
A Power Modeling Approach to Protect GPUs from Side-Channel

Attacks

A Dissertation Presented

by

Saoni Mukherjee

to

The Department of Electrical and Computer Engineering

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in

Computer Engineering

Northeastern University

Boston, Massachusetts

April 2020

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Published by ProQuest LLC (

 ProQuest

). Copyright of the Dissertation is held by the Author.

All Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

27837707

27837707

2020

NORTHEASTERN UNIVERSITY
Graduate School of Engineering

Dissertation Signature Page

Dissertation Title: A Power Modeling Approach to Protect GPUs from Side-Channel Attacks

Author: Saoni Mukherjee NUID: 001167197

Department: Electrical and Computer Engineering

Approved for Dissertation Requirements of the Doctor of Philosophy Degree

Dissertation Advisor
Prof. David Kaeli

Signature Date

Dissertation Committee Member
Prof. Yunsi Fei

Signature Date

Dissertation Committee Member
Prof. Rafael Ubal

Signature Date

Department Chair
Dr. Srinivas Tadigadapa

Signature Date

Associate Dean of Graduate School:
Dr. Waleed Meleis

Signature Date

”It always seems impossible, until it is done.” - Nelson Mandela

ii

Contents

List of Figures v

List of Tables vi

List of Acronyms vii

Acknowledgments ix

Abstract of the Dissertation xi

1 Introduction 1
1.1 Cryptography . 2

1.1.1 Need for accelerated cryptography . 2
1.2 Graphics Processing Units . 3

1.2.1 Emerging GPU applications . 4
1.3 Cryptography on GPUs . 4
1.4 Attack on Cryptography . 5
1.5 Motivation for this thesis . 6
1.6 Scope and Contributions of this thesis . 6

1.6.1 Current contributions . 7
1.6.2 Proposed contributions . 8

1.7 Organization of the Thesis . 8

2 Background 9
2.1 GPU basics . 9

2.1.1 Compute Unified Device Architecture (CUDA) 9
2.1.2 GPU architecture . 12

2.2 The Advanced Encryption Standard . 13
2.2.1 CUDA implementation of AES . 17

2.3 Side-Channel Attack . 17
2.3.1 Correlation Power Analysis Attacks . 18
2.3.2 Power Leakage Acquisition . 19

iii

3 Related Work 21
3.1 Timing Side-Channel Attacks . 21
3.2 EM Side-Channel Attacks . 22
3.3 Power Side-Channel Attacks . 22

3.3.1 Simple Power Analysis . 22
3.3.2 Differential Power Analysis . 23
3.3.3 Correlational Power Analysis . 24
3.3.4 High-Order Differential Power Analysis 25
3.3.5 Countermeasures . 25

3.4 Other Types of Side-Channel Attacks . 26
3.5 Side-Channel Attack on GPUs . 26
3.6 Power Modeling . 27
3.7 GPU-based AES . 29
3.8 Summary . 30

4 GIPSIM framework 31
4.1 Motivation . 33
4.2 Building a Baseline Model . 34
4.3 Model Accuracy . 37
4.4 Model Correlation to AES . 38
4.5 The Effect of DVFS on GIPSim . 39

5 Obfuscation Approaches 43
5.1 Hiding . 43

5.1.1 Randomization . 43
5.1.2 Equalization . 45
5.1.3 Using an LSTM . 45

5.2 Masking . 50
5.2.1 Higher-order masking . 51

6 Conclusions and Future Work 54
6.1 Dissertation Summary . 54
6.2 Future Work . 56

Bibliography 57

iv

List of Figures

2.1 Thread Hierarchy in CUDA Programming. 10
2.2 The workflow if NVIDIA nvcc compiler. 11
2.3 Overview of different rounds of AES. 13
2.4 Overview of four steps in AES: AddRoundKey, SubBytes, ShiftRows, and Mix-

Columns. 14
2.5 Overview of the experimental setup used to measure power. 19

4.1 Experimental setup for power acquisition. 32
4.2 A sample trace of an AES execution. 33
4.3 Baseline model for IADD instructions with different HDs. 35
4.4 The PCC value comparing the modeled power and measured power. 38
4.5 The binned voltage consumption, Vadd in varied GPU clock frequency settings. . . 41
4.6 The binned voltage consumption, Vadd in varied GPU core voltage settings. 42

5.1 Different combination of keys contribute in reduced SNR 44
5.2 The layer structure of the deep neural network used for obfuscation using GIPSim. 46
5.3 Different obfuscation approaches including LSTM 47
5.4 Power profile of the last round of (a) unprotected and (b) obfuscated AES. 48
5.5 CPA attack results against (a) unprotected and (b) obfuscated AES. 49
5.6 Success rate of attacks with and without deep learning techniques. 50
5.7 Six different masking variable combinations evaluated with GIPSim. We show the

QMS achieved for each scheme, and the number of traces required to recover the key. 52

v

List of Tables

4.1 List of opcodes supported by the GIPSim framework. 36
4.2 Relative power consumption for measured and modeled power, while change program

inputs. Each benchmark has 3 different inputs. 37
4.3 The K20c supported memory and core frequencies. 40

5.1 How masking variables leak data. 52

vi

List of Acronyms

GIPSim GPU Instruction-level Power SIMulator

NIST National Institute of Standards and Technology

UAV unmanned aerial vehicles

FFT Fast-Fourier transform

API Application Programming Interface

ISA Industry Standard Architecture

IC Integrated Circuit

CMOS Complementary Metal-Oxide Semiconductor

SNR signal-to-noise ratio

LSTM Long Short-Term Memory

GPU Graphic Processor Unit

GPGPU General Purpose computing on Graphic Processor Units

SIMT Single Instruction Multiple Thread

SIMD Single Instruction Multiple Data

SM Streaming Multiprocessor

CKE Concurrent Kernel Execution

DVFS Dynamic voltage and frequency scaling

CUDA NVIDIA’s Compute Unified Device Architecture Framework

OpenCL Open Compute Language

PTX Parallel Thread Execution

NVML NVIDIA Management Library

vii

SCA Side-Channel Attack

SPA Simple Power Analysis

DPA Differential Power Analysis

CPA Correlation Power Analysis

DOM Distance of Mean

HW Hamming Weight

HD Hamming Distance

DRP Dual-Rail Precharge

RCoal Randomized Coalescing

pSCA Profiling-based Side-Channel Attack

PCC Pearson Correlation Coefficient

QMS Quantitative Masking Strength

viii

Acknowledgments

As I finish the Ph.D. program, I have many people to be grateful to during my journey as a
graduate student. My time at Northeastern had been full of learning and growing as a person, and
there are a lot of people who helped me throughout the process.

I can’t thank my parents (Mr. Kesablal and Mrs. Swapna Mukherjee) enough for their
unrelenting faith, support and love. My father had an unfulfilled dream of finishing a Ph.D., which
he wanted to fulfill through his two children. Today, I hope I have been able to fulfill his dream and
make him proud! Ph.D. is often tiring, demanding, and full of moments of frustration. On those
days of distress, my mother has always been understanding and patient. Her unwavering belief in
me inspires me to reach higher. I am also fortunate to have my brother, Amarnath, and sister-in-law,
Devdutta, at all my beck and calls. I thank them for providing me with the comforts of home in this
faraway land. I owe it to my family for whatever I am today.

I thank my advisor, Prof. David Kaeli, for providing me with the opportunity to work with
him. His constant support and encouragement has brought out the best in me. I admire his attention
to detail and personal interest in grooming each of his students. He has always been there when I
needed him. Apart from research, I hope I have inculcated some of his virtues: how to be a good
person, always grounded, respect, and help others. These will definitely pave my way to lead a better
professional and personal life.

I also thank my co-advisor, Prof. Yunsi Fei, for her valuable suggestions throughout this
thesis. There were many times I felt lost, and she helped me get back to the track with her expertise
in the field of hardware security. I also thank her for letting me use the equipment in her lab to
conduct the power measurement experiments. I appreciate the members of NUEESS lab for helping
me solve problems with the equipment. I would also like to thank Prof. Rafael Ubal for agreeing to
be on my committee.

I have had the great opportunity to work with the talented members of the NUCAR lab-
Charu, Fritz, Elmira, Leiming, Fanny, Nico, Yifan, Yash, Xiangyu, Amir, Kavi, Xiang, Chen, Xun,
Shi, Julian, Trinayan, Kaustabh, Yuihui. A big thanks to Dana Schaa for introducing me to Prof.
Kaeli. Charu was always my one-stop solution for everything from research to life and more.

I am also thankful to my master’s advisor, Prof. Anthony Skjellum, for inspiring me to do
a Ph.D. Had he not encouraged the idea of pursuing a Ph.D., I would not have ended up traversing
this long path, every inch of which I thoroughly enjoyed. I would also thank all my teachers, mentors,
lab-mates, especially Prof. Miriam Leeser and Dr. Nicholas Moore, for helping me learn the basics
of Computer Architecture and research in general.

During my stay in Boston, I looked forward to the weekends to spend time with some
fantastic friends. They all brought different flavors to my life! Ayushmati was always a phone
call away. Nupur, Debajyoti and Lipi ensured that I have a life outside my Ph.D., and Ayan and

ix

Samragnee made sure that I never felt starved. During the last phase of my Ph.D., Sougata made sure
that I could keep my calm perform to the best of my abilities. I thank all my friends near and far for
the laughs we had that kept me refreshed.

Finally, I would like to thank the National Science Foundation and Semiconductor Research
Consortium for funding my research.

x

Abstract of the Dissertation

A Power Modeling Approach to Protect GPUs from Side-Channel Attacks

by

Saoni Mukherjee

Doctor of Philosophy in Computer Engineering

Northeastern University, April 2020

Prof. David Kaeli, Advisor

Graphic Processing Units (GPUs) have become of accelerator of choice to speed up
the execution of a wide range of applications. Given the massive number of compute cores on
these devices, GPUs have become an attractive platform to accelerate security and cryptography
applications. While performance is a critical quality to prevent online attacks, current accelerators
are ill-equipped to protect against side-channel attacks. When launching a side channel, the attacker
exploits the physical implementation of a cryptographic algorithm, rather than the inherent theoretical
weaknesses of the algorithm. Side channel leakage can come in the form of power dissipation,
performance degradation or electromagnetic waves. This thesis considers the first of these sources.

Power modeling of GPU devices has been well studied by the computer architecture
community. The goal of power modeling is to be able to tradeoff power for performance in the design
of the GPU. Prior work has shown that by recording the amount of energy consumed by a GPU
during encryption or decryption, an attacker can capture secret information. If we can understand
how the underlying microarchitecture leaks side-channel information to an attacker, we can build
much more robust obfuscation approaches.

In this thesis, our aim is not to build yet another GPU power model. Instead, we deliver
GIPSim, a framework to enable security researchers to reason about side-channel leakage present
in the context of a GPU execution-driven simulator. We show how researchers can capture detailed
power estimates while running CUDA programs on a Kepler-family GPU and use the information to
obfuscate power by obscuring data-dependent power leakage. We show how traditional hiding and
masking techniques can be applied in the context of a GPU. These, in turn, reduce the vulnerability
present in this context. We also detail how we leverage machine learning techniques using a Long
Short-Term Memory neural networks to further improve the obfuscation. Our goal is to design
a system that can thwart power-based side-channel attacks. We demonstrate that we can model

xi

data-dependent power dissipation, capturing the hamming distance of data values used during the
execution of AES encryption. This same approach is used in power-based side-channel attacks.
GIPSim is one of the first simulation environments that can be used for evaluating power side-channel
resiliency and help build a more secure accelerator.

xii

Chapter 1

Introduction

Computers, and the networks that interconnect them, have changed society and improved

our way of life. While technology has benefitted all of us, these advances have increased our depen-

dence on computer systems and the software that runs on them. Security threats and vulnerabilities

in architectures, networks, and software have become commonplace. Each day we read about a new

security breach, leaking sensitive information to attackers. As technology becomes increasingly

ubiquitous, the rampant exploitation of system vulnerabilities represent a threat to our ability to

use information technology safely. Problems range from the annoyances of spam emails, identity

theft, and loss of productivity, to catastrophic damage to critical information or theft of financial

assets. Given the number and variety of security threats, computing technology is changing from an

enabling technology to a disabling technology.

A primary requirement of today’s software and information security platforms is to protect

the confidentiality and integrity of data that is computed and transmitted among multiple parties.

Failure to protect this information can not only incur great financial loss, but can give rise to life-

threatening situations, such as when patient medical records became inaccessible. In 2016, all

MedStar Health hospital medical records were taken offline after their computer networks were

attacked by Ransomware [1]. In western Ukraine, cyber-attacks left nearly a quarter-million people

without power or heat for several hours in the middle of winter [2]. To reduce the exposure to these

attacks, most sensitive data (e.g., personal health records, emails, income tax returns and financial

reports) are typically encrypted using well-known cryptographic techniques.

1

CHAPTER 1. INTRODUCTION

1.1 Cryptography

With the ever-increasing proliferation of e-business practices, a massive volume of business

transactions and data transmissions are regularly carried out in devices ranging from smartphones,

workstations, and data centers. Cryptographic algorithms are employed to secure these transactions.

Cryptography is the science of protecting information and communications so that only the authorized

parties for whom the data is intended can read and process it. Exclusive access to the unprotected data

(i.e., the plaintext) is achieved by encrypting the data using a key that is known to only authorized

parties.

Since the time of the original benchmark paper by Claude Shannon that detailed the theory

behind secure communications, numerous scientific advancements have been made on developing new

cryptographic algorithms [3]. The algorithms used today are supported by extensive mathematical

evaluations that provide guaranteed levels of secrecy. This ensures that an attacker would find it

extremely difficult to guess the encryption key from the encrypted text, even if the plaintext and the

encryption algorithm are known.

The importance of cryptographic solutions has continuously been growing in the last decade

as a result of using the Internet in critical areas, including finance, government, and health-care.

1.1.1 Need for accelerated cryptography

The emerging era of ubiquitous computing or pervasive computing provides an array

of smart products, such as RFID, smart meters, smart thermostats, smart refrigerators that can

communicate with each other unobtrusively and are always available. This enables users to access

information and services anywhere and anytime. Projects such as MIT Media labs things that think

and Darpa’s smart space are showing a path to help us realize the dream of seamless integration of

digital infrastructure in our daily lives. These applications often require real-time implementations of

cryptographic algorithms. Both unmanned aerial vehicles (UAV) and smart grids are such examples.

UAVs continuously exchange dynamic information regarding the urban environment with a gateway

that provides constant feedback regarding different optimization parameters. These parameters are

used to include in the UAV’s path planning algorithm to find the path that the UAV travels in to reach

the destination safely. On the other hand, smart grids consist of a network of electric meters for

reporting the usage or power outage to the power utility company in real-time. Here sensitive data,

such as power consumption, price, outage awareness, are exchanged between the meters and the

2

CHAPTER 1. INTRODUCTION

utility company in real-time. Both UAV and smart grids are equipped with sophisticated technologies,

such as GPUs, to provide high throughput to run in real-time [4, 5, 6].

Many hardware-based SSL acceleration solutions have been studied and proposed in both

research and industrial fields. In the initial days of general-purpose GPUs (GPGPU), efficient GPU

based cryptographic solutions were not possible to be implemented, mainly because:

• the GPUs lacked native support for integer representations of the data and lacked support for

bitwise operations,

• the GPU programming models utilized graphics languages and lacked fundamental operations,

such as scatter,

• the GPU’s memory model was very restrictive, and

• there was significant overhead when using a fixed graphics pipeline.

Over the past decade, hardware vendors devised new solutions that significantly improved

a GPU’s programming and memory models, and better support general-purpose computations on the

graphics hardware.

1.2 Graphics Processing Units

There has been a substantial paradigm shift in the computing landscape in terms of the

introduction of accelerators, in particular, GPUs. Over the short timeframe that GPUs have been

used for computing, they have evolved from serving as configurable graphics processors rendering

high-quality 3-D graphics for games, to become the prevalent platform for general-purpose GPU

computing. Today, GPUs are ubiquitous - they are present in PC, laptops, desktops, smartphones,

workstations, and data centers. They are designed as multithreaded multiprocessor architectures

that excel at both graphics and compute applications. Given that GPUs provide a massively parallel

processing platform, GPUs power many of the world’s supercomputers on the TOP500 list (the

fastest 500 supercomputers in the world, published each year) [7].

The demand for faster and higher definition graphics continues to drive the development of

increasingly parallel GPUs. Initially, programmers were forced to use graphics-centric programming

languages to implement compute applications on these devices. However, in the past decade, new

programming languages were introduced that significantly increased programmer productive when

3

CHAPTER 1. INTRODUCTION

developing code on GPUs [8, 9]. GPUs are the accelerator of choice for high-performance computing,

deep learning and many other data-intensive applications. Along with advances in parallel languages,

GPU vendors have help deliver a rich set of libraries and tools that increased developer productivity.

