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Abstract

Hint-Assisted Scheduling on Modern GPUs

by

Xun Gong

Doctor of Philosophy in Electrical and Computer Engineering

Northeastern University, April 2020

Dr. David Kaeli, Advisor

Graphics Processing Units (GPUs) have become an attractive platform for accelerating
challenging applications on a range of platforms, from High-Performance Computing (HPC) to
full-featured smartphones. They can overcome computational barriers in a wide range of data-parallel
kernels. GPUs hide pipeline stalls and memory latency by utilizing efficient thread preemption. As
throughput-oriented processors, GPUs provide tremendous processing power by executing a massive
number of threads in parallel. However, long memory latencies and limited throughput are still major
bottlenecks in GPU applications. Although the cache hierarchy helps to reduce the memory system
pressure, the massive thread-level parallel in GPU applications often causes cache contention. Given
the demands on the memory hierarchy due to the growth in the number of compute cores on-chip,
hiding memory stalls has become increasingly challenging.

Prior studies have explored a smarter warp scheduler to help GPU achieve peak perfor-
mance, alleviating the stalls caused by long memory latencies. Most of these efforts have explored
hardware-based warp schedulers solutions. hardware approach. In this thesis we take a different
approach, developing a hardware/software co-designed warp scheduling strategy. Our scheduler
selects independent instructions that are in the shadow of a long latency memory operation and exe-
cutes them out-of-order when all warps are stalled due to memory system saturation. By introducing
software-based scheduling hints provided by the programmer or compiler, our scheduler will make
smarter scheduling decisions that will improve GPU performance.

To properly study the benefits of our novel hint-assisted warp scheduler, we need an
accurate GPU simulation framework that supports GPU timing simulation. We have develop a
cycle-accurate simulation framework that supports native execution of CUDA programs at the SASS
(the GPU binary) level for the NVIDIA Kepler architecture. We have also developed a customized
CUDA driver and runtime APIs, as well as GPU drivers to support simulation.
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Chapter 1

Introduction

Over the past four decades, successive generations of microprocessors have been able

to achieve faster clock speeds by exploiting Moore’s Law, following the trend of CMOS scaling.

Unfortunately, the top speed for today’s microprocessors has peaked due to the exponential growth

in power density of a single chip, commonly referred to as the power wall. Because of this trend, we

have seen major shifts in processor architecture design over the past decade. Instead of continually

scaling the clock speed of a single core central processing unit (CPU), multi-core architectures now

dominate the commodity CPU market, dominated by ARM, Intel and AMD.

Given the rapid growth of scientific and engineering applications, where our inability to

process massive datasets efficiently limits the rate of discovery, we need to move beyond current CPU-

based platforms. Emerging applications include deep learning, autonomous navigation, computational

chemistry, weather/climate modeling, and artificial intelligence for public good [43]. Faced with

exponential growth in terms of the scale of the data to be processed, the performance gains of

multi-core CPUs can not begin to meet the computational demands of these workloads.

Many researchers and industry leaders have proposed moving to heterogeneous system

designs, where special-purpose accelerators, including graphic processing units (GPUs) and tensor

processing units (TPUs) can work together with a multi-core CPU to offload compute intensive

workload.

1.1 Growth of the GPU Market

GPUs have been used to accelerate a wide range of general-purpose applications. The

range of applications include high performance computing (HPC) to full-feature smart phones. More

than 128 systems appearing in the 2018 TOP500 of the fatest supercomputers in the world are

1



CHAPTER 1. INTRODUCTION

equipped with AMD and NVIDIA GPUs as accelerators. GPUs have thousands of processing cores

on chip, making them the platform of choice for accelerating dense matrix operations, neural network

training and machine learning algorithms, as well as many other applications.

GPUs were originally designed render 3D graphics, though they have emerged to be both

outstanding rendering engines for the gaming market, and high performance accelerators for a wide

range of markets. Unlike many CPU applications, graphics workloads are much more sensitive

to the overall throughput versus single-thread performance. As a result, GPUs are designed to be

throughput sensitive, versus CPUs, which are latency sensitive.

To take full advantage of the massive parallel processing power of a GPU, Nvidia released

its Compute Unified Device Architecture (CUDA) [48] development framework in 2007, the earliest

widely used programming model for GPU compute applications. Two years later, Open Computing

Language (OpenCL) [38] was developed and was widely supported by industry leaders including

Apple, Intel and AMD. Compared to CUDA, a key feature of OpenCL is portability, supported by

a variety of heterogeneous platforms such as digital signal processors (DSPs), field-programmable

gate arrays (FPGAs) and GPUs.

In addition to CUDA and OpenCL programming frameworks, additional APIs and pro-

gramming models have been developed to support general purpose computing on GPUs (GPGPU).

The DirectCompute API [41] was developed by Microsoft to support GPU compute applications

on Microsoft Windows Vista, Windows 7 and later versions. DirectCompute is part of Microsoft

DirectX APIs and was initially released with DirectX 11 [32]. Nvidia worked with The Portland

Group (PGI) to develop a CUDA Fortran Compiler which supports Fortran compilation on Nvidia’s

CUDA-enabled GPUs. This support was released in 2010 and now supports Linux, Windows and

MacOS. OpenACC [73] is a directive-based programming model developed by Cray, CAPS, PGI

and Nvidia. It is designed to provide a simple yet powerful approach for parallel GPU compute

programming without significant programming effort.

In addition, GPU-accelerated libraries have been developed to provide programmers with

highly optimized implementations of commonly used algorithms to speed up their development.

GPU-accelerated libraries for signal processing, linear algebra, image and video processing include:

cuFFT, cuBLAS and cuRAND [44]. These libraries are widely used in compute-intensive applications

supporting a acceleration across a range of fields including computational chemistry, modecular

dynamics and signal processing.

Given the growing support for GPU compute, researchers have muliple choices on the best

way to accelerate their application using a GPU. Figure 1.1 shows three commonly used methods to

accelerate applications on a GPU. The first leverages accelerated libraries, commonly referred to

2



CHAPTER 1. INTRODUCTION

Figure 1.1: Different ways to accelerate demanding applications.

as drop-in acceleration, where programmers use libraries to execute parallel computing functions

without in-depth knowledge of GPU programming[44].

Programmers can utilize compiler directives, a strategy supported on OpenACC [73]. This

provides programmers with a easy way to develop applications that maximize performance and power

efficiency benefits of heterogeneous system. Compared to parallel programming languages such as

CUDA [48] and OpenCL [38], compiler directives are much easier for people to learn. Developers

can write their algorithms sequentially and introduce directives to exploit any parallelism present in

the algorithm. The programmer gives the compiler hints to turn on parallelism.

Parallel programming languages such as OpenCL [38] and CUDA [48], provide a third

approach to accelerating applications with a GPU. Many times it can be challenging to implement

a high-performance application in a parallel language. The major benefits of using OpenCL and

CUDA is that, equipped with low-level APIs provided by GPU vendors, programmers have more

control over the code and can maximize performance across different architectures.

3



CHAPTER 1. INTRODUCTION

1.2 GPU Computing Model

CPUs and GPUs represent two different design philosophies when it comes to architecture.

CPUs are latency-oriented architectures that use large caches, branch prediction and complicated

control logic to avoid stalls during execution. In contrast, GPUs are throughput-oriented systems

that execute arithmetic operations and memory accesses concurrently on many data elements. GPUs

do not provide complicated control flow logic. Instead, the GPU architecture is optimized to hide

latency by providing massive parallelism and fast thread switching.

GPUs are designed to work as CPU co-processors to accelerate computation. The GPU is

used to offload highly parallel and time consuming computation from the CPU, freeing up the CPU

to process the remainder of the application. To achieve massive parallelism, GPUs adopt a Single

Instruction Multiple Thread (SIMT) [31] programming model. To make best use of this programming

model, today’s GPUs are supported by a number of programming frameworks including OpenCL

[38], CUDA [48] and HSA [27]. In this thesis, we will be targeting CUDA as run on an Nvidia GPU,

so will use CUDA terminology.

A instances of a CUDA kernel is called a thread. Functions executed on a CUDA device

are called kernels, which are organized in thread blocks. Multiple thread blocks are combined to

for a grid of threads. When a kernel is called, N copies of the kernel are executed in parallel by N

different CUDA threads. The threads executing the same instruction are grouped into a fixed sized

batch, called a warp (NVIDIA) or a wavefront (AMD). All threads in the same warp share the same

program counter and execute the same instruction.

1.3 Resource Underutilization

To achieve double-digit speedups on a variety of applications, GPUs exploit Thread-Level

Parallelism (TLP). Parallelism must be exposed by the programmer using one of two different

approaches. Recall that GPUs adopt a SIMT [31] execution model. A warp of 32 threads are grouped

to execute together, similar to an OpenCL wavefront. They execute the same instruction on multiple

execution lanes. Second, GPUs execute many warps concurrently on a single processing unit. When

one warp is stalled, the warp can be preempted by the warp scheduler, allowing a new warp to

execute. A large portion of GPU die area is dedicated to execution units to support a high degree

of concurrency. Execution lanes on a GPU use in-order processing pipelines and do not perform

branch prediction. A hardware scheduler can hide latencies associated a blocked thread by swapping

threads. Threads can get blocked due to data dependencies and branch divergence. The impacts of

these disruptions can be reduced or avoided by swapping computation to non-blocked warps.

4
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However, even equipped with the mechanisms available that are designed to hide latencies,

GPU resources remain frequently underutilized. For example, when a memory-intensive workload

needs to load a block of data from off-chip DRAM, many threads compete for the avaiable memory

bandwidth to DRAM, saturating the memory interconnect, stalling all warps until memory depen-

dencies can be resolved. In this thesis, we propose and evaluate different techniques to utilize GPU

resources more efficiently, especially for memory intensive workloads.

1.4 Motivation of this thesis

The warp scheduler on modern GPUs can swap warps that are stalled, when faced with

a data dependency. However, one of the biggest challenges which prevents GPUs to achieve peak

performance is the effective utilization of computation resources. When a memory intensive workload

needs to load a block of data from off-chip DRAM, many threads compete for DRAM bandwith,

saturating the memory interconnect. When we encounter this situation, a new memory request cannot

be serviced until the older memory requests complete. Since memory requests are not pipelined,

the warp scheduler can not hide most of the latency associated with these memory operations by

swapping in runnable warps. As a result, warps will stall on instructions that depend on long latency

memory instructions. The number of active warps will decrease as more warps hit the stall point.

Eventually, all the warps will stall and wait until the long latency memory load is resolved.

Figure 1.2 shows the breakdown of scheduling cycles for 6 workloads. The portion of the

stacked bars identified as Issued denotes that at least one warp in the GPU is eligible to be issued.

The Long Latency Stall portion shows that all warps in GPU are stalled due to a long latency memory

operation. Mixed Stall denotes that no warps can be issued in that cycle, which may be due to a

variety of reasons (e.g., there is no available instruction in the fetch buffer, the pipeline is busy, a data

dependency has occurred, etc.). In Figure 1.2, we can see that the fraction of long latency operation

stalls in 4 out of 6 of our benchmarks is around, or more than, 25%. We classify these applications as

memory intensive benchmarks. In three of these workloads, long latency stalls dominate over 30%

of the execution. We classify the other two workloads as non-memory intensive, since less than 10%

of their execution is dominated by long latency stalls.

For both memory intensive and non-memory intensive benchmarks, a large percentage

of the total execution cycles (more than 50%) are spent waiting on different kinds of stalls. This

trend is especially noticable in the memory intensive benchmarks, where the total stall cycles of

some benchmarks consume more than 70% of the total cycles. How can we better utilize the GPU

computing resources? We need to reduce the impact of long latency operation stall by leveraging
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intelligent scheduling.

Figure 1.2: Breakdown of scheduling cycles.

The warp scheduler present in a GPUs Streaming Multiprocessor (SM) plays a pivotal role

in achieving high performance for GPU applications, specifically by distributing hardware resources

to different warps when the GPU stalls. Previous studies [28, 40, 37, 14, 30] developed different

warp scheduling algorithms to improve GPU performance. However, all of these efforts focused on

a pure hardware-based approach for the warp scheduler. Designing an effective warp scheduler in

a hardware/software co-design approach has not been studied extensively on GPUs. In this thesis,

we pursue an approach uses both hardware and software to increase GPU resource utilization and

improve overall performance. We propose the following mechanisms:

1. Execute instructions in a selective out-of-order fashion in order to keep GPU computing

resource busy whenever there is a long latency memory stall.

2. Assign thread blocks which have high spatial locality to execute on the same Streaming

Multiprocessor - utilizing better warp scheduling to co-schedule warps that use the same data.
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1.5 Challenges

1.5.1 Lack of GPU Simulation Framework

Modern computer architecture continue to grow in complexity, making them more chal-

lenging to evaluate. Simulation frameworks provide researchers and computer architects the ability to

quantitatively evaluate architectural designs and evaluate design trade-offs. In general, architectural

simulators [7] can be divided into two categories: i.) functional simulators and ii.) timing simulators.

Functional simulators can accurately execute a program, simulating the functional aspects of the

underlying architecture, but provide no timing information.

Timing simulators implement all of the hardware components and microarchitectural

details, providing cycle-accurate timing information. Timing simulators capture detailed interactions

between the compute pipelines and memory system. The typically take much longer time to execute

as compared to a functional simulator, since a timing simulation must provide both functional

accuracy, as well as timing accuracy.

To better analyze GPU performance and program behaviour, and to consider both hardware

and software enhancements, a cycle-accurate GPU simulator is needed. However, only a limited

number of open-source cycle-based GPU simulators have been developed in the academic research

community. Prior to this thesis, there was no cycle-accurate open-source simulation framework that

runs NVIDIA SASS-level (i.e., the executable binary level) executino. One key reason for this is that

NVIDIA is highly proprietary about their instruction set architecture (ISA), driver information and

architectural details. The lack of public information dramatically increases the burden on researchers

that want to study GPU architecture. Developing such a simulator requires a significant investment in

time and reverse-engineering to work out each instruction implementation, hardware timings, driver

APIs and other hardware details.

This leads to our first challenge on developing a more advanced warp scheduling algorithm

on GPU. Researchers cannot study GPU performance and analyze architectural details because of

the lack of a simulation framework. To address this issue, in this thesis, we present Multi2Sim

Kepler [16], a GPU simulation framework that support Nvidia SASS code execution. Equipped

with this simulator, we can evaluate performance and tradeoffs when targeting the Nvidia Kepler

architecture [46]. Multi2Sim [67] is a framework developed by Ubal et al., that can simulate both

a number of CPU and GPU architectures. The work developed in this thesis supports a new ISA

(Kepler) and a new programming framework (CUDA).
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1.5.2 Lack of Control Logic

The performance of modern processors still suffers from the memory wall [35] and branch

penalties. One way to alleviate this problem is to introduce instruction hints to increase the cache hit

rate and decrease the branch misprediction rate. In some power-efficient processor models, architects

elected to remove the hardware branch predictor and use a software branch hint to recover the lost

performance. This was realized in the IBM’s Cell Synergistic Processing Units [21]. When using

software branch hints, hint instructions are inserted in the application, specifying that the branch

instructions located at a specific PC address will jump to a specific target address. The processor will

start to speculatively execute target instructions after executing a hint instruction, when the specified

branch instruction is still in flight.

Compared with a CPU, a GPU is power-efficient and throughput-oriented processor.

GPUs do not implement complicated control logic, such as branch predictor or reservation stations.

Whenever a warp encounters a stall due to a data or control dependency, the warp has to wait until

the dependency is resolved in order before continuing execution. Instructions cannot execute in

out-of-order to bybass the stall and hide the performance penalty associated with the dependency.

Since there are tens of thousands of threads running on the GPU simultaneous, it is impossible to

add complex control logic while still maintaining the power efficiency on the GPU. This leads to

our second challenge, GPUs lack sophisticated control logic to allow a warp to remain active when

encountering long latency stalls.

To address this issue, our approach for GPUs is inspired by previous work applied to CPUs.

We can introduce hints during complication to distribute thread blocks and schedule warps to better

utilize GPU computing resources and improve application performance. We provide a compiler

pass to analyze and mark the instructions that are independent of long latency memory instructions.

These instructions are in the shadow of memory instructions. We design a compiler-generated hint

that encodes this information and embeds it into the instruction stream. Based on these hints, the

warp scheduler can choose to issue independent instructions and execute them out-of-order when all

warps are stalled due to memory system saturation. The goal is to keep GPU resource utilization

high, while allowing programs to execute past dependencies. Unlike CPUs, which use techniques

such as reservation stations [66] and reorder buffers [26] to support out-of-order execution, it would

be costly to replicate hardware components on a GPU, given that there could be hundreds of warps

executing concurrently. Instead, Hint-Assisted Warp Scheduler (HAWS) uses hints provided by the

compiler to schedule and execute instructions in a selective, out-of-order, fashion. HAWS executes

non-speculative instructions and schedules warps based on the scheduling algorithm we choose

(round-robin, GTO, etc.). When all warps stall because of long latency memory operations, HAWS
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triggers our hint-assisted scheduler, which will only fetch and execute the instructions that are

independent from the long latency memory operation. We describe the details in Chapter 5.

