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Abstract

Multilevel Interference-aware Scheduling on Modern GPUs

by

Leiming Yu

Doctor of Philosophy in Electrical and Computer Engineering

Northeastern University, April 2019

Dr. David Kaeli, Advisor

Driven by their impressive parallel processing capabilities, Graphics Processing Units
(GPUs) have become the accelerator of choice for high-performance computing. Many data-parallel
applications have enjoyed significant speedups after being re-engineered to leverage the thousands of
cores on the GPU. For instance, training a complex deep neural network model on a GPU can be
done within hours, versus the weeks of time it might take on more traditional CPUs. While most
deep neural networks are hungry for more and more computing resources, a number of application
kernels only use a fraction of the available resources. To better utilize the massive resources on the
GPU, device vendors have started to support Concurrent Kernel Execution (CKE). The Hyper-Q
technology from NVIDIA allows up to 32 data-independent kernels to run concurrently, leveraging
parallel hardware work queues. These hardware work queues can execute concurrent kernels from
either a single GPU context or multiple GPU contexts. With support for concurrent kernel execution,
multiple applications can be co-located and co-scheduled on the same GPU, significantly improving
resource utilization.

The application throughput provided by CKE is subject to a number of factors, including
the kernel configuration attributes, the dynamic behavior of each kernel (e.g., compute-intensive
vs. memory-intensive), the kernel launch order and inter-kernel dependencies, etc. Launching more
concurrent kernels does not always achieve better performance. It is challenging to predict the
potential performance benefits of using CKE. Typically, a developer will have to compile and run
their program many times to obtain the best performance. In addition, as multiple GPU applications
co-scheduled on the device, the contentions for shared resources, such as memory bandwidth and
computational pipelines, result in interference which can often impact the CKE performance.

In this thesis, we seek to optimize the execution efficiency for GPU workloads at a kernel
granularity, as well as at an application granularity. We focus on providing a performance tuning

ix



mechanism for concurrent kernel execution and develop an efficient GPU workload scheduler to
achieve improved quality-of-service in a cloud environment. We have developed an empirical model
named Moka, to estimate the performance benefits using concurrent kernel execution. The model
analyzes a non-CKE application comprising multiple kernels, using the profiling information. It
delivers an estimate of the performance ceiling by taking into account data transfers and GPU kernel
execution behavior. Moka also provides guidance to find the best performing kernel-stream mapping,
quickly identifying the best CKE configuration, resulting in improved performance and the highest
utilization of the GPU. In addition, a machine-learning based interference-aware scheduler named
Magic was developed to improve the system throughput for multitasking on GPUs. Magic framework
implements offline short profiling analysis to study the important interference metrics and conducts
interference sensitivity prediction for GPU workloads based on the selected machine learning models.
Our scheduler outperforms a state-of-art similarity-based scheduler on a single GPU system and
achieves a high system throughput compared to the least-loaded policy on a multi-GPU system.
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Chapter 1

Introduction

Over the past decade, we have seen major changes in direction when designing next-

generation computing hardware, moving from fast and complex uniprocessor designs, to simpler, yet

explicitly parallel, multiprocessor/multicore designs. Central Processing Units (CPUs) have been the

traditional workhorse for a range of platforms ranging from mobile devices to cloud servers. CPU

vendors have elected to incorporate multiple computing cores in a single chip (e.g., up to 18 cores on

the Intel Core i9 CPU, and up to 32 cores on the AMD Threadripper CPU).

While industry has been successful in delivering multi-core CPU designs, improving the

throughput of CPU workloads requires rethinking the implementation of our applications. At a

programming level, these changes involve parallelizing algorithms, redesigning data structures, and

exploiting multi-threading techniques and Single Instruction Multiple Data (SIMD) instructions

present on the hardware. Due to power constraints and resource contention present in the computation

units and memory system on current multi-core architecture, the actual performance gains of multi-

threaded CPU-based applications cannot fully meet the computational demands given the rapidly

growing needs of data processing. Motivated by these issues, industry has explored the introduction

of accelerators that can accelerate data-parallel computations.

Graphics Processing Units (GPUs) have become of the accelerator of choice on many

systems. GPUs provide massively parallel computing cores and high memory bandwidth. With tens

of thousands of parallel processing threads executing in a Single-Instruction-Multiple-Thread (SIMT)

manner, modern GPUs can sustain much higher compute throughput than a CPU. By exploiting the

inherent parallelism in applications, including linear algebra, molecular dynamics and game physics,

GPUs can easily enjoy double-digit speedups over an optimized CPU design [79, 112, 113, 109, 111].

GPUs were originally designed for rendering 3-D computer graphics, where millions

of pixels need to be processed concurrently. To take advantage of the parallel processing power
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CHAPTER 1. INTRODUCTION

for non-graphics applications, programmers need to understand complex graphics programming

interfaces (e.g., DirectX [33] and OpenGL [88]), and streaming languages (e.g., BrookGPU [14]

and sH [60]). GPU programming has been more user-friendly since the release of Compute Unified

Device Architecture (CUDA) [65] in 2007 and Open Computing Language (OpenCL) [35] in 2008.

The CUDA framework is proprietary to NVIDIA GPUs, whereas OpenCL is an open source standard

for parallel computing supported by a variety of hardware targets including CPUs, GPUs, field-

programmable gate arrays (FPGAs), and digital signal processors (DSPs). While OpenCL is designed

for scalability and portability, CUDA is targeted for performance.

Given the rapid pace of architectural evolution in the GPU market, and supported by a

variety of customized libraries, GPUs have been able to achieve impressive speedups for a range of

applications. NVIDIA’s CUDA offers more custom library support than AMD does for OpenCL,

mainly because CUDA is proprietary, while OpenCL is open. The range of supported programming

features for each framework is presented in Table 1.1. Since the majority of this thesis will focus on

acceleration on NVIDIA GPUs, we will use CUDA terminology throughout this thesis.

Table 1.1: Advanced Features for CUDA and OpenCL
Features CUDA OpenCL

Unified Memory Yes(6.0+) Yes(2.0+)
Dynamic Parallelism Yes(5.0+) Yes(2.0+)

C++ Yes(6.0+) Yes(2.1+)
Stream Priority Yes(5.5+) Yes(2.1+)

Pipes No Yes(2.0+)
Thread Data Sharing Yes(5.0+) No

Mixed-Precision Yes(7.5+) Yes(1.0+)
Concurrent Kernel Execution Yes(4.0+) Yes

Leveraging the massive parallel processing power of the GPU, and equipped with a number

of programming features that can exploit the parallelism provided by a GPU, we have seen a growing

number of serial applications being ported to a GPU for acceleration. The performance of a GPU-

based application heavily depends on the ability of the programmer to exploit concurrent execution

on the device, fully exploiting the available computing resources. GPU vendors continue to increase

the number of computational resources on each new hardware generation to meet the application

demands.

