detecting a tag mismatch) to retrieve LMT counter values. These components could be the higher order ones since they usually make most of the predictions.

5.5 Temporal Reuse of Indirect Branches

Being able to accurately anticipate the occurrence of a branch can be used in refining the replacement policy for a branch predictor. Most predictors use set-associative, tagged tables to store previous targets. A conflict occurs if the number of distinct branches, that is mapped to the same set is greater than the degree of associativity of the table. This conflict may lead to mispredictions based on the interleaving patterns of the branch dynamic occurrences during the execution of the program. One way to try to minimize these mispredictions is by predicting whether the branch to be replaced is going to be executed in the near future. Using a similar philosophy, we can check if the branch that causes a replacement is going to be executed in the near future. If we have available accurate indicators that provide us with this information, we can make a more informed decision on which branch should finally occupy the entry in the set.

The idea is motivated by the fact that the indirect branches that are hardest to predict are those lying inside loops. We have shown in chapter 4 examples in the source code where virtual function or pointer-based function calls and switch statements are found inside tight loops or recursive functions. It is not uncommon to traverse dynamically allocated data structures (e.g., linked lists, trees) and make a virtual function call on every node which corresponds to an object. Depending on the type of the object, the call may visit different functions, leading to an unpredictable behavior. Similarly, we may scan strings using a loop that contains a switch statement. The switch statement executes a case based on the character currently being parsed, and thus its target can change frequently. If we can identify these branches and increase the lifetime of their associated targets in the predictor, we might be able to improve their predictability.

To capture branch temporal locality, we propose a shift register, called the Temporal Locality Register (TLR). A TLR can record the addresses (PCs) of a certain number of past committed branches. Since we are interested in indirect branch locality, we consider a TLR that considers only indirect branches. Indirect branches of the ret type are excluded. We can also safely exclude all direct branches because an indirect branch can be displaced only by another indirect branch in an indirect branch predictor. If conditional branches share the same predictor table with indirect branches (as is usually the case with modern microprocessors), we would need to record both types of branches in the same or different registers.

Our algorithm for exploring the potential of temporal locality of indirect branches is the following: As an application runs, we count the number of dynamic branches inside a window, the size of which is defined by

4 Notice that we do not refer to loop branches which are usually conditional branches.

5 An alternative name would be Temporal Reuse Register (TRR).
the TLR. Whenever we have to make a decision on which branch to allocate to a table entry, we consult the counts for both branches (the one already in the entry and the current branch). The branch with the highest count is allowed to occupy the table entry. If both branches have the same value, the old branch remains in the table. Fig. 5.12 illustrates the procedure of computing the counts.

![Temporal Locality Register (TLR)](image)

Figure 5.12: Updating the TLR counters using both the newly arrived target and the target being displaced from the TLR.

The TLR is simply a shift register, similar to a PHR, which registers branch identifiers (their PCs). It only considers committed branches in order to avoid pollution via mispeculation. The dynamic counts are computed and kept in a TLR table indexed by the branch PC. Every time a branch enters the TLR it also accesses the TLR table and increments the counter. At the same time, the branch exiting the TLR accesses the TLR table and decrements the corresponding counter. Conceptually, the TLR models a finite size, time sliding window. The TLR table counter is a 2-bit, saturating, up-down counter.

If the predictor table is set-associative, we can use a conventional replacement policy such as LRU, to first decide which branch to replace and then compare the TLR counts. Alternatively, we can access the TLR counts for all branches in the set, compare their TLR counts and select the branch with the lowest count to be deallocated. This solution has the same problem as the solution that uses the LMT counters. It requires sustaining very high bandwidth to the structure holding the TLR counts. Furthermore, consulting the TLR table also presents an implementation problem with the PPM predictor, which requires access to several counters at a time. The same solution proposed in section 5.5 applies here.

Temporal locality information can not always help making good replacement decisions. For example, TLR
values can not distinguish between the initial and final instance of a branch being executed in a loop. Upon the first occurrence of the branch, its TLR counter value is 0, showing no temporal reuse and it may not be allocated in the predictor. Upon the last occurrence of the branch, its TLR counter value will be 3, showing high temporal reuse. It will take two successive executions for a new branch to replace the old one based on their TLR counters. Similarly, a LMT replacement policy may not be optimal. If a branch is executed in a tight loop many times, it is highly likely that its LMT counter will be 0 (most of the ibloads will hit in the D-cache). If the branch collides with a branch having a high LMT counter value, it will be replaced from the predictor table due to its high load tolerance. This action will displace most of the branch’s targets while the loop is executed, resulting in a higher number of mispredictions. In order to fix both of the above problems we decided to combine both approaches in the following manners. If both branches show no signs of temporal reuse (TLR counts are 0), we replace the old branch only if it has a higher or equal load tolerance (a lower or equal LMT counter value). If the new branch exhibits some temporal reuse, then we replace the old branch, only if its TLR counter has a higher value than that of the old branch.

5.6 Experimental Results

The results related to indirect branch prediction are obtained using execution-driven simulation with SimpleScalar v3.0 Alpha AXP [61]. The benchmark suite consists only of perl, gcc, ixx, edg, troff and eqn. In order to evaluate the performance of the PPM predictor, we simulate a variety of indirect branch predictors. Each predictor uses a total of 2K entries and tagged tables to store branch targets. The list of predictors follows:

- \textit{BTTB}: a 2K entry BTB,
- \textit{BTTB2b}: a 2K entry BTB, with 2-bit up/down saturating counter per entry,
- \textit{GAp}: 2 1K entry PHTs, a 10-bit PB path history register recording the 2 lower-order bits from each target (path length = 5) using a gshare indexing scheme, and a 2-bit up/down saturating counter per PHT entry,
- \textit{Dpath}: a Dual-Path hybrid predictor consisting of two GAp predictors and an 512-entry table of 2-bit up/down selection counters. Each GAp predictor is formed by: a 512 entry 2-way (LRU) PHT, a 24-bit PHR, a 2-bit up/down saturating counter per PHT entry for replacement, and a reverse interleaving indexing scheme. One component predictor has a path length of 2 and the other has a path length of 4. All recorded bits are lower-order,
- **Cascade**: a Cascade hybrid predictor formed by an identical *Dpath* predictor and a Leaky Filter (LF) of 128 entries,

- **PPM-hyb**: a PPM predictor of order 10, 2 100-bit PHRs (PIB and PB path history type, 10 targets, 10 low-order bits each), 10 Markov predictors with total 2K entries, an SFSXS indexing scheme, and a 1K selection counter table with 2-bit saturating counters per entry.