1.5.3 Intensive Memory Contention in GPUs

As discussed earlier in this thesis, a GPU is only partially tolerant of memory delays.

Whenever a warp generates a memory request, other warps also likely make memory requests

in close time proximity. When thousands of memory requests compete for the limited memory

bandwidth, this will increase the time required to fulfill those requests. GPU memory resources

are not designed to handle this scale of parallelism in the memory system. This leads to our third

challenge, addressing he need to achieve high resource utilization on a GPU.

To alleviate this problem, we have designed scheduling hints to exploit the spatial locality

among different warps. For workloads such as matrix multiplication, which is a commonly used

operation in machine learning and scientific applications, the memory reference pattern exhibits high

spatial locality, especially across adjacent thread blocks and warps. We propose and design additional

scheduling hints to provide detailed information which can be used by a warp scheduler to exploit

any spatial locality inherent in a workload. For the adjacent thread blocks, the CTA scheduler will

assign them to the same SM, versus distributing them to different SMs, in a round-robin fashion. For

the warps which share high spatial locality, but are in different thread blocks, the warp scheduler will

assign them to the same group to execute together according to the scheduling hints. This scheme

can make better use of the available memory bandwidth. The details of this design are presented in

Chapter 6.

1.6 Contributions of This Thesis

In this thesis, we pursue a hardware/software co-design approach to design a novelty warp

scheduler to improve the utilization of GPU hardware resources and reduce memory contention. The

key contributions are summarized below:

• We reverse engineer the Kepler GPU ISA, microarchitecture, memory hierarchy, as well as

driver and runtime information.

• We identify and analyze the importance of running GPU simulation at the native SASS level

and evaluate the difference between simulating at a higher intermediate language (PTX) level

versus working at a SASS binary level.
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• We develop a cycle-based GPU simulator based on the Nvidia Kepler architecture and demon-

strate its accuracy as compared to execution on the real GPU hardware.

• Leveraging our simulator, we characterize a rich set of workloads to identify the sources of

GPU resource underutilization.

• We implement a hinted-assisted warp scheduler in our simulation framework and show how it

can improve GPU performance. We design a novel hint encoding format to embed the hint in

the SASS instructions. We have proposed a novel warp scheduling algorithm named HAWS,

which uses GPU resources more efficiently and can hide long latency memory operations.

• We analyze a broad set of benchmarks and find high degrees of spatial locality across adjacent

thread blocks in some benchmarks. We classify these benchmarks and demonstrate we can

better utilize spatial locality and reduce memory pressure using better thread block scheduling

techniques.

• We develop a novel hint-assisted locality-aware warp scheduler to utilize this pattern and

improve application performance. For different classifications of benchmarks, we design

scheduling hints to group those warps and execute them together to fully enjoy the benefits of

spatial locality and reduce memory bandwidth demands.

1.7 Organization of Thesis

The rest of this thesis is organized as follows. Chapter 2 presents background informa-

tion on general-purpose computing on GPUs, GPU architecture, and details on the GPU memory

hierarchy and performance. Chapter 3 presents prior work that addresses how to hide main memory

access latency to improve GPU application performance. We describe the details of our simulation

framework in Chapter 4. The hint-assisted warp scheduler is described in Chapter 5. We present

hint-assisted locality-aware scheduling in Chapter 6. Finally, in Chapter 7, we conclude the thesis

and discuss directions for future work on this topic.
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Background

2.1 History of GPU computing

Computation on a GPU was first introduced by providing programmable shaders. In

2001, both OpenGL [74] and DirectX [32] added support for programmable shaders to give game

developers and designers more space to create custom graphics effects. Graphics artists can now

render their graphics by writing programs that execute directly on the GPU. Soon after, researchers

discovered that GPUs are a good fit for many classes of data-parallel high performance computations

in graphics applications, which motivated research into accelerating non-graphics applications on

GPUs. At the beginning of GPU computing, a variety of high performance computing algorithms

were ported from a CPU to a GPU, using high-level shading languages such as OpenGL and DirectX.

Applications, including linear algebra, financial modeling, database queries, and image processing,

have all achieved speedup when mapped to a GPU.

However, porting these general purpose applications from CPUs to GPUs, when leveraging

a graphics programming language, can be very timing consuming and complicated for multiple

reasons. First, computational algorithms need to be expressed in terms of textures, vertex coordinates,

and shader programs, significantly increasing programming complexity. Second, programmers

needed to have both a comprehensive knowledge of the GPU architecture and graphics APIs. Fur-

thermore, the lack of double-precision and limitations on random memory access support restricted

the type of applications that could be run on GPU.

To address these issues, GPU vendors started to explore general purpose computing on

GPUs. CUDA [48] and OpenCL [38] were introduced by Nvidia and the Khronos Group in late

2000s. With the introduction of new general purpose programming models, programmers were no

longer tied to using a graphics APIs, enabling them to focus on application performance and shorter
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development cycles.

Researchers from different domains started to use GPUs to accelerate applications. Medical

imaging was one of the first applications to take advantage of a GPU’s massive compute power.

Mueller et.al [75] implemented cone-beam computed tomography(CBCT) algorithm in CUDA.

They achieved a 500X speedup over the CPU implementation by using an NVIDIA GTX 8800

GPU. Sorensen et.al [64] demonstrated the use of a GPU in signal processing. They implemented a

parallel Nonequi-spaced Fast Fourier Rransform (NFFT) on GPU, achieving a 85X speedup versus

running on a state-of-the-art CPU. In bioinformatics, Schatz et.al [61] designed MUMmerGPU, an

open-source high-throughput parallel pairwise local sequence alignment program. They achieved

10-fold speedup over a highly optimized serial CPU version of sequence alignment code.

2.2 GPU Evolution

As problem sizes have continued to grow, GPU vendors keep introducing more powerful

architectures to fulfill the growing demands for both computation and energy efficiency. They

integrate more transistors in a single die area to make GPUs have more computing power. Table 2.1

shows the parameters of the most recent five generations of NVIDIA GPUs. From Fermi [45]

architecture to Volta [51] architecture, for a single GPU, we can see that the number of single-

precision float point (FP32) CUDA cores has greatly increased, as well as double precision float point

(FP64) CUDA cores, peak FP32 trillion floating-point operations per second (TFLOPS), and the total

number of transistors. From Fermi to Kepler [46], the most significant upgrade we the number of

FP32 CUDA cores per GPU, which is increased to 2880 [46], 6.4 times the amount in Fermi. The

reason NVIDIA has managed to integrate so many cores onto a single die is that Kepler is the first

chip produced on a smaller 28 nm process as compared to the 40 nm process in Fermi. Maxwell [47]

adopted the same 28 nm process as did Kepler, so there is a limited increase in FP32 CUDA cores

per GPU from Kepler to Maxwell. From Maxwell to Volta, the number of total transistors per GPU

grew. The total number of transistors in Pascal [50] is almost double that in Maxwell. In Volta, this

number is increased by 40% compared to Pascal, reaching 21.1 billion per GPU. The number of

cores in the GV100 [51] almost doubles that in the GK180. As shown in the table, the peak FP32

TFLOPS for the GV100 is 2.6 times as high as for the GK180.

In the Fermi architecture, each SM contains 32 FP32 CUDA cores [45], which is 4X

over the previous generation GT200. There are two warp schedulers, and each of them feeding the

dispatch unit. Fermi’s dual warp scheduler selects instructions from two different warps each cycle

and dispatches one instruction from each warp to a group of 16 FP32 CUDA cores, 16 load/store
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Architecture Fermi Kepler Maxwell Pascal Volta
Release year 2009 2012 2014 2016 2017
Model GF100 GK180 GM200 GP100 GV100
FP32 CUDA Cores / GPU 448 2880 3072 3584 5120
FP64 CUDA Cores / GPU N/A 960 96 1792 2560
Peak FP32 TFLOPS 1.03 6 6.8 10.6 15.7
Transistors (billion) 3 7.1 8 15.3 21.1
GPU Die Size (mm2) 529 551 601 610 815

Table 2.1: Comparison between recent 5 different NVIDIA GPU architectures.

Architecture Fermi Kepler Maxwell Pascal Volta
Release year 2009 2012 2014 2016 2017
FP32 CUDA Cores / SM 32 192 128 64 64
FP64 CUDA Cores / SM NA 64 4 32 32
Tensore Cores / SM NA NA NA NA 8
Register File size / SM (KB) 128 256 256 256 256
Warp Schedulers / SM 2 4 4 4 4
Dispatch Units / SM 2 8 8 8 4
Load / Store Units / SM 16 32 32 32 32
Special Function Units / SM 4 32 32 32 4

Table 2.2: Comparison between the 5 most recent NVIDIA SM architectures.

units, or 4 special functional units (SFUs). It takes two consecutive cycles to issue each FP32

instruction since 32 threads are running on 16 FP32 CUDA cores. In Kepler, each SM has 192 FP32

CUDA cores and four warp schedulers, which allows four warps can be issued every cycle [46].

Each warp scheduler is grouped with two dispatch units, issuing two independent instructions from

the same warp simultaneously. Unlike Fermi, each FP32 instruction is executed on 32 cores, so it

only takes one cycle to issue. SMs in Kepler also features FP64 CUDA cores to improve double

precision performance. In Maxwell, NVIDIA integrated several improvements to further reduce

redundant scheduling decisions to enhance power efficiency. Compared to the 192 FP32 CUDA

cores per SM (a non power of 2 organization design) in Kepler, each SM in the Maxwell features 128

FP32 CUDA cores. They are partitioned into four different 32 FP32 CUDA core processing blocks,

each has dedicated scheduling resources including a warp scheduler and dispatch unit [47]. In Pascal,

each SM is integrated with 64 FP32 CUDA cores, half the total number of FP32 CUDA cores as

Maxwell. The number of FP64 CUDA cores in Pascal is increased to 32 per SM from 4 in Maxwell,

significantly increasing the chip’s ability to handle double-precision arithmetic, which is the core part

of many HPC applications such as artificial intelligence, linear algebra, and computational chemistry.

Similar to Pascal, the SM in Volta also features 64 FP32 CUDA cores and 32 FP64 CUDA cores.
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However, SM in Volta adopts a different partitioning method to improve the overall performance and

resource utilization. In Pascal, the SM is separated into two processing blocks while the SM in Volta

is partitioned into four processing blocks. Another signficicant update in Volta is that each SM is

equipped with eight tensor cores [51], where each can perform 64 floating point FMA operations per

clock cycle. Tensor cores deliver up to 12X higher peak TFLOPS in FP32 operations and 6X higher

peak TFLOPS in standard FP16 operations, as compared to Pascal P100.

2.3 SIMT Programming Model

The Single Instruction Multiple Thread (SIMT) programming model is the execution model

used in modern GPUs and is supported by several programming frameworks including OpenCL [38],

CUDA [48] and HSA [27]. In this thesis, we will be targeting CUDA as run on an NVIDIA GPU, so

will use CUDA terminology.

Figure 2.1 provides an overview of the execution element hierarchy defined in CUDA.

Functions executed on a CUDA device are called kernels, which specify a grid. When a kernel is

called, N copies of the kernel are executed in parallel by N different CUDA threads. An instance of

a CUDA kernel is called a thread. A warp of 32 threads is grouped to run together, similar to an

OpenCL wavefront. All threads in the same warp share the same program counter and execute the

same instruction.

A cooperative thread array (CTA) or thread block consists of several warps. All threads

in the same CTA have two basic properties: i.) within a single CTA, threads can perform efficient

synchronization operations, and ii.) threads within the same CTA can share data through a low-latency

shared memory. All CTAs from the same grid share a common global memory.

Figure 2.1: The CUDA Programming Model.
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Figure 2.2 presents an overview of a typical GPU architecture. The GPU organization

includes a giga-thread engine (thread block scheduler), a collection of Streaming Multiprocessors

(SMs) and a memory hierarchy. The thread block scheduler processes the grid and maps waiting

thread blocks onto the available SMs. Once a thread block is assigned to an SM, it remains in the SM

until its execution completes. Resources, such as registers and shared memory, are not freed until the

thread block finishes execution. Multiple thread blocks can be assigned to a single SM if there are

available resources.

Figure 2.2: A typical GPU architecture.

CUDA defines the concept of a warp as a group of 32 threads executing in SIMT fashion.

Each instruction is executed concurrently by every thread comprising a warp, although each thread

has its data for computation. This model simplifies the instruction fetch hardware by implementing a
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common front-end for a whole warp. On every cycle, the SMs front-end fetches instructions from

instruction memory for the different warps and sends them to the appropriate execution unit. For

example, in the NVIDIA Kepler microarchitecture, each SM front-end features four warp schedulers

and eight instruction dispatch units, allowing four warps to be issued and executed concurrently.

When a warp is stalled due to a long latency memory operation or other reasons, the warp scheduler

can quickly switch and issue another warp to hide the latency.

As hundreds of thousands of threads are launched on GPUs, the scheduling of the threads

can have a significant impact on the overall performance. To increase the performance, people need

to consider how to distribute the thread blocks to SMs and schedule the warps to utilize the hardware

resources better. An efficient warp scheduler can either improve resource utilization or hide the

impact of long memory latency operations, keeping the GPU computing resources as busy as they

can.

2.4 GPU Architecture

2.4.1 Steaming Multiprocessor Architecuture

A GPU is comprised of multiple SMs. During execution time, an SM can have one or

more thread blocks allocated. These thread blocks are split into warps, which are assigned to SMs

that execute threads. SMs are identical, with the major units and organization provided in described

in Chapter 2.3. The warp scheduler is responsible for picking up available warps from the warp

pool to execute every cycle. Since hundreds of warps are running on the same SM simultaneously,

effective scheduling should try to hide memory latency, improving application performance. On

every cycle, the SM front-end fetches instructions from instruction memory for the different warps

and sends them to the processing cores. Each SM has tens or hundreds of processing cores (also

called CUDA cores by NVIDIA). For example, in the Kepler architecture, there are 64 cores per

SM. In the Maxwell architecture, there are 128 cores per SM. There are several types of processing

cores, such as single-precision units (SPU/FP32), double-precision units (DPU/FP64), and SFUs.

Each type of unit executes the corresponding arithmetic operations. The load/store units service all

memory-related instructions.

2.4.2 GPU Memory Hierarchy

The GPU memory hierarchy is a bit complicated since it includes shared memory, texture

memroy and constant memory, each with different characteristics including access latency, access

scope and read-write access. By properly leveraging the GPU memory hierarchy, the programmer
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Figure 2.3: A typical SM architecture.

can reap better performance. It become critical for GPU programmers to understand the GPU’s

memory hierarchy in order to achieve better performance. Previous studies have explore how best to

leverage the GPU’s memory hierarchy [65], [60], [77], [8]. For example, on a GeForce 8800 GTX

GPU, magnetic resonance imaging (MRI) can achieve 18.6 GFLOPS by using constant memory

to reduce the average memory access time. Compared with the global memory version, utilizing
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constant memory can provide a 4X speedup [65]. Zhao et al. implemented G-BLASTN, which can

achieve a 14.8x speedup, just by balancing shared and texture memory usage, as compared with the

sequential NCBI-BLAST [77].

The on-chip GPU memory hierarchy is illustrated in Chapter 2.3. The hierarchy consists of

a register file, L1 cache, shared memory, texture cache, and constant cache. The register file provides

the fastest access in the memory hierarchy, which is private to each CUDA thread. In ithe Fermi

architecture, the number of registers that can be accessed by a CUDA thread is 63 [45]. This number

has been quadrupled in Kepler architecture, allowing each thread to access up to 255 registers [46]

and is kept the same in the latest Volta architecture [51]. The number of registers used per thread is

determined by the programmer and the compiler for GPUs. Since the total size of the register file is

limited, the fewer registers each thread uses, the more threads can be launched simultaneously in a

single SM.

Shared memory is another critical part of the GPU memory hierarchy. Since it is on-chip

memory, shared memory is much faster and has much lower access latency as compared to the global

memory. Shared memory is allocated per thread block, so any data stored in shared memory is visible

to all threads in the same block. In other words, a thread can access data in shared memory, which

is loaded by other threads from global memory if they are in the same thread block. To achieve

high memory bandwidth, shared memory is separated into memory bank, allowing simultaneous

memory accesses across different banks. When there are multiple memory accesses mapped to the

same bank from different threads, the accesses will be serialized due to contention in the memory

bank. An exception is when all threads in a warp access the same shared memory address. In this

case, a broadcast will occur instead of serialized access, avoiding the penalty of bank contention.