As shown in Table 1.2, the number of available computing cores on today’s GPUs has

surged by 24 times, from 216 CUDA cores on early Tesla-based GPUs, to 5120 CUDA cores of

the latest Volta-based GPUs. As a result, the number of transistors has increased from 1.4 to 21.1

billion (by a factor of 15), and the single precision throughput has been increased from 477 GFLOPs
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to 14899 GFLOPs, improved by a factor of 31. With so many computational resources available,

we need to enhance the effective orchestration of these parallel resources in order to maximize

performance gains from GPU acceleration.

The need to efficiently exploit parallel execution on a GPU motivates us to revisit the

different levels of concurrency present in GPU workloads. In this thesis, we evaluate how to best to

achieve multi-level concurrency and provide novel approaches to increase execution efficiency.

Table 1.2: Device resources and computing capability for evolving architectures of NVIDIA GPUs.
GPU GTX 260 GTX 480 GTX 680 GTX 980 GTX 1080 TITAN V
Architecture Tesla Fermi Kepler Maxwell Pascal Volta
Computing Cores 216 480 1536 2048 2560 5120
Transistors 1400 million 3000 million 3540 million 5.2 billion 7.2 billion 21.1 billion
FP32 Performance (GFLOPS) 477 1345 3090 5132 9216 14899
Release Year 2008 2010 2012 2014 2016 2017

1.1 GPU Computing

GPUs and CPUs present two different design points in terms of architectural philosophy.

CPUs are designed to execute a small number of complex tasks, whereas GPUs are designed to

execute a larger number of simpler tasks. CPUs have a small number of registers per core for a given

task. Context switching between tasks on a CPU is relatively expensive since the live registers need

to be stored and restored, accessing main memory. By comparison, GPUs have multiple banks of

registers to support lightweight context switching, simply using a bank selector to switch between

different registers sets and contexts, avoiding costly accesses to memory. CPUs use context switching

to hide long stalls which are often caused by I/O and long latency operations, while GPUs work at a

finer granularity and switch among different instruction streams to hide latencies [19].

In order to deploy a GPU for acceleration, the data initialized on the CPU (referred to as

the host) needs to be copied to the GPU (referred to as the device). Data transfer between the host

and device are often realized via the interconnect of a PCI-Express bus or an InfiniBand network.

A typical GPU usually contains one or two DMA (Direct Memory Access) copy engines for data

copy. For GPUs with one copy engine, only one-way transfer, either host-to-device or device-to-host,

is allowed through the interconnect. For GPUs with two copy engines, concurrent bi-directional

transfers are supported.

Read/write data that is transferred to the GPU is typically stored in global memory. For

read-only objects, data can be stored in either constant memory or texture memory, supporting

faster data access. These three different memory modules are all interconnected and shared with the
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Figure 1.1: A typical GPU computing flow.

streaming multiprocessors (SMs). A single streaming multiprocessor on a GPU provides hundreds of

CUDA cores that are designed to execute computations with different precisions (i.e., integer/single-

precision/double-precision/half-precision). Each SM also contains special function units (SFUs)

for transcendental functions (e.g., SIN, COS and natural logarithms). To efficiently utilize these

computing units, each SM has a set of local registers for fast data access and storage. In addition,

each SM has shared memory to cache the data from the global memory, reducing global memory

traffic and increasing the effective memory bandwidth.

As hundreds of thousands of threads are launched on the GPU, they are grouped into

warps (on an NVIDIA GPU, a group of 32 threads execute in a Single Instruction Multiple Data

(SIMD) fashion) and dispatched by the warp scheduler on each streaming multiprocessor. Given

multiple warp schedulers, warps executing different instruction streams can run in parallel to increase

instruction-level parallelism. When a warp is stalled due to a long latency memory operation, the

scheduler can quickly switch to another runnable warp in order to hide the latency. Equipped with

fast context switching, the execution efficiency of GPU threads can be boosted.

GPUs are the ideal accelerator for data-parallel applications since the inherent independent

executions can be mapped to many parallel threads for concurrent execution. To increase the

utilization of the computing resources on the device, we need to consider how best to manage

accesses to the GPU memory hierarchy. By exploring data parallelism and carefully managing data

movement, GPU-accelerated applications often observe a significant speedup over the optimized

CPU implementations.
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1.2 Concurrent Kernel Execution

With the help of fabrication technology, modern GPUs accommodate more computing

resources (see Table 1.2) with each new generation for high-performance computing. As applications

with diverse source requirements have been ported to GPU for acceleration, resource underutilization

is often observed for a single kernel.

Figure 1.2 shows the instructions per second (IPC) and single precision function unit

utilization (sp fu utilization) for four distinctive GPU kernels. As we increase the number of warps

(a warp is defined as a group of 32 threads on NVIDIA GPUs) per streaming multiprocessor, the

IPC consistently increases for all four applications. For single precision function units utilize, we

see an increase from 10% to 30%, leaving most of its resources under-utilized. In lavaMD, double

precision computation is dominant, hence the single precision function unit utilization is consistently

low. Since the ratio of double precision units to single precision units is 1 to 32 on the NVIDIA GTX

950 GPU, as more warps are dispatched to the streaming multiprocessor, the IPC performance is

constrained by the double precision resources, which leads to a marginal increase in performance.

(a) VectorAdd (b) binomialOptions

(c) b+tree (d) lavaMD

Figure 1.2: Executing more warps of threads improves the throughput (i.e., instructions per second),

whereas device resources (i.e., single precision function units) are still underutilization.

Here, we explore the impact of launching more GPU threads, which should improve the
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performance, but may not result in high utilization of GPU resources. Memory-intensive kernels

(e.g., VectorAdd and b+tree) often have high utilization of global memory bandwidth and a high

cache hit rate, while the arithmetic function units remain underutilized, with less than 20% utilization

of the single-precision function units. Even for compute-intensive kernels (e.g., binomialOptions),

the arithmetic function units remain untapped.

To address the issue of resource under-utilization for a single kernel, modern GPUs support

concurrent kernel execution (CKE), a feature that allows multiple kernels to run concurrently on

the same device (see Table 1.1). Depending on the available compute resources (e.g., registers and

shared memory), multiple kernels can be collocated on the device for concurrent execution. On

NVIDIA Fermi GPUs, up to 16 concurrent kernels are supported [86], whereas up to 32 concurrent

kernels are supported for NVIDIA Kepler GPUs [68]. The benefits of running CKE are two-fold:

1. we can maximize the total number of actively running threads from different kernels, which

can improve resource utilization,

2. we can balance resource utilization for two distinctive kernels which are compute-intensive

and memory-intensive, by running them concurrently.