The predictors are assumed to assist the instruction fetch unit of a dynamically scheduled, out-of-order CPU, by predicting the target of an indirect branch. All predictors are speculatively updated at the instruction decode stage of the pipeline. In order to examine the merit of indirect branch prediction, we also simulate a base machine with no explicit indirect branch predictor. This configuration is labeled as *Dft* in all tables and plots. The base machine predicts the targets of all branches, including both indirect and conditional branches, using a BTB structure. We assume that the BTB is decoupled from the component that predicts the outcome of conditional branches. The remaining machine configurations use the same BTB for conditional and direct unconditional branches, but a different IB predictor for indirect branches. Return instructions are predicted with a fully check-pointed RAS in all configurations [128].

In order to have a fair comparison in terms of hardware cost, the total number of predictor table entries is the same for both the base machine and the machines employing IB predictors. If the base machine has a BTB with *n* entries, a machine using an IB predictor will allocate *n*/2 entries to the IB predictor and *n*/2 to the BTB holding the targets of the remaining branches.

An additional experiment we perform is to check the effectiveness of indirect branch prediction with an aggressive instruction fetch unit. Currently, the instruction fetch unit fetches only one cache line from the I-cache in a single cycle. It discontinues fetching either when the end of the line has been reached or when a branch is predicted taken. It continues fetching within a single cache line as long as the branch is predicted non-taken. Hence, the front end can supply up to 8 instructions (L1 I-cache line size is equal to 32 bytes) per cycle to the decode and dispatch stages. The current trend in processor design is towards more aggressive front ends which attempt to keep the execution units utilized. The goal is to reveal a larger window of instructions and create opportunities for exploiting a larger degree of ILP. At the same time, fetching has to be precise to minimize mispeculation penalty, which increases as the degree of pipelining gets higher. Therefore, we simulate a more aggressive fetch unit, where up to 2 cache lines can be brought from the L1 I-cache in a single cycle. This can be achieved through multi-porting or interleaving [150, 151]. Interleaving is easier to implement, requires less area and allows the I-cache banks to operate at high speeds but suffers from bank collisions. Multi-porting slows down the access time of the cache module, occupies more area, but always allows two transfers to different cache lines on the same cycle. We decided to model the 2nd case since it does
not suffer from bank collisions. We pipelined though the L1 I-cache access in 2 stages to account for the slower access time.

We exploit the higher I-cache bandwidth by using a two-block ahead branch predictor, similar in spirit to the one described in [152]. The scheme predicts at most two branches in a single cycle. A predecode unit provides information about the type and position of all branches found in the cache lines being fetched. All predictor components are assumed to be dual-ported (BTB, components of hybrid predictor, meta predictor), enabling two predictions in a single cycle. Every BTB entry (of the unified BTB) is equipped with a bit to signify whether the branch is the last one in the cache line. Whenever the bit is set, and the conditional branch is predicted to be non-taken, the next sequential cache line is simultaneously fetched instead of requesting the next instruction block which partially lies in the current cache line. This is an optimization suggested in [152] in order to improve the fetch unit throughput and acts similarly to the oversize bit proposed in [153]. We also simulate a fully check-pointed dual-ported RAS.

The two-block ahead predictor also predicts indirect branches. Although the dynamic frequency of MT indirect branches is low, the probability that two such branches are detected in two simultaneously fetched cache lines from the I-cache is not negligible. In [31], Driesen measured the average execution distance of indirect branches. He found that 20% of the indirect branches were executed within 1-15 instructions of each other. Since our cache lines are 8 instructions long, and two cache lines are fetched in a cycle, the probability of having two indirect branches in two cache lines is not minimal. Therefore, we model a dual-ported BTB design to permit two indirect branches to be predicted in a single cycle. Hybrid predictors (dpath, cascade, ppm) require dual-porting their additional components (meta predictor for dpath and ppm, filter for cascade) in order to sustain the required bandwidth. Since designing multiple-block indirect branch predictors is out of the scope of this thesis, we will not elaborate on their design details further. This experiment is performed to quantify the role of indirect branch prediction in machines with aggressive fetch policies.

Fig. 5.13 shows a performance comparison for the indirect branch predictors. We plot the relative cycle count change between the base processor and a processor that employs an IB predictor. Data are displayed for both multiple and single block prediction. Multiple block prediction statistics are labeled a_f (aggressive fetch). A bar with a positive percentage indicates a performance improvement.