The number of banks in shared memory is 16 for devices whose compute capability is

1.x. In this case, a shared memory request from a warp will be split into two consecutive cycles.

For the Fermi architecture, the number of banks in shared memory is 32, which allows a warp to

access shared memory within a single cycle. Starting with the Kepler architecture, programmers are

allowed to use the CUDA API to configure the bank size to avoid shared memory bank conflicts.

Also starting with the Kepler architecture, the on-chip memory in the SM can be partitioned between

L1 cache and shared memory. Programmers can use the CUDA API to configure the shared memory

size to improve the application performance.

The constant cache is a read-only cache for the SM to store data that does not change

during kernel execution. Constant cache can broadcast the required data when all the threads in a

warp access the same address, which reduces the required memory bandwidth significantly. Similar

to constant cache, texture cache is also a read-only cache. NVIDIA initially designed texture memory
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for graphics rendering pipelines. It is beneficial when the memory access pattern in the kernel

exhibits high spatial locality. The data in texture memory is cached in texture cache, which can

reduce a lot of memory traffic and improve the overall performance.

2.5 Warp Scheduling

2.5.1 Scheduling Algorithms

Scheduling techniques play a vital role in improving GPU performance. For many GPU

applications, hardware resources are not efficiently used, resulting in degradation of performance.

One significant problem programmers try to address by using different scheduling techniques is to

hide the impact of long latency memory instructions to improve overall performance. When there is

a large number of memory requests over a short amount of time, memory bandwidth can become

saturated, serializing subsequent accesses to memory. Additional warps will have to wait until the

memory instructions are finished to resolve data dependencies, which results in low utilization of

GPU computing resources.

Several previous studies focused on this problem by using different scheduling techniques.

Narasiman et al. [40] introduced a two-level warp scheduler which separates warps into different

groups, preventing them from reaching the same long latency instruction at the same time. This

design allows the streaming multiprocessor to hide long latency operations by switching between

different groups while ensuring memory locality within the same group. Jog et al. [19] presented

OWL, a CTA-aware scheduler that uses data locality information to limit the number of CTAs in

each SM and reduce cache contention.

Unlike previous work that leveraged pure hardware GPU scheduling techniques, in this

thesis, we use a hardware/software co-design approach to deliver a novel warp scheduler which can

improve GPU performance.
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Related work

3.1 Using Hinting in Microprocessors

Instruction hints have been present in modern microprocessors in previous designs. They

have been used primarily for resolving branch mispredictions and cache misses in CPUs. The Intel

Itanium 2 [36] ISA defined hint instructions that are used to provide the hardware early information

about a future branch, and also direct the instruction prefetch engine to prefetch one or many L2

cache lines to increase cache hit rates.

Another popular example is the Synergistic Processing Unit (SPU) in the IBM Cell

processor [21]. Jointly developed by Sony, Toshiba, and IBM, architects decided to remove the

hardware branch predictor and use the software branch hinting to recover lost performance. Compared

to the Intel Itanium, the Cell SPUs do not have any hardware branch predictor and rely solely on

software branch hints to make the design more power efficient.

In the EPIC (Explicitly Parallel Instruction Computing) [62] ISA family, introduced by

Hewlett Packard and Intel, the compiler performs direct cache placement and actively manages

replacement policies through cache hints. The cache hints allow the compiler to have more control

on cache behavior. The compiler can schedule instructions explicitly in parallel to hide long latency

loads based on the true latency of instructions informed by the cache hints. The target cache hints are

used to indicate the cache level at which the data will be kept after the instruction is executed.

Beyls et al. [6] proposed to generate cache hints from a reuse distance metric. Since the

reuse distance indicates the cache behavior, irrespective of the cache size and associativity, it can

be used for making caching decisions for all levels of cache hierarchy. Both static and dynamic

approaches were proposed in this prior work. The static approach uses profiling to assign a cache

hint to a memory instruction statically. The dynamic approach is based on an analytical model used
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to select the most appropriate hint dynamically.

Wang et al. [72] developed an analytical model that predicts which data will be reused by

using compiler hints. These hints are provided to improve replacement decisions in set-associative

caches. Their work explores options for reducing cache misses by adopting compiler hints to improve

replacement decisions.

On the GPU side, NVIDIA started to inject instruction hint starting from the Kepler

architecture [46]. They insert instruction hint for every eight instructions to assist their hardware

scheduler. But due to the proprietary nature of this information, we have not found documentation

describing the details of these hints.

3.2 Warp Scheduling

Previous studies have shown that the warp scheduler plays an essential role in improving

GPU performance. Lakshminarayana and Kim [28] evaluated different fetch and DRAM scheduling

policies on the performance of GPU applications. They ran different combinations of fetch and

DRAM scheduling policies on a series of benchmarks and showed that, for applications that execute

symmetric instruction length per warp, a fairness based warp and DRAM access scheduling policy

improves performance. For applications that have various instruction counts per warp, different

applications show benefits with different combinations of fetch and DRAM policies.

Narasiman et al. [40] introduced a two-level warp scheduler which separates warps into

different groups, preventing them from reaching the same long latency instruction at the same time.

This design allows the SMs to hide long latency operations by switching between different groups,

while ensuring memory locality within the same group. Compared with the baseline round-robin

scheduling policy, they can achieve a 9.9% speedup on average.

Meng et al. [37] proposed Dynamic Warp Subdivision (DWS), which splits a warp into

two warps in the presence of a branch divergence or memory divergence. This method allows an SM

to interleave computation down different branch paths in order to hide memory latency. In addition,

DWS allows the threads that hit in the cache to continue to execute aggressively, even if some of

their peer wavefronts have encountered a miss (i.e., a memory divergence).

Gebhart et al. [14] demonstrated that a combination of two-level warp scheduling and regis-

ter file caching techniques could provide power savings without losing performance for applications.

Register file caching can replace accesses to the large main register file, using a smaller hardware

structure, which saves energy. Combined with register file caching, a two-level warp scheduler can

further reduce energy usage by limiting the temporary register cache resources to currently active
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groups of threads. They showed that by using a 6-entry per thread register file cache, they could

achieve a 36% reduction in terms of register file energy.

Lee et al. [30] proposed Criticality-Aware Warp Scheduling (CAWS) for GPU workloads,

implementing a warp scheduling algorithm based on warp criticality. They showed that for specific

workloads, such as breadth-first-search, the overall performance of the application is limited by the

execution time of critical warps (the warps have a longer execution time). They identified the sources

of criticality in warps and designed CAWS to balance the execution time of different warps in the

same thread block. CAWS assigns priority to the critical warps, given them more opportunities to

execute as compared with regular warps, maximizing the hardware resource utilization and reducing

the overall execution time.

Lee et al. [29] proposed an alternative thread block scheduling designed to maximize GPU

resource utilization. There are two main techniques they introduced. The first one is Lazy CTA

Scheduling (LCS), which reduces the number of thread blocks allocated to an SM dynamically,

avoiding performance degradation due to resource contention. The second technique they proposed is

Block CTA Scheduler (BCS) that schedules adjacent CTAs to the same SM to improve spatial locality

and improve performance. According to their report, they achieved an average of 16% speedup over

the baseline GTO scheduler by combining LCS and BCS.

Rogers et al. proposed Variable Warp Sizing(VWS) scheduling [57], using a smaller warp

size to execute when control flow and memory divergence occurs, improving the performance of

divergent applications. VWS evolves the GPU into a more suitable computing device for irregular

applications by adopting smaller warps to increase thread-level parallelism (TLP) and SIMD effi-

ciency. VWS also improves energy efficiency by grouping the small warps to execute together, trying

to build a MIMD-like computing model, but with SIMD model efficiency. According to their report,

VWS can achieve a 35% performance improvement on divergent workloads.

3.3 Exploiting Thread Level Parallelism (TLP) on GPUs

Many warp scheduler studies have focused on choosing the right amount of TLP for the

memory sub-system to avoid over-saturation, and to reduce latency. The Cache-Conscious Wavefront

Scheduler (CCWS) proposed by Rogers et al. [58] preserves intra-wavefront locality by using

additional hardware to adjust the amount of TLP per SM, keeping the L1 data cache from thrashing

and maintaining intra-wavefront locality. They also introduced static wavefront limiting (SWL),

which allows the programmer to set a limit on the number of active wavefronts per compute unit,

during kernel launch. Based on their study, CCWS can provide a 24% performance improvement
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over a round-robin scheduling policy across a set of cache-sensitive workloads.

Fung et al. [13] explored the impact of branch divergence on GPU performance and

proposed dynamic warp formation (DWF). DWF attempts to mitigate control flow divergence by

dynamically creating new warps when threads in the same warp that take different paths after branch

instructions execution. They implemented the hardware required for DWF and achieved a 20.7%

speedup on average, with an additional 4.7% area overhead.

Fung and Aamodt [12] proposed thread block compaction, a novel mechanism to improve

TLP when divergence occurs. Threads within the same thread block are compacted into new

warps when they encounter a divergent branch. The compacted warps synchronize again at the

reconvergence point and resume in their original arrangements before divergence. Compared with

their previous study on dynamic warp formation, thread block compaction ensures a sufficient number

of threads are available at the divergent branch to be compacted into new warps. Their simulation

results show they can obtain an overall 22% speedup over a per-warp reconvergence stack baseline

when running divergent applications, with no additional performance penalty.

Vaidya et al. [68] proposed two compaction techniques: 1) Basic Cycle Compression

(BCC), and 2) Swizzled Cycle Compression (SCC) which use idle SIMD lanes to execute consecutive

instructions. BCC squeezes out cycles for other instructions in the execution pipeline when there are

any a set of 4 aligned threads are inactive. SCC is an improvement over BCC. SCC combines the

active unaligned threads to execute in consecutive lanes. Their evaluation results show that BCC and

SCC can reduce execution cycles in divergent applications up to 42% (20% on average) on Intel Ivy

Bridge GPUs.

Rhu et al. [56] introduced the Dual-Path execution model (DPE), a model which exploits

intra-warp parallelism by interleaving the execution of different paths when divergence occurs in a

warp. Unlike prior solutions to handling divergence, DPE does not require an extensive redesign

of the microarchitectural components. Instead, DPE extends the stack to support two concurrent

execution paths. Using a series of benchmarks, the authors found that dual-path execution either

matches the performance of the baseline single-path stack architecture or outperforms single-path

execution by 14.9% on average, and by over 30% in some cases.

Kayiran et al. [23] proposed a dynamic CTA scheduling technique (DYNCTA) that attempts

to allocate the optimal number of CTAs per core based on application demands. Their work showed

clearly that executing the maximum number of CTAs per core is not always the best solution to boost

performance, due to high cache and memory contention. DYNCTA provides a 28% performance

improvement, on average, as compared to the default CTA scheduler, where the maximum number

of CTAs are executing on the SMs.
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Yu et al. [76] presented a Stall-Aware Warp Scheduling (SAWS) policy, which dynamically

optimizes the TLP according to pipeline stalls. SAWS can effectively improve pipeline efficiency by

reducing structural hazards without introducing new data hazards. SAWS monitors the structural

hazards for all executed instructions and adjusts the number of active warps dynamically according

to the number of structural hazards. SAWS achieves a 14.7% performance improvement on average

compared to round-robin scheduling.

Kloosterman et al. [25] proposed WarpPool to identify spatial locality between threads

in multiple warps and merge their requests being sent to the L1 cache. This reduces the memory

bandwidth usage and relieves the bottleneck between the load store unit and the L1 cache. WarpPool

achieves a 38% speedup on memory throughput-limited kernels by increasing the throughput to the

L1 by 8% and reducing the number of L1 misses by 23%.

Wang et al. [71] introduced an Occlusion Aware Warp Scheduler (OAWS) that focuses

on TLP on memory resources. Their scheduler monitors and predicts memory resource usage,

scheduling wavefronts that can be satisfied by the available memory resource. Both static and

dynamic prediction methods were designed and implemented to predict the demand of MSHR entries

of divergent memory instruction, maximizing the number of concurrent warps without memory

occlusion. Based on their evaluation, OAWS can achieve up to a 73.1% performance gain compared

to the GTO scheduler.

3.4 Improving Instruction Level Parallelism on GPUs

Instead of reducing latency, several techniques focus on improving the overlap of compute

and memory operations to exploit ILP on GPUs. Very Long Instruction Word (VLIW) instruction set

architectures are designed to exploit ILP by encoding multiple independent operations in a single

VLIW instruction. VLIW was adopted on AMD’s Evergreen GPU architecture [4]. However, VLIW

suffers from limited parallelism opportunities, as it solely relies on static analysis.

Gong et al. [15] proposed the Twin Kernel Multiple Thread (TKMT) execution model,

which takes advantage of pursuing multiple instruction schedules in the compiler to improve the

overlap of compute and memory operations. TKMT better distributes memory requests by reordering

instructions for some wavefronts at compile time. This can significantly reduce the pressure on

memory bandwidth, using the limited L1 cache more efficiently. TKMT can achieve a 12% average

speedup over the baseline SIMT implementation model on various benchmarks on AMD Radeon

GPUs.

Kim et al. [24] proposed a warped pre-execution approach on GPUs. In this technique,
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wavefronts try to issue future instructions that are independent of the stalling instructions. Their

method relies on hardware to dynamically detect such opportunities and may take several attempts

before finding a proper candidate. In contrast to Kim et al.’s approach, we are leveraging static

analysis at compile time, so our hinting approach is free from hardware dependency detection. In

addition, guided by the information provided in hints, our approach can commit the correct program

state more efficiently when wavefronts return to normal execution.

3.5 Improving GPU memory hierarchy utilization

Many researchers have proposed novel techniques to utilize the GPU cache and memory

hierarchy more efficiently. Jog et al. [20] demonstrated that existing warp scheduling policies are

unable to effectively incorporate data prefetching techniques due to scheduling consecutive warps.

They proposed a prefetch-aware warp scheduling policy to schedule consecutive warps separately,

which can work with a simple prefetcher nicely to tolerate memory latencies. They evaluated their

design across a diverse set of applications and achieved a 25% speedup over a round-robin scheduler.

Rogers et al. proposed Divergence-aware warp scheduling (DAWS) [59], which introduces

a divergence-based cache footprint predictor to maximize the utilization of intra-warp locality for the

current active warps. The goal of DAWS is to keep the data that is reused by a warp maintained in

cache so future accesses across loop iterations will result in a hit. According to their results, DAWS

can achieve a 26% performance improvement over Cache Conscious Wavefront Scheduling [58].

Jog et al. [19] presented OWL, a CTA-aware scheduler that uses data locality information

to limit the number of CTAs in each SM in order to reduce cache contention. OWL achieves these

benefits by improving both the L1 cache hit rate and latency tolerance, improving DRAM bank

parallelism and improving both DRAM row locality and cache hit rates.

MASCAR [63] introduces a bimodal warp scheduling scheme, along with a cache access

re-execution system to increase overlap. Instead of distributing warps in a round-robin fashion,

MASCAR prioritizes memory requests among warps when there is memory saturation detected to

better overlap compute and memory instructions. Using the re-execution queue, they could better

utilize cache locality and eliminate structural hazards when the memory subsystem becomes saturated.

MASCAR achieves a 34% speedup over a baseline round-robin warp scheduler for memory intensive

benchmarks.

Wang et al. [70] proposed a Divergence-Aware Cache (DaCache) management scheme

that can orchestrate the warp scheduling policy and the L1 cache management together for GPUs. In

DaCache, the insertion position in the cache of any incoming data block is decided by the current

25



CHAPTER 3. RELATED WORK

warp’s priority. Blocks of the warp with higher priority can enjoy a longer lifetime in cache. DaCache

also prioritizes coherent loads over divergent loads durnig insertion, better utilizing intra-warp

locality. Their experiments demonstrate that DaCache achieves a 40.4% performance improvement

over the baseline GPU.

Oh et.al [52] proposed Adaptive Prefetching and Scheduling (APRES) to improve GPU

cache efficiency. They demonstrated certain static load instructions in GPU applications have very

high locality. Additionally, for some load instructions that have no locality, the addresses are heavily

strided. APRES tries to group all the warps which execute the same load instruction within a short

time and schedules them to utilize locality better. In addition, APRES tracks the inter-warp striding

behavior and issues prefetches for different warps which execute the same load instructions. For

memory intensive benchmarks, APRES can achieve a 31.7% performance improvement as compared

to a baseline GPU model.

3.6 GPU Simulation Frameworks

Given that a major contribution of this thesis is a GPU simulator, we will review prior GPU

simulator efforts.