Due to the inherent nature of GPU kernels, their associated resource demands can vary

greatly, including the number of required processing threads. If a kernel has a small number of

threads, occupying a fraction of the available hardware threads on the GPU, a second kernel can

be dispatched to run concurrently and improve the occupancy on the GPU. The occupancy metric

represents the ratio of active running threads to the maximum available hardware threads available

on the device. High occupancy means a high degree of thread utilization.

When multiple kernels are collocated on the GPU, they can request different amounts

of device resources for each of their computations. Some kernels stress the memory system (i.e.,

memory-intensive kernels), while others require more computation than memory (i.e., compute-

intensive kernels). Running similar kernels (similar in terms of resource usage) concurrently often

leads to resource competition and significant performance degradation. For instance, a memory-

intensive kernel will spend more time waiting for data than computing the results. Running two

memory-intensive kernels concurrently may lead to competition in the data cache. Since the data

cache space and bandwidth are limited on the GPU, cache performance could be much lower than

when running them separately. The latency of data accesses cannot be easily hidden due to memory

delays and the fact that the next thread will also want to request memory. Therefore, to properly

leverage CKE, the demands of memory bandwidth and compute resources need to be considered

carefully before assigning kernels to run concurrently.
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1.3 Challenges with Concurrency

1.3.1 Kernel-level concurrency

As concurrent kernel execution is supported on modern GPUs, different tasks can be

implemented as kernels for parallel execution. Leveraging CKE, task-level parallelism can be

exploited to maximize application throughput. However, launching more concurrent kernels does

not always achieve better performance. Figure 1.3 shows the CKE performance when running the

expectation step in the Hidden Markov Model (HMM) kernel. We run seven different test cases,

where the number of hidden states is increased from 64 to 4096. We can observe a 2x speedup

when running two concurrent kernels. The overall performance plateaus after attempting to run three

concurrent kernels. Using more than four concurrent kernels can even decrease the performance in

some cases.

Figure 1.3: The performance of the expectation step in the Hidden Markov Model kernel after

applying concurrent kernel execution, where we illustrate seven cases for different number of hidden

states and vary the number of concurrent kernels. The analysis uses an NVIDIA GTX TITAN GPU.

Launching more kernels does not always translate to additional concurrency during exe-

cution. The amount of concurrency for kernel execution is determined by the availability of device

resources. These resources often include registers, shared memory and the maximum number of
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Figure 1.4: Speedup of Rodinia benchmarks using 2 concurrent kernels, versus a non-concurrent

implementation, on a NVIDIA GTX 950 GPU. Four different block sizes are considered.

active threads supported on the streaming multiprocessors (SMs). For instance, assume we have a

kernel running that has already exhausted device resources. A queued kernel cannot be scheduled

until the active kernel releases some of its resources. The CKE performance for the HMM kernel is

shown in Figure 1.3. The limiting factor in this kernel is the availability of the shared memory.

In addition to the occupancy metric, the configuration of a kernel configuration can have a

major impact on concurrent kernel execution. Figure 1.4 shows the speedup achieved by using CKE

for 6 applications from the Rodinia benchmark suite [15], as run on an NVIDIA GTX 950. Speedup

is measured versus a non-CKE baseline. Applications are configured using four different block sizes.

As observed in Figure 1.4, the applications exhibit variations in speedup due to changes in block

size when processing the same dataset. In some cases, such as CFD with a block size 64, CKE can

actually reduce performance. Figure 1.4 highlights the complex relationship between computational

characteristics and the grid properties (block size), as they both impact application performance

when using CKE. Hence, it is challenging to determine the best configuration of using concurrent

kernel execution to maximize performance. Typically, a developer will have to compile and run their
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program many times to obtain the best parameters. We attempt to tackle this problem by developing

a model-based concurrent kernel analysis in this thesis.

1.3.2 Application-level concurrency
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Figure 1.5: The slowdown profile (versus non-concurrent execution) observed for six different GPU

applications when run concurrently with a second application (78 total applications) on the same

NVIDIA GTX 1080 Ti GPU. The distribution (violin shape) is estimated using a gaussian kernel

density. Each violin plot shows the worst-case slowdown (top bar), the best-case slowdown (bottom

bar) and the average slowdown (middle bar).

With hardware support for concurrent kernel execution, kernels from both a single ap-

plication, as well as multiple applications, can run concurrently on the same GPU. Thus, if we

leverage multiple hardware work queues, multiple GPU applications can be dispatched to the GPU

concurrently to fully utilize the compute and memory bandwidth capacity. As cloud providers (e.g.,

Amazon EC2 [8] and Microsoft Azure [63]) offer GPU instances for accelerated computing, schedul-
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ing GPU workloads efficiently to maximize the system throughput and meet the quality-of-service

(QoS) demands of these environment becomes paramount.

Due to the complex interaction and different resource requirements across concurrent GPU

applications, supporting QoS requirements on a GPU-based cloud server environment presents new

challenges. The benefits of running multiple applications concurrently can vary significantly from

one workload to the next. In Figure 1.5, we show the slowdown for 6 selected GPU applications when

co-executed with 78 other GPU applications - here we consider only that at most two application run

concurrently, though more can be considered. The reported slowdown is the ratio of co-running run-

time to the dedicated runtime for the target application. We have observed that, when simultaneously

collocated with another application, the slowdown for the concurrent kernel benchmark from the

CUDA SDK (cuda concurrKerns) ranges from 0.5x to 1.6x, while the slowdown for binomialOptions

from the CUDA SDK (cuda binomOpts) ranges from 0.01x to 0.04x.

Both cuda concurrKerns and shoc reduction are more sensitive to interference than the

other 4 applications, whereas the cuda binomOpts is the most robust to interference. We can clearly

see that each GPU application experiences a different degree of slowdown when running concurrently

with the other GPU applications. Therefore, it is key to determine the potential for interference in

advance of the actual concurrent execution if we do not want to sacrifice performance.

An efficient GPU workload scheduler should be aware of the characteristics of each

workload that has been scheduled to run and select the best candidate for co-execution with the goal

of avoiding interference, achieving the best co-executed throughput. In previous work on the Mystic

framework[97], GPU workloads are scheduled based on their differences with one another, where

the least similar applications are dispatched for co-execution. The similarity distance is measured by

using the predicted performance metrics from a short profiling run of a GPU application. The metrics

profiled are selected based on expert knowledge. We are motivated to develop an autonomous metric

learning process that can capture the characteristics of a GPU application, and improve the quality of

scheduling decisions driven by the similarity approach.