These GPU codes are more effective than traditional CPUs in applications, where the workload

is mainly compute-bound and data-parallel, supporting concurrent execution. In addition to high

computational throughput, these devices are also able to exploit high bandwidth memory, providing

a high degree of memory parallelism. GPUs are able to hide memory latency using fast context

switching between threads.

1.2.1 Emerging GPU applications

GPU computing is at a tipping point now, becoming widely used in demanding consumer

applications and high-performance computing. The range of applications accelerated by a GPU is

continually increasing, and often, they are used in the areas that involve significant security constraints,

such as financial markets and medical diagnostics [10, 11]. GPUs are being used to perform different

types of safety-critical tasks such as pedestrian detection and avoidance and vehicle control [12, 13].

While GPUs are crucial in accelerating these applications, it is becoming increasingly important that

GPU execution is safe and secure. Given the increasing demands of compute-intensive applications,

which include security/cryptography algorithms, coupled with the availability of many-core GPU

architectures and efficient high-level programming languages, security researchers/professionals are

using these devices to accelerate cryptographic computations [14, 15, 16, 17].

1.3 Cryptography on GPUs

A block cipher is a cryptographic algorithm that encrypts/decrypts one fixed-size block

of data at a time. This class of algorithms is very well-suited for parallel computing because of the

independent data blocks and common operations performed on blocks of data. Many cryptographic

libraries include implementations for encryption/decryption on GPUs [18, 19, 20]. Although they

provide high throughput and multi-digit speedups over the fastest CPU implementations, research on

GPU security is still in its infancy.

The strict standards of security guarantee the mathematical strength of cryptographic

implementations, and are often secure from standard cryptanalysis. Cryptanalysis is the counterpart

to cryptography and deals with retrieving plaintexts from encrypted text without the knowledge

4

CHAPTER 1. INTRODUCTION

of the key. For example, the best known cryptanalytic attack against the popular AES block

cipher implementation [21] would require around 2126 operations before any information about the

encryption key would be obtained from the encrypted text. This may take a long time for even the

fast computing resources to recover the key.

When developing these software-based security applications, the underlying hardware

systems that deliver computation, and support communicate, are typically assumed to be secure and

reliable [22, 23]. However, such security assumptions about hardware cannot be easily guaranteed

because hardware systems can also have vulnerabilities and are prone to attacks.

1.4 Attack on Cryptography

Irrespective of the device where a cryptographic algorithm is run, the execution of the

algorithm always leaves some form of a trace on the system and its surrounding medium. This

trace may reveal information about the internal state of the encrypted text that classical cryptanalytic

attackers do not have. The mathematical proofs that guarantee security of the encryption fails to

consider these vulnerabilities, resulting in attacks that are considerably more practical.

There has been a constant battle between the security researchers and attackers, with new

classes of attacks discovered every day. Cryptographic algorithms developed in software and running

on hardware need to be protected against attacks that attempt to reveal secret information. Hardware

attacks can be characterized as follows:

• Active or Passive Attacks- Active attacks require the attacker to tamper or perturbate the

hardware internals, such as, electrically probing them or through laser impingement, using

such approaches to gather data from the device. On the other hand, passive attacks require the

attacker only to observe and infer the secret by exploiting one or more physical characteristic

of the system while it is in operation. The physical characteristics include power consumption,

electromagnetic emanation, processing time, etc.

• Invasive, semi-invasive or non-invasive attacks - Invasive attacks require the attacker to open

the system and fiddle with the circuitry within. Although semi-invasive attacks require the

attacker to open the system, the attacker does not need to modify the internal circuits. Lastly,

in the non-invasive attacks, the attacker does not open the system package.

5

CHAPTER 1. INTRODUCTION

1.5 Motivation for this thesis

Due to the demands of efficient cryptographic computation over large amounts of data,

GPUs are being leveraged to accelerate several cryptographic algorithms. When the cryptographic

algorithms are executed on a device, it leaves a trace in the form of information about the device.

For example, one kind of trace can be the time-varying power consumed by the GPU during

encryption. This trace, which is a result of the modulation of the dynamic power consumption,

includes information about the data being processed and can be used by an attacker to retrieve the

secret key in a small amount of time.

While several researchers have studied how to accelerate cryptographic algorithms on

GPUs, there has been limited work done to evaluate or harden the security of such accelerators.

Although side-channel analysis (SCA) has received a lot of attention in the research community,

including timing analysis, differential fault analysis and differential power analysis, there has not

been a lot of work done on evaluating these attacks on GPUs. Most of the work on SCA has focused

on non-invasive attacks and passive attacks, where the physical characteristics of the system opens a

side-channel or backdoor through which secret information used in the cryptography is leaked. The

class of attacks that use these side-channels to retrieve the secret information is called side-channel

attacks. Apart from power consumption, researchers have worked on many other side-channels over

the years, such as electromagnetic emanation, execution time, high-pitched acoustic vibrations of

the electronic components, etc. To design a defense, it may seem trivial to overcome side-channel

leakage by simply adding noise, randomizing, or fuzzing the side-channels in the system. While

these additions may successfully stymie certain classes of attacks on selected platforms, it becomes

very challenging to analyze the side-channel vulnerabilities and later block them on GPUs due to

their unique Single Instruction Multiple Threads (SIMT) execution model characteristics that differ

from CPUs and FPGAs. We discuss this in more detail later in Chapter 4.

1.6 Scope and Contributions of this thesis

Power analysis is a branch of side-channel analysis where power consumption data is used

as the side-channel to attack the system. In this thesis, we show that equipped with the right set of

software tools, we can design effective countermeasures to thwart such attacks. We present the design

and development of a novel simulation framework for assessing GPU power leakage. The model

tracks power at the instruction level for an NVIDIA GPU. Here, we did not aim to build yet another

6

CHAPTER 1. INTRODUCTION

GPU power model. Our model calculates a base cost and inter-instruction overhead for different

instructions with different input data values. We address some challenges of measuring the power on

a GPU. Once we can model power usage, we can design new software-based obfuscation techniques

to hide the power profile by carefully adding noise to the power signature of the cryptographic

algorithm in use.

1.6.1 Current contributions

This proposal makes the following contributions:

– Power leakage for Kepler GPU.

We provide a detailed analysis of power leakage and power acquisition on Kepler GPUs.

We show how researchers can capture power profiles while running CUDA programs on a

Kepler-family GPU.

– Instruction level power model framework.

We present our power model named GIPSim (GPU Instruction-level Power SIMulator), a

framework to enable security researchers to reason about side-channel leakage present on

GPUs. Researchers can use GIPSim to explore how to add impurity in a power profile of

program execution. We validate GIPSim, showing there is a strong correlation between the

measured power on the GPU and modeled power in GIPSim.

– Obfuscation approach for power side-channels on GPUs

We demonstrate GIPSim’s ability to incorporate instructions that can add noise to cryptographic

execution. When running together, they draw more power, and introduce randomness into

the power profile, thus decreasing the strength of the power side-channel. We show that this

approach decreases the vulnerability of power SCA.

Note that this work is not restricted to only this class of GPUs. A similar approach can be

taken for any class of GPU. To the best of our knowledge, GIPSim is the first attempt to provide a

simulation environment that can be used for evaluating and thwarting power side-channels.

7

CHAPTER 1. INTRODUCTION

1.6.2 Proposed contributions

The above contributions allow us to reason about power leakage that exists in the GPU

execution and develop new methods to thwart the side-channel attack. With this new understanding

and proposed methodology, we propose to pursue the following work to complete this thesis:

• Obfuscation with hiding and masking: For hiding, running a random computation along

with the cryptographic computation lowers the signal strength. On the other hand, masking

tries to secure the system by minimizing the correlation between the intermediate variables

and the secret information. Given that this introduces some performance overhead, we want to

evaluate the obfuscation strength of different options inside GIPSim.

• Performance: We want to be able to identify an obfuscation approach that limits the impact

on the speed of the cryptographic computations. GIPSim should include an option to be

configurable to trade-off performance and obfuscation strength.

• LSTM-guided obfuscation: Based on our work with training using different keys, we will

produce obfuscation approaches that leverage a neural network to predict obfuscation for the

target cryptographic computation.

1.7 Organization of the Thesis

The rest of this thesis is organized as follows: In Chapter 2, we present background on

GPU architecture and the associated CUDA programming model. We also provide an overview of the

cryptographic algorithm used in this thesis. Then we discuss the various types of side-channel attacks,

and the attack model assumed. We review the body of work and the state of the art research related

to this thesis in Chapter 3. In Chapter 4, we present our instruction-level power model, GIPSim and

show how we validate the model using correlation. Chapter 5 describes the obfuscation approaches

we used to hide and mask the power profile of the cryptographic algorithm and how it impacts signal

strength. We also show how LSTM neural network can be used in predicting the obfuscation for

cryptographic applications. Finally, Chapter 6 summarizes the thesis and provides a brief description

of future work.

8

Chapter 2

Background

In Chapter 2, we present background on GPU architecture and its associated programming

model. We also provide an overview of AES, the cryptographic algorithm we have tested so far in

this thesis. We discuss the CUDA implementation of AES. Finally, we discuss side-channel attacks

in general, going deeper into correlation power analysis, the class of attacks considered in this thesis.

2.1 GPU basics

GPUs are designed to be a throughput-oriented compute device. As a complement to CPUs,

GPUs excel at executing latency-sensitive applications. Earlier GPUs provided a fixed-function

graphics pipeline, designed for efficient 3-D graphics rendering. With the introduction of unified

shader and high-level programming languages, modern GPUs are used as programmable data-parallel

processors for accelerating general-purpose applications. There has been significant research by a

large body of researchers and developers to enable GPU performance.

2.1.1 Compute Unified Device Architecture (CUDA)

The CUDA programming model acts as a bridge between an application and its implemen-

tation on available hardware. It provides an Application Programming Interface (API) to generate

code for NVIDIA GPUs. In the context of programming, CUDA offers extensions to the C/C++

language, including libraries and rich data types to support execution on a GPU [24].

CUDA was designed to preserve several elements present in sequential programming

models and extends them to a parallel threaded execution model. A CUDA program is composed of

9

CHAPTER 2. BACKGROUND

Block
(0,0)

Block
(1,0)

Block
(2,0)

Block
(0,1)

Block
(1,1)

Block
(2,1)

Block
(0,0)

Block
(1,0)

Block
(2,0)

Grid 2

Grid 1

Block
(2,0)

Kernel 1

/* Parallel code */
__global__ void kernel()
{
. . .
}
/* End parallel code */

Kernel 2

Host Device

Block
(0,1)

Block
(1,1)

Block
(2,1)

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(4,0)

Thread
(3,0)

Thread
(4,1)

Thread
(3,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Thread
(4,2)

Thread
(3,2)

Block (1,0)

Figure 2.1: Thread Hierarchy in CUDA Programming.

two parts: 1) host code that runs on a CPU, and 2) device code that runs of one or multiple GPUs. A

host is a system on which launches CUDA library calls, (i.e., an x86 CPU), while the device is an

accelerator that executes the CUDA library code (i.e., a GPU). The portion of the program that is

executed on the device is called a kernel and is identified using the global declaration specifier.

When the kernel is called, it is executed in the form of many parallel instances that are mapped to a

set of parallel threads. The user specifies the number of threads that will execute the kernel as part

of the configuration syntax <<<...>>>. These threads are grouped into a thread block, and each

thread in the thread block has a unique ID that can be obtained in the kernel through the built-in

threadIdx variable. Similarly, a thread block is accessible through the blockIdx variable. The

thread blocks form a grid that represents the whole computation domain, as shown in Figure 2.1.

CUDA has multiple memory spaces that differ in both performance and capacity. Each

thread has its own private memory. While offering the highest bandwidth, this memory space is

limited. For efficient inter-thread communication inside a thread block, the thread block offers an

on-chip, high bandwidth, shared memory. Apart from the on-chip memory, the GPU also has an

off-chip global memory that is accessible to all threads. Some special memory spaces are optimized

for different memory usages and can be accessed by all threads:

– Read-only constant memory: This stores data that will not change throughout kernel execution.

NVIDIA hardware provides 64KB of constant memory that is cached and in some situations,

10

CHAPTER 2. BACKGROUND

CUDA
source code

nvcc

nvlink

ptxas

GPU

PTX

SASS

Executable

Machine independent Machine dependent

Figure 2.2: The workflow if NVIDIA nvcc compiler.

using constant memory rather than global memory will reduce the required memory bandwidth.

– Read-only texture memory: Although this was initially designed for classical OpenGL and

DirectX rendering pipelines, this cached on-chip memory is very useful for applications where

memory access patterns exhibit a great deal of spatial locality. This is specialized for 2D

read-only coalesced memory.

2.1.1.1 Compilation Workflow

Programs developed in CUDA C/C++ are compiled into binary code using NVIDIA’s

LLVM-based CUDA Compiler, nvcc, before being executed on the GPU [25]. Starting with CUDA

code as input, the front-end compiler generates an intermediate representation, LLVM-IR, and

subsequently generates virtual instruction set (ISA) code, called PTX (Parallel Thread Execution), as

shown in Figure 2.2. Next, the backend compiler, ptxas, translates that PTX to machine code called

SASS. Finally, a final binary file is generated using NVIDIA’s proprietary Optimized Code Generator.

This binary code is packaged into a device code descriptor, that is included in the host code. The

CUDA runtime system inspects this descriptor whenever the host code invokes the device code. To

launch a kernel, the compiler looks for the <<<...>>> syntax in the host code and replaces it with

the appropriate runtime library calls.

11

CHAPTER 2. BACKGROUND

It can be very challenging to modify a SASS-level program with NVIDIA’s framework.

In this work, we use the Kepler assembler and disassembler, enabling us to work with SASS code,

providing a framework to generate detailed instruction sequences [26].

2.1.2 GPU architecture

Next, we describe the NVIDIA Kepler architecture, given that we have selected this popular

device to serve as our evaluation platform [27]. The centerpiece of the NVIDIA GPU architecture

is the Streaming Multiprocessor (SM or SMX), the primary unit of computation on the GPU. A

thread block is assigned to run on an SMX using a round-robin scheme until the resources of the

GPU are occupied. After the block is scheduled, the remaining blocks are executed in the following

rounds. Once a thread block is scheduled on an SMX, it remains there until execution is finished.

Registers and shared memory are scant resources on an SMX since they have allocated in a shared

space for all threads assigned to the SMX. NVIDIA’s Kepler GK110 GPU architecture features up

to 15 SMX units, each of which has 192 single-precision CUDA cores, 64 double-precision units,

32 load/store units, and 32 special function units. Each thread has access to 255 registers. Threads

can only access its own private register file, but register values can be shared with other threads

via special instructions. When a GPU kernel is executed, the SMX groups 32 software threads

(identified by the programmer) into hardware threads called warps. Threads within a warp execute

in a Single Instruction Multiple Data (SIMD) fashion. The SIMD execution model requires that all

the threads in a warp always execute the same instruction. Each SMX has four warp schedulers and

eight instruction dispatchers, which allows four warps and eight independent instructions (two per

warp) to be issued and executed concurrently.

Modern GPUs have the capability to run multiple kernels, assigned to different streams,

concurrently. A stream is a sequence of operations that are performed in order on the device.

Multiple kernels can be run using different streams concurrently. Every CUDA kernel is invoked on

an independent stream, which is queued to the GPU’s hardware schedulers, determining the order of

kernel execution. The Kepler, Maxwell and Pascal architectures support up to 32 concurrent streams.

Each stream is assigned to a different hardware queue.

12

CHAPTER 2. BACKGROUND

AddRoundKey

ShiftRow

SubByte

MixColumn

Plaintext

AddRoundKey

Ciphertext

ShiftRow

SubByte

AddRoundKey

Ke
y

Ex
pa

ns
io

n

Initial
Round

9 Main
Rounds

Final
Round

Figure 2.3: Overview of different rounds of AES.

2.2 The Advanced Encryption Standard

In 2001, the National Institute of Standards and Technology (NIST) announced AES as

a new encryption standard [21]. Since then, AES has been a worldwide standard and adopted by

the US government to encrypt data in applications ranging from personnel to highly confidential

domains. AES is a symmetric-key block cipher that can use varying key sizes such as 128, 192 or 256

bits to encrypt and decrypt 128-bit blocks. Since we have used AES-128, we provide a description

of the algorithm for that key size. The input to AES-128 is organized in a 4 × 4 matrix of bytes,

called the state. The state undergoes a number of transformations in ten rounds during the encryption

process, as shown in Figure 2.3

Figure 2.4 presents the operations that performed through one round of AES-128. The

first operation performed on the input is called AddRoundKey, which serves to provide some initial

randomness by mixing the input key. Then the state goes through nine rounds to further increase the

13

CHAPTER 2. BACKGROUND

Figure 2.4: Overview of four steps in AES: AddRoundKey, SubBytes, ShiftRows, and MixColumns.