GPGPU-Sim [5] is a popular simulator that supports functional and cycle-level timing

simulation based on the NVIDIA Fermi architecture. It has provided the GPU research community

with important insights. It supports simulation on NVIDIA Parallel Thread Execution ISA (PTX)

level. GPGPUSim also supports PTXPlus, which is an extended form of PTX, introduced in GPGPU-

Sim 3.x. The developers claim it allows for a near one-to-one mapping of most GT200 (i.e., Fermi)

SASS instructions to PTXPlus instructions. However, it only supports execution running at an

intermediate language level and does not capture SASS execution.

Multi2Sim [67] [16] provides a rich simulation framework for heterogeneous computing.

It includes models for superscalar, multithreaded and multicore CPUs, and manycore GPUs. It

provides cycle-level simulation for a X86 CPU and GPU simulation for both AMD & NVIDIA GPU

architectures. It supports the Evergreen and Southern Island GPU architectures from AMD. As part

of this thesis, we have developed a version of Multi2Sim for the Kepler architecture. Compared to

GPGPU-Sim, Multi2Sim supports the real GPU instruction set architecture for both the AMD and

NVIDIA architectures.

Gem5-GPU [55] is a heterogeneous simulator that models tightly-integrated CPU-GPU

systems. It builds upon Gem5, a modular full-system CPU simulator, and GPGPU-Sim. Besides, they

add support for the state-of-the-art GCN3 ISA to Gem5s GPU compute model. For both NVIDIA
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and AMD architecture, they support simulation at the intermediate language level.

Barra [10] provides an ISA-level functional simulation for the NVIDIA Tesla GPU archi-

tecture. It runs CUDA executables without modification. Since NVIDIA’s ISA documentation is not

publicly available, similar to our approach, the user needs to reverse engineering the NVIDIA ISA. It

can also perform parallel functional simulation using a multicore processor or SIMD instruction set.

Unfortunately, we cannot produce accurate performance models for GPU architectures, lacking the

support of cycle-level timing simulation.

Ocelot [11] is a widely used dynamic compilation framework, as well as a functional

simulator that executes programs working at the PTX virtual ISA level. Taking NVIDIAs CUDA

PTX code as input, the user can either emulate or dynamically translate instructions to multiple

platforms such as multicore CPUs, NVIDIA GPUs, and AMD GPUs. Working off an existing

compiler infrastructure, Ocelot supports GPU compiler research, including interfaces to provide an

internal representation of the PTX programs in support of optimization passes for massively data

parallel computing kernels.

Simulating a GPU is especially challenging compared to simulating a CPU. Unlike CPU

ISAs, GPU ISAs are often proprietary and change frequently, which makes it more challenger for

developers to deliver GPU simulation frameworks. To support simulation at the shader assembly

level requires a lot of effort while reverse engineering the GPU’s ISA, driver APIs, microarchitecture,

etc.. Thus, in the previous work we reviewed, most of the previous GPU simulator only model

execution at an intermediate language simulation. The research community lacks an open-source

simulation framework that runs cycle-accurate detailed architectural simulation at the GPU SASS

level (i.e., the executable binary level), especially for the NVIDIA architecture.
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Simulation Framework

4.1 Simulation Methodology

The development of our Kepler model in Multi2Sim follows three phases of development,

as presented in Figure 4.1, with the steps flowing from left to right. To deliver a cycle-accurate

simulator, development involves the design and implementation of three independent software

modules: i.) a disassembler, ii.) a functional simulator and iii.) a detailed simulator.

A dissembler can be used standalone to disassemble or can drive later simulation stages

(i.e., emulation or timing simulation). In the first case, the disassembler reads directly from a program

binary generated by a compiler (i.e.,a CUDA application binary), and dumps a text-based output of

all fragments of the instruction set architecture (ISA) code found in the file. In the second case, the

disassembler reads from a binary buffer in memory and outputs machine instructions, one-by-one, in

the form of custom data structures that break down each instruction into its various fields.

The purpose of the functional simulator, also called the emulator, is to reproduce the

original behavior of the CUDA program, providing the illusion that it is running natively on an

NVIDIA GPU. Functional simulation is especially handy for debugging programs, and gathering

statistics about the general behavior of a workload.

The detailed simulator, interchangeably referred to as the timing or architectural simulator,

is the software component that models hardware structures in the Kepler GPU, and keeps track of

execution time. The modeled hardware includes Streaming Multiprocessors (SMs), functional units,

pipeline stages, pipe registers, instruction queues, cache memories, and other features.
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Figure 4.1: Kepler’s simulation paradigm.

4.2 CUDA Support

The Multi2Sim Kepler model is a new GPU architecture extension to our existing

Multi2Sim framework [67]. Multi2Sim is a free, open-source, cycle-accurate heterogeneous simula-

tion framework that can model superscalar, multithreaded, and multicore x86 CPUs, ARM CPUs,

MIPS CPUs, AMD GPUs, and now NVIDIA GPUs.

The current version of our Kepler functional simulator supports the execution of many

different benchmarks without any porting effort by the user. It also supports the NVIDIA CUDA

SDK benchmarks, as well as custom CUDA benchmarks we have developed. The architectural

simulator models a detailed NVIDIA Kepler GPU, complete with an associated memory hierarchy,

interconnection network, and additional components.

Multi2Sim supports truly heterogeneous execution. Every simulated program begins

execution on the CPU. Multi2Sim Kepler supports unmodified NVIDIA CUDA execution on the

Kepler GPU simulator. When CUDA programs are executed, the host (i.e., the CPU) portion of

the program is run using the CPU simulator. When CUDA API calls are encountered, they are

intercepted and transfer execution to the Kepler simulation model.

4.2.1 CUDA Programming Model

CUDA is a parallel computing platform and application programming interface (API)

model created by NVIDIA. CUDA enables software developers to access the GPU’s virtual instruction

set and parallel computational elements directly for compute kernel execution. With millions of

CUDA-enabled GPUs in use today, software developers, scientists, and researchers are finding new

uses for GPU computing with CUDA [69].
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Figure 4.2: The CUDA programming model.

Figure 4.2 provides an overview of the execution element hierarchy defined in CUDA.

CUDA C extends C by allowing the programmer to define C functions, called kernels. When a kernel

is called, N copies of the kernel are executed in parallel by N different CUDA threads. An instance of

a CUDA kernel is called a thread, which can access its pool of local memory. Within a grid, threads

are grouped into blocks with two basic properties: i.) within a single block, threads can perform

efficient synchronization operations, and ii.) threads within the same block can share data through a

low-latency shared memory. All thread blocks form a grid and share a common global memory.

Figure 4.3: Comparison of native and simulated Kepler execution environments.
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4.2.2 CUDA Simulation

The call stack of a CUDA program running on the Multi2Sim simulator differs from the

native call stack, starting at the CUDA library call, as shown in Figure 4.3. We implemented a series

of CUDA runtime [3] and driver [2] APIs, as well as a GPU device driver for the simulator. When

a CUDA API function call is issued, our implementation of the CUDA runtime (libm2s-cuda.so)

handles the request. This call is intercepted by the CPU simulation module, which transfers control

to the GPU module as soon as the guest application launches the device kernel. This infrastructure

allows unmodified x86 binaries (i.e., precompiled CUDA host programs) to run on Multi2Sim with

total binary compatibility with the native environment.

4.3 Kepler Microarchitecture

Next, we provide an overview of our simulator infrastructure and describe the architecture

of a generic NVIDIA Kepler GPU device [46]. We focus our discussion on hardware components

devoted to the general purpose computing of CUDA kernels (versus the graphics pipeline). We

provide insights into the GPU architectural details of the Kepler architecture [31], including the

frontend, streaming multiprocessor design, and instruction pipeline. Note that many of these elements

remain undocumented in publicly available information from NVIDIA.

4.3.1 The Kepler GPU Architecture

The GPU organization includes a giga-thread engine, a collection of SMs, and a memory

hierarchy. The giga-thread engine processes the grid and maps waiting thread blocks onto the

available SMs. Once a thread block is assigned to an SM, it remains in the SM until its execution

completes. Resources, such as registers and shared memory, are not freed until the thread block

finishes execution. Multiple thread blocks can be assigned to a single SM if there are available

resources.

A detailed description of an SM is shown in Figure 4.4. An SM consists of a frontend,

a register file, and some execution units. CUDA defines the concept of a warp as a group of

32 threads executing in Single Instruction Multiple Data (SIMD) fashion. Each instruction is

executed concurrently by every thread comprising a warp, although each thread has its own data for

computation. This model simplifies instruction fetch hardware by implementing a common frontend

for a whole warp. On every cycle, the SM’s frontend fetches instructions from instruction memory for

the different warps and sends them to the appropriate execution unit. In the Kepler microarchitecture,
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Figure 4.4: Streaming Multiprocessor architecture.

each SM frontend features four warp schedulers and eight instruction dispatch units, allowing four

warps to be issued and executed concurrently.

The execution units present in an SM are the branch unit (BRU), the load store unit (LSU),

the single-precision unit (SPU), the double-precision unit (DPU), the special function unit (SFU) and

the integer math unit (IMU). Each unit consists of 32 lanes (32 CUDA cores in NVIDIA terminology),

and each lane is devoted to the execution of one thread’s arithmetic operation. This means that each

unit can allow all 32 threads in a warp to execute the same instruction simultaneously. In Kepler,

there are only two kinds of execution units. The first kind is the private unit, which is owned by

each warp scheduler and can only execute SIMD instructions from the scheduler it belongs to (i.e., a

private single-precision unit (pSPU) and a private branch unit (pBRU)). The other kind of unit is

the shared unit, which is shared among the four warp schedulers (i.e., a shared single-precision unit

(sSPU) and a shared integer math unit (sIMU)). A shared unit can execute SIMD instructions from

either one of the four warp schedulers.

Figure 4.5 shows the architectural details of the SM front-end. It includes a set of warp
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(a) The front-end pipeline for shared units.

(b) The front-end pipleline for private units.

Figure 4.5: A block diagram of the front-end pipeline.

pools, a fetch stage, a collection of fetch buffers, and a dispatch stage. The number of warp pools

matches exactly the number of warp schedulers in an SM. When blocks are initially mapped to an

SM, their associated warps are evenly distributed to the available warp pools. In the fetch stage the

warps are selected from the pool, instructions are read from instruction memory using the warp’s

current program counter (PC), and these instructions are placed in the associated fetch buffer. In the

next cycle, the fetch stage operates on the next warp in the warp pool, following a round-robin policy.
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In our model, we fetch a maximum of 2 instructions per warp, per cycle, depending on resource

availability. At the beginning of the dispatch stage, the recently fetched instructions are decoded

and stored in their corresponding entries in the buffer. The warp scheduler can pick a warp to issue

to the available warps. Before issuing the ready instructions to the execution units, the scoreboard

performs dependency checks and generates a ready bit if the instruction passes the check. If the

instruction is ready to dispatch, and there are still available resources, it is sent to the corresponding

unit to execute.

4.3.2 Kepler Instruction Set Architecture (ISA)

NVIDIA has developed several major architectures, including the Fermi (SM 2.x) [45],

Kepler (SM 3.x) [46], Maxwell (SM 5.x) [47] and Volta (SM 7.0)[51] architectures. For each new

families, new instructions have been added as NVIDIA updated their architecture. For example,

Kepler added a 64-bit funnel shift instruction that concatenates two 32-bit values together, shifts the

resulting 64-bit value left or right, and then returns the most significant or least significant 32 bits.

Figure 4.6: Sample SASS code.

When the GPU functional simulator receives the CUDA kernel to execute, an emulation

loop starts executing Kepler instructions. The basic format of the NVIDIA Kepler ISA can be

observed in the sample code in Figure 4.6. This block of native NVIDIA SASS code represents a

for-loop in a CUDA kernel. It starts with a PBK instruction that specifies the target address to resume

execution after the end of the loop, working with the BRK instruction to control the loop. The ISETP

and PSETP instructions are used to calculate the predicate register value, deciding whether we are

going to jump out from the loop.

4.3.2.1 Comparison between SASS and PTX

PTX [49] is a low-level parallel-thread-execution virtual machine and instruction set

defined by NVIDIA. PTX is a high-level intermediate language as compared to native NVIDIA

34



CHAPTER 4. SIMULATION FRAMEWORK

SASS. There are two compilation stages required before a kernel written in CUDA can be executed

on the GPU. The first stage compiles the CUDA code into the PTX virtual GPU ISA. The second

stage compiles PTX into the actual SASS. The SASS code changes for each different generation of

NVIDIA GPU, while the PTX code is architecture-independent.

Figure 4.7: The number of SIMD instructions in SASS and PTX.

The number of SIMD instructions from our set of benchmarks is shown in Figure 4.7. In

the kernels include here, the number of SIMD instructions in SASS is more than the number in PTX.

Additionally, in some kernels, the number of SIMD instructions executed in SASS is eight times

larger than in PTX (e.g., the Fast Walsh Transform). We analyzed the kernel and found that there is

a reciprocal (RCP) operation in the code. When the real hardware executes the RCP operation, it

requires many additional instructions to perform overflow protection, which makes the number of

SIMD instructions in SASS much larger.

From our simple example above, we can observe a couple of important differences between

working with SASS versus PTX. PTX instructions are not mapped to SASS one-to-one. In Kepler

SASS, there are a limited number of general-purpose registers and a larger number of instructions,

so there are more restrictions when the scheduler decides whether the instruction can be dispatched

to the execution units. In general, there are many ISA-specific issues when we run SASS that need

not be considered when working with an intermediate language. Thus, running SASS simulation is

much closer to the actual GPU execution in those aspects.
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4.3.2.2 CUDA Kernel Execution

When a CUDA kernel is launched by a host program, the kernel configuration is provided to

the GPU. Thread blocks are then created and successively assigned to SMs when there are execution

resources available. The following hardware constraints determine the number of thread blocks that

can be assigned to a single SM: i) the maximum number of thread blocks supported per SM, ii)

the maximum number of warps allowed per SM, iii) the number of registers on an SM, and iv) the

amount of shared memory on an SM. Maximizing the number of assigned thread blocks per SM can

have a tremendous impact on overall performance, which can be easily evaluated in our simulator.

Each block assigned to an SM is partitioned into warps, which are then placed into four

warp pools equally. The warp scheduler selects warps from the warp pools for execution, based

on a warp scheduling algorithm. The benefits of different warp scheduling algorithms can also be

evaluated in our simulator.

4.3.2.3 Control flow and Branch Divergence

Branch divergence leads to performance degradation in the SIMD execution model when

threads within a single warp take different paths. The Kepler ISA provides each warp with an active

mask to resolve branch divergence present during SIMD instruction execution. The active mask is

a 32-bit vector, where each bit indicates whether the corresponding thread is active (or not) in the

warp. If a thread is labeled as inactive, the result of any operation performed in the associated lane is

ignored, preventing the thread from changing the kernel state.

An active mask stack is used to support control flow instructions by pushing and popping

active masks. When branch divergence happens, active masks, representing different paths, are

pushed onto the stack, and the threads in the active mask, at the top of the stack, keep executing. The

control paths taken by the threads in a warp are traversed one at a time until there are no more paths.

Different execution paths are executed serially. All threads will re-converge when all the paths are

finished, with the active masks representing the different paths being popped from the stack.

4.3.3 The Instruction Pipeline

In an SM, different kinds of instructions are sent to the appropriate execution unit by the

dispatcher. Figure 4.8a presents a block diagram of the math instruction pipeline. Within each

pipeline, decisions about latencies, scheduling policies, and buffer sizes must be made. All of these

factors have performance implications and provide another opportunity for architecture researchers

to experiment with design tradeoffs using our simulator.
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The Kepler SM features an SPU (both shared and private), DPU, IMU, and SFU for

arithmetic operations. Each unit has 32 lanes. Each SPU has fully pipelined floating-point and

integer arithmetic logic units. The Kepler SM also uses the SFU for fast approximate transcendental

operations, the IMU for complex integer operations (e.g., integer scalar adds (ISCADD) and bit field

extractions (BFE)) and the DPU for double-precision operations.

After the fetch and dispatch stages, decoded instructions are placed into the dispatch buffer.

The read stage consumes the instruction and reads the source operands from the register file for each

thread in the warp. The execute stage issues an instance of the instruction to each lane in the unit on

every cycle. The number of lanes in a unit in the Kepler matches the number of threads in a warp.

The result of the computation is written back to the destination register in the write stage.

Similar pipelines are provided for the BRU and the LSU, as shown in Figures 4.8b and 4.8c,

respectively. In the Kepler SM, the LSU handles all the load and store operations from the memory

hierarchy, including global memory, shared memory and private memory operations. This design is

different from AMD’s, where shared memory operations and global memory operations are handled

by different units.

(a) Block diagram of ALU pipeline. (b) Block diagram of BRU pipeline. (c) Block diagram of LSU pipeline.

Figure 4.8: Pipeline of different units.