Based on the results of Fig. 5.13, indirect branch prediction improves overall performance under certain conditions. One factor that determines the net effect is the relationship between the conditional branch working set and the size of the BTB. Decreasing the number of the BTB entries by 50%, to accommodate indirect branch prediction hardware resources, increases aliasing in the BTB. On the other hand, since traffic assigned to the same BTB drops (indirect branches are predicted via a separate IB predictor), less aliasing occurs. Obviously, these two phenomena have competing effects on performance. The amount of aliasing for a specific input
Figure 5.13: Cycle count reduction/increase when explicitly using IB predictors for predicting indirect branches other than returns. All results are generated with execution-driven simulation and include speculative traffic.
depends on two factors: the mapping employed by the predictor and the branches executed at run-time. The mapping can be static if the PC of the branch is solely used for accessing the BTB. Often, past history is used in conjunction with the branch PC to generate an index. In that case, the mapping is dynamic since the contents of the history register may be different every time the branch has to be predicted. A conflict miss in the BTB accompanied with a correct prediction direction generates a misfetch, which in turn causes the fetch unit to stall. If the penalty imposed by the extra misfetches offsets the savings from correctly predicting indirect branches and reduced aliasing in the BTB, then we observe performance degradation (see edg experiments in Fig. 5.13). In all other cases, indirect branch prediction is beneficial, reducing the total number of cycles by 0.1% to 10%.

In order to further analyze the effects of indirect branch prediction, we plot the dynamic frequency of conditional and indirect branches within the simulated time interval for edg and perl. For each benchmark, we generate four plots for 3 different scenarios. The first includes the base processor configuration while the other two utilize a processor with the PPM predictor and either a conservative or an aggressive fetch unit. The plots present the dynamic frequency of conditional and indirect branches and the number of mispredicted conditional and indirect branches. Each data point is collected within a snapshot that spans 500 clock cycles. The plots illustrate changes in branch frequency and prediction ratio for the duration of the simulation interval. A complete set of plots for edg and perl is listed in Appendix C. Fig. 5.14 shows the misprediction ratios for edg. The left set of plots shows the activity when no indirect branch predictor is present, while the right plot shows what happens when the PPM predictor is employed.

![Figure 5.14: Conditional and Indirect branch misprediction ratio over time for the edg benchmark. The ratios are for the base machine (left side) and a machine using a PPM predictor (right side).](image)
The misprediction ratios for the conditional branches of edg is higher when half of the BTB space is allocated for the PPM predictor. This increase is more severe at the beginning of the execution since more branches are competing for the BTB resources (see dynamic counts of conditional branches for edg in Appendix C). Near the end of the simulation interval, the number of conditional branch mispredictions significantly drops (since less conditional branches are executed). Fig. 5.15 shows the misprediction ratios for perl. The misprediction ratio of conditional branches is not adversely affected by the reduced BTB space. On the other hand, indirect branch mispredictions are eliminated after the predictor is warmed up, and significant performance gains are observed. Fig. 5.16 provides with the evolution of branch dynamic counts over time for edg and perl. As we can observe, edg executes a much larger number of conditional branches over time than perl.

When comparing the results between the conservative and the aggressive fetch unit, performance gains do not always scale with the fetch model. Troff, gcc, perl and eqn display a noticeable increase in performance, but this is not the case with ixx and edg. Ixx and edg seem to achieve similar gains. IB prediction will be beneficial as the fetch unit becomes aggressive because it allows for higher utilization of the available I-cache bandwidth. The amount of this benefit also depends on conditional branch predictor behavior. The more conditional branches are mispredicted, the greater the benefit obtained from correctly predicting indirect branches. Since multiple-block ahead prediction applies more pressure on the conditional branch predictor, the misprediction ratios tend to slightly increase. For example, the total number of mispredictions in the conditional branch predictor rises by 8.0%, 0.6%, 3.2%, 11.7%, 19.0% and 7.0% for edg, ixx, perl, gcc, troff and eqn respectively when multiple block prediction is used (all statistics correspond to a machine with no IB predictor). On the other hand, indirect branch predictor performance appears to improve with multiple block prediction (with the exception of PPM). For troff, gcc, perl and eqn, this leads to better overall performance, while it maintains performance improvement for ixx and edg.

The problem with the lower misprediction ratio of the PPM predictor (with multiple block prediction) lies with its mapping function. When two indirect branches need to be predicted in a single cycle, the selected PHR accesses all components. If a PHR with identical contents is used for both branches, the same entry will be accessed in all components because the PC of the branch does not currently participate in the index generation. As a consequence, a larger number of branches alias in the components and the number of mispredictions may increase up to the point where performance deteriorates (ixx). This situation does not arise in single block prediction because speculative update in the decode stage inserts an additional target in the PHR before the indices for the next indirect branch are created.

The PPM predictor outperforms all other configurations mainly due to its lower misprediction ratios which are plotted in Fig. 5.17. We only list data for the non-aggressive fetch model since our goal is not to elaborate
Figure 5.15: Conditional and Indirect branch misprediction ratio over time for the perl benchmark. The ratios are for the base machine (left side) and a machine using a PPM predictor (right side).

Figure 5.16: Conditional and indirect branch dynamic counts over time for perl (left side) and edg (right side). All results are generated on a base machine (no IB predictor).
on good design choices in the field of multiple-block indirect branch prediction. Actually, the higher misprediction ratios achieved by the PPM predictor indicates the need to allow the PC to participate during the index generation, as described above.

As we can see in Fig. 5.17 the PPM predictor consistently achieves the lowest misprediction ratios, outperforming all other predictors. The BTB configurations suffered from the highest misprediction ratios, sometimes leading to overall performance degradation when compared against the base machine (gcc, troff, eqn). Based on Fig. 5.13, a lower misprediction ratio has a positive impact on overall performance by reducing the cycle penalty due to misfetches. An additional gain comes from reducing negative aliasing in the main BTB when IB prediction is used. For example, in perl, address predictions via the main BTB are heavily influenced by the indirect branches executed for the selected simulation interval. Wrong address predictions in the unified BTB increase only by 1.1% (468,572 extra misfetches) when comparing the base configuration to IB prediction with the PPM algorithm. In edg, the same difference is 9.5% (4,527,411 extra misfetches). The extra overhead is partially offset by the superior performance of the IB predictor, but overall performance still degrades (0.6% for the PPM predictor configuration).