14

CHAPTER 2. BACKGROUND

diffusion and confusion in the cipher. Each of these rounds comprise of four operations on the state:

SubBytes, ShiftRows, MixColumns and AddRoundKey. After that, the state goes through one final

round, which includes all these operations except the MixColumns operation. These operations can

be described as:

1. AddRoundKey: Each element in the state is bitwise XORed with a 128-bit round key. This

round key is generated from the secret key using a key expansion algorithm described later.

2. SubBytes: Each element in the state is replaced by an affine transformation of its inverse in the

field GF (28). For a byte si in the state, this operation is denoted by S(si).

3. ShiftRows: Here a cyclic shift of the ith row in the state occurs by i bytes toward the left

(where 0 ≤ i ≤ 3). In other words, each byte in the ith row is cyclically shifted to the left by i

bytes.

4. MixColumns: This operation provides a column-wise linear transformation of the state matrix.

Each column of the state matrix is considered as a polynomial of degree 3, with coefficients in

GF (28) and multiplied by the polynomial {03}α3 + {01}α2 + {01}α+ {02}mod(α4 + 1).

The combination of ShiftRows and MixColumns provide the necessary diffusion of the cipher.

The Key Expansion algorithm takes the secret key as input and generates round keys for 11

AddRoundKey operations performed in one complete run of AES-128. As described in Algorithm 1,

there are two operations, ROTWORD and SUBWORD [28]. They cyclically shift and substitute the four

bytes (B0, B1, B2, B3) as:

ROTWORD(B0, B1, B2, B3) = (B1, B2, B3, B0) (2.1)

SUBWORD(B0, B1, B2, B3) = (SubBytes(B0),SubBytes(B1),SubBytes(B2),

SubBytes(B3))
(2.2)

Here, AES uses a round constant, defined as RCon[1], . . . RCon[10], as constants in

hexadecimal before applying the key expansion Algorithm 1.

15

CHAPTER 2. BACKGROUND

Algorithm 1: Key Expansion of AES-128
input :128 bit secret key

output :11 round keys each of 4 words as w[0], . . . , w[43]

begin

Rcon[1]← 01000000;

Rcon[2]← 02000000;

Rcon[3]← 04000000;

Rcon[4]← 08000000;

Rcon[5]← 10000000;

Rcon[6]← 20000000;

Rcon[7]← 40000000;

Rcon[8]← 80000000;

Rcon[9]← 1B000000;

Rcon[10]← 36000000;

for i ≤ 0 to 3 do
w[i]← (k[4i], k[4i+ 1], k[4i+ 2], k[4i+ 3])

end

for i ≤ 4 to 43 do

temp← w[i− 1];

if i ≡ 0(mod4) then

temp = SUBWORD(ROTWORD(temp))⊕RCon[i/4];

end

w[i]← w[i− 4]⊕ temp;

end

return (w[0], . . . , w[43])

end

16

CHAPTER 2. BACKGROUND

2.2.1 CUDA implementation of AES

In this work, we use an Electronic Code Book mode AES-128 encryption algorithm as

implemented in CUDA [29]. We leverage the T-table version since it is more efficient than the

original byte-based SBox implementation of AES.

In our implementation, we integrate the three steps, SubBytes, ShiftRows and MixColumns,

into T-table lookups and XOR operations. The initial round is an XOR operation of the plaintext and

the first round key. After that, there are nine rounds, where one diagonal of the state is considered as

its round input, and we map each byte into a 4-byte word through a T-table lookup. The four 4-byte

words are XOR-ed with their respective 4-byte round key bytes. Finally, the result is stored in a

column of the output state. Since the last round has no MixColumns operation, only one out of four

bytes is kept after the T-table lookup. This is equivalent to an SBox lookup operation and ShiftRow.

AddRoundKey is then performed on the four remaining bytes.

One column of a 16-byte AES state is computed by one thread, so a total of 4 threads are

needed for a block of data. Note that earlier in this section we described a thread block, which is

different from the 16-byte AES data block. The data block is iteratively updated after each round,

transforming the plaintext to ciphertext.

At the beginning of the encryption, the plaintext is loaded into the GPU’s global memory.

Each thread takes a portion of the plaintext data and copies it to local memory. The plaintext is

partitioned based on the thread’s block and thread id. Once the encryption completes, the resulting

ciphertext stored in the local memory is copied to global memory so that it can be transferred to CPU

memory. In ECB mode, the data blocks are entirely independent; hence depending on the data size

and resources available, the encryption process is easily parallelized.

2.3 Side-Channel Attack

The idea of using side-channels to steal information has been used for over a century.

During World War II, the electromagnetic emissions from the devices were used for spying to reveal

the plaintext that was transported in a secured manner from a distance. Later during the 1990s, in

two seminal papers, Kocher et al. described how execution time and power consumption could be

used to retrieve secret keys easily from naive implementations of cryptographic algorithms [30, 31].

Subsequently, substantial research activities have explored a range of architectural details, devising

new ways to implement side-channels and motivating related defenses. We discuss them in detail in

17

CHAPTER 2. BACKGROUND

Chapter 3.

There are mainly three requirements for a Side-Channel Attack (SCA) to be successful:

1. Perturbation: this happens when the attacker alters the behavior of the system or the state of

the system.

2. Manifestation: when the system is not accessible to perform the perturbation, they are mani-

fested through side-channels.

3. Observation: the attacker has to observe the side-channel to obtain the required information

about the secret information.

Sometimes, even though all the three requirements of SCA are fulfilled, the attacker may

not always be successful in retrieving the secret information. The amount of success of the attacker

depends on additional factors. The first factor is how effectively perturbation conveys the secret.

Another critical factor affecting the success is the noise in the channel.

When exploiting the unique Single Instruction Multiple Thread (SIMT) execution patterns

of a GPU, multiple threads can be run concurrently with different data, introducing a significant

amount of noise in the physical side-channel that the attacker observes. GPU execution is fairly non-

deterministic, utilizing a hardware-based thread scheduler, which introduces temporal uncertainty

into the resulting execution, presenting skew in the side-channel signal. These factors make SCA

challenging on a GPU.

2.3.1 Correlation Power Analysis Attacks

SCA is a class of attacks where the attacker gains information from the physical implemen-

tation of the cryptosystem. The side-channel information can be in the form of power consumption,

timing, electromagnetic emanation, or even sound [32]. The attacker uses correlation to retrieve the

secret key from the leaked information. In the case of a Simple Power Analysis (SPA), the attacker

inserts a temporal power variation and collects only one power trace to read the key bits directly.

Correlation Power Analysis (CPA) uses the correlation between the power consumed by the hardware

and the power estimates that the power model calculates. To calculate a correlation, the attacker

runs the encryption with different plaintexts and collects the generated power traces. For a block

cipher, such as AES, the attack is launched using a divide and conquer strategy, where each subkey

byte can be retrieved one by one. The power model estimates the deterministic portion of the power

consumption, using a Hamming distance model for CMOS technology. It computes the number of

18

CHAPTER 2. BACKGROUND

Oscilloscope

Power Supply

Plain text

Host GPU

Plain text

Cipher text Cipher text

0.1Ω

Power trace

VGPU

Figure 2.5: Overview of the experimental setup used to measure power.

logic changes (i.e., 0 to 1 or 1 to 0) based on the known plaintext and guessed subkey byte value.

Once we have enough traces, we calculate the Pearson correlation coefficient for the collected traces

and compute the cost for each guessed subkey value [33]. The correlation tends to be higher for

the right subkey value. This requires significantly fewer iterations than a brute force attack (i.e.,

requiring orders of magnitude fewer traces).

2.3.2 Power Leakage Acquisition

Our AES kernel is developed in CUDA and tested on an NVIDIA Kepler family GPU

Tesla K20c GPU, running Ubuntu 14.04.5 on an Intel Xeon CPU E5-1603 host. We use an Agilent

MSOX4104A mixed signal oscilloscope to obtain power measurements. Power traces are captured

by inserting a small resistor (0.1Ω) in series with the GPU card’s external power supply line. Other

parts of the GPU board are not touched to minimize invasiveness. The ATX power reads persistently

12V when we connected it to one end of the resistor. So we measure only at the other end, using

the oscilloscope to find the voltage drop across the resistor. The voltage drop across the resistor is

recorded when the code is executed on the GPU. The setup is shown in Figure 4.1.

As mentioned earlier in Section 2.2, the plaintext is sent to the GPU before encryption

starts. Then it is used to generate the ciphertext on the GPU before the ciphertext is returned to the

CPU. During encryption, the oscilloscope captures power traces at the maximum rate of 5GSa/s

19

CHAPTER 2. BACKGROUND

with 1GHz bandwidth, but the GPU has a maximum of the clock rate of 0.71GHz. When the GPU

is idle, it consumes a small amount of power. This power consumption is a function of time, but

independent of the kernel. According to our measurements, this is similar to the supply voltage of

12V . When the encryption starts, the GPU consumes more power, and the voltage drops but returns

to an idle power level once the encryption finishes.

There are many challenges in capturing the traces from the GPU, including:

• Although the NVIDIA K20 has an onboard power sensor, the sensor provides much lower

resolution than what is required for an SCA.

• The GPU has multiple converters that convert the 12V supply voltage into others as needed by

the device. In addition to this onboard conversion, there are other things that contribute to the

noise, including cooling fan, the PCIe interface, etc.

• The K20c GPU supports six clock speeds (from 324−758MHz). However, only two memory

clock speeds are supported (324 and 2600MHz), one high speed and one power-saving speed.

Although you can set any speed from these, there are hardware regulators that control the

frequency.

• The GPU does not have a precise mechanism to provide a trigger signal to indicate the start

and end of the encryption.

20

Chapter 3

Related Work

In this chapter, we provide an overview of the state-of-the-art of classical, as well as

micro-architectural, side-channel attacks (SCAs) that have appeared in prior work. We focus on

previous SCAs that explicitly exploit the programming or architectural features of a GPU. Since our

work is based on power, finally, we wrap with by discussing the related work on power modeling.

Publications are grouped and discussed to establish a comprehensive overview of these topics.

More than two decades ago, Kocher et al. generated a new branch of cryptographic

research with the introduction of classical side-channel attacks. Before this time, it was assumed that

the attackers only have black box access to the cryptographic devices [31, 30]. However, as these

early papers concluded, this model was not strong enough to carry out a real-world attack, since the

attacker needed to gain access to some internal state information from the side-channels. Typical

side-channels leak information in the form of the timing of cryptographic devices, electromagnetic

(EM) emanations and power consumption. In the following, we focus on how these attacks have

been implemented to exploit timing and power side-channels.

3.1 Timing Side-Channel Attacks

Timing channels exploit the variations in the execution time of cryptographic processes to

find information about the secret key. These variations occur for several reasons, including cache line

collisions, non-constant execution flow, and memory bank conflicts. In his seminal paper, Kocher

first introduced the term timing attack, where he analyzed the non-constant execution flow of RSA

to expose the private key [30]. Later, Brumley and Boneh showed described a successful attack on

a more realistic scenario on an OpenSSL based webserver[34]. Bernstein took advantage of the

21

CHAPTER 3. RELATED WORK

timing variations due to a cache set access time differences to recover AES keys [35]. Crosby et al.

worked on improving Kocher’s work by reducing the jitter in the measurements and successfully

recovered the key with a significantly lower number of traces [36]. Brumley further expanded upon

his initial work to attack ECC implementations, showing that ECC can also suffer from similar timing

leakage [37]. Timing attacks are also practical to recover plaintext sent over security protocols, such

as TLS [38].

3.2 EM Side-Channel Attacks

EM emanation is a side-channel that has a long track record in the field of espionage

and surveillance. In the public domain, in 1985, van Eck was the first one to demonstrate that EM

emanations from computer monitors could be captured from a distance and analyzed to reconstruct

the displayed text [39]. As a countermeasure to this, Kuhn invented unique fonts that reduced the

EM leakage and made it difficult to reconstruct the text [40]. For integrated circuits (ICs) and CPUs,

the first published works had limited scope - they required tiny antennas to be placed very close to

the target IC [41, 42]. Some of the most successful attacks were also semi-invasive and required

decapsulation of the chip packaging so that the signals of interest could be isolated. Removing these

limitations, Agarwal et al. successfully attacked a CPU and cryptographic units from a distance

using EM side-channel information [43].

3.3 Power Side-Channel Attacks

The premise of the power side-channel attack is to measure the power consumption of the

circuit to find the correlation between the leaked data and the secret key. Since the original work

on power side-channel attacks by Kocher et al.c [31], there has been vast interest in using power to

recover secrets and encryption keys.

3.3.1 Simple Power Analysis

Simple Power Analysis (SPA) is a method for interpreting power traces collected during

cryptographic operations. It is especially useful when the attacker has access to fewer traces. It

is helpful during preliminary evaluation to determine when repetitive operations occur during the

execution of an entire algorithm. However, it is difficult to use it to attack against AES. By visually

inspecting the traces, it helps determine the structure of the algorithm (e.g., rounds in AES). Although

22

CHAPTER 3. RELATED WORK

one is unable to deduce the secret key using this technique, it does present the capability to identify

the cryptographic algorithm running on the device and enable more powerful attacks that specifically

exploit any weakness of an algorithm to take place. Mangard presented a successful SPA attack

against the AES key expansion [44], and Messerges et al. showed SPA attacks on Hamming weight

and transition count leaks [45].

3.3.2 Differential Power Analysis

Differential Power Analysis (DPA) is a significantly more powerful attack. Using statistical

analysis and error correction techniques, DPA extracts information correlated to the secret keys [31].

Although it requires no prior knowledge of the algorithm, unlike the SPA, the attacker needs to

collect many traces to perform a successful attack. In a DPA attack, there are mainly two phases, data

collection that involves collecting the device’s power consumption during execution of cryptographic

operations, and data analysis. Although the original DPA uses the distance of mean (DOM) test,

later, another common DPA technique was shown that uses the correlation test [46], where a specific

characteristic of the measurement, such as the mean or the maximum supply current in a clock

cycle, is correlated with the predicted power. The correct key guess results in the highest correlation

coefficient between the vector of the selected measurement and the vector of predicted power. This

part is done in the data analysis phase.

AES encryption algorithm, as described in Section 2.2 converts plaintext into ciphertext

using the round keys. At any point during the multiple rounds of AES, where the state (derived

from plaintext) and the round key (derived from the key) enter a logic gate, the power consumption

depends on both the key and the plaintext. By sampling this, a successful DPA can be mounted.

In essence, Pramstaller et al. mentioned that in AES, the output of any operation is possible to

be attacked [47]. The ShiftRows operation is a simple bit permutation, and as an operation, it

is not suitable for DPA attacks. Any non-linear function increases the effectiveness of statistical

attacks such as DPA [48, 49]. Hence, SubBytes is an option suitable for DPA. Similar to SubBytes,

MixColumn is also a non-linear operation, but it is defined for 32 bits. So, to attack this operation,

it would require 232 key hypothesis, which is costly both in terms of time and memory compared

to other AES operations. Finally, in AddRoundKey, the round key is XORed with the intermediate

state. Although this operation is directly related to the round key, XOR is a low energy operation,

since there is not even a carry ripple between bits. Hence, the power observability for this operation

is low and can be drowned in the noise. Addresses to a memory (where SBox lookup tables are

23

CHAPTER 3. RELATED WORK

kept) switch considerably more capacitance than the XOR operation of AddRoundKey, generating

a more observable power signature. Hence, from the adversary’s viewpoint, it is easier to observe

the SubBytes operation than the AddRoundKey operation. Ambrose et al. performed DPA by

exploiting table lookups for verifying their countermeasure against power analysis attack [50]. Han

et al. showed DPA, multi-bit DPA and CPA attacks on AES both on a software and a hardware [51].

AES has eleven rounds comprising of a combination of these operations. If the first round

is attacked, the key that is attacked is the secret key since the round keys are derived for the second to

last round. In the last round, the final round key is attacked, and after disclosed, the secret key can be

easily derived. In this attack, the variables are the ciphertext and the values that the registers contained

in the previous round, which is dependent on the ciphertext and round key. Unlike first-round, here,

only the ciphertext is needed. Authors have used the last round of AES in many literature [52, 53, 54].

3.3.3 Correlational Power Analysis

Brier et al. described a Correlational Power Analysis (CPA) that evolved from DPA, and

provides a stronger correlational model that can exploit dependencies between the hypothetical

intermediate values in power consumption traces [33]. They describe that CPA can be viewed as a

multi-bit DPA method, capturing the linear relationship between the power consumption profile and

the data.

Similar to using DPA, some knowledge of the structure of the underlying algorithm is

required so the attacker can correlate the unknown key with some known information. The two most

common CPA methods involve using either the Hamming Weight (HW) or the Hamming Distance

(HD) [46, 55]. The HW is defined as the number of 1s in a binary number, and that value is the

HW of that binary number. For example, for the binary number of 01010101, the HW is four. This

model relies on the fundamental idea that the power drawn from a circuit changes while evaluating 0

as compared to 1. Given this hypothesis, we can tie power consumption to data values. Although

Hamming Distance (HD) is even more effective, it requires prior knowledge of the data preceding or

following the current data [56]. HW is a particular case of the HD model, where the first number

from which the distance is to be calculated is all zeros.