4.3.4 The Memory Hierarchy

The GPU memory subsystem contains different regions for data storage (global, shared,

local). In our Kepler simulator, we use Mult2Sim’s existing memory model, which is highly

configurable. The model includes customizable settings for the number of cache levels, memory

capacities, block sizes, number of banks, and ports.

In our model, each thread has non-contended access to the register file. Multiple warps

referencing the many units can access the register file, simultaneously, in a given cycle. A separate
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Table 4.1: Baseline GPU configurations

device configuration

compute resources

number of SM 14

Warp size 32

Number of SPUs / SM 6

Number of BRUs / SM 4

Number of DPUs / SM 2

Number of IMUs / SM 1

Number of SFUs / SM 1

Number of LSUs / SM 1

Number of lanes / Unit 32

Register file &

Shared memory

Number of registers / SM 65536

Shared memory / SM (KB) 16

L1 Cache

Associativity 4

Block size 128B

Total L1 cache size 16KB

L2 Cache

Associativity 16

Block size 128B

Total L2 cache size 1536KB

Others

Max warps / SM 64

Max thread blocks / SM 16

Max threads / SM 2048

shared memory module is present in each SM. GPU global memory is accessible by all SMs. In

Multi2Sim, the global memory hierarchy has a configurable number of cache levels and interconnects.

Each cache in the global memory hierarchy is connected to the lower-level cache (or global memory)

using an interconnection network. Interconnects are organized as point-to-point connections using a

switch, which contain two disjoint inner subnetworks, each devoted to package transfers in opposite

directions.
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Table 4.2: List of CUDA benchmarks used for evaluation

Benchmark Input feature Configuration

Bitonic Sort (BS) Vector size 256 - 16k

Fast Walsh Transform (FW) Array size 1k - 512k

Histogram (HM) Array size 8k - 1M

Inline Math (IM) Grid size 32k - 1280k

Matrix Multiplication (MM) Matrix sizes 64 x 64 - 512 x 512

Matrix Transpose (MT) Matrix size 128 x 128 - 1k x 1k

Scalar Production (SP) Vector size 32k - 1M

Scan (SC) Array size 4k - 1M

Vector Addition (VA) Array size 64k - 1M

4.4 Evaluation

To demonstrate the utility of Multi2Sim Kepler, we present a set of experiments for

validating and demonstrating both functional and architectural simulation features discussed in

Chapter 4.3. All experiments are based on a baseline GPU model very similar to the NVIDIA Telsa

K20X [1], with the hardware specification details summarized in Table 4.1.

We elected to utilize a representative subset of the NVIDIA CUDA SDK benchmarks.

The benchmarks included provide us with a rich set of compute-intensive and memory-intensive

benchmarks, as well as a mix of both, representing a wide range of application behaviors. The

benchmarks discussed in this thesis are listed in Table 2, along with some of their application

properties. We include a description of the input datasets and a summary of the programs.

4.4.1 Baseline Model Validation

We present our simulator validation process in a number of steps. First, we start by

validating our runtime library and device driver to make sure the device is properly initialized. Second,

for the essential elements in our simulated architecture, we follow two different validation strategies

for considering the correctness of both the functional and the architectural simulation models. For

the functional simulator, we validate our instruction decoder by comparing the disassembled SASS

code with the output generated by the NVIDIA disassembler. We also confirmed the correctness of

each benchmark by comparing the simulated application output with the output of the application

39



CHAPTER 4. SIMULATION FRAMEWORK

run directly on the K20X. All simulations generate correct results for all the benchmarks across a

range of input sizes.

(a) Simulated execution time reported by Kepler Simulator

(b) Native execution time on NVIDIA Tesla K20X.

Figure 4.9: Validation for the architectural simulation, comparing trends between simulated and

native execution times.

In terms of the precision of our architectural model, we compare our simulation results

against the performance of the NVIDIA Tesla K20X hardware for the benchmarks and input sizes
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shown in Table 4.2. The native execution time is calculated as the average time of 1000 kernel

executions for each benchmark while varying the input size. We measured the hardware execution

time using the NVIDIA profiler, nvprof. Since our architectural simulator is a cycle accurate model

and native execution performance on the GPU is measured by execution time, it is a bit challenging

to compare the two results directly. In order to measure our architectural model, we use the K20X

shader base clock frequency of 732 MHz documented by NVIDIA to turn Multi2Sim cycles into

execution time.

The differences in simulated and native performance are plotted in Figures 4.9a and 4.9b.

In all of the benchmarks, the simulated execution time and the native GPU execution time exhibit the

same trend, increasing the execution time that follows the growth in the input size. In other words, a

change in the problem size for a benchmark has the same relative performance impact for both native

and simulated execution.

Figure 4.10a plots the simulated and native execution time. In Figure 4.10b, we show

a scatter plot of the normalized simulation execution time obtained for our simulator versus the

normalized execution time, measured using NVIDIA K20X GPU hardware. The points that lie

closest to the trend-line indicate that the simulated and native execution times track each other. For

some of the benchmarks, execution times vary significantly. One outlier is the HM benchmark, as

seen in Figure 4.10. The execution time produced by Multi2Sim is more than 2X the execution

time on the K20X hardware. This outlier is due HM’s heavy use of ST.WT and LD.CV instructions.

These instructions change the cache policy and are not presently modeled faithfully in Multi2Sim’s

memory model. Besides this one source of inaccuracy (that is presently being updated), we have also

identified the following sources of imprecision in our model:

Cache Parameters & Interconnects. Some sources of simulation inaccuracy can be

attributed to cache parameters, since the latencies of the different levels of the cache hierarchy have

not been made public by NVIDIA. The specification of the interconnect network between the L1 and

L2 caches has also been approximated due to a lack of public information. We continue to improve

upon this model through reverse engineering.

Execution resource partitioning. As we discussed in the previous chapter, in a Kepler

SM, there are shared execution resources (e.g., sSPUs, sIMU and sDPUs), which are shared across

all four warp schedulers. But there is no documentation detailing how they share resources in each

cycle. We provide a further discussion on this point below.

However, we still see a strong correlation between native execution and the associated

simulator results for all benchmarks. In general, the benchmarks that perform well on the K20X

hardware perform well when run on our simulator. The benchmarks that exhibit poor performance
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(a) Comparision between simulated execution time and native execution time

(b) Normalized execution time.

Figure 4.10: Validation for the architectural simulation, comparing simulated and native execution

times

also have poor performance on our simulator.

4.4.2 Effect of Execution Resource Partitioning

On the GPU, several execution units are shared across all four warp schedulers in each SM.

These include DPUs, SFU (each unit has 32 lanes which can execute 32 threads simultaneously). In
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Figure 4.11: Performance comparison between EP and SP.

this section, we explore the impact that different partitioning strategies have on performance. We

study and compare two partitioning algorithms, one that performs even partitioning (EP), allowing

each warp scheduler to have a quarter of each shared unit (8 lanes). It will take four consecutive

cycles for a warp to execute all 32 threads if its SIMD instructions are dispatched only to its own

subset of the shared units. The second partitioning scheme is static partitioning (SP). With this

scheme, we send the SIMD instructions to the appropriate unit from the warp scheduler, whose index

is the lowest among all qualified schedulers. In this case, it takes one cycle for a warp to execute all

32 threads when the SIMD instruction is sent to one of the shared units.

Figure 4.11 compares the performance between our two partitioning algorithms, EP and

SP. All of the benchmarks experience a speedup when choosing EP over SP. Scan achieves the least

speedup across all of the benchmarks, which is nearly 40%. The other benchmarks are even higher.

Using our built-in performance metrics in Multi2Sim, we find that EP provides higher utilization

of execution resources than SP. When choosing SP, the warps dispatched by warp scheduler 0 are

always faster than the warps dispatched by the other schedulers. When all warps dispatched by warp

scheduler 0 are finished, the warps from the other schedulers are still running, without using the

private units belonging to warp scheduler 0. Furthermore, when there are only warps from the last

warp scheduler left, all the private units belonging to the other three warp schedulers are freed, which

results in a very low utilization of execution resources.
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4.4.3 Benchmark Characterization

To further illustrate the power of our infrastructure, we present a characterization of the

CUDA benchmarks used in this thesis. We characterize programs based on instruction mix, branch

efficiency, and control flow efficiency. These statistics are dynamic in nature and are reported by

our Kepler simulator as part of its simulation reports. The purpose here is two-fold: 1) explore the

characteristics of the workloads that will be used to explore hinting, and 2) demonstrate the utility of

our Kepler-based GPU simulator.

Figure 4.12: Instruction classification.

Figure 4.12 shows Kepler SASS instruction mixes for each benchmark. The instruction

categories include: integer, floating point (FP), control flow instructions (branch, function call, jump

and etc.), memory, data conversion (different data type conversions, such as integer to floating point),

predicate (predicate register operations) and miscellaneous instructions (e.g., NOP, BAR, etc.).

Figure 4.13a shows the branch efficiency (the ratio of uniform control flow decisions over

all executed branch instructions) per-SM (only 8 SMs are shown due to space limitation). This metric

can be used to gauge the overall divergence rate. Different SMs have a similar branch efficiency in all

of the benchmark tested because they did similar amounts of work. Figure 4.12 shows that MT, BS,

HM and SP contain from 8 % to 18 % control flow instructions. However, control flow intensity does

not necessarily translate into high branch divergence. It depends more on the sensitivity of individual

thread execution in a warp. Although SP has the highest percentage of control flow instructions across

the four benchmarks, only 0.1 % of them translate to a branch divergence (shown in Figure 4.13a).

In contrast, BS has 12 % control flow instructions, but 21% of them result in divergent execution.

Branch efficiency is an interesting metric which can provide us with the divergence ratio

of the branch instructions in a benchmark. However, this metric does not have any knowledge of the
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(a) Branch efficiency for different SMs.

(b) Control efficiency for different SMs.

Figure 4.13: Branch efficiency and control flow efficiency.

extent of the code length generated by the divergence. This information is insufficient to debug the

impact of a divergence with respect to kernel execution performance. For example, one divergent

control flow decision executed by a branch may be negligible if it contains very few lines of code;

but it may have a tremendous impact if the warp needs to execute many different code paths with

thousands of instructions.

Figure 4.13b shows the control flow efficiency (the ratio of active threads, over the maxi-

mum number of threads per warp for each executed SIMD instruction) per-SM. It provides us with

the efficiency when using the available execution units. This metric is a good measure that can

identify the impact of divergence on the overall performance of a benchmark. In Figure 4.13b, BS

has the lowest control flow efficiency in each SM, while less than 40% of instructions are executed
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Figure 4.14: Scaling the number of lanes.

with full utilization of execution units, which means that each divergence path in the kernel contains

a significant number of instructions. SP and MT have a similar branch efficiency, but MT has a

higher control flow efficiency (97%), while SP is only slightly lower (91%). Clearly, each divergence

in SP has a more severe impact on performance than seen in MT.

4.4.4 Architectural Exploration

The architectural simulator implemented in the Multi2Sim Kepler simulator provides

researchers a flexible simulation framework that can evaluate a wide diversity of design points. To

further illustrate the value of Multi2Sim, we present a case study to demonstrate the flexibility of

the simulator, where performance significantly varies based on different hardware configurations.

Performance is measured using the number of instructions per cycle (IPC).

Figure 4.14 shows performance achieved by modifying the number of lanes for each private

SPU per SM. Our baseline model has four lanes in each SPU, and the other performance results are

normalized to the baseline performance. In the two benchmarks evaluated, we observe an increase in

performance when the number of lanes is a multiple of the warp size (32). This behavior is due to

the number of lanes in each private SPU, which determines the number of sub-warps that the private

SPU deals with for each warp. When an increase in the number of lanes causes a decrease in the

number of sub-warps (e.g., 7 to 8, 15 to 16 and 31 to 32), performance improves. When the number

of lanes in each private SPU matches the number of threads in a warp, bottlenecks due to stream

serialized core utilization disappear. Compared to matrix transpose, vector addition is more memory

intensive. We can see in Figure 4.14 that matrix transpose has about 5% memory instructions, while

vector addition has 18%. This is why when we expand to 16 lanes, we see an extra performance
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boost in matrix transpose.

4.5 Summary

In this chapter, we presented Multi2Sim Kepler, a detailed performance simulator that

simulates NVIDIA’s shader assembly (SASS) code based on the NVIDIA Kepler architecture.

To illustrate the utility of this framework, we provided several examples of architectural studies,

exploring the micro-architecture of the SM front-end, SIMD instruction pipeline, and compute

resource partitioning. We also discussed features of the NVIDIA SASS code and highlighted the

differences between SASS and PTX through a series of benchmarks.

The framework has been developed through intensive analysis and reverse engineering

of the Kepler hardware. We have developed a cycle-accurate architectural simulation at the ISA

level. Based on this simulation framework, researchers will have a much clearer look into NVIDIA’s

architectural features when they evaluate their designs using our simulator. To the best of our

knowledge, this is the first GPU simulator running on NVIDIA Kepler SASS.
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Hint-Assisted Warp Scheduling

HAWS selects the independent instructions that are in the shadow of a long latency

memory operation and executes them out-of-order when all warps ware stalled due to memory

system saturation. In this chapter, we discuss our hint format and describe the details of HAWS

microarchitecture. We also evaluate our design and present simulation results.

Our preliminary work on HAWS that is presented here is developed on the AMD Southern

Islands instruction set. This choice was made since our initial work on hinting depends on the

Multi2C compiler, which only supports OpenCL compilation and generates binaries for the AMD

Southern Islands ISA. To insure the work in this thesis is more cohensive, we also evaluate HAWS

on our Kepler-based GPU simulator.

5.1 Selective Out-of-order Execution

Given that this thesis will explore using hints to optimize execution, we motivate this

approach by first walking through a sample GPU execution flow using a simple code example.

Figure 5.1 shows an instruction snippet for a matrix multiplication kernel, which is commonly used

in a wide class of GPU applications, including machine learning [9]and image processing [53].

In the kernel, there is a loop that calculates each element in the output matrix. Every time

the kernel calculates the pvalue in the loop, it needs to read data from both input matrices md and nd.

The kernel also calculates the value of k during each iteration, whose value is independent of the

values in md and rd. Inspecting the assembly code, the kernel reads a value from global memory from

matrices md and nd, which are instructions 10 and 16 in assembly code listing. When the PC reaches

instruction 17, which is a multiplication of md and nd, since R9 is a source operand whose values is

generated by the instruction 16, the warp will stall due to the long latency memory operation. What
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Figure 5.1: Assembly instructions from a GPU kernel.

is worse, as future warps stall at this point, memory contention will further increase the stall time.

However, not all of the instructions after instruction 17 are dependent on instruction 16, so some

instructions can still be fetched and executed if we selectively perform out-of-order execution. As we

discussed earlier, for each iteration, the kernel calculates the value of k and compares it with the value

of width. Both the values of k and width are independent of md and rd. Returning to the assembly

code, it is clear that instruction 19, 20, and instruction 1-9, whose source operands are independent

of register R9, which is the destination operand of instruction 16. So there are a significant number

of instructions we can fetch and execute if we keep issuing instructions in a selective out-of-order

fashion in this example.

Unlike GPUs, CPUs rely on extra hardware, such as reservation stations and reorder

buffers, to support aggressive out of order execution and increase instruction level parallelism (ILP).

The GPU’s pipeline design tends to be overly conservative, providing for in-order execution. Our

proposed hinting approach named HAWS modifies a GPU to incorporate some CPU-like features,

our approach uses static analysis by the compiler to identify independent instructions, producing

instruction hints to assist the warp scheduler. HAWS can support selective out of order execution by

following the guidance provided by a hint. Unlike reservation stations, HAWS can increase GPU

instruction level parallelism (ILP) by only adding a small amount of extra hardware. The compiler

handles all data dependency analysis. Similar to IBMs Cell Synergistic Processing Units [21], HAWS
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does not significantly impact the GPUs power efficiency while increasing performance.

SC

SA

RD

PS

MT

FW

DH

DCT

BS

No insts

Normal

Long Latency

Independent

Figure 5.2: Instruction sequences produced for different benchmarks.

HAWS selects the instructions that are in the shadow of a long latency memory operation,

and are independent of the memory operation. To quantify the number of independent instructions

present in the program, and evaluate the potential benefits of HAWS, we analyze a series of bench-

marks. In Figure 5.2, we show the instruction sequence for a kernel binary. The dark grey bars

represent long latency memory operations, and the black bars represent the instructions that are

independent of the previous memory instruction. We can see some black bars appear after the dark

gray bars. This trend is present in all of our benchmarks, suggesting that there are many opportunities

in GPU applications for HAWS to improve GPU memory performance.

5.2 Hint Assisted Execution

We begin by describing how we insert hints in GPU instructions. We then demonstrate the

potential benefits of the presence of a hint on kernel execution performance using a detailed example.