If we look more closely at the performance of each individual IB predictor, we observe the following: the BTB configurations suffer from a large number of mispredictions, since they simply use the previous target to predict the next one. If the branch does not exhibit high temporal locality, the BTB will not capture behavior for this branch. In addition, the mapping function allocates only one target per branch in the BTB. If a branch visits multiple targets, a number of misses will occur because all the targets compete for the same BTB entry. Two-level path-based predictors such as the GAg almost always perform better than a BTB due to their higher accuracy (path-guided prediction). The number of tag mismatches (and eventual misfetches) increases with path-based prediction, since the indexing function allows distinct branches to access the same PHT location. For example in eqn, 721 tag mismatches occur with the GAg, compared to only 174 with the BTB2b predictor. However, tag mismatches always form the minority of mispredictions (with the exception of PPM) and do not adversely influence the effectiveness of the predictor. Again, the numbers of total mispredictions for eqn are 60,316 with the BTB2b predictor and 57,953 with the GAg predictor.

The dual path predictor performs better than the GAg whenever the branches are found to exhibit either short term or long term correlation. In [108], a study on indirect branch correlation highlighted the sensitivity of the Dpath predictor to the selected path lengths. In our experiments the Dpath predictor provided an advantage only in certain cases. One reason is that the path lengths can not be optimal for every application. In addition, interference in the selector counters (the same selector counter is modified by different branches) and in the reduced size PHT components (compared to the PHT components of a GAg configuration) do not always lead to significant improvements for the Dpath predictor.
Figure 5.17: Misprediction ratios of various IB predictors. All results are generated with execution-driven simulation. All predictors are updated speculatively.
The cascade predictor does not provide any significant gains compared to the dual path predictor. In order to investigate this relationship, we measured the number of lookups performed to the different components of the predictor (Table 5.1). We also present (column 6) the number of times the filter was used to make a prediction, but mispredicted. Notice that since the filter is tagless we cannot distinguish between tag and target mispredictions. As we can see, the filter reduces the traffic to the main component and provides us with more correct predictions. This is expected, given the percentage of monomorphic branches in our benchmarks. However, performance does not increase because the working set of indirect branches for the simulated interval is not large enough to stress the Dpath predictor. In [145] we ran all benchmarks to completion, and we found that the cascade predictor lowered misprediction ratios because the main component could not accommodate all branch instances.

<table>
<thead>
<tr>
<th>Program</th>
<th>Predictions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>perl</td>
<td>2,304,171</td>
</tr>
<tr>
<td>gcc</td>
<td>1,690,742</td>
</tr>
<tr>
<td>edg</td>
<td>2,032,334</td>
</tr>
<tr>
<td>troff</td>
<td>987,800</td>
</tr>
<tr>
<td>eqn</td>
<td>329,762</td>
</tr>
<tr>
<td>ixx</td>
<td>1,357,923</td>
</tr>
</tbody>
</table>

Table 5.1: Breakdown of predictions for a Cascaded predictor. The classification includes the total number of lookups (column 2), the number of lookups made the long path (column 3) and the short path component (column 4), the number of filter lookups (column 5) and the number of filter mispredictions (column 6).

The PPM predictor performed the best due to its ability to adjust the path correlation type at run-time, and explore multiple lengths of path correlation. By distributing the same target to multiple components, the predictor increased the target’s lifetime. Table 5.2 classifies the number of mispredictions into tag and target.

Table 5.2 shows that tag mispredictions form a significant portion. It seems that different targets (and their associated indirect branches) have different temporal locality. Some branches are frequently executed inside loops or recursive procedure calls, while some others are either detected infrequently in the instruction stream or their temporal locality is very poor. This distinction is not made explicitly in any other predictor. Hybrid versions such as the Dpath and the Cascade predictors, partition their resources in order to dynamically assign indirect branches to their best component and do not exploit target temporal locality. Path-based predictors or components access a single table, and based on the previous path history, they may store a target in different table locations. The PPM predictor obeys the same principle. However, the path correlation length is fixed, and
Table 5.2: Number of mispredictions for a PPM predictor. Column 2 lists the number of tag mismatches and column 3 includes the number of target mispredictions.

<table>
<thead>
<tr>
<th>Program</th>
<th>Tag</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>perl</td>
<td>49</td>
<td>21,366</td>
</tr>
<tr>
<td>gcc</td>
<td>39,768</td>
<td>208,530</td>
</tr>
<tr>
<td>edg</td>
<td>76,866</td>
<td>235,075</td>
</tr>
<tr>
<td>troff</td>
<td>5,547</td>
<td>86,164</td>
</tr>
<tr>
<td>eqn</td>
<td>9,046</td>
<td>28,040</td>
</tr>
<tr>
<td>ixx</td>
<td>10,038</td>
<td>12,002</td>
</tr>
</tbody>
</table>

if it is not optimal (longer or shorter that it should be), the target will be replaced in the table before it is visited.

Fig. 5.18 displays the average occupancy for the I-fetch queue and the centralized instruction window of the processor configurations with and without indirect branch prediction. Statistics are presented for both fetch models in number of instructions. Again, the af label determines the fetch model. Results are shown for perl and gcc, while the plots for the entire benchmark suite can be found in Appendix D.

Results in Fig. 5.18 show that indirect branch prediction does not have a significant impact on the instruction fetch queue or the instruction window. The only exception is when aliasing in the main BTB is not high enough to offset the effects of IB prediction. Instruction fetch queue occupancy lie in the same levels except for perl where indirect branches form an obstacle in exploring higher degrees of ILP. Higher occupancy is even more noticeable when the aggressive I-fetch unit is employed since the high dynamic frequency of indirect branches and the IB predictor permit a better exploitation of the available I-cache bandwidth. Similar results can be seen for the instruction window.