The research community commonly uses the correlation coefficient as the statistical test

for most power models and is used by an attacker to identify a key-value among all the candidates.

For this purpose, the common choice is Pearson’s correlation coefficient in conjunction with the

Hamming weight or distance model [46]. The work presented in this thesis is also based on Pearson’s

24

CHAPTER 3. RELATED WORK

correlation coefficient and adopts a Hamming Weight (HW) model, as proposed by Mangard [56].

3.3.4 High-Order Differential Power Analysis

High-Order Differential Power Analysis is an advanced form of DPA. The most common

way to thwart a DPA attack is by random masking, where intermediate operations are performed

probabilistically to reduce statistical correlation [57]. However, masking cannot thwart the attack

if the attacker correlates power consumption more than once during a computation. Messerges

proposed a second-order, or more generally, a higher-order power analysis attack that combines

multiple leakage signals [55]. It has been shown that second-order DPA attacks can overcome

some countermeasures theoretically, but will sometimes break them in practice [58, 59, 60]. These

attacks are usually more complex and delicate to perform because they usually require detailed

knowledge of the platform architecture running the cryptographic algorithm. This kind of information

is challenging to obtain for a GPU.

3.3.5 Countermeasures

Along with successful power analysis attacks on a variety of hardware platforms, many

countermeasures have also been reported in the literature. Depending on the level of abstraction,

countermeasures can be categorized into two broad categories: 1) algorithmic countermeasures and 2)

circuit-level countermeasures [61]. In both categories, we can apply: 1) masking and 2) elimination.

Masking tries to secure the system by minimizing the correlation between the intermediate variables

and the secret information. Elimination tries to remove any power variations measurable by the

attacker.

Algorithmic Countermeasures: At an algorithmic level, a countermeasure involves

introducing randomness into the power measurements. To help hide the side-channel signal, random

masking and operation shuffling are two conventional approaches [62, 63]. In random masking, a

boolean or arithmetic operation is performed on every intermediate value using a random value,

such that all the intermediate values become independent of the data. Eventually, the mask needs

to be removed. Alternatively, operation shuffling can be used to distribute the signal containing

the secret information into n time points. This reduces the corresponding correlation and SNR

for power analysis attacks to 1/n [62]. Although these two approaches are practical for first-order

DPA, they may still be ineffective for higher-order DPA. For elimination, an algorithmic approach

can be implemented using one of the following approaches: 1) developing a program that is void

25

CHAPTER 3. RELATED WORK

of secret-dependent branches, making it nonvulnerable to SPA, 2) balancing hardware logic and

state transitions to protect against DPA and CPA [64]. Although they are effective, they incur poor

performance and consume additional power, as well as require significant design effort. So it is

crucial to strike a balance between designing the obfuscation approach, performance, and power.

Circuit-level Countermeasures: Common ways to inject randomness at a circuit level is

inserting random delays, randomly changing the clock period, dynamically adjusting the threshold

voltage and performing dynamic voltage and frequency scaling (DVFS) [65, 66, 67]. This breaks the

trace alignment effectively, skewing the power leakage in time. More recent work manages voltage

regulators present in the power delivery network to cut the power consumption monitored by the

attacker, resulting in little power and area overhead [68, 69]. Power variations can be eliminated at

the circuit-level. Dual-Rail Precharge (DRP) is the most popular technique for implementing constant

power consumption in each clock cycle [61, 66, 64]. However, the hardware implementation of DRP

circuits comes with two significant issues. First, DRP circuits are at least twice as large as their

equivalent standard CMOS designs and consume more power. Second, when low-level electrical

effects are considered, the constant-power argument, based on HW or HD does not hold [70].

3.4 Other Types of Side-Channel Attacks

Other types of side-channel leakage can also comprise encrypted systems. In 2004,

Agrawal et al. reported a successful attack based on acoustic emanations from a computer keyboard,

telephone, and ATM keypad [71, 72]. They showed that the key being pressed could be identified

by differentiating the sound produced by pressing different keys. Acoustic emanations generated

by computers and additive manufacturing systems (e.g., 3D printers) also allow attackers to learn

about the encryption key or the objects being printed without requiring access to the original

design [73, 74, 75]. Kuhn found that it is possible to retrieve the information on a CRT or LCD by

using the indirectly reflected optical emanations [76, 77].

3.5 Side-Channel Attack on GPUs

There have been several research studies of side-channel vulnerabilities present on GPUs.

Initial studies were focused on leveraging software exploits in the GPU programming model to

purloin the confidential information. Pietro et al. demonstrated that, due to memory isolation issues,

GPUs are susceptible to information leakage [78]. Miele et al. identified that an attacker could

26

CHAPTER 3. RELATED WORK

overwrite a function pointer, resulting in a buffer overflow that can corrupt classified data or forcefully

change the execution flow [79]. Other studies [80, 81, 82] found that information leakage is present

due to memory contents that remained in GPU memory after a recently terminated GPU kernel

process completes. The premise in this class of attacks is that GPU drivers do not automatically

clear or delete data residing in different types of GPU memories, including shared memory, global

memory, local memory, and registers after deallocation. This leads to the risk of leaking confidential

data through reallocation of the same memory space to an attacker’s kernel. However, this class of

vulnerability can be easily resolved by clearing the memory before it gets reallocated to the new

kernel. Although the prior work did not exploit GPU-based cryptographic implementations, they

definitely pose a potential threat. Side-channel attacks such as timing, power, and EM analysis attacks

are possible threats to GPU-based AES implementations. Although the security of GPU-based AES

is starting to be explored, the prior research has already identified side-channel leakage present in

the context of a GPU. Luo et al. designed a power attack by exploiting the behavior of the CUDA

scheduler. They recovered all of the key bytes of the last round of AES using a Correlation Power

Analysis on an NVIDIA GPU [83]. Later, Jiang et al. developed a timing attack to recover the

encryption keys using a Correlation Timing Analysis [84]. Later, they mounted another timing attack

in a similar setting using Differential Timing Analysis [85].

Equipped with this attack model, Kadam et al. found that the determinism in the coalescing

mechanism led to security vulnerabilities. They proposed a solution to this attack by Randomized

Coalescing (i.e., RCoal), which randomizes both the granularity of the warps across groups and the

requests in each group. This provides an improved level of obfuscation, albeit with some performance

overhead introduced [86]. Recently, Wang et al. described a Profiling-based Side-Channel Attack

(pSCA) to overcome RCoal and recover the AES key in a reasonable time [87].

Karimi et al. demonstrated a cache timing attack and successfully recovered the full

encryption key on a Qualcomm Snapdragon mobile GPU [88]. Along with power and timing,

Gao et al. was the first one to show a potential weakness of both T-table based and bitsliced AES

implementation to EM analysis [89, 90].

3.6 Power Modeling

Power is a pivotal design constraint for any computing device, including CPUs, GPUs,

and FPGAs. The power consumption of these components can be obtained either through a direct

or indirect measurement method. A direct measurement can be made using an internal or external

27

CHAPTER 3. RELATED WORK

voltage/current sensor that periodically collects samples to estimate the average power consumed

during program execution. The total energy consumed is calculated as the integral of the power

consumed over the execution time. External power meters are usually connected between the power

supply unit and the component under investigation. Although they are considered the most accurate

source to collect power consumption data, they are not suitable for comprehensive power profiling

and often produce inaccurate readings, especially in an HPC environment [91]. Alternatively, internal

power meters can be built from built-in sensors, providing for convenient access to power data

through a software interface. The NVIDIA Kepler K20 GPUs are equipped with such sensors.

Burtscher et al. described an energy measurement methodology for GPU kernels running on a K20,

using the on-board built-in power sensor [92]. However, similar sensor interfaces are not available

on all GPUs, and there are limits on which the power sources can be measured.

Indirect measurements include modeling and simulation techniques for power consumption.

Over the last couple of decades, researchers have delivered a number of power models for CPUs,

including Wattch [93] and McPAT [94]. These tools enabled power modeling research to thrive in

the computer architecture community. Later, when GPUs became increasingly popular, researchers

started building power models for GPUs. The main challenge in building a power model for a GPU

is the lack of micro-architectural and implementation details of the hardware available to the research

community.

Initial power models for a GPU considered modeling power at a fixed frequency/voltage

configuration, but did not consider the effects of DVFS. While Nagasaka et al. proposed a model for

the Tesla GPU (GTX285) and achieved a 4.7% average prediction error, their approach cannot be

used for more recent GPUs, such as GPUs from the Fermi generation [95]. Hong et al. proposed a

model for the Tesla GPU (GTX280) that used offline PTX analysis to obtain highly accurate power

predictions but at the cost of being specific for that class of GPUs [96]. So clearly, while these

approaches are highly accurate, they cannot be generic to make reliable predictions across GPU

architectures, or even for the same GPU family with a different microarchitecture.

With the help of artificial neural networks, Song et al. showed how we could predict

GPU power consumption. They achieved higher prediction accuracy than other regression-based

models [97]. While highly accurate, the downside of this approach was that the model lacks any

semblance to the underlying hardware, making it hard to extract the physical meaning from a

prediction. Leng et al. integrated Hong’s power model inside the GPGPU-Sim [98] simulator and

delivered GPUWattch [99]. Removing the limitation of the generality of Hong’s model, GPUWattch

supports both NVIDIA’s Tesla and Fermi GPU architectures and estimates the cycle-level GPU

28

CHAPTER 3. RELATED WORK

power consumption. It assumes that the power consumption of a GPU scales linearly with its

frequency, but this assumption does not always hold. As a further improvement, Nath et al. created a

performance model for DVFS in GPGPUSim [100]. However, extending this power model requires

adding logic to the GPU scoreboard, which is challenging to replicate on real hardware. Lucas et

al. released GPUSimPow, a framework for modeling GPU power consumption [101]. However,

although these architectural simulators consider activity factors for different GPU components, such

as integer or floating-point instructions, register reads/writes, memory accesses to calculate the power

consumption, they ignore the data values processed by the datapath. One exception to this is the

Wattch power simulator, which contains a DYNAMIC AF option that includes the activity factor for

some internal buses and memories, but ALU power is modeled as a simple constant [93].

3.7 GPU-based AES

Harrison et al. were the first to present a CPU competitive implementation of AES on

GPU [102]. Later Manasvaki implemented AES in CUDA using the table lookup approach and

stored pre-computed T-boxes in GPU constant memory [103]. Utilizing the highly efficient cached

memory present in the context of a GPU, three of the four operations of AES (SubBytes, ShiftRows,

and MixColumns) are merged into the table lookups [104]. Later Harrison et al. experimented with

all available types of on-chip memory (shared memory, constant memory, and texture memory) to

store lookup tables and concluded that using shared memory lead to the best performance [105]. Di

Biagio et al., Chonglei Mei et al. similarly implemented AES and validated this finding [106, 107].

AES has inherent parallelism in each round. To exploit this parallelism, Biagio et al. proposed a

counter mode AES (AES-CTR) on NVIDIA GPUs that distributes the workload across Streaming

Multiprocessors (four 32 word blocks are mapped to four scalar processors) [106]. Here, four T-tables

are loaded into shared memory for faster access time for lookups. While efficient, implementations

based on lookup tables are a target for SCA, and several practical attacks against the T-table based

AES implementation of OpenSSL have been published [35, 108, 109]. The root of the problem stems

from the address-dependent table accesses [110]. While this can be resolved with computing the

AES S-Box and executing in constant execution time, the performance penalties of straightforward

implementations would be considerable. To avoid that, a bitsliced method has been proposed that

eliminates all tables and is based only on logic operations [111]. In bitsliced AES, with n identical

input blocks, all the bits in a register will contain the same value, either all 0s or all 1s. This is

relatively easy to find using a power or EM analysis attack. With the existence of vector-style

29

CHAPTER 3. RELATED WORK

registers in GPUs, this vulnerability is, even more, concerning on GPUs compared to CPUs, because

higher register width makes the leakage even more distinguishable between the states of all 0s and

all 1s. Apart from the performance, researchers are also interested in optimizing the portability of

parallel implementations across GPUs [112]. Guo et al. implemented a fast AES algorithm using

the AES-NI extended instruction set based on CUDA [113]. Also, Fei et al. pointed out that the

actual workload characteristics of the block cipher are an essential element to consider in a server

environment [114]. Her work suggested six methods to implement AES in heterogeneous servers

containing both CPUs and GPUs. However, the implementation does not exploit the fine-grained

parallelism in block ciphers for faster response time in a server environment [115]. To overcome

these vulnerabilities and retain high throughput, we implement OpenSSL-based table-based AES

on contemporary NVIDIA GPUs and concentrate on attacking the last round to recover the secret

key. Since the last round has no MixColumns operation, only one out of four bytes is kept after the

T-table lookup. This is equivalent to an SBox lookup operation and ShiftRow. AddRoundKey is then

performed on the four remaining bytes. This non-linear operation leaks power, which we correlate

with our hypothetical HW-based power model, GIPSim, as described in the next chapter.

3.8 Summary

Now that GPUs are an integral device in many computing platforms, ensuring the security

of these devices is of great concern. Given the different classes of side-channels present on these

devices and the scarcity of GPU power models that are data-dependent, we need better analysis

tools. To begin to characterize power leakage, we have designed a data-dependent power simulation

framework to characterize power leakage on a GPU. Our model considers the HD of data values

used during program execution. For obfuscation, manually checking for higher-order masked

implementations is a more complicated and error-prone task. As a consequence, many schemes are

later shown to be insecure [116, 117] and can be broken [118, 119]. So we address this issue by

using our model to design obfuscation approaches with higher-order masking to thwart power-based

SCAs.

30

Chapter 4

GIPSIM framework

Current cryptographic algorithms are designed to run on an integrated circuit (IC) chip that

is manufactured of many logic gates that are made up of Complementary Metal-Oxide Semiconductor

(CMOS) transistors. Transistors consume electric current from the IC’s power supply to switch

on and off. The logic function of a gate is represented based on the state of the transistors. The

premise of a power analysis attack is that the power consumed on the chip varies with the aggregated

switching of each gate. So the first step in any power analysis attack is to acquire one or more traces

from the targeted device. A power trace is a digital documentation of the sampling sequence of

instantaneous power consumption of the device over time, especially when the device is running

cryptographic operations.

Sometimes, to reduce noise and increase time consistency, signal processing is performed

on the collected power traces. Noise present in the power traces can be reduced with appropriate

filters. Commonly, a trigger signal [48] is used, which indicates the beginning of the cryptographic

operations we are trying to measure. This trigger signal is used to prompt the measuring device to

start collecting power samples.

Usually, cryptographic devices require a constant voltage supply, denoted by Vdd. In our

case, the ATX power supply is 12V . From Vdd, the current that the chip draws is a time-varying

value, Idd(t)A. Hence the instantaneous power of the whole chip is P (t) = Vdd × Idd(t), measured

in watts.

An oscilloscope is commonly used as a sampling device to measure voltages. As shown

in Figure 4.1, after a small resistor R is inserted in series with the supply power, the voltage drop

at VGPU is measured across the probes of the oscilloscope. Since we only measure the voltage at

VGPU to get the voltage drop across the GPU, this voltage drop is inversely proportional to the power

31

CHAPTER 4. GIPSIM FRAMEWORK

Oscilloscope

Power Supply

Plain text

Host GPU

Plain text

Cipher text Cipher text

0.1Ω

Power trace

VGPU

Figure 4.1: Experimental setup for power acquisition.

consumption. Figure 4.2 shows a sample power trace.

The power consumption of a CMOS circuit has two components, static and dynamic

power. The static power depends on voltage source and device characteristics that lead to leakage

and temperature variations. Static power typically does not vary much, and in our work, we have

considered it as noise in our power measurements.

The dynamic power has two components, as well. The first includes the power needed

to charge and discharge the circuit capacitance. The second component of the power is the short

circuit formed by the PMOS and NMOS transistors to change the output voltage. The dynamic power

consumption is linearly related to changes in bit values of the intermediate state changes captured by

modeling the HD transitions between the former state and the new state of the circuit.

32

CHAPTER 4. GIPSIM FRAMEWORK

Figure 4.2: A sample trace of an AES execution.

4.1 Motivation

As discussed in the related work section, the existing GPU architectural simulators consider

activity factors for various GPU components and use them to find the total power consumption of the

GPU. While they include activities such as integer and floating-point instruction execution, register

reads and writes, memory accesses, none of the simulators consider how often the datapath data

lines switch between 0 and 1. Although Wattch contains a DYNAMIC AF option in its source code

that includes the activity factor for some internal buses and memories, ALU power is modeled as a

simple constant [93]. The source code for Wattch includes the comment: ”FIXME: ALU power is a

simple constant, it would be better to include bit AFs and have different numbers for different types

of operations.”