While we are targeting an AMD Southern Islands ISA, we will use NVIDIA terminology in this

section to reduce the number of unique terms.

First, we define an instruction that has a dependency with a long latency memory operation

as a stall point. In Figure 5.3, instructions 3 and 9 are stall points. We also define the instructions

between any two stall points as a hint group. When a warp stalls due to encountering a long latency

memory operation, the hint will assist the warp scheduler in fetching and issuing independent
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Figure 5.3: Execution timeline for round-robin scheduler and HAWS. The Top 2 are running with a

19 cycles memory latency. The bottom 2 are running with a 14 cycles memory latency.

instructions within a hint group, fetching as many as it can, until the scoreboard releases the long

latency flag.

In Figure 5.3, we show the execution timeline for a GPU, guided by a round-robin scheduler

and HAWS. For simplicity, we assume arithmetic instructions take one cycle to execute, memory

instructions take 14 or 19 cycles in our example. There are four warps running in parallel, with only

one of them being issued each cycle. Each warp will fetch a new instruction every cycle. We vary

the latency of memory to better characterize dependencies in our experiments.

Experiment 1: Memory latency is 19 cycles: When the warp scheduler tries to issue

instruction 3, from cycles 9 to 12, due to the dependency with instruction 1, the warp stalls in the

GPU with a round-robin scheduler and the long latency operation flag in the scoreboard is set to 1.

With HAWS, the warp will keep searching for independent instructions within the hint group. If

one is found, the hint will offer to the warp scheduler the offset of the next independent instruction.

HAWS decides to issue instruction 4 in cycle 13 and keeps executing, informed by the instruction

hint. Warps that use round-robin scheduling still stall, due to long latency memory operations. After

fetching instruction 4, HAWS reads the offset of the next instruction that should be fetched from the

hint, which is instruction 6. After instruction 6 is finished, since there are no independent instructions

we can issue, HAWS will go back to the original stall point, fetches instruction 3, and waits for the

memory instructions to finish. The memory instructions are completed, starting in cycle 20. Both

HAWS and the Round-Robin schedulers receive results from r1, and the scoreboard releases the

long latency flag so that instruction 3 is issued successfully for both schedulers. Considering the

execution latencies, since HAWS better utilizes the computational resources of the GPU by carrying

out selective out-of-order execution in the shadow of a memory result, this work reduces execution
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time by 25% speedup.

Experiment 2: Memory latency is 14 cycles: In this case, there are limited benefits for

HAWS, since the memory latency is reduced by five cycles. Just as in experiment 1, HAWS begins

selective out-of-order execution in cycle 13, issuing instruction 4. Starting in cycle 15, the memory

results are available, so the scoreboard is updated to reset the long latency operation flag. HAWS

receives the flag and transitions the warp back to in-order execution by flushing the fetch buffer and

re-fetching instruction 3. HAWS provides a dynamic decision. Whenever a long latency operation is

resolved, HAWS returns to in-order execution. In other words, instructions in the warps are executing

speculatively in terms of hint-assisted mode. That is why we see instruction 3 issued in cycle 17 for

HAWS, and instead of instruction 6. More architectural details will be provided in the next section.

In this case, since the memory latency is reduced, HAWS leads to a performance increase of 12.5%.

Instruction hints provide detailed information to the HAWS scheduler to support the next hint.

5.3 Microarchitecture of HAWS

5.3.1 HINT Format

Figure 5.4: Hint encoding format for HAWS.

As discussed earlier in this proposal, HAWS is guided by compiler-generated hints to select

the next instruction to fetch/execute. The two different formats for instruction hints are shown in

Figure 5.4. The formats differ for different classes of instructions: format 2 is for branch instructions,

while format 1 is for all the other types of instructions.

For format 1, the target offset field (9 bits) is used to help the warp scheduler find the

next independent instruction to be fetched and issued. The target offset is the relative distance

to the next out-of-order instruction, starting from the last stalled instruction (stall point), which

triggered hint-assisted scheduling. The rename bit is used to communicate to the warp scheduler if

this instruction needs to perform register renaming based on the destination register. If the rename bit
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is set, then the Dst field provides the renamed register number. Otherwise, it’s the original destination

register number.

Figure 5.5: Percentage of register usage.

In HAWS execution, when instructions retire, we use register renaming to avoid WARs

and WAWs when storing results, as necessary. Register files in the GPU are underutilized in many

applications, which has been discussed in many recent studies [17, 34, 18]. Based on these studies

and our evaluation, we propose to use the underutilized registers for register renaming. We also

analyzed a variety of benchmarks, and none of them has a 100% register usage. Figure 5.5 shows

that in the 12 benchmarks we evaluated, there is an average of 36.3% scalar register usage and

43.8% vector register usage. In other words, there is a lot of space for supporting register renaming.

There are a couple of ways to implement register renaming efficiently. We can use the compiler

to implement register renaming and insert the renamed register number directly in the hint. Using

this scheme, we can utilize the registers more efficiently by renaming selected registers with static

analysis.

Please note we only rename registers if necessary. For instructions that do not have a WAR

dependency with any previous skipped instruction during HAWS execution, associated registers are

not renamed. In other words, we only rename a register if their new value will affect the source

register of any of the previous skipped instructions when the warp returns to normal execution. More

details are provided in the following example.

In format 2, we need two fields to hold the target offset in the hint metadata, since there

are two destinations for a conditional branch. The type field specifies the instruction type with 1 bit,

0 indicating a conditional branch, and 1 indicating a direct branch. In format 2, each offset field is 11

bits, two more bits than the offset assumed in format 1 since we are dealing with branch instructions.
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HAWS only adds hints to instructions that are independent of the long latency memory instruction

within a hint group. For the instructions that have dependencies on long latency memory instructions,

HAWS will not add any hints, reserving instruction hints for only a limited number of instructions.

5.3.2 Compiler Work

As mentioned previously, we use a compiler (Multi2C) [22] that is designed specifically to

work with Multi2Sim, and can generate instruction hints to support HAWS execution. The compiler

plays two roles in the implementation of HAWS. First, it analyzes data dependencies and decides

which instructions can be scheduled and executed by HAWS, providing associated instruction hints.

Second, it implements register renaming and inserts operations directly into the hint, guiding HAWS

to use registers efficiently.

Referring back to Figure 5.3, the compiler finds independent instructions I4 and I6 after

analyzing data dependencies, adding corresponding hints to I3 and I4 to assist the warp scheduler

to find the correct instructions for fetching and issuing. The compiler also inserts the destination

register number in the instruction hint. More details will be provided next.

5.3.3 The Detailed HAWS Pipeline

When warps stall due to a long latency memory operation, the long latency operation flag

of the scoreboard is set, which triggers HAWS. The warp state flag bit is set 1 to indicate that the

warp is in the hint-assisted execution state.

In the fetch stage, HAWS fetches the instructions specified by the hint, one by one, using

the hint’s guidance. HAWS will not attempt to access any instruction that is not pointed to by a hint.

After fetching and decoding the selected instructions, HAWS will send the source and destination

register numbers to the scoreboard to see if there are any dependencies. Since HAWS will issue

and execute new instructions, which will affect the state of the original scoreboard, there are a few

solutions to solve this issue. One is to use two scoreboards for tracking the pending register state to

support using hints. Every time HAWS is triggered, the in-order scoreboard is copied to the HAWS

scoreboard, since there may be some other instructions in flight. But this method increases hardware

complexity by too much, so we adopt an alternative approach which dramatically decreases hardware

costs and saves GPU energy. More details will be provided in the following paragraphs.

Branch instructions: A branch instruction is executed normally in HAWS if the branch is

identified as independent of any earlier long latency instructions. To support branch execution in

HAWS, we duplicate the SIMT stack, since we need to track program control flow and provide the
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active mask for each warp. We copy the data from the original SIMT stack every time hint mode is

triggered.

Barrier instructions: In regular (i.e., non-HAWs) GPU execution, since we usually execute

instructions in order, whenever a warp reaches a barrier, it will stop and wait for the other warps

to reach the barrier. In HAWS execution, the hint in HAWS will not select any barrier instructions,

but the instructions past a barrier can still be selected and executed if they are independent of the

previous long latency instruction. This feature can provide us with some significant performance

benefits.

Memory instructions: Memory instructions will not be identified by a hint if a data hazard

could occur. An exception to this rule are memory instructions beyond barriers will be ignored by

HAWS, even if they will not generate any data hazards. The reason for this decision is based on the

GPU memory model. To ensure correct results when parallel work-items cooperate, all stores from

work-items in other warps in the same work-group are only visible to the current warp after a barrier.

After execution completes, the original destination register number, as well as the offset

field and the renamed register number, are stored in the Result Collection Unit (RCU). This unit

includes a result buffer with several entries. The unit has multiple roles in the design. First, the

RCU stores the results of the out-of-order retired instructions, maintaining the mapping between the

original register and the newly assigned register. The RCU uses the information provided by the

hint to assist the warp schedulers, issuing instructions more efficiently and bypassing unnecessary

instructions whenever the warp switches back to in-order execution. The detailed organization of the

RCU is present in figure 5.6. The RCU consists of a buffer with several entries, and each entry has

six different fields. Every instruction scheduled and executed by HAWS will have an entry in the

result buffer.

Each entry in the result buffer has the following fields: i) offset (9 bits), ii) dst (8 bits), iii)

renamed (8 bits), iv) ready (1 bit), v) control (1 bit), and vi) valid (1 bit). The six fields maintain

information about the offset of the current instruction, the destination register number, the renamed

destination register number, a status indicating whether the result is ready to use, if this instruction is

a branch, and whether the entry is valid or not. The total size of the result buffer entry is 28 bits. We

set the depth of the RCU to 8, which was selected based on our experiments.

Second, as mentioned above, we do not duplicate the scoreboard for HAWS execution. To

reduce the hardware cost, and also improve the energy efficiency during HAWS execution, we reuse

the dst and renaming fields in the RCU to assist HAWS execution. Since the RCU stores the original

destination register number of the instructions executed by HAWS, when a new instruction is issued

in HAWS mode, the warp scheduler will check not only the scoreboard but also the previous entries
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Figure 5.6: Organization of Result Collection Unit.

in the RCU to be sure it does not have a RAW dependency (WARs and WAWs are handled using a

hint and register renaming). Although the RCU holds the renamed destination register number for

each instruction executed by HAWS, we also introduce a register renaming table that maintains the

mapping between the original register number and the most recently associated renamed register

number. During HAWS execution, multiple instructions may have the same destination register,

which could be renamed to different registers. Besides, the renaming table always records the latest

mapping of a register and its renamed register, whenever a potential RAW hazard could occur. Thus,

the following instruction will read the correct register value from the renaming table.

Figure 5.7: Example of hint information and RCU operation for instructions in the first experiment

of figure 5.1. For clarity, all offset fields are shown as the instruction it points to.

When an instruction that was scheduled by HAWS is sent to a functional unit to execute,

all fields for this entry in the RCU are updated, except for the ready field. We use the instructions in

Figure 5.3 as an example. The hint information, as well as RCU operation for I4 and I6, are shown in

figure 5.7. Please note for clarity, we show the relationship between instructions for individual offset

fields.
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Before we analyze the execution, we first focus on the instruction hint. We can see the

rename bit for both instructions is 0, which means we do not have to rename the destination registers.

For I4, since it is the first instruction in the hint group which can be potentially scheduled by the

HAWS scheduler, there is no instruction before I4 that will use r4 as a source register, so we do not

need to rename r4. For I6, the instruction before I6, which is skipped by HAWS scheduling, is I5.

Since I6 does not have a WAR dependency with I5, we do not have to rename r5 either.

In the first set experiments in Figure 5.3, when I4 is fetched by HAWS, the RCU receives

the information and updates the result buffer with information for I4. In our example, I4 passes the

check on to the scoreboard, and since there are no valid previous entries in the RCU, the HAWS

scheduler issues I4. HAWS continues at I6. Before issuing I6, the HAWS scheduler will check both

the scoreboard and the previous entries in the RCU. Since I4 is already complete at this time, the

RAW dependency based on the source register r4 in I6 is released, and then I6 is issued.

When I4’s execution is finished, the result is written to the destination register, and the

ready bit is set to 1, indicating that this instruction is finished and its results are ready to use. If there

is no register renaming, the renamed field is the same as the dst field. If renaming is used, the register

renaming table in the hint mode will be updated.

Although HAWS does selective out-of-order execution, the instruction with the shortest

offset will be chosen first by HAWS. So all of the entries in the RCU are ordered accordingly in

increasing distance values from the dependent instruction.

5.3.4 Returning to In-order Execution

Once the long latency operation completes, the long latency operation flag maintained in

the scoreboard is cleared. When the warp scheduler receives this information, instruction execution

switches back to in-order execution. The first instruction that is dependent on a long latency operation

is allowed to issue, and the warp starts to execute instructions one-by-one in the program order.

At the same time, the warp scheduler also has to check if the instruction to be fetched has already

been selected by HAWS. Using the information provided by the RCU, these issues can be resolved

intelligently, only fetching the necessary instructions.

Figure 5.8 shows the fetch logic when the warp returns back to normal execution, which

assists the warp in finding the necessary instructions to fetch. In the first step, the fetch logic checks

if the current pc is equal to the pc in the head entry of the RCU. If they are the same, the fetch logic

will keep checking whether the result of the instruction is written in the original register or renamed

register by comparing the renaming field with dst field in the entry. If the result is written in the

original register, the scheduler can skip this instruction and fetch the next instruction. If the result
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Figure 5.8: Fetch logic.

is not written to the original register, the instruction will be fetched and issued. Since the result of

the instruction is stored in the renamed register, we need to copy this value to the original register.

After the instruction is issued, it will bypass the execution stage and update the register file. Please

note that it is necessary to fetch and issue the instructions whenever register renaming occurs since

the scoreboard needs to be updated and perform dependency checking to prevent WAW and WAR

hazards.

In our example in Figure 5.6, when the PC reaches I4, it checks with the head entry in the

RCU to find which register where the result is written. Since there is no register renaming happening

during I4’s execution, the scheduler skips I4 and fetches the next instruction. The same steps are

repeated when the PC reaches I6.

5.3.5 The Advantages of HAWS over Static Scheduling

We can also use the compiler to reorder independent instructions to try to hide some of the

long memory latency stall time. We provide the following example to compare HAWS scheduling

with static compiler-based scheduling, demonstrating the advantages of HAWS.

In this example, we have a block of code that includes three main parts: blocks 1, 2, and 3.

Each block represents 15t execution cycles. There are also two components associated with each

long memory stall, stall 1 and stall 2, which are 5t and 3t cycles, respectively. During blocks 2 and

3, we execute code c and f, respectively, which are instructions that are not dependent on any long

latency memory operations present in the whole block.

For the normal execution in A, the program instruction blocks are issued and executed in

the original order. Block 1 is executed first, after 5t cycles, a long memory stall occurs, and then
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Figure 5.9: Comparison of normal execution, statically-scheduled execution and HAWS execution.

block 2 is executed. Block 3 is executed 3t cycles after block 2 completes, due to another long latency

stall. The total execution time is 53t cycles. Since we can execute some independent instructions

during both memory stalls, the compiler performed a reordering of instructions in those portions of c

and f.

For example B, the compiler schedules all independent instructions in sections c and f after

the program encounters the first memory stall. It takes 8t cycles in total to finish the execution of c

and f. Although the code block 2 can be scheduled after 5t cycles, it has to wait until section f is

finished. But when encountering the second stall, since there are no more independent instructions,

the program will remain there for 3t cycles. In this case, the total execution time is reduced to 48t

cycles, since the static scheduling performed by the compiler fully covers the first memory stall by

identifying independent instructions. But the compiler can not predict how long the memory stall

will take, so it over-scheduled independent instructions after the first memory stall, which leads to

sub-optimal performance.

For example C, the compiler breaks code section c into subsections c1 and c2, first

executing c1 (which takes 3t cycles) when the program encounters the first memory stall. It then

executes c2 and f (which take 5t cycles) when the program meets the second memory stall. Since

we execute some instructions to overlap with the memory stall time, the total number of execution
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cycles is reduced to 47t cycles. Again, similar to example B, the compiler can not know how long it

will take for each long latency memory stall to be resolved. It may not schedule enough independent

instructions to execute to hide the first stall.

For example D, we use HAWS scheduling. When the program encounters the first stall at

the end of block 1, HAWS will try to identify as many independent instructions as possible to be

included in the hint group. This will allow the hardware to execute all of the instructions in part c,

completely covering memory stall 1. When the program hits memory stall 2, HAWS executes all

instructions in part f, which overlap nicely with the duration of stall 2. The total execution time of

HAWS execution is 45t cycles, which is 2t cycles faster than using static scheduling in example C

and 3t cycles faster than example B.