An additional factor affected by IB prediction is the number of instructions fetched from the wrong path. In a dynamically scheduled, out-of-order processor employing control speculation in the form of branch prediction, instructions are squashed after a branch misprediction is detected. Table 5.3 lists the number of committed (executed) instructions in column 2 (columns 3-9). The amount of wrong path execution introduced by indirect branch prediction is consistently reduced for all applications, including edg, where performance is degraded after applying indirect branch prediction. The number of squashed instructions depends on the number of mispredictions and the number of instructions fetched after a mispredicted branch until the misprediction is detected.

In general, indirect branch prediction allows more indirect branches to be predicted correctly. The behavior in the main BTB is somewhat different. Since less traffic is guided to the BTB, less aliasing occurs. On the other hand, since its capacity has been halved to keep the cost budget fair, more aliasing occurs. Depending
on the strength of each particular phenomenon, we may have an increase or a decrease in the total number of mispredictions. In general, whenever performance improved, the total number of mispredictions has fallen, leading to a smaller amount of mispeculation.

However, in edg, we still observe a small, but consistent, decrease in the number of mispredicted instructions across all indirect branch predictor configurations. Notice that edg is the only benchmark presenting performance degradation when indirect branch prediction is employed. After investigating this issue, we found that 37.1% of indirect branches are mispredicted on the base machine with a unified BTB, while 17.4% of the indirect branches are mispredicted with the PPM predictor, in edg. If we translate that into absolute numbers, the PPM predictor mispredicted 301,789 times, while the unified BTB mispredicted 643,085 times. This significantly reduces the number of mispredicted instructions, but still does not explain the small decrease in
Table 5.3: Number of committed/executed instructions for machines employing IB prediction. The number of committed instructions is presented in column 2 while the number of executed instructions follows in columns 3-9.

mispeculated instructions, since the number of conditional branch mispredictions increased in the machine with indirect branch prediction for edg. The answer probably lies with the wrong paths fetched whenever an indirect branch is mispredicted. Indirect procedure calls transfer control flow to the beginning of procedures. Storing callee saved registers and stack manipulation instructions usually lie in the procedure prologue. Most conditional branches following the procedure prologue are non-taken most of the time, since they often correspond to error checking code. Both of the above factors increase the average number of instructions fetched on an indirect call prediction. Thus, improving indirect branch prediction can reduce the overall speculative instruction count even in the presence of poorer conditional branch accuracy. Notice that predicting direct procedure calls also contributes to speculative traffic. However, direct calls are always taken (no need for outcome prediction) and their target never changes. If the target is recorded in the BTB, the branch will be always correctly predicted.

We also study the effects of speculation via indirect branch prediction on I-cache performance. Speculative execution has both positive and negative effects on I-cache access patterns. It triggers useful prefetches, bringing wrong path instructions closer to the processor, but it may also cause pollution by replacing code that needs to be referenced [104]. Indirect branches tend to access a different cache line most of the time. For example in edg, 94% of indirect branches transfer control flow to another cache line, while 88.6% of conditional branches find their target in the same cache line. This result is expected because indirect procedure calls will access a procedure that most likely starts from a different cache line. Only switch-based jmps may visit a target that lies in the same cache line. This does not happen very often due to their low target locality. Accessing different cache lines does not necessarily lead to lower cache performance. Table 5.4 presents the number of L1 I-cache accesses and misses, expressed in millions of instructions, for all machine configurations.
<table>
<thead>
<tr>
<th>Program</th>
<th>L1 I-cache # of accesses/misses (in M)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base</td>
</tr>
<tr>
<td>perl</td>
<td>365/3.73</td>
</tr>
<tr>
<td>eqn</td>
<td>82/0.61</td>
</tr>
<tr>
<td>ixx</td>
<td>61/0.80</td>
</tr>
</tbody>
</table>

Table 5.4: L1 I-cache number of accesses and misses for a base machine (column 2) and machines employing IB prediction (columns 3-8).

Two conclusions can be drawn. First, the absolute number of I-cache misses does not significantly change when using IB prediction or across different IB predictors. Hence, IB prediction does not seem to hurt I-cache performance due to pollution. Second, the number of I-cache accesses decreases with IB prediction, saving valuable I-cache bandwidth. The difference in the number of I-cache accesses and the number of wrong path instructions is due to the number of instructions that are squashed before being decoded and issued. This number is quite significant for certain benchmarks, such as edg. The remaining savings in cache bandwidth follows the decrease in the amount of mispeculation observed in Table 5.3.

In addition to the experiments for the PPM predictor, we also conduct simulations to test the effectiveness of the replacement policies described in sections 5.4 and 5.5. We modified the replacement policies of the BTB2b, GAg and PPM predictors with the combined TLR/LMT policy presented at the end of section 5.5. All parameters of the three predictors remain the same except for their table size, which was reduced to 1K entries. All simulations model a 6-entry TLR, a tagged 4-way set associative DTBL with 256 sets (since the L1 D-cache has 256 sets) and a direct mapped, tagless LMT with 1024 entries. We compare the misprediction ratios in Table 5.5.

Results in Table 5.5 are mixed. Perl’s mispredictions are hardly affected, because the vast majority of mispredictions comes from target conflicts and not from tag mismatches. In other words, most of the time a misprediction occurs because, although the same branch occupies the entry of the table making the prediction (tag match), the wrong target is stored (target mismatch). The very small number of activated static indirect branches is responsible. Notice that our replacement policy currently focuses only on tag mismatches because we compare the TLR and LMT values between two distinct static indirect branches. A future design could expand both schemes to cover run-time instances of the same branch. That would require recording dynamic instances of branches for the TLR table. The LMT would also necessitate observing dynamic instances of
Table 5.5: Misprediction ratios for IB predictors with LRU (columns 2-4) and TLR/LMT replacement policies (columns 5-7). All results are generated using execution-driven simulation.