For a CPU power simulator where control logic dominates the datapath, such a simple

model may still be acceptable, but for a GPU, a large part of a GPU’s power and the area is dedicated

to execution units and register files. In the context of an SCA, a data-dependent framework is

missing to enable security researchers to reason about side-channel leakage present in the context of

33

CHAPTER 4. GIPSIM FRAMEWORK

a GPU execution-driven simulator. So we deliver the GIPSim framework to help researchers capture

detailed power estimates and use the information to obfuscate power by adding noise to the runtime

power profile. This, in turn, can reduce the vulnerability present during data encryption/decryption.

We demonstrate that we can model data-dependent power dissipation, showing how the hamming

distance of the data values (i.e., encryption keys) used during the execution of AES encryption. To

the best of our knowledge, GIPSim is the first simulation environment that can be used for evaluating

power side-channel resiliency and help secure future systems.

4.2 Building a Baseline Model

To characterize SASS-code level data-dependent execution, GIPSim models data-dependent

power dissipation. We base our model off the power modeling work presented by Tiwari et al. [120].

Our power model estimates the deterministic part of the power consumption, for example, the

Hamming distance (HD), which computes the number of logic changes (i.e., 0-to-1 or 1-to-0) in the

datapath. We start with a baseline model that predicts the power consumption of instruction for a

specific data value. We then collect a rich corpus of power traces for each opcode. Instructions are

executed with different input data values, producing a range of HDs, which are computed relative to

an input value of zero. For each opcode-HD pair, we capture 1, 000 instances of the same instruction

opcode, seeded with the same input data (hence, same HD), and then collect the average power used

over the 1, 000 traces. We label this power value the base cost for that opcode-HD pair. We observe

a low variance (0.039) for the average power consumption measured across a full run of the kernel.

Given this low value, the power consumed is very stable. We repeat this measurement for different

HD values. To reduce any noise introduced by the frequency-voltage regulator of the GPU, we

perform calibration to avoid excessive noise in our measurements. We find that as we increase HD

in the plaintext data values, the power consumption linearly increases as well, which indicates that

leakage exists in the power consumption. We also find that the power consumed for two instances of

the same instruction to be highly dependent upon the instruction that follows them. This follows the

same conclusion that Tiwari et al. reported in prior work [120]. So along with base cost, we also

measure the power consumed due to switching between instructions. We add this to our baseline

model, predicting power for the inter-instruction overhead. To capture this factor, we select a pair of

instructions and run them through our model in the same way we did for the single opcode-HD pair.

In this case, we choose two instruction pairs and collect the average power consumption for that pair

across the power traces.

34

CHAPTER 4. GIPSIM FRAMEWORK

Figure 4.3: Baseline model for IADD instructions with different HDs.

For each instruction opcode, as the HD increases, we see a linear increase in power

consumption. When we plot the power values with respect to the HD for an opcode, we obtain

a straight line. Based on the slope of this line, the power consumption for any opcode i can be

computed as:

Pi = Pbasecost + slopei ×HD(i) + poverhead + pextra (4.1)

where Pi is the total power consumption for a particular instruction i, Pbasecost is the amount of

power required for running that instruction when the data value is 0, and slopei is the slope of the

line that tracks the power consumption for different HDs, for instruction i. HD(i) is the HD of the

data values for instruction i. While poverhead is the cost for switching from the previous instruction,

pextra includes all other unrelated power consumption. Figure 4.3 shows the base cost of IADD

instruction for HDs 0 to 32, which is shown on X-axis. The Y-axis shows the binned voltage, which

is the value we receive from the oscilloscope. These values are normalized between 0-255 and the

35

CHAPTER 4. GIPSIM FRAMEWORK

Floating Point Instructions
FFMA FP32 Fused Multiply Add
FADD FP32 Add
FMUL FP32 Multiply
Integer Instructions
IMAD Integer Multiply Add
IMUL Integer Multiply
IADD Integer Add
SHR Integer Shift Right
SHL Integer Shift Left
ISETP Integer Set Predicate
Movement Instructions
MOV Move
Compute Load/Store Instructions
LDC Load from Constant
LD Load from Memory
LDL Load from Local Memory
LDS Load from Shared Memory
ST Store to Memory
STL Store to Local Memory
STS Stored to Shared Memory
Control Instructions
BRA Branch to Relative Address
JMP Jump to Absolute Address
RET Return to Call
Miscellaneous Instructions
S2R Special Register to Register

Table 4.1: List of opcodes supported by the GIPSim framework.

relationship between this and the voltage is completely linear. The linearly fitted line in the figure

represents the slope in the Equation 4.1. Based on this behavior, we can interpolate the power values

for the data values we have not measured yet for both base cost and inter-instruction overhead.

Table 4.1 shows the complete list of opcodes GIPSim currently supports. For opcodes that

do not have a data value operand associated with their semantics , e.g., a RET instruction, we only

consider the Pbasecost.

36

CHAPTER 4. GIPSIM FRAMEWORK

Table 4.2: Relative power consumption for measured and modeled power, while change program

inputs. Each benchmark has 3 different inputs.

Applications Input
Relative measured

power consumption
Relative modeled

power consumption

MatrixMul
1 : 2 0.6274 0.6285
2 : 3 0.6134 0.6147
1 : 3 0.3843 0.3869

VecAdd
1 : 2 0.7286 0.7244
2 : 3 0.9203 0.9193
1 : 3 0.6705 0.6654

Histogram
1 : 2 0.6505 0.6487
2 : 3 0.4548 0.4584
1 : 3 0.2958 0.2963

BlackScholes
1 : 2 0.3724 0.3711
2 : 3 0.7182 0.7228
1 : 3 0.2657 0.2631

4.3 Model Accuracy

To calculate the prediction accuracy of GIPSim, we use this power model to predict power

consumption for selected kernels from the NVIDIA CUDA SDK while executing the kernels with

different input files. We compared this with the power measured from the GPU while running the

same applications using specific input files, using the power measurement method described in

Section IID. We selected these applications to give us a range of different behaviors on a GPU:

1. MatrixMul shows the features of NVIDIA GPU architecture, and it is memory bound.

2. As a simple function, VecAdd spends most of the time performing ALU operations and

demonstrates the raw computing capabilities of the GPU.

3. Histogram includes several divergent branches and is a representative of how divergence

impacts the power model.

4. BlackScholes is a massively parallel application that computes the price of European mar-

ket options. This kernel calculates partial differentials. Memory is accessed frequently in

BlackScholes.

Although the amount of power consumption predicted by GIPSim does not match the

measured power from the device, the relative power consumption between any two runs of the same

application, run with the same input, tracks very well. This demonstrates that we can reliably predict

37

CHAPTER 4. GIPSIM FRAMEWORK

Figure 4.4: The PCC value comparing the modeled power and measured power.

power usage with GIPSim. When we compute the correlation between the modeled (i.e., GIPSim)

and measured power on the K20c GPU across randomly selected inputs, we achieve a correlation of

0.99 (near-perfect correlation). We present three cases for each application in Table 4.2, representing

three different input files. We compute and measure the relative changes in power when changing the

program input. As we can see, the relative power tracks nicely. GIPSim predicts almost the same

relative power consumption as measured across different program inputs.

4.4 Model Correlation to AES

The Pearson Correlation Coefficient (PCC) is a measure of the linear correlation between

two variables. PCC values can range between +1 and -1, where 1 indicates a highly positive linear

correlation, 0 indicates no correlation, and -1 indicates a highly negative linear correlation. We use

PCC to determine the degree of whether the power predicted by GIPSim can be correlated with the

power measured from the device. The PCC of variables X and Y, ρX,Y is defined as:

ρX,Y =
covX,Y

σXσY
(4.2)

where cov is the covariance, and σX and σY are the standard deviations of variables X and

Y.

38

CHAPTER 4. GIPSIM FRAMEWORK

To evaluate PCC for GIPSim, we generate ten random input text files t1, ..., t20 as inputs

to AES-128 and run them through GIPSim to measure the predicted power profile G1, . . . , G20. We

also run the same input text files on a real device and measure power M1, . . . ,M20. Next, we take

each Mj and compute the correlation with all Gis. The goal is to find the pair < Gi,Mj > (where i

and j are the input file numbers t1, . . . , t20) which exhibits the highest correlation. We expect the

pair of traces (generated by GIPSim and measured) that used the same input text values to produce

the highest correlation. The PCC values for each pair < Gi,Mj > for i=j are always greater than

0.8, suggesting that GIPSim’s predictions and the actual measurements are highly correlated. In

Figure 4.4, we show nine such cases for< Gi,Mj >. We found that all top twenty pairs< Gi,Mj >

with i=j produces around 40% higher correlation that the average correlation for all, demonstrating

the strong predictability of GIPSim.

One challenge here is that the measured power consumption on the real device includes

many more data points than the model. To handle this issue with our measurements, we produce a

histogram of the power numbers measured from the device. The histogram consists of several bins,

where the number is equal to the number of instructions in the kernel (or the number of power data

points, as predicted by the model). Each bin represents the same range of power values. We compute

the average power for each bin, sort the values, and correlate the sorted profile with the modeled

power, as mentioned above. We recognize that this approach assumes each instruction takes the same

number of cycles, but as we will see, our assumption is not far off.

4.5 The Effect of DVFS on GIPSim

Dynamic voltage and frequency scaling (DVFS) is one of the power management strategies

employed to save energy on CPUs and GPUs. Using this strategy, during program execution, the

processor voltage/frequency can be modified to save energy or improve performance. For GIPSim to

accurately predict the power consumption of applications running on a GPU, we need to understand

how power consumption will be impacted when changing the GPU operating frequency/voltage.

Note that DVFS generally specifies operating voltage and frequency pairs. It has already been shown

that when DVFS is used, GPU resource utilization varies for applications [121, 122]. We have

previously demonstrated that our GIPsim model can be used to predict the power consumption for

a fixed frequency (and voltage) configuration. The question is whether this holds when DVFS is

present. We need to understand how GIPSim predictions change with DVFS.

39

CHAPTER 4. GIPSIM FRAMEWORK

Memory Freq. (MHz) GPU Core Freq. (MHz) GPU Core Voltage State GPU Core Voltage (mV)

2600

758
705
666
640
614

V5
V4
V3
V2
V1

987.5 - 1112.5
950 - 1062.5
925 - 1050

912.5 - 1025
900 - 1000

324 324 V0 875 - 875

Table 4.3: The K20c supported memory and core frequencies.

The total power consumption of a CMOS circuit consists of static and dynamic power

dissipation. Dynamic power dissipated when transistors switch states.

Pdynamic = aCV 2f (4.3)

Equation 4.3 shows the general formula for computing dynamic power. The power

dissipation is dependent on the following factors: the average utilization ratio (a), the total capacitance

(C), the chip supply voltage (V) and the operating frequency (f) [123]. DVFS can adjust the runtime

supply voltage and the frequency, which results in a change in dynamic power, and as a result, change

the total power consumption.

GPU devices typically have two pairs of voltage and frequency values: 1) the core voltage

and frequency pair, and 2) the memory voltage and frequency pair. The core voltage is the supply

voltage of the GPU SMs, and the memory voltage refers to the supply voltage of the DRAM. In

terms of the frequency values, the core frequency governs the speed of the SM’s executions, and the

memory frequency governs the speed of the DRAM I/O throughput.

As mentioned earlier, our experimental platform includes an NVIDIA Tesla K20c Kepler

GPU card. The GPU supports DVFS for both the core and memory voltages/frequencies. The

support DVFS values are shown in Table 4.3. Note that the core and memory speeds are set as a pair,

otherwise under-voltage or over-frequency conditions can occur.

To control the clock frequencies and voltages we used nvidia-smi and Nvidiux [124,

125]. The nvidia-smi utility uses the NVIDIA Management Library (NVML) for management

and control. This enables the user to change the GPU core frequencies within the values allowed

by the GPU, as specified in Table 4.3 [126]. For changing the voltage, we used Nvidiux, which

is a graphical Python-based tool for Linux to provide finer control over the voltage and frequency

of NVIDIA GPUs. Note that using these tools may void the warranty of the GPU. A step in the

40

CHAPTER 4. GIPSIM FRAMEWORK

Figure 4.5: The binned voltage consumption, Vadd in varied GPU clock frequency settings.

installation requires changing xorg.conf which may break booting to Linux and can potentially cause

damage to the system.

In our next experiments, we remeasured the power consumption values used to build

GIPsim (as shown in Figure 4.3) while varying the frequency (as described in Figure 4.5). When

we modified the GPU core frequency, the memory frequency also changes. For most cases, as we

increased the clock frequency, the voltage drop decreases (or power consumption increases). During

execution, the binned voltage consumption remains the same over time for all frequencies except

758 MHz, where the voltage values increase (i.e., current or power consumption drops), though after

60 seconds, the frequency changes to 705 MHz. When the GPU operates at its peak frequency for

some time (e.g., a minute), the internal temperature management system automatically lowers the

operating frequency, keeping the device from overheating. Since the K20c can not maintain the

maximum rate for an extended period, we should consider this fact in the design of GIPsim.

Voltage states are labeled V1-V5 in Table 4.3. The default voltage for the GPU is in a range

as marked with V4 run with the default frequency of 705 MHz. To find the effect of changing the

voltage using GIPSim, we use the Nvidiux tool and ran the same instruction add kernel (iadd) while

changing the frequency. We use voltage values of 900 mV, 925 mV, and 987.5 mV, representing the

lowest values for the V1, V3, and V5 states, though maintains the default clock frequency. When we

decreased the frequency, the overall voltage consumption also decreases with higher core voltage.

In other words, since the voltage drop is inversely proportional to current or power, more power is

41

CHAPTER 4. GIPSIM FRAMEWORK

Figure 4.6: The binned voltage consumption, Vadd in varied GPU core voltage settings.

drawn when running at higher core voltages, as shown in Figure 4.6.

While using the K20c at its default settings for fixed frequency and voltage, we can

continue to use the GIPSim predictions, as mentioned earlier in the baseline model. If DVFS is active,

as we have seen in Figures 4.6 and 4.5, the base cost will change. With our limited measurements,

we see that there is a trend that can be observed with varying voltages and frequencies. Current data

shows that with varying core voltage, we need to use this equation to find the base cost for running

the opcode:

vadd = −0.315× vcore + 375.25 (4.4)

where v is the voltage used. On the other hand, for variable core frequencies/memory frequencies

pair, as shown in Figure 4.5, we need to use this equation to find the base cost for running the opcode:

fadd = −0.052× fcore + 107.15 (4.5)

in the same way we did for varying core voltage. Since 758 MHz drops down to 705 MHz after

around 60sec, for calculating Vadd we can consider it as 705 MHz. To get a better idea of this, we

need to perform more experiments and is detailed in Section 6.

42

Chapter 5

Obfuscation Approaches

In this chapter, we describe how GIPSim can be used in practice for designing counter-

measures to thwart SCAs. Prior research on obfuscation can be categorized as either using hiding or

masking. Hiding provides a strategy to hide the power consumption of key-dependent cryptographic

computations by effectively decreasing the signal-to-noise ratio (SNR) of the attack surface.

5.1 Hiding

Hiding can be accomplished in two ways. One, equalization where the goal is to make

the total power consumption the same all the time. Another, randomization where we attempt to

randomize the power consumption by continually changing the execution order, or generating noise

directly.

5.1.1 Randomization

Randomization tries to increase the amount of noise present in the power side-channel. It

can be done by running some other computations in parallel during encryption. As mentioned earlier,

one common way to provide obfuscation is to hide the actual signal. This can be done by running

some other computations in parallel during encryption. Using GIPSim, we can select data values

that reduce the SNR. In our initial studies, we used randomly generated keys in a concurrent kernel

that ran with the AES kernel. One feature of a GPU is that is can run multiple kernels concurrently.

Using Concurrent Kernel Execution (CKE), thread blocks from multiple kernels run simultaneously

on each of the GPU’s streaming multiprocessors. The NVIDIA K20c used in our work supports up

to 32 concurrent streams. These streams are independent, so they do not require any communication

43

CHAPTER 5. OBFUSCATION APPROACHES

or have any inter-stream dependencies. Since different streams may have different execution times,

to guarantee that the streams will finish at the same time, a CUDA synchronization barrier can be

used. However, it is not trivial to ensure that the two concurrent kernels will start at the time such

that the computations will completely overlap. To resolve this issue, we run two keys, one actual and

one to introduce noise, inside one warp, where all threads execute the same instruction in lock-step.

We run half warps or 16 threads with the actual key and rest with the data generated by GIPSim. We

want to investigate different schemes, such as:

1. AND-ing the key with 1,

2. generating a key where the bits are flipped,

3. picking different data values for the AES instructions from GIPSim that reduce SNR.

and find if GIPSim can identify the best obfuscation technique, attaining the lowest SNR for all cases.