1.4 Contributions of this Thesis

The goal of this thesis is to optimize the execution efficiency for GPU workloads at a

kernel granularity, as well as at an application granularity. We focus on providing a performance

tuning mechanism for concurrent kernel execution and develop an efficient GPU workload scheduler

to achieve improved quality-of-service in a cloud environment. The contributions of this thesis are

summarized below:
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• We have developed a kernel-matching algorithm to predict the best block size for GPU kernels.

• We have built an empirical model named Moka to predict the performance of concurrent kernel

execution on a GPU.

• We have validated Moka using real-world GPU applications and achieved a maximum of 12%

prediction error as compared to the actual runtime performance when using concurrent kernel

execution.

• We have developed an autonomic feature selection method to identify the prominent metrics

for scheduling GPU workloads based on resource usage patterns and improved QoS by 25%,

as compared to using previously proposed interference metrics [97].

• We have developed Magic, a machine-learning based interference-aware scheduler for GPU

workloads, to handle single-GPU and multi-GPU systems.

• We have demonstrated that Magic can improve the overall system throughput on a single-GPU

system by 16% and 10% as compared to a first-come-first-serve policy and a state-of-art

similarity-based policy, respectively. Compared to a least-loaded policy and a round-robin

policy on a multi-GPU system, our scheduler outperforms them by 21% and 22%, respectively.

1.5 Organization of Thesis

The rest of this thesis proposal is organized as follows. Chapter 2 presents background

information on general purpose computing on GPUs, concurrent kernel execution, and interference-

ware scheduling for GPU workloads. Chapter 3 presents prior work that addresses concurrency issues

at the kernel and application levels. Chapter 4 describes the proposed framework for model-based

concurrent analysis and evaluates the performance of real-world GPU workloads. Chapter 5 presents

an interference-aware workload scheduler for GPU clusters. Finally, we conclude by summarizing

the major contributions of this thesis and present future work in Chapter 6.
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Background

2.1 General Purpose Computing on GPU

GPUs have become the device of choice for accelerated computing due to their high

thread-level performance (floating-point operations per second) and attractive power efficiency

(performance per watt). Compared to multi-core CPUs, many-core GPUs have much higher memory

bandwidth and single-precision throughput. As shown in Table 2.1, GPUs offer 4x-10x more memory

bandwidth than CPUs for server computing. We compare the Xeon series from Intel and the Tesla

series from NVIDIA. For consumer-level devices, as shown in Table 2.2, the single-precision (FP32)

throughput achieved by the NVIDIA GPUs is, on average, 30x higher than a contemporary CPU.

Given their massive parallel computing capabilities, GPUs have been adopted across a wide range of

compute-intensive application areas, including machine learning, computer vision, image processing,

and physics simulation [79, 64, 113, 109, 111].

To take advantage of the massive computing power provided by the GPU, developers need

to understand the underlying architecture and consider the best approach to fully utilize the available

resources. In the following sections, we will review the NVIDIA GPU architecture, including GPU

programming features and discuss GPU best practices.

Table 2.1: Comparison of the memory bandwidth available on various CPUs and GPUs, targeting

server-class devices.
Year 2011 2012 2013 2014 2015 2016 2017

Intel CPU
Device Xeon X5690 Xeon E5-2690 Xeon E5-2697 V2 Xeon E5-2699 V3 Xeon E5-4699 V3 Xeon E5-2699 V4 Xeon Gold 6154
Code Name Westmere Sandy bridge Ivy bridge Haswell Haswell Broadwell Skylake
Bandwidth 32 GB/s 51 GB/s 60 GB/s 68 GB/s 68 GB/s 77 GB/s 119 GB/s

NVIDIA GPU
Device Tesla C2050 Tesla K20 Tesla K40 Tesla K80 Tesla M40 Tesla P100 Tesla V100
Code Name Fermi Kepler Kepler Kepler Maxwell Pascal Volta
Bandwidth 144 GB/s 208 GB/s 288 GB/s 2 x 240 GB/s 288 GB/s 732 GB/s 900 GB/s
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Table 2.2: Comparison of single-precision floating-point throughput on various CPUs and GPUs,

targeting consumer devices.
Year 2012 2013 2014 2015 2016 2017

Intel CPU
Device Intel Core i5 3570 Intel Core i7 4770K Intel Core i7 4790K Intel Core i7 6700K Intel Core i5-7200U Intel Core i7 8700K
Code Name Ivy Bridge Haswell Haswell Skylake Kaby Lake Coffee Lake
FP32 Throughput 105 GFLOPs 182 GFLOPs 234 GFLOPs 200 GFLOPs 128 GFLOPs 361 GFLOPs

NVIDIA GPU
Device GTX 680 GTX TITAN GTX 980 GTX TITAN X GTX 1080 TITAN V
Codename Kepler Kepler Maxwell Maxwell Pascal Volta
FP32 Throughput 3090 GFLOPs 4500 GFLOPs 4612 GFLOPs 6144 GFLOPs 8228 GFLOPs 12288 GLOPs

2.1.1 GPU Evolution

GPUs were originally designed to render 3-D graphics for displays and gaming. Prior to

2007, even though GPUs contained hundreds of parallel processing units, programmers could not

easily tap their computational resources without using graphics Application Programming Interfaces

(APIs) (e.g.,OpenGL [88] and DirectX [33]). With the introduction of programmable hardware

shaders, and the the development of GPU programming languages such as CUDA C [65] and

OpenCL [91], leveraging a GPU to accelerate execution becomes much easier. Since then, general

purpose computing on GPU has gained significant momentum. Today, GPUs are the accelerator of

choice, with more and more GPU-accelerated applications enjoying significant speedups.

To boost the performance of applications, GPU vendors have introduced new architec-

tures to meet both the growing computational and energy-efficiency demands. The evolution of

architectural design for NVIDIA GPUs is presented in Table 2.3.

Table 2.3: The architectural parameters for 5 generations of NVIDIA GPUs.