<table>
<thead>
<tr>
<th>Program</th>
<th>Misprediction ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LRU policy</td>
</tr>
<tr>
<td></td>
<td>BTB2b</td>
</tr>
<tr>
<td>perl</td>
<td>75.58</td>
</tr>
<tr>
<td>gcc</td>
<td>57.81</td>
</tr>
<tr>
<td>edg</td>
<td>32.09</td>
</tr>
<tr>
<td>troff</td>
<td>14.93</td>
</tr>
<tr>
<td>ixx</td>
<td>4.33</td>
</tr>
</tbody>
</table>

The same dominant phenomenon of target mismatches surfaces on all BTB2b experiments because BTB2b’s suffer from very few tag mispredictions and the new replacement policy has no significant effect. Recall that a BTB2b is indexed by the PC of the branch only. This is not the case with the GAg predictor. Tag mismatches make up a significant portion of the predictor’s performance loss, but our policies do not appear to benefit the predictor. The reason is that by changing the lifetime of branches in the predictor, a number of target mispredictions is eliminated, while a number of tag mispredictions is introduced. The later phenomenon seems to overcome the positive effects of the LMT/TLR policy, leading to a negative overall result. Eqn and ixx present a noticeable improvement with PPM, while the remaining simulations show some degradation on the misprediction ratio. PPM appears to benefit from this policy because it naturally increases the lifetime of individual branch targets by distributing them to multiple locations across its components. Hence, when a branch remains in one component, it may be replaced in another. Overall performance may increase if the TLR/LMT policy manages to properly assign branches. The corresponding cycle counts show similar trends. Overall, we believe that further work is needed in order to adjust the replacement heuristics and better exploit information about the temporal reuse and load tolerance of branches.

In order to distinguish between the features of the TLR/LMT scheme that contribute the most, we measure the number of times this new policy does not displace the old branch in the predictor table. This signifies how much our policy deviates from a true LRU policy that always replaces the old branch (or the one in the LRU entry). Furthermore, we break down these decisions into two groups. One group includes all decisions guided by load tolerance and the other group contains modified decisions activated by temporal frequency. Results are presented in Table 5.6, where columns 2, 5 and 8 list the total sum of replacement decisions made for each
benchmark. The remaining columns present the number of alternative decisions. No results are shown for perl due to their insignificant statistical nature. The numbers for PPM are the sum of replacement decisions over all Markov components.

<table>
<thead>
<tr>
<th>Program</th>
<th>Modified Replacement Decisions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BTB2b</td>
</tr>
<tr>
<td></td>
<td>total</td>
</tr>
<tr>
<td>gcc</td>
<td>789902</td>
</tr>
<tr>
<td>edg</td>
<td>556015</td>
</tr>
<tr>
<td>troff</td>
<td>138801</td>
</tr>
<tr>
<td>eqn</td>
<td>60491</td>
</tr>
<tr>
<td>ixx</td>
<td>51611</td>
</tr>
</tbody>
</table>

Table 5.6: Breakdown of replacement decisions for IB predictors using the TLR/LMT replacement policy. Columns 2, 5 and 8 list the total number of replacement decisions. Columns 3, 6 and 9 present the number of times the TLR/LMT policy deviates from LRU and replaces a branch using the LMT counters. Columns 4, 7 and 10 present the number of times the TLR/LMT policy deviates from LRU and replaces a branch using the TLR counters.

Based on the results of Table 5.6, it is easy to conclude that load tolerance decisions dominate the activity of our scheme. Furthermore, the number of times our policy deviates from LRU is rather small. Decisions based on load tolerance are characterized by the fact that both branches do not seem to have temporal reuse (their TLR counters are both 0). The newly arrived branch has very low load tolerance. This is expected, since a branch that has not been seen in the past (TLR counter equals 0) is highly likely to have its ibload(s) miss in the L1 D-cache when re-referenced. A branch that is already in the predictor generally keeps the data accessed by its ibloads in the cache. The number of times the ib-load misses is shown in columns labeled as ldtol. These cases represent branches that remained in the predictor but their ibloads have already been evicted from the L1 D-cache due to poor temporal locality.

Decisions based on TLR counters relate branches that have some recent temporal reuse. The LRU branch is replaced unless its TLR counter is larger than, or equal to, that of the new branch. This situation corresponds to the following scenario: the branch already in the predictor has been executed a number of times, while the new branch has recently entered the temporal window captured by TLR. If control flow departs from the old branch and remains within the new branch, the decision made by our policy will benefit the prediction scheme in the long run. Otherwise, the hysteresis provided by the TLR counters will slow down the responsiveness of the predictor causing a larger number of tag mispredictions.
5.7 Summary

We have presented the PPM predictor as a new model for predicting values. We have evaluated its potential on the field of indirect branch prediction and showed that how our proposed implementation exploits multiple length path correlation. We have enhanced the original PPM design with run-time selection of path history type. We have also introduced the use of temporal reuse and load tolerance information in indirect branch prediction.

Our results showed that PPM prediction is a viable alternative to a set of other branch predictor strategies. We have also demonstrated that indirect branch prediction can be cost-effective and improve performance under certain conditions. Two crucial factors determining the effectiveness of indirect branch prediction are the relation between the conditional branch working set size and the main BTB size as well as the corresponding relation between the indirect branch working set size and the indirect branch predictor size.
Chapter 6

Conclusions and Future Work

6.1 Contributions

The main contributions of this thesis are the following: First, we have proposed a new model that accurately records temporal procedure interaction using the L1 cache organization. We also described a new algorithm for performing code placement in a memory hierarchy with multiple cache levels. Second, we characterized the behavior of indirect branches and we introduced two new hardware-based methods for improving their predictability. Finally, we have verified that the above techniques can be successfully applied to both procedural and Object-Oriented languages, by using a set of C and C++ programs as our application suite. More specifically, we have made the following contributions:

- A systematic way to measure both the temporal interaction of code modules and the potential of exploiting temporal locality in code reordering through the CMG graph. To the best of our knowledge, only the TRG model [55] uses temporal information for code reordering but works at a coarser level of granularity.