We also investigate the performance penalty for each of this obfuscation.

Figure 5.1: Different combination of keys contribute in reduced SNR

In Figure 5.1, we find that GIPSim is able to identify the best obfuscation technique,

attaining the lowest SNR for all cases. This obfuscation affects performance, introducing a 60%

slowdown since we are using only half of the warps to execute AES.

44

CHAPTER 5. OBFUSCATION APPROACHES

5.1.2 Equalization

As mentioned earlier, one common way to provide obfuscation is to hide the actual signal

by making the power consumption constant at all times. This can be done by running the second

computation in parallel during encryption. Using GIPSim, we can select data values so that the total

power consumption remains fairly constant over the entire encryption, thus reducing the SNR. Just

like last time, we run the two workloads (the encryption kernel and the compensation) inside a single

warp, where all threads execute the same instruction in lock-step. We run half warps or 16 threads

for the encryption, while the remaining 16 threads use the instruction-data selected by GIPSim to

perform obfuscation. To help us select the best instruction-data pair for the compensation kernel, we

use an LSTM. In the context of GIPSim, the sequence of instructions executed in the kernel is treated

as the data series in the LSTM, where each instruction should have a corresponding instruction that

should flatten the power signal as much as possible. We select a constant tp as the total constant

power consumption, and the power each encryption instruction consumes constitutes the
−→
P vector.

The selected obfuscation instructions for the output of the LSTM represented as
−−−−→
tp− P . The main

challenge here is to create a feature vector from the instructions that provide an instruction’s essential

characteristics in terms of the degree of obfuscation.

5.1.3 Using an LSTM

LSTM (Long Short-Term Memory) Neural Networks are a particular class of recurrent

neural networks (RNN) that has recently received increased attention within the machine learning

community [127]. An LSTM network includes internal contextual state cells that can act as long-term

or short-term memory cells. The state of these cells determines the output of the LSTM network. So

when the prediction of a neural network depends on the historical context of a sequence of inputs

versus the very last input, LSTM networks are commonly used. The LSTM unit includes a forget

gate which enables us to learn long-distance dependencies [128]. For sequential labeling tasks such

as obfuscation, an LSTM model can take into account an effectively infinite amount of context for an

instruction execution with the selected data values, eliminating the problem of the limited context

that applies to any feed-forward model [129].

Inspired by the recent successes of LSTMs for different sequence prediction tasks, in-

cluding handwriting analysis [130] and speech generation [131], we will leverage an LSTM for

guiding obfuscation prediction in the context of side-channel analysis. A recent line of work has

investigated new attacks based on machine learning techniques to defeat both unprotected [132, 133]

45

CHAPTER 5. OBFUSCATION APPROACHES

and protected cryptographic implementations [134, 135]. In this approach, we try to find the pair of

instructions that run together with the cryptographic instructions to provide the obfuscation. Now

each of these obfuscation instructions in includes a base cost and an inter-instruction overhead intro-

duced by the instruction that ran before this instruction. Now, all RNNs have feedback loops in the

recurrent layer, which helps them maintain a memory over time. However, it becomes increasingly

challenging to train standard RNNs for problems with long-term temporal dependencies. With

encryption algorithms that are arbitrarily long with many instructions, the gradient of loss function

decays exponentially with time (or instructions in this case). As already mentioned, LSTM maintains

information in memory for long periods of time with the help of specialized memory cells and gates,

which is useful in processing long lengths of cryptographic instructions. We want to investigate how

ML can help in safeguarding cryptographic computations.

An LSTM is an artificial neural network that contains LSTM blocks. This class of

network attempts to overcome the vanishing gradient problem by introducing multiplicative gates

that implement constant error flow through the internal state. This network is well-suited for

capturing the structure of time series based data and predicting at different time scales. For a

time series X = [x1, x2, ..., xn], where xt is an multi-dimensional vector [x1t , x
2
t ,, x

m
t] which

represents the features of a sample, we can train a model with prior obfuscations from the former

n samples of a power profile to predict the next obfuscation of m features. We use the key as the

primary feature. In other words, we take n×m units in the input layer and m units in the output

layer. The LSTM units consist of two hidden layers, and each unit in a lower LSTM hidden layer is

fully connected to each unit in the LSTM hidden layer above it through feed-forward connections.

Figure 5.2: The layer structure of the deep neural network used for obfuscation using GIPSim.

We will use an LSTM model to capture the temporal context of a data series. In the

46

CHAPTER 5. OBFUSCATION APPROACHES

context of GIPSim, the data series is the instruction sequence, where each instruction should have

a corresponding instruction that generates randomness in the power profile to provide obfuscation.

So the power each instruction consumes constitutes the X vector, and the relevant obfuscation

instructions are the output of the LSTM. The main challenge here is to create a feature vector

from the instructions that provide an instruction’s essential characteristics in terms of the degree

of obfuscation. First, we build a corpus of obfuscation approaches using instructions that provide

low overall SNR by equalizing the total pwoer consumption. These are used as input to train the

LSTM model, performing inference on instructions that have yet to be seen. In our experiment, the

network we are using contains two LSTM hidden layers followed by a dropout layer, and then a

dense layer with a softmax activation function used for the output. The layered structure of the deep

neural network is shown in Figure 5.2.

Figure 5.3: Different obfuscation approaches including LSTM

In the power profile of unprotected AES, each of the ten spikes indicates the ten rounds

of AES are clearly distinguishable. The goal of the obfuscation technique mentioned above is to

make the last round hidden, among other profiles. Here the divergent paths we follow to run the

obfuscation technique within a warp introduces some randomness in power because of the finer level

interleaved execution pattern within a warp. Also, in the obfuscation, to keep the performance the

same, we run two similar warps (half for AES, half for equalization). When we look closely at the

last round, in Figure 5.4b, the spikes have flattened now compared to the unprotected execution

47

CHAPTER 5. OBFUSCATION APPROACHES

(a)

(b)

Figure 5.4: Power profile of the last round of (a) unprotected and (b) obfuscated AES.

in Figure 5.4a. After obfuscation, the last round is not so clearly distinguishable from the rest of

the execution. We measure the variance on the power consumption for both the unprotected and

obfuscated AES. While there is a high variance of around 0.342 for unobfuscated AES, when we

use LSTM-guided obfuscation, the variance is as low as 0.017, which is a reduction of 95% in the

variance.

We also evaluate the obfuscation in a real attack scenario. We run CPA on the power traces,

intending to extract the last round key, byte by byte. Figure 5.5a shows the attack results for all bytes

with 106 traces. The correct subkey bytes are marked with ’+’, and the ones with lowest value of

48

CHAPTER 5. OBFUSCATION APPROACHES

(a)

(b)

Figure 5.5: CPA attack results against (a) unprotected and (b) obfuscated AES.

correlation are marked with a ’×’. As we can see in this figure, all correct subkey byte values have

the lowest correlation coefficients. So the attacker can recover the exact last round key byte by byte

49

CHAPTER 5. OBFUSCATION APPROACHES

Figure 5.6: Success rate of attacks with and without deep learning techniques.

with control of the plaintext. However, in the next Figure 5.5b, when we run the experiment with

equalized AES in the same setting, only two correct subkeys bytes result in the lowest correlation

coefficient. For an attack scenario targeting a subkey (i.e., a key byte) and allowing for the sorting of

different candidates, we define a success rate of order o as the probability that the correct subkey

is guessed correctly among the first o candidates. The success rate (Sr) is generally computed as a

function of the number of total attack traces. The attack against an unprotected AES implementation

can achieve a high success rate (≥ 0.8) using 105 traces. A 100% success rate can be obtained using

5× 105 traces. When running an obfuscated AES kernel, leveraging co-running obfuscation threads

selected with our LSTM model, the key cannot be guessed with 106 traces, as shown in Figure 5.6.

When we compared this ML-based obfuscation with the ones mentioned in Figure 5.1, we see that

the SNR has been reduced even more, as shown in Figure 5.3. Clearly, the obfuscated version of

AES that was guided by the LSTM model provides better protection, making it more challenging to

launch a successful DPA attack versus an unprotected version of AES.

5.2 Masking

Masking randomizes the intermediate values of a cryptographic computation to avoid

dependencies between the values and power consumption. This is usually applied at an algorithmic

50

CHAPTER 5. OBFUSCATION APPROACHES

level (unlike hiding) and does not rely on the power characteristics of the device. To achieve higher-

order masking, each intermediate operation is transformed into multiple operations that can reduce

the statistical correlation between operations and data values [57].

5.2.1 Higher-order masking

The main idea of higher-order masking is to split the key-dependent data into separate

pieces that are randomly generated. In other words, masking is sharing a sensitive value, s, such that:

s = s1 � s2 � · · · � sd (5.1)

For a group relation�, each si is randomly selected for 0 < i < d−1. Since s is distributed

between d shares, the last value sd is calculated such that it satisfies Equation 5.1, and is called

the masked variable. A dth-order masking is always theoretically vulnerable to a (d + 1)th-order

SCA that exploits the leakage related to (d + 1) intermediate values. Ishai et al. were the first to

propose a dth-order masking scheme [136]. When implemented in hardware, this scheme is known

to be sensitive to glitches [137]. This issue can be addressed through synchronization elements or by

performing additional sharing, but these increase circuit area significantly [138]. The challenge of

implementing this dth-order masking scheme in software is to process all logical operations of the

SBox using a boolean representation in a masked way. As an example, key k is masked with two

random variables, s1 and s2 in six masking schemes that result in m1,m2, . . . ,m6 respectively.

m1 = k ∧ (s1 ∧ s2) (5.2)

m2 = k ∨ (s1 ∨ s2) (5.3)

m3 = k ⊕ (s1 ∧ s2) (5.4)

m4 = k ∨ (s1 ⊕ s2) (5.5)

m5 = k ∧ (s1 ⊕ s2) (5.6)

m6 = k ⊕ (s1 ⊕ s2) (5.7)

In Table 5.1, we present a truth table where all six ms are only dependent on s1 and s2.

These values satisfy the following masking properties:

1. Completeness: at the end of the computation, these shares can be accumulated to yield the

expected ciphertext.

51

CHAPTER 5. OBFUSCATION APPROACHES

k s1 s2 m1 m2 m3 m4 m5 m6

0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 1
0 1 0 0 0 0 0 1 1
0 1 1 0 1 1 0 0 0
1 0 0 0 1 1 0 1 1
1 0 1 0 1 1 1 1 0
1 1 0 0 1 1 1 1 0
1 1 1 1 1 0 0 1 1

Table 5.1: How masking variables leak data.

2. d-th order security: every tuple of the d elements is independent of s.

However, all except m6 still leak secret information.

Figure 5.7: Six different masking variable combinations evaluated with GIPSim. We show the QMS

achieved for each scheme, and the number of traces required to recover the key.

In our AES implementation, we generate all possible combinations of s1 and s2 using

cuRAND [139]. When we run DPA on each of these combinations, we find that the number of

traces required for each combination varies significantly [31]. So clearly, not all randomly generated

combinations of masking variables are entirely masked. Higher-order masking schemes can be

expensive since, for any change in the scheme, the implementation needs to be changed. To decide

whether an implementation provides secure obfuscation, apart from performing an actual DPA with

52

CHAPTER 5. OBFUSCATION APPROACHES

the obfuscation in place, the Quantitative Masking Strength (QMS) can be calculated [140]. It is

possible to evaluate the masking strength using an SAT-solver, but it is often time-consuming and has

a limitation on the type of leakages that they can detect [141]. Instead, we can use GIPSim to judge

whether the values used in the cryptographic computation satisfy a given obfuscation requirement.

Given that a dth-order masking should withstand any DPA exploit with an order less

than d+ 1, we investigate other combinations that failed to protect AES from a second-order DPA.

Note that prior work has identified that the most effective bias is either 0 or 1, which are two

extreme cases of the spectrum, and most of the generated numbers fall in between [142]. Often a

random number generator includes some bias as a result of increasing the efficiency of the random

number generation [143]. In general, generating one number over another impacts the strength of

the obfuscation and violates the premise of perfect higher-order masking. GIPSim helps us identify

the side-channel resistance from a large number of choices in between 0 < bias < 1, as shown

in Figure 5.7. Software implementations leveraging higher-order masking have been reported to

be orders of magnitude slower than an unprotected implementation [144]. Owing to the massive

parallelism available on a GPU, this obfuscation approach only incurs a 10% slowdown compared

to an unprotected AES implementation. It is possible to utilize GIPSim to improve a performance

penalty that can be thresholded.

53

Chapter 6

Conclusions and Future Work

In this chapter, we summarize the contributions of this dissertation and discuss the impor-

tant lessons learned. Finally, we conclude with future directions for continuing this line of research

work.

6.1 Dissertation Summary

Whenever a computer hardware platform performs computation, the power consumption

of the hardware devices will depend on the values of the data being processed. Exploiting this

relationship in the form of power consumption, power-based side-channel attacks attempt to correlate

power consumption on the targeted device with data values used in an encryption algorithm to recover

secret information. In the light of these attacks, we must attempt to implement the cryptographic

primitives at an architectural level such that the effort (or cost) of the adversary for retrieving the key

is too high. A critical direction for countermeasures is implementing cryptographic primitives such

that the total power consumption of the hardware device leaks as little information as possible about

the secret keys or data.

In this dissertation, we show that equipped with the right set of software tools, we can

design effective countermeasures to thwart such attacks. In Chapter 4, we present the design and use

of GIPSim, a novel simulation framework for assessing GPU power leakage. The model tracks power

at the SASS level for an NVIDIA GPU. Note that the idea is generic and can be applied to other

classes of GPU as well. Our model calculates a base cost and inter-instruction overhead for different

instructions with different input data values, running on a GPU. We validated the predictions on a

live GPU running applications taken from CUDA SDK. We have also correlated the predicted power

54

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

with measurements while running AES on a GPU with various input data. We also capture a trend of

how the predicted power changes with DVFS in effect.

Equipped with GIPSim, we present obfuscation approaches to protect the cryptographic

primitives in Chapter 5. All standard approaches to hide the relationship between power and secret

key, such as randomization, equalization, masking, are implemented/evaluated with GIPSim. In

randomization, we ran the cryptographic primitives in the half warp of the GPU, and in another half,

we ran some computation to hide cryptographic power signal. Now to ensure these two overlap, we

used warps because on GPU these are guaranteed to run together, overlapping the power signatures.

For hiding the power signal or for running the computation on the other half, we evaluated the

following techniques:

1. AND-ing the key with 1,

2. generating a key where the bits are flipped,

3. picking different data values for the AES instructions from GIPSim that reduce SNR

We found that GIPSim can identify the best obfuscation kernel, resulting in the lowest SNR

for all cases with a maximum penalty of 60% in performance for encryption, because we are using

half of the resources to do the encryption. To further improve obfuscation, we leveraged artificial

recurrent neural networks. The goal is to identify an instruction stream using GIPSim so that the

total power consumption obfuscates the power signal of the encryption algorithm. This equalization

countermeasure reduces the variance in power consumption to 95%. This implementation is tested

on a real attack scenario to show that this implementation is not vulnerable to a power attack. An

attack against an unprotected AES implementation can achieve a high success rate (≥ 0:8) using

105 traces and delivers a success rate of 1 or all key bytes are achieved using 5× 105 traces. When

running obfuscated AES optimized with our LSTM model, the right candidate keys could not be

guessed with 106 traces.

The other prevailing countermeasure, masking, attempts to split the key-dependent data

into separate pieces that they are randomly generated. However, the challenge of implementing

this masking scheme in software is to process all logical operations of the SBox using a boolean

representation in a masked way. We have shown that not all randomly generated combinations of

masking variables are entirely masked. Higher-order masking schemes can be expensive since, for

any change in the scheme, the implementation needs to be changed, and evaluating the strength of

the masking with existing SAT solvers can be time-consuming. Instead, we can use GIPSim to judge

55

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

whether the values used in the cryptographic computation satisfy a given obfuscation requirement

with a maximum of 10% slowdown in overall performance. It is possible to configure GIPSim further

such that the performance penalty is within a threshold.

Our work on GIPSim paves the way toward building a more resilient future system that can

thwart power side-channel attacks. The GIPSim framework enables security researchers to reason

about side-channel leakage present in the context of a GPU execution-driven simulator. This is one

of the first simulation environments that can be used for obfuscation design.

6.2 Future Work

There are several research questions yet to be answered in this area of research. As

mentioned earlier, supporting DVFS completely to this model would be an excellent addition. This

would require more experiments to perform with various frequency and voltage settings with various

opcode and HD, similar to the aforementioned baseline experiments. Finally, once the corpus is

ready, we can verify the values with similar experiments we did to validate the model. For all these

experiments, it is essential to be vigilant about the actual operating frequency/voltage of the device

because the device can change both the voltage and frequency. To avoid oveheating, the device

lowers the voltage/frequency, although the user sets it to a higher value.