Architecture Fermi Kepler Maxwell Pascal Volta
Release Year 2009 2012 2014 2016 2017
CUDA Cores (per SM) 32 192 128 128 64
Register File Size (per SM) 128 KB 256 KB 256 KB 256 KB 256 KB
Warp Schedulers (per SM) 2 4 4 4 4
Dispatch Units (per SM) 2 8 8 8 4
Load / Store Units (per SM) 16 32 32 32 32
Special Function Units (per SM) 4 32 32 32 4

For the Fermi architecture, each streaming multiprocessor (SM) has 32 CUDA cores and 2

warp schedulers, where each warp scheduler has a dispatch unit. The dual-warp scheduler allows

scheduling and dispatching instructions from two independent warps (a group of 32 threads executing

in SIMD lockstep) at the same time. Shared memory and L1 cache are unified and configurable,

with a total size of 64 KB [27]. For the Kepler architecture, each SM has 192 CUDA cores and 4
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warp schedulers. To increase the utilization of compute resources, each warp scheduler is capable of

scheduling two instructions per warp every clock cycle. Kepler has twice the number of Load/Store

(LD/ST) Units as compared to Fermi, and 8x more Special Function Units (SFUs) [67]. Based on

Kepler, the Maxwell architecture has a new design scheme to improve power efficiency. Rather than

having 192 CUDA cores per SM (a non-power-of-two organization) as in the Kepler architecture,

each streaming multiprocessor of Maxwell is organized with 128 CUDA cores divided into four

distinctive 32-CUDA core blocks, where each block has its own dedicated warp scheduler and

dispatch unit. In the Maxwell SM design, aligning the physical CUDA core block with the warp size

saves power by managing computation in a simplified datapath. Different from the Fermi and Kepler

architecture, a Maxwell SM features 96KB of dedicated shared memory, instead of 64KB combined

shared memory/L1 cache. On Maxwell GPUs, the L1 cache has been integrated with the texture

cache. As a result, each CUDA core of the Maxwell can offer 1.4x more performance over a Kepler

CUDA core, while delivering 2x the performance per watt [69]. Starting with Pascal, the Fin Field

Effect Transistor (FinFET) technology was adopted to incorporate more transistors on chip, providing

higher performance and power efficiency than previous generations. The microarchitecture layout

of a Pascal SM continues to follow the design of Maxwell SM [73]. For Volta-based GPUs, each

SM integrates 64 CUDA cores, with 8 additional tensor cores to accelerate deep learning workloads.

New tensor cores can achieve up to 12x and 6x higher peak TFLOPS for the training and interference

steps, as compared to GP-100 device. The Volta CUDA core separate the data path for integer and

floating-point operations, delivering much improved execution efficiency for workloads with a mix of

computations. The Volta SM also features a combined capacity of 128 KB for the L1 data cache and

share memory, which significantly improves memory access performance. It is worth mentioning that

a new L0 instruction cache is used in each CUDA core partition inside the SM, in order to increase

the efficiency of the instruction buffer [75].

2.1.2 GPU Memory Hierarchy

A GPU is a massively parallel computing device with a complex memory hierarchy. Data

needs to traverse through the memory system before being processed by thousands of parallel

computing cores. Understanding the structure of the GPU memory system and its corresponding

properties (e.g., whether it is readable or writable and what is the latency for read/write) is key, in

order to map the input data to the right level of the hierarchy. If we can achieve the best mapping,

memory bandwidth utilization can be significantly improved and the arithmetic pipelines can be kept

busy with computation, boosting application throughput. The GPU memory model is illustrated in

Figure 2.1.
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Figure 2.1: GPU memory model.

In GPU memory systems, registers provide the fastest access in the memory hierarchy.

These on-chip registers are private to each GPU thread. Since the total number of registers per

streaming multiprocessor is limited, given high register usage per thread, the total threads that can

be launched can be significantly reduced. This limit can impact the achievable parallelism on the

device, when there are not enough threads available to hide the data transfer latency. The register

usage is determined by both the programmer and the compiler for NVIDIA GPUs. Adding an

additional compiler option, -Xptxas -v, to the NVIDIA GPU compiler nvcc can report the register

usage information for each GPU kernel.

When too many registers are consumed such that variables that can not fit in the available

registers, data will be spilled to local memory, significantly impacting memory performance. Local

memory is an abstraction of global memory, not a physical type of memory. Since local memory is

off-chip, it is very expensive to access compared to the registers.

Besides the register file, shared memory is another on-chip memory which can be used for

data caching and communication. Data stored in shared memory is visible to all threads within a

thread block, in contrast to registers that are private to each thread. The data communication within

a thread block can be realized through shared memory. To facilitate simultaneous data access for

15



CHAPTER 2. BACKGROUND

parallel execution threads, shared memory is divided into 32 banks. Whenever multiple addresses

are mapped to the same bank, memory contention can occur, resulting in contention in a memory

bank that serializes memory requests. Bank conflicts can decrease the effective bandwidth by a

factor equivalent to the number of colliding memory requests. An exception to this case is when

all threads in a warp (a group of 32 threads) access the same shared memory address, which can

be broadcast without a performance penalty. Threads in a thread block can use shared memory

as a programmer-managed cache to reduce global memory traffic. The use of shared memory is

commonly used to optimize high-performance cooperative parallel algorithms, such as parallel

scan [39] and histogram [30].

Constant memory is an off-chip memory for storing data that does not change during the

course of kernel execution. There is 64KB of constant memory on NVIDIA GPUs. Constant memory

is cached and can broadcast a value when all the warp threads access the same address. Thanks to

its low latency and high bandwidth, constant memory can reduce the required memory bandwidth

significantly.

Similar to constant memory, texture memory is also read-only and off-chip. Texture

memory was originally designed for graphics rendering pipelines. It is extremely useful when the

memory access pattern shows lots of spatial locality. Though texture memory can be addressed for a

1-D, 2-D, or 3-D array, it works best when data is stored in 2-D in terms of data locality. On NVIDIA

GPUs, texture memory is cached in a per-SM fashion, where there are multiple texure units for each

streaming multiprocessor. Using the texture cache can reduce the memory traffic, alleviate coalescing

constraints and improve the performance, as compared to working out of global memory.

Global memory is the largest memory on the device, with the highest latency for data

reads and writes. Global memory is often an order of magnitude slower than shared memory and the

register file. Because of this, accesses to global memory should be minimized, especially for I/O

bound kernels.

Coalescing memory accesses is an optimization technique for efficient data access that can

combine multiple memory requests into a single transaction. Leveraging this technique, the total

number of global memory read/store operations can be reduced, and DRAM bandwidth can be beter

managed.

Table 2.4 shows the properties of each aforementioned memory space. In the GPU memory

hierarchy, registers are the fastest. For kernels using a lot of registers, shared memory can be utilized

to stage the data in order to reduce register pressure. Register spilling should always be avoided

due to the slow performance of the local memory. Both constant memory and texture memory

are read-only. While constant memory is useful when all threads access the same address, texture
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Table 2.4: GPU memory properties.
Memory Scope LifeTime Read/Write Speed
Register Thread Kernel Both Fastest
Local Memory Thread Kernel Both Slow
Shared Memory Block Kernel Both Fast
Constant Memory Grid Application Read-only Fast
Texture Memory Grid Application Read-only Fast
Global Memory Grid Application Both Slow

memory is great for exploring the spatial locality of the input data. Coalescing memory accesses

is critical to improve global memory performance since it can significantly improve the effective

bandwidth [87, 42].