Comparing examples B, C, and D, when the program encounters the first stall, the number

of independent instructions scheduled by the compiler are either too few to completely hide the

delays associated with the long latency stall, or too many, impeding independent instructions from

covering other stalls. In contrast, HAWS will try to execute as many instructions as possible, which

will cover all of the stall time generated by long latency stall. This is why HAWS scheduling does

better than static scheduling in this example.

Since there are many factors which may influence the duration of long latency memory

stalls during execution, even for the same kernel, the stall time for the long latency memory operation

could be dependent on the input data size used for the kernel. It is challenging to use static scheduling

to cover all memory stalls. Since HAWS makes dynamic decisions in concert with the warp scheduler,

guided by a compiler-generated instruction hint, and it tries to execute as many instructions as possible.

HAWS will provide us with better performance in most cases.

5.3.6 Area Estimation

As described earlier, we will have to add extra hardware to support HAWS execution. The

Result Collection Unit (RCU) must be added, which includes eight entries, with 28 bits per entry.

Our baseline GPU can support up to 40 warps per SM, so the total size of the RCU is 8960 bits. We

need to copy the SIMT stack when there is a branch instruction scheduled by HAWS. Each entry in

the SIMT stack contains the active mask (64 bits), the current pc, and the reconvergence pc, with

32 bits for each field. The SIMT stack is 128 bits per entry, with eight entries. So the total size for

the SIMT stack is 40,960 bits per SM. The renaming table consists of two parts, the scalar register

renaming table, and the vector register renaming table. Since there are eight entries in the RCU,

supporting up to 8 instructions executed whenever the warp switches to HAWS mode, we also set

the renaming tables to 8 entries. For scalar registers, each entry has 16 bits, 8 bits for the original
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register number, and 8 bits for the renaming register number. We assume the same design for the

vector register renaming table, with 16 bits per entry. The total size for the register renaming table is

10,240 bits. The overall overhead is 7.34 KBytes/SM.

Based on CACTI modeling [39], the additional elements associated with HAWS take

0.045mm2 per SM. Compared with the baseline GPU model, which is based on the AMD Radeon

7970 [33] which contains 32 SMs and a die size of 352mm2, the total area overhead is only 0.4% of

the overall chip size.

5.4 Evaluation

5.4.1 Methodology

Table 5.1: List of benchmark applications
Applications Abbr. Type
Binary Search BS M
Bitonic Sort BI N
Discrete Cosine Transform DCT M
DwtHaar1D DH M
FFT FFT N
FastWarshTransform FW M
MatrixMultiplication MM M
MatrixTransform MT M
PrefixSum PS M
Reduction RD M
ScanLargeArrays SA M
SimpleConvolution SC M

To evaluate our design, we select representative benchmarks from the AMD APP SDK

2.5 benchmark suite. The benchmarks provide us with a rich set of both memory-intensive and

compute-intensive benchmarks, as well as a mix of both, representing a wide range of application

behaviors. The 12 benchmarks evaluated in this work are listed in Table 5.1, along with some of their

application properties. Again HAWS scheduling is targeting memory intensive benchmarks, so a

majority of the benchmarks on our list are memory intensive, though we include compute-intensive

to make sure we do not impact their performance.

As mentioned earlier, we model our baseline GPU architecture using the Mult2Sim simula-

tor [67, 16], which is a cycle-level heterogeneous simulation framework supporting both GPU and

CPU simulation. All experiments are based on a baseline GPU model similar to the AMD Radeon
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Table 5.2: Baseline GPU model configurations
GPU Model AMD Radeon 7970

Clock Frequency 1000 MHZ
Number of SMs 32

Max Num. Warp / SM 40
Scheduler Policy GTO
SIMT Units / SM 4
SIMT lane width 16
L1 Cache / SM 16 KB, 64 Sets, 4 way, 64B / line

L2 Cache 128 KB, 128 Sets, 16 way, 64B / line
Scalar Registers / SM 2048
Vector Register / SM 65536

LDS / SM 64 KB

7970, whose hardware specifications are summarized in Table5.2. We extended the timing part of the

AMD GPU model in Multi2Sim to support HAWS. The Radeon 7970 is a high-end AMD GPU that

supports instruction-level parallelism, allowing multiple instructions to be issued in the same cycle.

AMD used the code name Southern Islands to identify the ISA used in the 7970.

5.4.2 Performance

We compare HAWS scheduling against a Greedy-Than-Oldest (GTO, our baseline) [58],

CTA-Aware scheduling [19], and warped-preexecution scheduling techniques [24]. Figure 5.10

shows the overall performance achieved by HAWS and the competing techniques for both memory

intensive and non-memory intensive applications, as compared to the baseline GPU model. We

separate memory intensive benchmarks and those are not in the chart.

CTA-aware tries to reduce cache contention and utilize data locality by prioritizing sub-

groups of warps to execute and access memory, giving them a better chance to better utilize the data

and maximize reuse opportunities. We observe a speedup in most of the benchmarks for CTA-aware

over the baseline model. CTA-aware not only exploits intra-warp locality but also exploits inter-warp

locality, while GTO only gives priority to the oldest warps. However, due to the improvement of our

baseline GPU model, CTA-aware is not as effective as reported in the older architecture. It achieves

4% speedup in overall.

Note that the scheduler for both the baseline GPU model and the regular execution in

HAWS use a greedy-than-oldest (GTO) scheme. In all of the benchmarks, HAWS achieves a

maximum performance improvement of 34.2%, as found in the BS benchmark. From the results,

we can also see HAWS does not negatively impact non-memory intensive applications, providing
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Figure 5.10: Speedup of HAWS, relative to the baseline model.

an average of 2.3% improvement for FFT and BI, since we benefit from the dynamics of the warp

scheduler, based on the current instruction hint to increase instruction-level parallelism of the GPU.

Pre-execution scheduling tries to issue future independent instructions whenever a warp

stalls by relying on the hardware to dynamically detect such opportunities. For most of the workloads

we have studied, we observe that HAWS has a better speedup than pre-execution scheduling. The

reason for this is HAWS can locate the next independent instruction directly and execute it according

to the instruction hints, while pre-execution scheduling needs to use hardware to dynamically detect

if the next instruction is independent with the long latency operation or not. Sometimes it takes longer

to find an appropriate candidate to fetch and execute. While pre-execution scheduling provides a

12.4% average speedup for memory-intensive workloads, HAWS offers a higher speedup of 14.6%.

The speedup of HAWS scheduling, when running memory-intensive workloads, is higher

than for non-memory intensive benchmarks, given that memory-intensive applications have more

long latency memory stalls, which provides the warp schedulers with more opportunities to trigger

HAWS scheduling.

5.4.3 Impact on Memory Stalls

Figure 5.11 shows the breakdown of scheduling cycles for all of the benchmarks. The

portion of the stacked bars identified as Issued denotes that at least one warp in the GPU is eligible to

be issued. The Long Latency Stall portion is defined as all warps in the GPU that are stalled due to a

long latency memory operation. Since multiple warps are allowed to be issued by the same warp

scheduler in the same cycle in AMD GPUs, we label the rest of the stalls as Mixed Stall. This denotes

that no warp can be issued in that cycle, which may be due to a variety of reasons (e.g., there are no
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Figure 5.11: Breakdown of Scheduling Cycles (B:Baseline, H:HAWS).

Figure 5.12: Percentage of long latency stall, comparing HAWS with baseline model.

available instructions in the fetch buffer, the pipeline is busy, a data dependencies occurred, etc.). For

the same benchmark, both the baseline and HAWS execution have a similar total number of Issued

cycles, which makes perfect sense since they are executed while considering the same resource. In

type M benchmarks, the Long Latency Stall cycles are significantly reduced by the HAWS scheduler,

as compared to the baseline model. We take a closer look at this in Figure 5.12.

Figure 5.12 shows the percentage of long latency RAW stalls in the benchmarks when
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using HAWS. For comparison, we presented earlier the long latency stalls percentages for the

baseline model in Figure 5.12. For those applications that enjoy significant speedup using HAWS,

including BS, MT, and FW, HAWS can significantly reduce stalls due to long latency RAWs in those

benchmarks up to 14.9%. We can see improved speedup for these benchmarks in Figure 5.10. For

non-memory intensive benchmarks, the long latency stalls can only be reduced marginally by HAWS,

as discussed previously, since the total percentage of long latency stalls is not as high.

5.4.4 Opportunities for Instruction Level Parallelism

Figure 5.13 shows the average number of SIMT instructions executed by a warp whenever

using HAWS scheduling. As mentioned previously, HAWS will only select instructions within a hint

group to execute. From our study, across all of the benchmarks, 0.55 instructions (less than 1) are

executed on average by a warp whenever we switch to hint-assisted mode. The memory intensive

workloads play a significant role in dominating this average. For example, in the DCT workload, we

see 1.23 instructions executed on average per switch to HAWS.

Figure 5.13: Average number of SIMT instructions executed per warp for per HAWS scheduling.

Figures 5.14 and 5.15 show a breakdown of the instruction types executed by HAWS.

As shown in Figure 5.14, MM executes almost 20% of its total ALU instructions in hint mode,

while FFT only executes 0.39% of its total ALU instructions. BS executes nearly 20% of its total

long latency memory instructions in hint mode, as shown in Figure 5.15. Combining these two

figures, we can conclude that for a workload to benefit from HAWS, it will need to have either have

a high percentage of ALU instructions. In applications such as MM that contain a limited number
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Figure 5.14: Percentage of total ALU instructions executed by HAWS.

Figure 5.15: Percentage of total Memory instructions executed by HAWS.

of memory instructions executed in HAWS mode, if they have a high rate of ALU instructions

executed, they can still achieve excellent performance with HAWS. Inspecting the code closer, both

MM and DCT have long latency memory instructions inside a loop. These instructions are used for

loading operands that are the inputs for vector multiplication - these are operations that can trigger

HAWS execution. Every time the program stalls due to a long latency memory instruction, HAWS

schedules ALU instructions for execution. Since HAWS will be triggered repeatedly, this increases

the percentage of ALU instructions executed by HAWS.
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5.4.5 Experiments on Kepler GPU

We also evaluate HAWS on the Kepler architecture. Since the NVIDIA compiler is

proprietary, we manually inserted instruction hints in our benchmarks as shown in Table 5.3. We use

the same GPU configuration, as shown in 4.1. In figure 5.16 we can observe that HAWS outperforms

the baseline round-robin scheduler. Similar to our own previous results, HAWS performs better on

memory-intensive benchmarks and can achieve a maximum speedup of 26% on the FW benchmark.

On average, it can achieve 15% across five workloads evaluated.

Table 5.3: List of benchmark applications
Applications Abbr. Type
Matrix Multiplication MM M
Matrix Transpose MT M
Scalar Product SP M
Inline Math IM M
Bitonic Sort BS N

Figure 5.16: Speedup of HAWS on simulated Kepler GPU.

5.5 Summary

In this chapter, we have presented a Hint Assisted Warp Scheduler, a novel GPU warp

scheduler which uses compiler-generated hints to better utilize GPU hardware resources. Our hints

are used to identify opportunities for out-of-order execution in the shadow of warp stalls caused

by long latency memory operations. Compared to static approaches, HAWS provides us with a
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dynamic solution that can take full advantage of unused cycles due to memory stalls. We presented

the design and evaluated potential performance benefits across a variety of benchmarks. Our results

show HAWS can improve performance, on average, by 15.3% for memory intensive applications.

For non-memory intensive workloads, HAWS is 2.3% faster than the baseline model.
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Chapter 6

Hint-Assisted Locality-Aware
Scheduling

6.1 Redundant MSHRs allocation across the GPU

Whenever a streaming multiprocessor (SM) executes an instruction, the instruction is

fetched and decoded by the front-end of the SM and sent to the appropriate execution unit. Specifi-

cally, the Load/Store unit executes all memory instructions, generating a request for each instruction

and sends them to the L1 cache. On a GPU, each SM has an on-chip L1 cache. When the L1 cache

receives memory requests from the Load/Store unit, it compares the address tag first and checks if

the request is a cache hit. If the request is a hit, the L1 cache will respond with the corresponding

data in the cache. Otherwise, the L1 cache will inspect the Miss Status Holding Registers (MSHRs)

to see if the requested cache line also being requested by another thread. The L1 cache will append

source information such as the warp ID and the thread ID to the existing MSHR entry if the request

is already registered. If not, a new entry will be allocated in the MSHR. Since the GPU uses a

non-blocking L1 cache, the number of total cache misses it can process simultaneously depends on

the number of MSHR entries. Whenever all the MSHR entries are occupied by outstanding memory

requests, the upcoming memory requests will be blocked in the pipeline and will be retried in future

cycles until a MSHR is freed. In this situation, every instruction that has a dependency on the blocked

memory address will wait until the memory instruction completes, resulting in underutilizedd GPU

computing resources.

Since the maximum number of memory requests that an SM can process simultaneously

depends on the number of MSHR entries, we study how MSHR entries are utilized during GPU

application execution. We first define the notion of a redundant MSHR entry. An MSHR entry
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Figure 6.1: Percentage of MSHRs allocated for duplicate cache lines in a given time. The window

size is 2000 cycles in the diagram.

is determined to be redundant if the cache line it is allocated for has been assigned to a previous

allocated MSHR entry from other SMs. The previous allocation needs to have happened within a

particular timeframe. Figure 6.1 shows the percentage of MSHRs allocated for duplicate cache lines

within 2000 cycles. The reason we choose 2000 cycles as the window size is because the L1 cache

miss latency is up to a few thousand cycles. Different benchmarks exhibit a range of behaviors in

terms of the percentage of duplicate MSHR entries. On average, for the given window size of 2000

cycles, we find that almost 60% of MSHR entries allocated are duplicates, which means that for

those MSHR entries, there is another MSHR entry belonging to a different SM which has requested

the same cache line. GEMM and 2MM have a very high degree of redundant MSHR requests,

as high as 90%. The number of MSHRs entries is limited for the GPU’s L1 cache, so redundant

allocation of MSHR entries easily consumes the MSHR space, blocking upcoming memory requests

and degrading overall performance. In the NVIDIA Kepler GPU, there is room of 8 MSHR entries.

In general, the more requests from different warps an MSHR can manage, the better we can utilize

the MSHRs efficiently.

6.2 Benchmark Characterization

Since the number of MSHRs is a key design point that determines whether SMs can

serve additional memory requests to feed compute instructions, it is essential to investigate why the

redundancy percentage is so high across the SMs on a GPU. The main reason for the high redundancy
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is due to the inter-block locality. Figure 6.2 shows how blocks are distributed during application

execution. Traditionally, adjacent blocks from the same grid which share data locality are mapped to

different SMs in round-robin fashion. We identify three main categories of the inter-block locality as

follows.

Figure 6.2: Block scheduling inside GPU. Adjacent blocks are assigned to different SMs in round-

robin fashion.

• Multiple cache line shared among inter-blocks
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Inter-block locality exists in many workloads, especially in some 2D benchmarks. There is a

high degree of spatial locality across adjacent blocks. The adjacent blocks will share multiple

cache lines in some applications, such as matrix multiplication. Figure 6.3 shows the process of

matrix multiplication in the GPU. We calculate C = A x B in GPU, where each input matrix is

divided into n x n blocks. Each block is responsible for calculating the corresponding elements

of the result matrix. To calculate the first element in the block(0,0) of result matrix, we need to

read the first row of matrix A and the first column of matrix B. To calculate the first element

in the block(1,0) of result matrix, we will also need to read the first row of matrix A and the

first column of matrix B. Based on this access pattern, we find that whenever we calculate the

elements with the same thread ID inside different blocks which have the same blockIdx.y, the

blocks will read the same row of the input matrix multiple times. That helps to explain why

the percentage of redundant MSHR allocations is high in benchmarks GEMM and 2MM since

adjacent blocks are distributed on different SMs. High spatial locality exists in this category of

benchmarks.

Next, we take a closer look at the data access pattern for each warp across different blocks.

When we calculate all elements inside warp 0 from the block(0,0) in matrix C, the data we

need to read from matrix A is all elements inside warp 0 from the block(0,0), all elements

inside warp 0 from the block(0,1), and all elements inside warp 0 from all other blocks whose

blockIdx.y is 0. How about calculating all elements inside warp 0 from the block(1,0) in matrix

C? We find that we still need to read all data from warp 0 inside the blocks whose blockIdx.y

is 0. Although they will read different columns from matrix B, to calculate warp 0 in the

block(0,0) and warp 0 in the block(0,1), 50% of the addresses are the same. If warp 0 from the

block(0,0) and warp 0 from the block(0,1) are issued within a short time period, the MSHR

will collapse 50% of the total requests, reducing the memory pressure. Furthermore, all warps

that share the same ID in different blocks, as whose blockIdx.y is the same, will experience

50% of data reuse. If we can schedule these warps together, we can further reduce the memory

pressure and insert more requests from different warps in every MSHR entry.