- A set of algorithms that target the minimization of conflict misses in a multi-level cache hierarchy via procedure and/or intraprocedural basic block reordering. Our approach is the first technique published that reorders code modules in a multi-level cache hierarchy with caches of arbitrary size, line size and associativity. It is also the first work combining temporal procedure reordering with intraprocedural basic block reordering.

- A study on indirect branch predictability, entropy, correlation. This work reaches certain conclusions about the expected behavior of indirect branches supported by source code examples.
• Several hardware-based methods for improving indirect branch prediction. We demonstrate the potential of techniques such as variable length path correlation, run-time selection of path correlation type and replacement based on both load tolerance and temporal locality.

• A detailed study on the performance potential and necessity of indirect branch prediction for superscalar machines employing speculative execution.

6.2 Future Research on Code Reordering

There exist many ways that we could improve or extend the work described in code reordering. We should consider ways to optimize shared code such as dynamically linked libraries (DLLs). Since DLLs are utilized by different applications, many times under diametrically opposite scenarios, various profile data streams should be combined in order to uniformly optimize shared code. We could also evaluate the performance of optimized executables via code reordering, in the presence of multiprogramming or multi-threading. Both techniques may stress shared resources, such as the cache hierarchy [154].

Examining the potential of combining cache conscious code reordering and instruction prefetching has shown promising results [84]. More work is needed though to establish the interaction between different prefetching and code reordering techniques. Refining the basic block reordering algorithm to explicitly take into account the activity of a sophisticated hardware based prefetcher, may be beneficial. We can also modify such algorithms to detect paths using techniques such as intraprocedural [100, 90] and interprocedural path profiling [155]. On the other hand, when mapping to multiple caches, prefetching between the L1 and L2 can increase the efficiency of an improved (L1,L2) combined mapping. Accesses that hit in the L2 instead of missing due to code mapping could initiate useful prefetches.

The area of dynamic code placement seems to be an increasingly popular research avenue. As dynamic compilation systems mature, we expect more and more optimizations to be performed entirely or partially at run-time. Code reordering has proven that it can improve performance using past behavior of the application’s most frequently accessed code segments. However, profile-based solutions do not adapt in time when the application changes behavior. The training scenario can not always exercise every code module in a large application. Therefore, dynamic techniques may be needed in the future. Their run-time cost though is still too high. Although procedure placement at run-time is feasible [81, 82], reordering basic blocks is cumbersome and no implementation has been published so far. Even dynamic procedure reordering has not been investigated in depth. Since run-time TRG/CMG construction is unreasonable in terms of time overhead, a new temporal model is necessary to be deployed in a run-time system. Hardware support for code reordering may also be beneficial. Recently, a fast and efficient scheme has been proposed for detecting conflict misses at run-time.
Looking back to our original CMG model, we can modify the way we update CMG edge weights by assigning probabilities to the live cache lines. A live cache line lying at the end of the LRU stack has a smaller probability of causing a conflict miss than the cache line lying at the beginning. We can also define a hybrid model that stands somewhere between the CMG and the TRG. We could define the temporal window size and its replacement policy based on the set of activated cache lines as it is done with the CMG instead of using static procedure sizes as it is done with the TRG. On the other hand, edge weights could be updated as it is suggested in the TRG, by simply incrementing the edge weight by 1 every time two procedures are found to interact inside the temporal window.

Since caches (other than the 1st level) usually handle both instruction and data references, there exists a significant number of conflicts between the two streams. Most of the research on data placement has focused on reorganizing loops and data in a cache-conscious manner to improve the locality and hit ratio of data accesses [157, 158]. Other techniques have promoted intelligent data structure layout and/or variable allocation [159, 160, 161]. However none of the above schemes integrates instruction and data placement in a unified cache level or in main memory.

An additional, but equally important, direction is to combine code reordering for virtually accessed L1 caches with physically indexed L2 caches. When physical addresses access an L2 cache, instruction (and data) mapping in the L2 cache depends on which virtual pages overlap in the cache address space. Compiler-directed page placement and operating system support for page coloring are two methods that can potentially reduce the number of conflicts [162, 163]. Hardware support for either solution can even further improve performance [62, 65].

6.3 Future Research on Indirect Branch Prediction

There are several future avenues of research in the field of indirect branch prediction. First, we could investigate the synergy between an indirect branch predictor and an engine that prefetches ib-loads, similar to the one described in [134]. Early execution of ib-loads can assist branch predictability when prefetching the register value used by the indirect branch to form its target.

An additional approach would be to combine a victim buffer with a DTBL and a TLR register. The victim buffer could hold data accessed by ib-loads when being replaced from the L1 D-cache. Data would enter the victim buffer only when the branches in the DTBL entry appear to be temporally reusable. When the next ib-load executes the victim buffer would be searched, and only if no match is found in the buffer, the L1 D-cache would be accessed. The benefit of this approach would be, not only the reduction of D-cache misses and their...
associated cycle penalty, but also the reduction of indirect branch resolution time.

Furthermore, we can improve the replacement policy introduced in Chapter 5 by recording dynamic instead of static dependencies between ib-loads and indirect branches. The DTBL would store targets of indirect branches therefore linking the target of an ib-load with the branch target. Uniquely identifying a dynamic load requires combining its PC with its target address. The DTBL already stores the load PC in its tag field. Similarly we could store both the branch PC and its target to uniquely identify the branch dynamic instance. The LMT table would be indexed by branch targets and would reflect the load tolerance of a branch instance. Although the amount of aliasing in the LMT would be higher (there are more indirect branch targets than indirect branches), the information would be more accurate. An additional feature could be to add the branch PC to each LMT entry as a tag, in order to identify aliasing between different branch instances.