2.2 Concurrent Kernel Execution

With the rapid growth of computing resources on the GPU, a single GPU kernel often

cannot leverage all the available resources. GPU vendors support concurrent kernel execution

(CKE) to improve resource utilization on modern GPUs. In this section, we present the architectural

support enabling CKE, illustrate the benefits of using CKE, and show the factors impacting the CKE

performance.

2.2.1 Architecture Support for CKE

Concurrent kernel execution (CKE) was first supported on NVIDIA Fermi GPUs [27]. It

allows additional kernels to run on the device when a single kernel does not fully utilize the available

resources. Up to 16 concurrent kernels are supported on the Fermi architecture. CKE exposes

opportunities for small kernels to run concurrently in order to maximize resource utilization and

improve the overall throughput of a GPU application. For a large kernel, CKE can also improve the

throughput by mapping a single large kernel into smaller kernels, overlapping data transfers with

kernel execution. As shown in Figure 2.2, data transfers and kernel computation are divided into two

parts, where each part is implemented as a stream for concurrent kernel execution. The overlapped

execution between kernel execution and data transfer can been observed. Eventually, leveraging 2

CKEs, the previous elapsed time is reduced by 30%, achieving a 1.3x performance improvement.

At the programming level, concurrent kernels are inserted into the software work queues

that are associated with CUDA streams. At a hardware level, Fermi-based GPUs have only a single

work queue for kernel execution. Unnecessary serialization (i.e., false serialization) can be triggered

when multiple kernels from different streams are dispatched for concurrent execution. Figure 2.3
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Figure 2.2: Overlap kernel computation with data transfer using CUDA streams for two concurrent

kernel execution. The scheme halves the data transfer and kernel computation. H2D stands for

host-to-device data transfer, D2H stands for device-to-host data transfer.

illustrates this class of serialization across kernels from two independent CUDA streams for GPUs

with one hardware work queue. Given enough resources, kernels from stream 0 and stream 1 should

be able to run concurrently. However, when stream 0 is scheduled before stream 1, kernel X (KernX)

from stream 1 is forced to execute after kernel C (KernC) from stream 0. Provided with a single work

queue, the performance benefits of using concurrent kernel execution can be limited.

Figure 2.3: False serialization among kernels from two streams due to a single hardware work queue.

To address the false serialization issue, NVIDIA has engineered 32 parallel hardware work

queues to parallelize concurrent kernel execution, also known as Hyper-Q [68]. With Hyper-Q,

independent CUDA streams can be inserted into the parallel hardware queues without serialization.

Figure 2.4 shows that as more hardware queues are supported, the dispatched CUDA streams can run

simultaneously. By having 32 work queues available for concurrent kernel execution, higher device

utilization can be achieved in many scenarios by dispatching streams on what would otherwise be an

idle streaming multiprocessor.
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Figure 2.4: Hyper-Q supports for parallelizing the execution of CUDA streams.

2.2.2 Concurrency using CKE

Concurrent kernel execution can allow multiple kernels to share the GPU to maximize

utilization and throughput. In addition to the concurrency of kernel execution, CKE can achieve

concurrency between kernel execution and data transfer, and also enable concurrency between GPU

and CPU computations. Figure 2.5 illustrates the scheme to breakdown serial execution into multiple

independent execution streams, leveraging CKE to attain N-way concurrency, where N is increased

from 2 to 4. In Figure 2.5 (b), 2-way concurrency is attained by overlapping D2H(1) and Kern(2),

where Kern stands for the kernel, H2D stands for a host-to-device data transfer, and D2H stands for a

device-to-host data transfer. Since concurrent bi-directional data transfers are supported on modern

GPUs, a D2H transfer from stream 1 and a H2D transfer from stream 3 will not interfere with each

other if scheduled concurrently. By having D2H(1), Kern(2), H2D(3) execute concurrently, 3-way

concurrency is achieved, as shown in Figure 2.5 (c). Furthermore, the CPU can work collaboratively

with the GPU, taking care of a portion of the computation. Figure 2.5 (d) highlights the achieved

4-way concurrency among D2H(1), Kern(2), H2D(3) and Kern(4) on a CPU. Overall, leveraging all of

the inherent concurrency present in an application using CKE, a large portion of the communication

overhead can be hidden and the application throughput can be increased significantly.

2.2.3 Performance Factors on CKE

Concurrent kernel execution can improve the overall system throughput by exploring four

types of concurrency, including:

1. the concurrency between kernel executions,
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Figure 2.5: From serial execution to 4-way concurrency using concurrent kernel execution. H2D

stands for host-to-device data transfer, D2H stands for device-to-host data transfer, Kern stands for

Kernel and the number in the parenthesis stands for the stream id.

2. the concurrency between data transfers,

3. the concurrency between data transfer and kernel execution, and

4. the concurrency between GPU computation and CPU computation.

There are several performance factors that could constrain the achievable concurrency and

limit the overall throughput using CKE, which include:

1. resource limits on the device,

2. pageable memory or pinned memory for host data allocation.

3. the number of copy engines on the GPU, and

4. the proper coding of CUDA streams when programming CKE.

GPUs provide high memory bandwidth and massively parallel computing cores for high-

performance computing. But the limited number of registers and shared memory can constrain the

maximum number of active running threads for a GPU kernel. For instance, if a kernel requires

100 registers per thread and there are 64K registers per streaming multiprocessor, only 640 threads

per SM are allowed to run concurrently. Given 2 SMs on the GPU, and the kernel can launch 1280

threads, there is no extra resources to host another kernel for concurrent execution, unless some

threads finish their computation early and release the occupied resources. Therefore, the relationship
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between the kernel configuration and the available device resources plays an important role in tuning

multi-kernel concurrent execution.

Figure 2.6: Compare pageable data transfer with pinned data transfer on GPUs.

To prepare the data for GPU kernel computation, there are two types of memory: i)

pageable memory and ii) pinned memory. Data creation using malloc allocates data in the pageable

memory space. An alternative is using cudaMallocHost or cudaHostAlloc, is to use pinned

memory. The difference between cudaMallocHost and cudaHostAlloc is that cudaHostAlloc

API supports fine-grained control over the pinned memory by flagging different properties of the

allocated space (e.g., the cudaHostAllocMapped option allows mapping the allocation into the CUDA

address space) [77].

A comparison between pageable and pinned memory is shown in Figure 2.6. If we do not

use pinned memory in CUDA, the CPU allocates data in pageable memory. When a data transfer is

requested, the CUDA driver allocates a temporary pinned memory (or page-locked) space, copies

data from pageable memory to pinned space, and then transfers the data to the GPU device memory.