• Boundary cache lines shared among inter-blocks

In many GPU workloads such as stencils and convolutions, we observe that adjacent blocks

share boundary cache lines. The number of cache lines shared depends on the specific algorithm

and halo size. In Figure 6.4, we show a diagram of a 2D stencil workload running on a GPU.

We can observe that there are cache lines shared between adjacent blocks.

For example, block (1,0) shares a common cache line with blocks (0,0), (0,1) and (1,1) in the
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Figure 6.3: High degree of spatial locality across adjacent blocks. Multiple cache line are shared.

picture. For blocks (1,0) and (1,1), one or more cache lines may be shared depending on the

halo size in the workload.

Again, since adjacent blocks are distributed to different SMs in a round-robin order, benchmarks

such as JS and CONV experience a high redundancy percentage (up to 68%). Since only

boundary cache lines are shared among adjacent blocks, the benchmarks in this category do

not have as high spatial locality as the first category. We can observe that from Figure 6.1,

GEMM and 2MM have a higer rate of redundant MSHR allocations, but still have high spatial

locality.

• Some common data shared among inter-blocks

We also find that different blocks access common addresses in main memory in some GPU

applications. The exact memory access pattern depends on the benchmarks. Figure 6.5 shows
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Figure 6.4: High degree of spatial locality across adjacent blocks. Boundary cache line are shared.

a snippet of code for the Histogram benchmark. When the blocksIdx.x and i are the same

for different blocks, the threads from different blocks access the same addresses in main

memory. Besides accessing common addresses, these blocks also share some constant data

in some benchmarks. It is common that two different blocks will share the same data, but

compared to the patterns associated with the other two categories, they have lower spatial

locality. From Figure 6.1 we can see that HS, FW and BS have a lower percent of redundant

MSHR allocations.

Figure 6.5: Low-Mid degree of spatial locality across adjacent blocks. Some data are shared. Code

sample from HS benchmark.

6.3 Hint Assisted Locality Aware Scheduling

Based on our analysis of why there are so many redundant MSHR allocations, we propose

hint-assisted locality-aware scheduling. First, we design a new scheduling algorithm based on the

different classes of locality discussed above. Then we extend the CUDA runtime API to allow users
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to input scheduling hints, assisting the GPU to adopt different scheduling algorithms. Our goal is to

make each MSHR entry hold more requestis from different warps and reduce MSHR pressure.

6.3.1 User Input Scheduling Hint

According to our previous analysis, we define three different address patterns based on

the cache lines shared among blocks in the workload. To better assist the scheduler when making

smart decisions during execution, we extend the CUDA APIs to allow users to input a scheduling

hint based on different address patterns present in their workload.

First, we introduce how we insert the hint. When we launch a CUDA kernel in an

application, we call the CUDA runtime API shown in Figure 6.6. Besides the original arguments

from the kernel, we also need to pass another two variables, which are the grid size and the block

size. These variables are stored in a special register in the GPU. When the GPU starts to execute

the kernel program, it will use the value stored in the special registers to decide the block size and

grid size. We extend the official CUDA API and introduce an extra field when we launch the kernel,

which is shown in Figure 6.7. In addition to the grid and block size in the official CUDA API, we add

one more variable, which is the hint value. This value will tell the scheduler which kind of address

pattern is associated with this kernel. The scheduler can then make better scheduling decisions for the

blocks and warps during execution. The detailed design of the hint encoding is shown in Table 6.1.

There are four types of hints the user can specify. When the hint value is 1, it indicates the

workload has high spatial locality and multiple cache lines are shared across blocks. When the hint

value is 2, it means boundary cache lines are shared among blocks in your workload, and if it is 3,

then some common data and constant values are shared among blocks. We use the value 0 to disable

hinting. Whenever the user is not sure about which type pattern is present, we can pass 0, resulting in

using the default warp scheduler. For every hint a users inputs when launching kernels, the scheduler

chooses the appropriate scheduling algorithm to maximize the performance. The details about how

we redesigned the scheduler to exploit the hint are described next.

Figure 6.6: Kernel launch using official CUDA API.

Figure 6.7: Kernel launch using our extended CUDA API.
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Table 6.1: Hint encoding
Hint value Workload Type
0 Not specified
1 Multiple cache lines shared among blocks
2 Boundary cache lines shared among blocks
3 Some data and constant value shared among blocks

6.3.2 Locality Aware Scheduling

When the hint value equals to 1, 2 or 3, data locality exists among adjacent blocks. To

reduce the number of redundant MSHR entries across different SMs and improve overall performance,

at the block level, our locality-aware block scheduler assigns adjacent blocks to the same SM.

Figure 6.8 shows the details of the distribution of blocks. Compared with a round-robin scheduling

scheme, now we assign adjacent blocks to the same SM, maximizing the chance for the warps to

access the same cache line in the same SM. For the workloads whose hint value is 0, the locality-aware

scheduler uses the original block scheduler.

After the blocks are assigned to the SMs, the locality-aware warp scheduler will schedule

the warps according to the programmer-guided scheduling hint. As we discussed previously, the

locality-aware warp scheduler will pick the appropriate scheduling algorithm based on the hint value.

The details are as follows:

• Multiple cache lines shared among blocks.

For workloads that share multiple cache lines among blocks, the hint value is set to 1. Since

multiple cache lines are shared among blocks, this type of access pattern is accompanied by

high spatial locality. To maximize the chance to fully exploit the data locality and reduce

MSHR pressure, we propose to use a hint-based two-level warp scheduling algorithm. As we

discussed previously, in workloads such as matrix multiplication, the warps share the same

ID inside blocks and the blockIdx.y is the same, they will access 50% of the same addresses.

In contrast to a traditional two-level warp scheduler, for all the blocks which have the same

blockIdx.y, we will group the warps with the same warp id within the same block together.

Figure 6.9 shows details of how to schedule warps in the same group. We group all warp 0s

from blocks with the same blockIdx.y together (warp 0 in block(0,0), warp 0 in block(0,1),

etc.). We do the same for warp 1. The reason we use a two-level warp scheduler is that we

can group warps that have high data locality, but from different blocks, together. With our

two-level warp scheduler, warps within the same group have an equal opportunity to fetch

and issue instructions and are scheduled in a round-robin fashion. In this case, there is a very
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Figure 6.8: Block distribution for benchmarks which have data locality among blocks.

high chance for the warps inside the same groups to issue their memory loads in close time

proximity. The MSHR entry can maximize its capacity to append all these memory requests

together. Once all the warps in the current group are stalled, the warp scheduler will switch to

another group. The switching policy among groups is also round-robin.

• Boundary cache lines shared among blocks.

We take another look at Figure 6.4, where the workload hint value is 2, meaning that adjacent

blocks share boundary cache lines. For example, the lower boundary of warp 1 in block(1,0)
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Figure 6.9: Warp scheduling for workloads which have multiple cache lines shared among blocks.

shares common data with warp 1 in block(0,0), warp 1 in block(2,0), warp 0 in block(0,1),

warp 0 in block(1,1) and warp 0 in block(2,1). In all the boundary warps which share the

common addresses with warp 1 in the block(1,0), we can observe the warp 0 in block(1,1)

shares all the addresses in the entire cache line, while the other warps only share part of the

cache line.

Based on this observation, we will group warps whose blockIdx.x is the same together. In this

case, warp 1 from the block(0,0) and warp 0 from the block(0,1) will be in the same group.

• Some common addresses shared among inter-blocks

For this type of workload, the amount of data shared among blocks varies in the benchmarks.

We distribute warps in a round-robin fashion to different groups.

6.4 Evaluation

6.4.1 Methodology

To evaluate our hinting design, we select a rich set of benchmarks from the CUDA SDK [42]

and Polybench benchmark suite [54]. Here we define type 1 as kernels that share multiple cache

lines among adjacent blocks, type 2 for kernels that share boundary cache lines among blocks, and
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Table 6.2: List of benchmark applications
Applications Abbr. Type
General Matrix Multiplication GEMM Type 1
2 Matrix Multiplication 2MM Type 1
Matrix Transpose MT Type 1
Jacobi 2D stencil JS Type 2
Convolution 2D CONV Type 2
Histogram HS Type 3
Scan SC Type 3
Fast Walsh Transform FW Type 3
Bitonic Sort BS Type 3
Matrix Vector Product and Transpose MVT Type 3

Table 6.3: Simulated GPU configuration.
Clock Frequency 732 MHZ
Number of SMs 14

Max Num. Warp / SM 64
Scheduler Policy Round Robin

Number of registers / SM 65536
Shared memory / SM(KB) 16

Number of MSHR entries / SM 16
Max memory requests / MSHR 8

L1 Cache / SM 16 KB, 4 way, 128B / line
L2 Cache 1536 KB, 16 way, 128B / line

type 3 for kernels that share some random data and constant data. The asssembled set of benchmarks

provide us with a rich set of all three categories of patterns. The ten benchmarks evaluated in this

work are listed in Table 6.2, along with their application properties. Hint-assisted locality-aware

scheduling is used for benchmarks with high spatial locality. A majority of the benchmarks on our

set exhibit high data locality. We also include some benchmarks with low to medium data locality,

enabling us to evaluate how our scheduler performs on different degrees of locality.

We model our baseline GPU architecture using the Multi2Sim Kepler simulator [67, 16],

which is a cycle-level heterogeneous simulation framework supporting both CPU and GPU simulation.

All our experiments are based on the baseline GPU model, whose hardware specifications are shown

in Table 6.3. As discussed previously, to support hint-assisted locality-aware scheduling, we also

extended the CUDA runtime and driver APIs in our simulator to support hint insertion.
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6.4.2 Performance

We compare our hint-assisted locality-aware scheduler with a baseline round-robin sched-

uler, Jog et al.’s CTA-Aware scheduler [19] and Sethia et al.’s MASCAR [63] scheduling technique.

Figure 6.10 shows the overall performance achieved by our hint-assisted locality-aware scheduler, as

compared to the other competing schedulers for all three types of workloads.

Figure 6.10: Speedup of hint-assisted locality-aware scheduler, relative to the baseline round robin

model.

The CTA-aware scheduler tries to reduce cache contention and utilize temporal locality

by prioritizing sub-groups of warps to execute and access L1 cache, giving them more opportunity

to benefit from temporal locality and maximize data reuse. We can observe a speedup in most of

the benchmarks for the CTA-aware scheduler over the baseline round-robin model. The CTA-aware

scheduler exploits both intra-warp locality and inter-warp locality. However, since their design was

based on an older GPU generation due to improvements in the baseline GPU model, the CTA-aware

scheduler is not as effective as previously reported, achiving only a 5% speedup overall.

MASCAR is another warp scheduling technique that tries to prioritize one warp to keep

executing whenever the GPU hits a long latency stall. MASCAR introduces a cache re-execution

model to reduce memory pressure and increase the cache hit rate. MASCAR provides an overall

speedup of 7.7% on average. We can observe that MASCAR performs better on cache sensitive

benchmarks such as BS and MVT, since the cache re-execution fully utilizes temporal locality which

can reduce memory pressure.

Our hint-assisted locality-aware scheduler outperforms both CTA-aware and MASCAR.

In all of the benchmarks, it achieves a maximum performance improvement of 19% in the MT
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benchmark. From the overall performance, we can also see that our hint-assisted locality-aware

scheduler performs even better on the benchmarks that have high spatial locality (type 1 and type 2).

It achieves a 13% speedup on average. The reason for this speedup is that many of the benchmarks

have high spatial locality, so the hint-assisted locality-aware scheduler can issue many more memory

requests from different warps, heavily reducing memory bandwidth pressure. Although MASCAR

and CTA aware can also provide performance improvements, they can not alleviate the memory

pressure by as much as the hint-assisted locality-aware scheduler. Besides, our approach requires

minimal hardware overhead.

For the benchmarks that have low to medium spatial locality, the speedup achieved by

the hint-assisted locality-aware scheduler varies across kernels. For the MVT benchmark which

calculates a matrix-vector production, work is divided across different blocks. Each block reads a

different part of the input matrix and different chunk of the input vector, so there is little spatial locality

among adjacent blocks. That is the reason why MASCAR outperforms hint-assisted locality-aware

scheduler for this workload.

6.4.3 Reduction in Duplicated Cache Line Allocations

As discussed previously in this chapter, data locality across inter-blocks generates a high

number of duplicate MSHR allocations in different SMs. Figure 6.11 shows the percentage of

MSHRs allocated for duplicated cache lines for hint-assisted locality-aware scheduler. We can see

that for all benchmarks except MT, the number of duplicate MSHR entries is reduced as compared

with the baseline model. The reason why there is no reduction in MT benchmark is that little data

locality exists among blocks. For benchmarks with high spatial locality, we observe at least a 10%

reduction on duplicate MSHR entries. This further explains how our hint-assisted locality-aware

scheduler reduces MSHR pressure and improves overall performance.

6.4.4 Number of Memory Requests per MSHR Entry

As shown in Table 6.2, in our baseline model each MSHR entry can insert up to 8 warp

requests for the same cache line. If we take a closer look at Figure 6.12, we can see that the number

of memory requests each MSHR entry is handling is increased in all benchmarks when using the

hint-assisted locality-aware scheduler, as compared with the baseline model. For some benchmarks,

the number of memory requests handled doubles for the hint-assisted locality-aware scheduler, such

as MT and SC. In the MT benchmark, high data locality exists among blocks, so the hint-assisted

warp scheduler increases the MSHR efficiency dramatically. By increasing the number of entries
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Figure 6.11: Percentage of MSHRs allocated for duplicated cache lines in every 2000 cycles, relative

to the baseline model.

used in each MSHR, the hint-assisted locality-aware scheduler reduces the memory pressure and

increase GPU performance.

Figure 6.12: Number of memory requests per MSHR entry handle.

6.4.5 Summary

In this chapter, we have presented the hint-assisted locality-aware warp scheduler, a

novel GPU scheduler which uses programmer-guided hints to guide the warp scheduler to make

smarter decisions. By adopting different scheduling algorithms, grouping different warps together
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according to scheduling hints, the hint-assisted locality-aware scheduler can provide a 13% speedup

for workloads with the high spatial locality.
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Chapter 7

Conclusion

7.1 Conclusion

In this thesis, we have focused on addressing improving GPU performance and resource

utilization leveraging a hardware/software co-design approach. To summarize, this thesis makes the

following contributions:

• We have developed a cycle-based GPU simulator based on the NVIDIA Kepler GPU ar-

chitecture running at the SASS level (binary level). We have demonstrated its accuracy as

compared with GPU hardware. Due to the fact that the NVIDIA architecture is proprietary,

we reverse-engineered the NVIDIA Kepler GPU ISA, architectural details, as well as driver

and runtime information. We have developed our own CUDA runtime and driver APIs, as

well as the GPU driver calls to support GPU simulation with our framework. To our best of

knowledge, this is the first GPU simulator that supports NVIDIA GPU on the SASS level.

• Leveraging our simulator, we characterized a rich set of workloads to identify the sources of

poor resource utilization. We identified that long latency memory stalls are a major source of

low resource utilization, especially for memory-intensive workloads. We have designed a novel

hint-assisted warp scheduling policy to improve GPU performance by executing independent

instructions in a selective out-of-order fashion when the program encounters long latency stalls,

making better use of compute resources.

• Long memory latencies and limited memory bandwidth are still significant bottlenecks in

GPU applications. For benchmarks that have inherent spatial locality, we have designed a

hint-assisted locality-aware warp scheduling policy to exploit spatial locality to reduce memory

pressure. First, we extended the CUDA runtime API to support the use of scheduling hints.
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Second, based on the availability of different scheduling hints, our hint-assisted locality-aware

scheduler can make better decisions about grouping warps which share high spatial locality

to increase MSHR efficiency and reduce memory pressure. Our hint-assisted locality-aware

scheduler improves GPU performance, while adding a modest amount of hardware.

7.2 Future Work

Our focus on a hardware/software co-design scheduling approach has enabled optimization

opportunities for future GPU architecture researchers. Since the GPU is a power-efficient device,

we believe that additional co-design scheduling techniques will be explored to further reduce

energy consumption on GPUs. One exciting direction would be to insert hardware-specific latency

information in the hint when scheduling warps. In this case, the GPU will know the precise timing

for a warp, which will guide the scheduling of arithmetic instructions. The GPU inactive this warp

and give other warps to run to improve performance.

For our hint-assisted locality-aware warp scheduler, we develop customized scheduling

hints based on the type of workload. To better optimize the scheduling algorithm, further opportunities

can be exploited by adding workload specific parameters in the hint. For example, we can add

information to the hint that identifies boundary cache lines to assist the scheduler to make a smarter

decisions. We also believe that future co-designed approaches can be optimized for power versus just

performance, which would benefit embedded and edge devices.
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