The TLR structures could also be modified to record the temporal reuse of indirect branch targets. The TLR would essentially become a PHR recording a subset of PIB history since no return instructions would need to feed their targets to the TLR. The TLR table would be indexed by branch targets. An alternative approach would be to record branch or branch target entropy: how many times two branches are interleaved in the dynamic instruction stream or how frequently a branch target changes between two successive executions. One possible implementation would be a two-dimensional bit matrix indexed by branch PCs or branch targets. Branch or target entropy could be useful with small predictor sizes where aliasing is the dominant effect. It could also assist the distribution of branches to the components of a hybrid predictor. For example, if two branches frequently follow each other and map to the same table entry at run-time we could allocate their targets to different components of the predictor.

Load tolerance and temporal reuse information may also be exploited in alternative ways. With the current trend in microprocessor design, high clock frequencies prohibit having complicated, single-cycle access predictor structures. Pipelining and hierarchical prediction are two techniques currently in use to overcome this problem. Complex predictors, whose critical path does not fit in a single pipeline stage, are themselves pipelined. A hierarchy of predictor schemes may also be implemented: a next set predictor in the I-cache at the 1st level [164], a 2-bit BTB in the 2nd level, a hybrid/two-level predictor at the 3rd level, etc. This hierarchy may act as a filter, since not all branches require complex predictor mechanisms to be predicted correctly. Load tolerance information can serve such a filtering role by allowing temporal and low tolerant branches to use the most accurate component or level of prediction only. On the other hand, non-temporal branches with high load tolerance may be serviced from a lower level of the prediction hierarchy. Non-temporal branches with low tolerance could avoid allocating an entry in the most accurate predictor. Temporal branches with high tolerance are those that should flow through the entire hierarchy to obtain the best possible decision.

We can also attempt to design indirect branch predictors with structures similar to the ones described for
value predictors [123, 143, 165]. Likewise, we can examine the potential of using the PPM algorithm in value prediction. Hybrid schemes can also be devised in order to filter run-time constant values, and values that follow stride patterns, from the PPM predictor.

A series of compiler techniques can modify the static and dynamic population of indirect branches, as well as their impact on performance. Some of these include polymorphic call resolution, predication, conditional branch elimination, replacement of series of conditional branches with indirect jumps, dynamic linking with indirect call transformation, etc. Examining their cooperation with hardware-based indirect branch prediction, or comparing their effectiveness against the later, should be another interesting research direction.
Appendix A

The following plots show the mispredictions of ideal, path-based, indirect branch predictors using path lengths of 4, 8 and 12. Results are presented for all 3 classes of indirect branches (virtual function calls, function pointer-based calls and switch-based jumps).
Appendix B

The following plots display the cold-start misprediction ratios of ideal, path-based, indirect branch predictors using path lengths of 4, 8 and 12. Results are presented for all 3 classes of indirect branches (virtual function calls, function pointer-based calls and switch-based jumps).
<table>
<thead>
<tr>
<th></th>
<th>Self</th>
<th>PB</th>
<th>PIB</th>
<th>PCB</th>
</tr>
</thead>
<tbody>
<tr>
<td>troff: MT jmp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>troff: FP jsr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>troff: VF jsr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
bore : MT jmp cold start misprediction ratio and path length

Percentage (%)

Cold start misprediction ratio

bore : FP jsr cold start misprediction ratio and path length

Percentage (%)

Cold start misprediction ratio

bore : VF jsr cold start misprediction ratio and path length

Percentage (%)

Cold start misprediction ratio

porky : MT jmp cold start misprediction ratio and path length

Percentage (%)

Cold start misprediction ratio

porky : FP jsr cold start misprediction ratio and path length

Percentage (%)

Cold start misprediction ratio

porky : VF jsr cold start misprediction ratio and path length

Percentage (%)

Cold start misprediction ratio
<table>
<thead>
<tr>
<th>Percentage (%)</th>
<th>Cold start misprediction ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self</td>
<td>PB</td>
</tr>
<tr>
<td>PIB</td>
<td>PCB</td>
</tr>
</tbody>
</table>

Cold start misprediction ratio and path length

- **eon**: MT jmp
- **eon**: FP jsr
- **eon**: VF jsr
- **ixx**: MT jmp
- **ixx**: FP jsr
- **ixx**: VF jsr

- **Cold start misprediction ratio**
- **Percentage (%)**
- **Self**
- **PB**
- **PIB**
- **PCB**
lcom : MT jmp cold start misprediction ratio and path length

Percentage (%)

Cold start misprediction ratio

Self
PB
PIB
PCB

lcom : FP jsr cold start misprediction ratio and path length

Percentage (%)

Cold start misprediction ratio

Self
PB
PIB
PCB

lcom : VF jsr cold start misprediction ratio and path length

Percentage (%)

Cold start misprediction ratio

Self
PB
PIB
PCB
Appendix C

The following plots present the dynamic count of conditional and indirect branches as well as their mispredicted population. A data point is recorded for every 500 cycles of machine execution time. Data are plotted for the edg and perl benchmarks and correspond to the selected simulation intervals. Both edg and perl were run until 300M of instructions were committed. An additional 350M were executed before statistics were recorded (for perl only). Three different sets of plots are listed for each benchmark. The first one corresponds to the activity of a machine with no indirect branch prediction and the conservative fetch unit described in chapter 5 while the other two utilize the PPM predictor with a conservative or an aggressive fetch unit. More details about the fetch unit models can be found in chapter 5.
Appendix D

The following figures show the average occupancy for the I-fetch queue and the centralized instruction window of the processor configurations with and without indirect branch prediction. Statistics are presented for both fetch models in number of instructions. The \textit{af} acronym signifies an aggressive I-fetch model.
Bibliography