Due to the extra staging step, the data transfer using pageable memory takes more time than using

pinned memory.

Figure 2.7 shows the achieved bandwidth when using pageable and pinned memory for data

transfer on two different GPU platforms (NVIDIA GTX 950 GPU and Tesla K40c GPU). Though

increasing the transfer size improves the achievable bandwidth when using pageable memory, the

pinned memory consistently provides higher bandwidth than the pageable memory. The staging

overhead is more significant for small data transfers, compared to using larger data transfers. Pinned

memory provides a sustainable bandwidth, regardless of the transfer size. It improves the bandwidth
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by 2%-45%, with an average of 14% improvement, over pageable memory.

(a) Host-to-Device transfer on a GTX 950. (b) Device-to-Host transfer on a GTX 950.

(c) Host-to-Device transfer on a K40c. (d) Device-to-Host transfer on a K40c.

Figure 2.7: Comparion of the achievable PCIe bandwidth between pageable and pinned memory for

data transfers on two GPUs. The NVIDIA GTX 950 is a commodity gaming GPU, whereas the Tesla

K40c is a computing GPU for servers. The bi-directional, host-to-device and device-to-host transfers

are evaluated.

We can see that transferring small data using pinned memory yields higher bandwidth

than using pageable memory. However, oversubscribing the pinned memory can reduce the physical

memory available for the operating system. To fine the best performance for an application, the

programmer should verify the available pinned memory on the Linux system by running the following

command:

$ u l i m i t −a | g rep ”max l o c k e d memory”

To increase the pinned memory, users can edit the configuration file /etc/security/limits.conf (on a

Ubuntu system), and add the following two lines.

∗ ha rd memlock u n l i m i t e d

∗ s o f t memlock u n l i m i t e d
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In addition, coding styles and the number of copy engines can also impact the execution

behavior when using concurrent kernel execution. In Figure 2.8 we show two coding styles for

CKE, interleaved and batch, based on the operation order across multiple streams. The interleaved

style iterates through all operations, one stream at a time, whereas the batch style dispatches all the

host-to-device (H2D) transfers first, then all the kernel computations, and finally all the device-to-host

(D2H) transfers.

Figure 2.8: An example of concurrent kernel execution using two CUDA streams. Based on the

coding style, the execution patterns are shown for NVIDIA GPUs with one or two copy engines.

H2D stands for host-to-device transfer, K stands for kernel execution, and D2H stands for device-

to-host transfer.

Figure 2.8 illustrates how the copy engine and coding styles affect the execution pattern

when using CKE. In this experiment, the profiled kernel is a simple vector addition. For GPUs

with a single copy engine, the PCIe bus will be utilized, one CUDA call at a time. If we interleave

operations, as shown in Figure 2.8 (a), the H2D transfer in stream-1 starts after the D2H transfer

in stream-0 ends, since stream-0 is dispatched before stream-1. If we consider a batch style of

programming, the H2D transfer of stream-1 starts immediately after the H2D transfer of stream-0

ends. Overlapping data transfer and kernel execution is observed in Figure 2.8 (b).

For GPUs with dual copy engines, if we use interleaved dispatch, as shown in Figure 2.8

(c), the D2H transfer in stream-0 and the H2D transfer in stream-1 are overlapped. Note that the

H2D in stream-1 did not start immediately after the D2H in stream-0, which is due to the API launch

overhead. Batching the same operations together, two-way transfers can run concurrently on GPUs

with two copy engines. The CUDA API launch overhead can be hidden by adopting the batch

programming style, as can be seen in Figure 2.8 (d). In general, the batch programming style can

achieve better performance than the interleaved style.
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Related Work

In this chapter, we first present an overview on GPU performance modeling. Next, we

review related work on optimizing concurrent kernel execution. Finally, we present related work on

GPU workload scheduling.

3.1 GPU Performance Modeling

To help software engineers understand the performance characteristics and bottlenecks of

GPU-accelerated applications, Hong et al. designed an analytical model that can estimate the execu-

tion time of the parallel programs running on GPUs [41]. They defined the memory warp parallelism

(MWP) by estimating the number of memory requests that can be executed concurrently, based on

the running threads and their memory bandwidth consumption. They introduced computation warp

parallelism (CWP) as a metric to measure how much computation can be done by other warps while

one warp is serving a memory access request. Their analytical model considers a set of metrics,

including the number of warps per SM, total execution cycles, number of dynamic instructions,

cycles per instruction, coalesced/non-coalesced memory accesses, and synchronization effects. They

explore memory-level parallelism and try to explain how a GPU can hide memory latency using

computation warps. They perform their evaluation on an early NVIDIA Tesla architecture, and

reported a 5.4% mean error for their model when running microbenchmarks and 13.3% mean error

for full GPU applications.

Kothapalli et al. proposed a GPU performance prediction model which integrated three per-

formance models, 1) bulk-synchronous parallel (BSP) model [98], 2) parallel random access machine

(PRAM) [28], and 3) queue-read queue-write asynchronous PRAM (QRQW) model [29]. Their

proposed model measured computation cycles (N comp) and memory access cycles (N memory),
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and applied the max(sum) operation on the thread cycles to predict the GPU kernel runtime [54]. No

intra-block synchronization nor cache performance were taken into consideration.

Kerr et al. characterized GPU applications at a PTX (a low-level parallel thread execution

virtual machine) level and applied linear regression to predict the application runtime [53]. The

metrics available at the PTX level are limited. For instance, kernel size and the underlying GPU

configurations cannot be obtained. Their prediction accuracy varied significantly depending on the

workload.

Baghsorkhi et al. proposed an analytical model to predict the runtime of a GPU kernel [10].

The model analyzes how a GPU kernel makes use of the GPU microarchitectural features and predicts

the runtime based on the workflow graph of the kernel.

Luo and Suda used Ocelot [52] to analyze PTX GPU kernels and predict the overall

execution time by summing up the estimated cost of memory instructions and the cost of different

compute models [58]. Their proposed memory and compute models are based on Hong’s work [41].

Zhang and Owens developed a throughput model based on characterizaing the: 1) in-

struction pipeline 2) shared memory access, and 3) global memory access. Based on the dynamic

statistics collected from the Barra simulator [18], their model can predict application performance

within 5-15% of the actual runtime on dense matrix multiplication, tridiagonal solver and sparse

matrix-vector multiplication kernels.

Lai and Seznec proposed a timing estimation tool for GPUs named (TEG) to estimate the

kernel runtime [56]. TEG uses kernel assembly, and an instruction trace collected using the Barra

simulator, as input. Based on the instruction execution order colleced from the issue engine model

and the functional units model, timing traces are collected. Their prediction accuracy for matrix

multiplication on a GTX 280 (NVIDIA Tesla architecture) varies from -11% to 4%, depending on the

number of warps dispatched on the streaming multiprocessor. Their work on TEG did not consider

more detailed performance factors, such as shared memory bank conflicts and cache performance.