For future directions to continue this work, it would be interesting to see how GIPSim

works for additional cryptographic primitives, such as public-key cryptography. Further, it would be

useful for the architecture/security community to make a relative power model similar to GIPSim for

different discrete and mobile GPUs from vendors such as Qualcomm and Apple.

Since no existing power models consider data, a reasonable extension of this work would

be to add the data dependency of the power model to existing power models for K20 or Kepler

simulators such as Multi2Sim [145].

In the past decade, with the advent of practically realizable quantum technologies, we need

to find ways to protect large scale quantum computers running public-key cryptographic algorithms.

When researchers have found them to be vulnerable [146], a spur began in the cryptographic

community to find countermeasures for designing safe cryptographic primitives in the context of

large scale quantum computing systems. It would be interesting to investigate if we can build similar

relative power models for such systems and use them to create safe ciphers.

56

Bibliography

[1] I. Duncan and A. K. McDaniels, “MedStar hack shows risks that come with

electronic health records,” 2016. [Online]. Available: https://www.baltimoresun.com/health/

bs-md-medstar-healthcare-hack-20160402-story.html

[2] K. Zetter, “Inside the cunning, unprecedented hack of Ukraine’s

Power Grid,” 2016. [Online]. Available: https://www.wired.com/2016/03/

inside-cunning-unprecedented-hack-ukraines-power-grid/

[3] C. E. Shannon, “Communication theory of secrecy systems,” Bell system technical journal,

vol. 28, no. 4, pp. 656–715, 1949.

[4] V. Roberge and M. Tarbouchi, “Fast path planning for unmanned aerial vehicle using embedded

gpu system,” in 2017 14th International Multi-Conference on Systems, Signals & Devices

(SSD). IEEE, 2017, pp. 145–150.

[5] R. Hossain, S. Magierowski, and G. G. Messier, “Gpu enhanced path finding for an unmanned

aerial vehicle,” in 2014 IEEE International Parallel & Distributed Processing Symposium

Workshops. IEEE, 2014, pp. 1285–1293.

[6] R. C. Green, L. Wang, and M. Alam, “Applications and trends of high performance computing

for electric power systems: Focusing on smart grid,” IEEE Transactions on Smart Grid, vol. 4,

no. 2, pp. 922–931, 2013.

[7] Top500, “TOP500 Supercomputing Sites,” 2010.

[8] J. Nickolls, I. Buck, and M. Garland, “Scalable parallel programming,” pp. 40–53, 2008.

[9] K. OpenCL, “OpenCL Specification,” ReVision, 2009.

[10] J. Sirignano, A. Sadhwani, and K. Giesecke, “Deep learning for mortgage risk,” 2016.

57

https://www.baltimoresun.com/health/bs-md-medstar-healthcare-hack-20160402-story.html
https://www.baltimoresun.com/health/bs-md-medstar-healthcare-hack-20160402-story.html
https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/
https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/

BIBLIOGRAPHY

[11] M. Leeser, S. Mukherjee, and J. Brock, “Fast reconstruction of 3d volumes from 2d ct

projection data with gpus,” BMC research notes, vol. 7, no. 1, p. 582, 2014.

[12] V. Campmany, S. Silva, A. Espinosa, J. C. Moure, D. Vázquez, and A. M. López, “Gpu-based

pedestrian detection for autonomous driving,” vol. 80. Elsevier, 2016, pp. 2377–2381.

[13] Z. Shen, K. Wang, and F. Zhu, “Agent-based traffic simulation and traffic signal timing opti-

mization with gpu,” in 2011 14th International IEEE Conference on Intelligent Transportation

Systems (ITSC). IEEE, 2011, pp. 145–150.

[14] W. Fan, X. Chen, and X. Li, “Parallelization of rsa algorithm based on compute unified device

architecture,” in 2010 Ninth International Conference on Grid and Cloud Computing. IEEE,

2010, pp. 174–178.

[15] J. Gilger, J. Barnickel, and U. Meyer, “Gpu-acceleration of block ciphers in the openssl

cryptographic library,” in International Conference on Information Security. Springer, 2012,

pp. 338–353.

[16] Q. Li, C. Zhong, K. Zhao, X. Mei, and X. Chu, “Implementation and analysis of aes encryption

on gpu,” in 2012 IEEE 14th International Conference on High Performance Computing and

Communication & 2012 IEEE 9th International Conference on Embedded Software and

Systems. IEEE, 2012, pp. 843–848.

[17] Y. Yang, Z. Guan, H. Sun, and Z. Chen, “Accelerating rsa with fine-grained parallelism using

gpu,” in International Conference on Information Security Practice and Experience. Springer,

2015, pp. 454–468.

[18] R. Fernando, GPU Gems: Programming Techniques, Tips and Tricks for Real-Time Graphics.

Pearson Higher Education, 2004.

[19] K. Jang, S. Han, S. Han, S. B. Moon, and K. Park, “Sslshader: Cheap ssl acceleration with

commodity processors.” in NSDI, 2011, pp. 1–14.

[20] J. M. Aamir Majeed Usman Aziz Salman Ul Haq, “Bulk encryption

on GPUs,” Tech. Rep. [Online]. Available: https://developer.amd.com/article/

bulk-encryption-on-gpus-salman-ul-haq-jawad-masood-aamir-majeed-usman-aziz/

[21] J. Daemen and V. Rijmen, “AES proposal: Rijndael,” 1998.

58

https://developer.amd.com/article/bulk-encryption-on-gpus-salman-ul-haq-jawad-masood-aamir-majeed-usman-aziz/
https://developer.amd.com/article/bulk-encryption-on-gpus-salman-ul-haq-jawad-masood-aamir-majeed-usman-aziz/

BIBLIOGRAPHY

[22] C. Kalra, F. Previlon, X. Li, N. Rubin, and D. Kaeli, “Prism: Predicting resilience of gpu appli-

cations using statistical methods,” in SC18: International Conference for High Performance

Computing, Networking, Storage and Analysis. IEEE, 2018, pp. 866–879.

[23] F. G. Previlon, C. Kalra, D. R. Kaeli, and P. Rech, “Evaluating the impact of execution

parameters on program vulnerability in gpu applications,” in 2018 Design, Automation & Test

in Europe Conference & Exhibition (DATE). IEEE, 2018, pp. 809–814.

[24] NVIDIA, “Cuda C Programming Guide,” 2015.

[25] Nvidia, “The CUDA Compiler Driver NVCC,” 2015.

[26] X. Zhang, G. Tan, S. Xue, J. Li, K. Zhou, and M. Chen, “Understanding the gpu microar-

chitecture to achieve bare-metal performance tuning,” vol. 52, no. 8. ACM, 2017, pp.

31–43.

[27] NVIDIA, “NVIDIA’s Next Generation CUDA Compute Architecture: Kepler TM GK110/210,”

Tech. Rep. [Online]. Available: https://www.nvidia.com/content/dam/en-zz/Solutions/

Data-Center/documents/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf

[28] C. Rebeiro, D. Mukhopadhyay, and S. Bhattacharya, Timing channels in cryptography: a

micro-architectural perspective. Springer, 2014.

[29] P. Margara, “Engine-CUDA, a cryptographic engine for CUDA supported devices,” in

https://code.google.com/p/ engine-cuda/, 2015.

[30] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa, dss, and other

systems,” in Annual International Cryptology Conference. Springer, 1996, pp. 104–113.

[31] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Annual International Cryptol-

ogy Conference. Springer, 1999, pp. 388–397.

[32] D. Genkin, A. Shamir, and E. Tromer, “Rsa key extraction via low-bandwidth acoustic

cryptanalysis,” in Annual Cryptology Conference. Springer, 2014, pp. 444–461.

[33] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a leakage model,” in

International Workshop on Cryptographic Hardware and Embedded Systems. Springer, 2004,

pp. 16–29.

59

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf

BIBLIOGRAPHY

[34] D. Brumley and D. Boneh, “Remote timing attacks are practical,” Computer Networks, vol. 48,

no. 5, pp. 701–716, 2005.

[35] D. J. Bernstein, “Cache-timing attacks on AES,” Tech. Rep., 2005. [Online]. Available:

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

[36] S. A. Crosby, D. S. Wallach, and R. H. Riedi, “Opportunities and limits of remote timing

attacks,” ACM Transactions on Information and System Security (TISSEC), vol. 12, no. 3,

p. 17, 2009.

[37] B. B. Brumley and N. Tuveri, “Remote timing attacks are still practical,” in European Sympo-

sium on Research in Computer Security. Springer, 2011, pp. 355–371.

[38] N. J. Al Fardan and K. G. Paterson, “Lucky thirteen: Breaking the tls and dtls record protocols,”

in 2013 IEEE Symposium on Security and Privacy. IEEE, 2013, pp. 526–540.

[39] W. Van Eck, “Electromagnetic radiation from video display units: an eavesdropping risk?”

Computers & Security, vol. 4, no. 4, pp. 269–286, 1985.

[40] M. G. Kuhn and R. J. Anderson, “Soft tempest: Hidden data transmission using electromag-

netic emanations,” in International Workshop on Information Hiding. Springer, 1998, pp.

124–142.

[41] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic analysis: Concrete results,” in

International workshop on cryptographic hardware and embedded systems. Springer, 2001,

pp. 251–261.

[42] J.-J. Quisquater and D. Samyde, “Electromagnetic analysis (ema): Measures and counter-

measures for smart cards,” in International Conference on Research in Smart Cards. Springer,

2001, pp. 200–210.

[43] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The em side—channel (s),” in

International Workshop on Cryptographic Hardware and Embedded Systems. Springer, 2002,

pp. 29–45.

[44] S. Mangard, “A simple power-analysis (spa) attack on implementations of the aes key expan-

sion,” pp. 343–358, 2002.

60

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

BIBLIOGRAPHY

[45] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Investigations of power analysis attacks on

smartcards.” vol. 99, 1999, pp. 151–161.

[46] J.-S. Coron, P. Kocher, and D. Naccache, “Statistics and secret leakage,” in International

Conference on Financial Cryptography. Springer, 2000, pp. 157–173.

[47] N. Pramstaller, F. K. Gurkaynak, S. Haene, H. Kaeslin, N. Felber, and W. Fichtner, “Towards

an aes crypto-chip resistant to differential power analysis,” pp. 307–310, 2004.

[48] P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, “Introduction to differential power analysis,” Journal

of Cryptographic Engineering, vol. 1, no. 1, pp. 5–27, 2011.

[49] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Examining smart-card security under the

threat of power analysis attacks,” IEEE transactions on computers, vol. 51, no. 5, pp. 541–552,

2002.

[50] J. A. Ambrose, R. G. Ragel, S. Parameswaran, and A. Ignjatovic, “Multiprocessor information

concealment architecture to prevent power analysis-based side channel attacks,” IET computers

& digital techniques, vol. 5, no. 1, pp. 1–15, 2011.

[51] H. Yu, X.-c. ZOU, Z.-l. LIU, and Y.-c. CHEN, “The research of dpa attacks against aes

implementations,” The Journal of China Universities of Posts and Telecommunications, vol. 15,

no. 4, pp. 101–106, 2008.

[52] S. B. Örs and B. Preneel, “Power analysis of an fpga implementation of rijndael: Is pipelining

a dpa countermeasure,” in in Cryptographic Hardware and Embedded Systems. Citeseer,

2004.

[53] S. B. Ors, F. Gurkaynak, E. Oswald, and B. Preneel, “Power-analysis attack on an asic

aes implementation,” in International Conference on Information Technology: Coding and

Computing, 2004. Proceedings. ITCC 2004., 2004, vol. 2, pp. 546–552.

[54] K. Tiri, D. Hwang, A. Hodjat, B. Lai, S. Yang, P. Schaumont, and I. Verbauwhede, “A side-

channel leakage free coprocessor ic in 0.18 µm cmos for embedded aes-based cryptographic

and biometric processing,” in Proceedings of the 42nd annual Design Automation Conference.

ACM, 2005, pp. 222–227.

61

BIBLIOGRAPHY

[55] T. S. Messerges, “Using second-order power analysis to attack dpa resistant software,” in

International Workshop on Cryptographic Hardware and Embedded Systems. Springer, 2000,

pp. 238–251.

[56] S. Mangard, E. Oswald, and T. Popp, Power analysis attacks: Revealing the secrets of smart

cards. Springer Science & Business Media, 2008, vol. 31.

[57] J.-S. Coron and L. Goubin, “On boolean and arithmetic masking against differential power

analysis,” in International Workshop on Cryptographic Hardware and Embedded Systems.

Springer, 2000, pp. 231–237.

[58] D. Agrawal, J. R. Rao, P. Rohatgi, and K. Schramm, “Templates as master keys,” in Interna-

tional Workshop on Cryptographic Hardware and Embedded Systems. Springer, 2005, pp.

15–29.

[59] E. Oswald and S. Mangard, “Template attacks on masking—resistance is futile,” in Cryptog-

raphers’ Track at the RSA Conference. Springer, 2007, pp. 243–256.

[60] E. Oswald, S. Mangard, C. Herbst, and S. Tillich, “Practical second-order dpa attacks for

masked smart card implementations of block ciphers,” in Cryptographers’ Track at the RSA

Conference. Springer, 2006, pp. 192–207.

[61] V. Sundaresan, S. Rammohan, and R. Vemuri, “Defense against side-channel power analysis

attacks on microelectronic systems,” in 2008 IEEE National Aerospace and Electronics

Conference. IEEE, 2008, pp. 144–150.

[62] P. Luo, L. Zhang, Y. Fei, and A. A. Ding, “Towards secure cryptographic software implementa-

tion against side-channel power analysis attacks,” in 2015 IEEE 26th International Conference

on Application-specific Systems, Architectures and Processors (ASAP). IEEE, 2015, pp.

144–148.

[63] J.-S. Coron, “A new dpa countermeasure based on permutation tables,” in International

Conference on Security and Cryptography for Networks. Springer, 2008, pp. 278–292.

[64] A. W. Fritzke, “Obfuscating against side-channel power analysis using hiding techniques for

aes,” 2012.

62

BIBLIOGRAPHY

[65] E. Prouff and M. Rivain, “Masking against side-channel attacks: A formal security proof,” in

Annual International Conference on the Theory and Applications of Cryptographic Techniques.

Springer, 2013, pp. 142–159.

[66] M. Zhang and N. K. Jha, “Finfet-based power management for improved dpa resistance with

low overhead,” ACM Journal on Emerging Technologies in Computing Systems (JETC), vol. 7,

no. 3, p. 10, 2011.

[67] S. Yang, W. Wolf, N. Vijaykrishnan, D. N. Serpanos, and Y. Xie, “Power attack resistant

cryptosystem design: A dynamic voltage and frequency switching approach,” in Design,

Automation and Test in Europe. IEEE, 2005, pp. 64–69.

[68] W. Yu, O. A. Uzun, and S. Köse, “Leveraging on-chip voltage regulators as a countermea-

sure against side-channel attacks,” in Proceedings of the 52nd Annual Design Automation

Conference. ACM, 2015, p. 115.

[69] D. Das, S. Maity, S. B. Nasir, S. Ghosh, A. Raychowdhury, and S. Sen, “High efficiency power

side-channel attack immunity using noise injection in attenuated signature domain,” in 2017

IEEE International Symposium on Hardware Oriented Security and Trust (HOST). IEEE,

2017, pp. 62–67.

[70] Z. Chen and P. Schaumont, “Virtual secure circuit: porting dual-rail pre-charge technique into

software on multicore,” 2010.

[71] D. Asonov and R. Agrawal, “Keyboard acoustic emanations,” in IEEE Symposium on Security

and Privacy, 2004. Proceedings. 2004. IEEE, 2004, pp. 3–11.

[72] L. Zhuang, F. Zhou, and J. D. Tygar, “Keyboard acoustic emanations revisited,” ACM Transac-

tions on Information and System Security (TISSEC), vol. 13, no. 1, p. 3, 2009.

[73] M. Backes, M. Dürmuth, S. Gerling, M. Pinkal, and C. Sporleder, “Acoustic side-channel

attacks on printers.” pp. 307–322, 2010.

[74] A. Faruque, M. Abdullah, S. R. Chhetri, A. Canedo, and J. Wan, “Acoustic side-channel attacks

on additive manufacturing systems,” in Proceedings of the 7th International Conference on

Cyber-Physical Systems. IEEE Press, 2016, p. 19.

[75] A. Shamir and E. Tromer, “Acoustic cryptanalysis,” presentation available from http://www.

wisdom. weizmann. ac. il/ tromer, 2004.

63

BIBLIOGRAPHY

[76] M. G. Kuhn, “Compromising emanations: eavesdropping risks of computer displays,” 2002.

[77] ——, “Optical time-domain eavesdropping risks of crt displays,” in Proceedings 2002 IEEE

Symposium on Security and Privacy. IEEE, 2002, pp. 3–18.

[78] R. D. Pietro, F. Lombardi, and A. Villani, “Cuda leaks: a detailed hack for cuda and a (partial)

fix,” ACM Transactions on Embedded Computing Systems (TECS), vol. 15, no. 1, p. 15, 2016.

[79] A. Miele, “Buffer overflow vulnerabilities in cuda: a preliminary analysis,” Journal of Com-

puter Virology and Hacking Techniques, vol. 12, no. 2, pp. 113–120, 2016.

[80] S. Lee, Y. Kim, J. Kim, and J. Kim, “Stealing webpages rendered on your browser by exploiting

gpu vulnerabilities,” in 2014 IEEE Symposium on Security and Privacy. IEEE, 2014, pp.

19–33.

[81] C. Maurice, C. Neumann, O. Heen, and A. Francillon, “Confidentiality issues on a GPU in a

virtualized environment,” in International Conference on Financial Cryptography and Data

Security. Springer, 2014, pp. 119–135.

[82] Z. Zhou, W. Diao, X. Liu, Z. Li, K. Zhang, and R. Liu, “Vulnerable gpu memory management:

towards recovering raw data from gpu,” Proceedings on Privacy Enhancing Technologies, vol.

2017, no. 2, pp. 57–73, 2017.

[83] C. Luo, Y. Fei, P. Luo, S. Mukherjee, and D. Kaeli, “Side-channel power analysis of a gpu aes

implementation,” in 2015 33rd IEEE International Conference on Computer Design (ICCD).

IEEE, 2015, pp. 281–288.

[84] Z. H. Jiang, Y. Fei, and D. Kaeli, “A complete key recovery timing attack on a gpu,” in 2016

IEEE International symposium on high performance computer architecture (HPCA). IEEE,

2016, pp. 394–405.

[85] ——, “A novel side-channel timing attack on gpus,” in Proceedings of the on Great Lakes

Symposium on VLSI 2017. ACM, 2017, pp. 167–172.

[86] G. Kadam, D. Zhang, and A. Jog, “Rcoal: mitigating gpu timing attack via subwarp-based ran-

domized coalescing techniques,” in 2018 IEEE International Symposium on High Performance

Computer Architecture (HPCA). IEEE, 2018, pp. 156–167.

64

BIBLIOGRAPHY

[87] X. Wang and W. Zhang, “Cracking randomized coalescing techniques with an efficient

profiling-based side-channel attack to GPU,” in Proceedings of the 8th International Workshop

on Hardware and Architectural Support for Security and Privacy. ACM, 2019, p. 2.

[88] E. Karimi, Z. H. Jiang, Y. Fei, and D. Kaeli, “A timing side-channel attack on a mobile gpu,”

in 2018 IEEE 36th International Conference on Computer Design (ICCD). IEEE, 2018, pp.

67–74.

[89] Y. Gao, H. Zhang, W. Cheng, Y. Zhou, and Y. Cao, “Electro-magnetic analysis of gpu-based

aes implementation,” in Proceedings of the 55th Annual Design Automation Conference.

ACM, 2018, p. 121.

[90] Y. Gao, Y. Zhou, and W. Cheng, “Efficient electro-magnetic analysis of a gpu bitsliced aes

implementation,” Cybersecurity, vol. 3, no. 1, pp. 1–17, 2020.

[91] R. A. Bridges, N. Imam, and T. M. Mintz, “Understanding gpu power: A survey of profiling,

modeling, and simulation methods,” ACM Computing Surveys (CSUR), vol. 49, no. 3, p. 41,

2016.

[92] M. Burtscher, I. Zecena, and Z. Zong, “Measuring gpu power with the k20 built-in sensor,” in

Proceedings of Workshop on General Purpose Processing Using GPUs. ACM, 2014, p. 28.

[93] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for architectural-level power

analysis and optimizations,” vol. 28, no. 2. ACM, 2000.

[94] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi, “Mcpat:

an integrated power, area, and timing modeling framework for multicore and manycore

architectures,” in Proceedings of the 42nd Annual IEEE/ACM International Symposium on

Microarchitecture. ACM, 2009, pp. 469–480.

[95] H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, and S. Matsuoka, “Statistical power

modeling of GPU kernels using performance counters,” in International conference on green

computing. IEEE, 2010, pp. 115–122.

[96] S. Hong and H. Kim, “An integrated gpu power and performance model,” in ACM SIGARCH

Computer Architecture News, vol. 38, no. 3. ACM, 2010, pp. 280–289.

65

BIBLIOGRAPHY

[97] S. Song, C. Su, B. Rountree, and K. W. Cameron, “A simplified and accurate model of power-

performance efficiency on emergent gpu architectures,” in 2013 IEEE 27th International

Symposium on Parallel and Distributed Processing. IEEE, 2013, pp. 673–686.

[98] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt, “Analyzing cuda workloads

using a detailed gpu simulator,” in 2009 IEEE International Symposium on Performance

Analysis of Systems and Software. IEEE, 2009, pp. 163–174.

[99] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M. Aamodt, and V. J.

Reddi, “Gpuwattch: enabling energy optimizations in gpgpus,” in ACM SIGARCH Computer

Architecture News, vol. 41, no. 3. ACM, 2013, pp. 487–498.

[100] R. Nath and D. Tullsen, “The crisp performance model for dynamic voltage and frequency

scaling in a gpgpu,” in Proceedings of the 48th International Symposium on Microarchitecture.

ACM, 2015, pp. 281–293.

[101] J. Lucas, S. Lal, M. Andersch, M. Alvarez-Mesa, and B. Juurlink, “How a single chip causes

massive power bills gpusimpow: A gpgpu power simulator,” in 2013 IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE, 2013, pp.

97–106.

[102] O. Harrison and J. Waldron, “Aes encryption implementation and analysis on commodity

graphics processing units,” in International Workshop on Cryptographic Hardware and

Embedded Systems. Springer, 2007, pp. 209–226.

[103] S. A. Manavski, “Cuda compatible gpu as an efficient hardware accelerator for aes cryptog-

raphy,” in 2007 IEEE International Conference on Signal Processing and Communications.

IEEE, 2007, pp. 65–68.

[104] J. Daemen and V. Rijmen, The design of Rijndael: AES-the advanced encryption standard.

Springer Science & Business Media, 2013.

[105] O. Harrison and J. Waldron, “Practical symmetric key cryptography on modern graphics

hardware,” USENIX Security Symposium, 2008.

[106] A. D. Biagio, A. Barenghi, G. Agosta, and G. Pelosi, “Design of a parallel aes for graph-

ics hardware using the cuda framework,” in Proceedings of the 2009 IEEE International

Symposium on Parallel&Distributed Processing. IEEE Computer Society, 2009, pp. 1–8.

66

BIBLIOGRAPHY

[107] C. Mei, H. Jiang, and J. Jenness, “Cuda-based aes parallelization with fine-tuned gpu memory

utilization,” in 2010 IEEE International Symposium on Parallel & Distributed Processing,

Workshops and Phd Forum (IPDPSW). IEEE, 2010, pp. 1–7.

[108] J. Bonneau and I. Mironov, “Cache-collision timing attacks against aes,” in International

Workshop on Cryptographic Hardware and Embedded Systems. Springer, 2006, pp. 201–215.

[109] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermeasures: the case of aes,”

in Cryptographers’ track at the RSA conference. Springer, 2006, pp. 1–20.

[110] D. J. Bernstein, T. Lange, and P. Schwabe, “The security impact of a new cryptographic

library,” in International Conference on Cryptology and Information Security in Latin America.

Springer, 2012, pp. 159–176.

[111] R. K. Lim, L. R. Petzold, and Ç. K. Koç, “Bitsliced high-performance aes-ecb on gpus,” in

The New Codebreakers. Springer, 2016, pp. 125–133.

[112] G. Agosta, A. Barenghi, A. Di Federico, and G. Pelosi, “Opencl performance portability for

general-purpose computation on graphics processor units: an exploration on cryptographic

primitives,” Concurrency and Computation: Practice and Experience, vol. 27, no. 14, pp.

3633–3660, 2015.

[113] G.-l. Guo, Q. Qian, and R. Zhang, “Different implementations of aes cryptographic algorithm,”

in 2015 IEEE 17th International Conference on High Performance Computing and Commu-

nications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and

2015 IEEE 12th International Conference on Embedded Software and Systems. IEEE, 2015,

pp. 1848–1853.

[114] X. Fei, K. Li, W. Yang, and K. Li, “Practical parallel aes algorithms on cloud for massive

users and their performance evaluation,” vol. 28, no. 16. Wiley Online Library, 2016, pp.

4246–4263.

[115] W.-K. Lee, B.-M. Goi, and R. C.-W. Phan, “Terabit encryption in a second: Performance eval-

uation of block ciphers in gpu with kepler, maxwell, and pascal architectures,” Concurrency

and Computation: Practice and Experience, vol. 31, no. 11, p. e5048, 2019.

[116] M. Rivain and E. Prouff, “Provably secure higher-order masking of aes,” in International

Workshop on Cryptographic Hardware and Embedded Systems. Springer, 2010, pp. 413–427.

67

BIBLIOGRAPHY

[117] K. Schramm and C. Paar, “Higher order masking of the aes,” in Proceedings of the 2006 The

Cryptographers’ Track at the RSA Conference on Topics in Cryptology. Springer-Verlag,

2006, pp. 208–225.

[118] J.-S. Coron, E. Prouff, and M. Rivain, “Side channel cryptanalysis of a higher order masking

scheme,” in International Workshop on Cryptographic Hardware and Embedded Systems.

Springer, 2007, pp. 28–44.

[119] J.-S. Coron, E. Prouff, M. Rivain, and T. Roche, “Higher-order side channel security and mask

refreshing,” in International Workshop on Fast Software Encryption. Springer, 2013, pp.

410–424.

[120] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded software: a first step towards

software power minimization,” pp. 384–390, 1994.

[121] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing shared resource contention in

multicore processors via scheduling,” ACM Sigplan Notices, vol. 45, no. 3, pp. 129–142, 2010.

[122] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang, and K. Skadron, “A characterization

of the rodinia benchmark suite with comparison to contemporary cmp workloads,” in IEEE

International Symposium on Workload Characterization (IISWC’10). IEEE, 2010, pp. 1–11.

[123] R. Gonzalez, B. M. Gordon, and M. A. Horowitz, “Supply and threshold voltage scaling for

low power cmos,” IEEE Journal of Solid-State Circuits, vol. 32, no. 8, pp. 1210–1216, 1997.

[124] Nvidia, “The NVIDIA System Management Interface (nvidia-smi).” [Online]. Available:

https://developer.nvidia.com/nvidia-system-management-interface

[125] “Nvidiux.” [Online]. Available: https://github.com/RunGp/Nvidiux

[126] Nvidia, “NVIDIA Management Library (NVML).” [Online]. Available: https://developer.

nvidia.com/nvidia-management-library-nvml

[127] S. Hochreiter and J. Schmidhuber, “Lstm can solve hard long time lag problems,” in Advances

in neural information processing systems, 1997, pp. 473–479.

[128] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual prediction with

lstm,” 1999.

68

https://developer.nvidia.com/nvidia-system-management-interface
https://github.com/RunGp/Nvidiux
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml

BIBLIOGRAPHY

[129] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep recurrent neural

networks,” in 2013 IEEE international conference on acoustics, speech and signal processing.

IEEE, 2013, pp. 6645–6649.

[130] R. Messina and J. Louradour, “Segmentation-free handwritten chinese text recognition with

lstm-rnn,” in 2015 13th International Conference on Document Analysis and Recognition

(ICDAR). IEEE, 2015, pp. 171–175.

[131] A. Graves and N. Jaitly, “Towards end-to-end speech recognition with recurrent neural

networks,” in International conference on machine learning, 2014, pp. 1764–1772.

[132] L. Lerman, G. Bontempi, O. Markowitch et al., “Power analysis attack: an approach based on

machine learning.” IJACT, vol. 3, no. 2, pp. 97–115, 2014.

[133] L. Lerman, R. Poussier, G. Bontempi, O. Markowitch, and F.-X. Standaert, “Template attacks

vs. machine learning revisited (and the curse of dimensionality in side-channel analysis),” in

International Workshop on Constructive Side-Channel Analysis and Secure Design. Springer,

2015, pp. 20–33.

[134] R. Gilmore, N. Hanley, and M. O’Neill, “Neural network based attack on a masked implemen-

tation of aes,” in 2015 IEEE International Symposium on Hardware Oriented Security and

Trust (HOST). IEEE, 2015, pp. 106–111.

[135] L. Lerman, G. Bontempi, and O. Markowitch, “A machine learning approach against a masked

aes,” Journal of Cryptographic Engineering, vol. 5, no. 2, pp. 123–139, 2015.

[136] Y. Ishai, A. Sahai, and D. Wagner, “Private circuits: Securing hardware against probing

attacks,” pp. 463–481, 2003.

[137] S. Mangard, T. Popp, and B. M. Gammel, “Side-channel leakage of masked cmos gates,” in

Cryptographers’ Track at the RSA Conference. Springer, 2005, pp. 351–365.

[138] S. Nikova, V. Rijmen, and M. Schläffer, “Secure hardware implementation of nonlinear

functions in the presence of glitches,” Journal of Cryptology, vol. 24, no. 2, pp. 292–321,

2011.

[139] Nvidia, “NVIDIA CUDA Random Number Generation library.” [Online]. Available:

https://developer.nvidia.com/curand

69

https://developer.nvidia.com/curand

BIBLIOGRAPHY

[140] H. Eldib, C. Wang, M. Taha, and P. Schaumont, “Quantitative masking strength: quantifying

the power side-channel resistance of software code,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 34, no. 10, pp. 1558–1568, 2015.

[141] A. G. Bayrak, F. Regazzoni, D. Novo, and P. Ienne, “Sleuth: Automated verification of

software power analysis countermeasures,” in International Workshop on Cryptographic

Hardware and Embedded Systems. Springer, 2013, pp. 293–310.

[142] H. Eldib, C. Wang, M. Taha, and P. Schaumont, “Qms: Evaluating the side-channel resistance

of masked software from source code,” in Proceedings of the 51st Annual Design Automation

Conference. ACM, 2014, pp. 1–6.

[143] M. Nassar, Y. Souissi, S. Guilley, and J.-L. Danger, “Rsm: a small and fast countermeasure

for aes, secure against 1st and 2nd-order zero-offset scas,” in 2012 Design, Automation & Test

in Europe Conference & Exhibition (DATE). IEEE, 2012, pp. 1173–1178.

[144] D. Goudarzi and M. Rivain, “How fast can higher-order masking be in software?” in An-

nual International Conference on the Theory and Applications of Cryptographic Techniques.

Springer, 2017, pp. 567–597.

[145] X. Gong, R. Ubal, and D. Kaeli, “Multi2sim kepler: A detailed architectural gpu simulator,”

in 2017 IEEE International Symposium on Performance Analysis of Systems and Software

(ISPASS). IEEE, 2017, pp. 269–278.

[146] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a

quantum computer,” SIAM review, vol. 41, no. 2, pp. 303–332, 1999.

70

	Cover
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Acknowledgments
	Abstract of the Dissertation
	1 Introduction
	1.1 Cryptography
	1.1.1 Need for accelerated cryptography

	1.2 Graphics Processing Units
	1.2.1 Emerging GPU applications

	1.3 Cryptography on GPUs
	1.4 Attack on Cryptography
	1.5 Motivation for this thesis
	1.6 Scope and Contributions of this thesis
	1.6.1 Current contributions
	1.6.2 Proposed contributions

	1.7 Organization of the Thesis

	2 Background
	2.1 GPU basics
	2.1.1 Compute Unified Device Architecture (CUDA)
	2.1.2 GPU architecture

	2.2 The Advanced Encryption Standard
	2.2.1 CUDA implementation of AES

	2.3 Side-Channel Attack
	2.3.1 Correlation Power Analysis Attacks
	2.3.2 Power Leakage Acquisition

	3 Related Work
	3.1 Timing Side-Channel Attacks
	3.2 EM Side-Channel Attacks
	3.3 Power Side-Channel Attacks
	3.3.1 Simple Power Analysis
	3.3.2 Differential Power Analysis
	3.3.3 Correlational Power Analysis
	3.3.4 High-Order Differential Power Analysis
	3.3.5 Countermeasures

	3.4 Other Types of Side-Channel Attacks
	3.5 Side-Channel Attack on GPUs
	3.6 Power Modeling
	3.7 GPU-based AES
	3.8 Summary

	4 GIPSIM framework
	4.1 Motivation
	4.2 Building a Baseline Model
	4.3 Model Accuracy
	4.4 Model Correlation to AES
	4.5 The Effect of DVFS on GIPSim

	5 Obfuscation Approaches
	5.1 Hiding
	5.1.1 Randomization
	5.1.2 Equalization
	5.1.3 Using an LSTM

	5.2 Masking
	5.2.1 Higher-order masking

	6 Conclusions and Future Work
	6.1 Dissertation Summary
	6.2 Future Work

	Bibliography