Instead of focusing on predicting kernel performance, Boyer et al. proposed a data transfer

model to improve the overall GPU performance prediction [13]. The data transfer model is a simple

linear regression model where the intercept (i.e., the transfer overhead) and the slope (the ratio of the

elapsed time over the transfer size) are learned through benchmarking. Their model is able to predict

data transfer overhead with an error of 8%. The inclusion of their model reduces the prediction error

from 255% to 9%.

Werkhoven et al. developed a performance model to predict the benefits of overlapping

data transfers and kernel computation for GPU applications [99]. Their data transfer model uses the

LogGP model [7] which models large message transfer. which models large message transfer. The
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proposed model can estimate application performance with an error ranging from 3.8% to 10.7% for

the three different implementations.

Wu et al. proposed a GPU performance model using machine learning techniques [105]. To

build the model, a set of training kernels are first executed on the based GPU configuration, where the

performance counters for each kernel are collected. K-means is applied to form representative clusters

based on the performance counter values obtained using training kernels. Each cluster captures a

distinctive performance-scaling behavior. Then a three-layer fully-connected neural network model

is trained to identify the best cluster, based on the performance counters of a GPU kernel. Their

model can predict a kernel’s performance across a range of different GPU configurations, with a

prediction accuracy less than 15% as compared to the actual execution times.

Previous work has studied kernel behavior using simulators (e.g., Ocelot [52] and

Barra [18]) or profiling tools (e.g., cuobjdump [76] and nvprof [71]). Based on the collected

traces, three types models have been proposed to predict GPU performance: 1) analytical 2) empiri-

cal, and 3) machine learning based. Data transfer models have also been proposed to improve the

prediction accuracy.

3.2 CKE Development and Exploration

As general purpose computing on GPUs becomes popular, applications with diverse source

requirements have been ported to GPUs for acceleration. Since modern GPUs can accommodate

more computing resources (see Table 1.2) with each new generation, GPU resources are frequently

underutilized by a single kernel. To solve this problem, concurrent kernel execution (CKE) has been

proposed to allow multiple kernels running concurrently on a GPU [27].

Guevara et al. pioneered the concept of GPU concurrent execution by proposing the

concept of kernel merging on the NVIDIA Tesla architecture [36]. The Tesla family of GPUs does

not support concurrent kernel execution [66]. They showed that by combining two kernels into a

single kernel whenever GPU resources are underutilized, they could improve application throughput

by 12-20% improvement versus serial execution.

Wang et al. proposed a kernel fusion approach to improve the power efficiency of GPU

applications [100]. They identified three different fusion strategies: 1) inner-thread fusion, 2) inner

thread-block fusion, and 3) inter thread-block fusion. Using dynamic programming to select the

best fusion strategy, they demonstrated significant improvements in throughput and power efficiency.

However, merging multiple kernels into a single kernel can leave some resources idle, since GPU

resources can be reclaimed until all the merged kernels finish their computation.
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The Fermi architecture was the first generation of NVIDIA GPUs to support concurrent

kernel execution [27]. The main drawback of NVIDIA’s Fermi implementation was that we can

only run concurrent kernels from the same thread context. Multi-threaded programs have to be

run sequentially, introducing context switching overhead. Wang et al. proposed manual context

funneling, allowing kernels from different threads to run concurrently, achieving better performance

than the automatic context funneling in CUDA v4.0 [101].

Adriaens et al. proposed spatial multitasking for concurrent kernel execution, where each

kernel uses a subset of the GPU resources [6]. They tested different partitioning heuristics using

GPGPU-Sim [11]. They suggested using a Smart Even policy, which can achieve an average of

1.16x, 1.24x and 1.32x speedup over cooperative multitasking (i.e, sequential execution) for two,

three, four concurrently running applications.

Wende et al. observed that CKE performance breaks down whenever multiple host threads

dispatch kernels in order, without synchronizing their actions. To avoid this issue, they adopted a

producer-consumer approach to mange GPU kernels by reordering them before the actual invoca-

tions [104]. Their reordering mechanism dispatches one kernel per queue per round-robin cycle.

After applying the kernel reordering scheme on a thermodynamics simulation, they observed a

1.4x-2.6x speedup for a 1-GPU implementation and 1.3x-2.x speedup for a 2-GPU implementation,

when compared to no kernel reordering.

Naively scheduling kernel pairs, without the knowledge of the kernel characteristics,

can have a negative impact on concurrent kernel execution. Gregg et al. developed KernelMerge

scheduler that can merge multiple OpenCL kernels into a single kernel call to achieve better CKE

performance [34]. Two different scheduling algorithms are applied, round-robin work-stealing

and fixed partitioning. Using KernelMerge, 39% of the merged kernels showed a speedup, which

translated to an 18% maximum speedup. Their KernelMerge did not consider the characteristics of a

kernel that could potentially better guide us of whether to exploit CKE for two kernels.

Wu et al. applied kernel fusion and kernel fission to optimize data warehousing applica-

tions [106]. Kernel fusion provides opportunities to reduce the GPU memory footprint and improve

temporal locality, whereas kernel fission can overlap kernel computation and data transfer. By

combining kernel fusion and fission, Wu et al. reported a 41.4% improvement over serial execution,

31.3% better than kernel fusion only, and 10.1% better than kernel fission only.

Pai et al. identified the issue of resource underutilization for GPU kernels and proposed an

elastic kernel for fine-grained control over resource usage [80]. To use an elastic kernel, the native

CUDA kernel needs to be transformed in such a way that the physical grid is mapped to a virtual

grid which is similar to thread mapping. By incorporating elastic kernel-aware concurrency policies,
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the proposed technique increased system throughput (STP) and the average normalized turnaround

time (ANTT) by 1.21x and 3.73x, respectively.

Kernelet was developed by Zhong and He to augment the runtime support for concurrent

kernel execution on GPUs [116]. It implements kernel slicing (i.e., kernel fission) at the granularity

of thread blocks, where each kernel slice has tunable occupancy. By applying a greedy scheduling

algorithm, they could improve performance by 31% and 23% on NVIDIA Tesla C2050 and GTX

680 GPUs, respectively.

Jog et al. proposed a memory scheduling policy named first-ready round-robin FCFS to

improve the fairness and performance for concurrently executed GPU applications [45]. Based on

the evaluation results using GPGPU-sim, their application-aware memory scheduler can preserve

DRAM page hit rates and make sure the collocated memory-intensive applications do not starve

other applications.

Liang et al. used a thread-block interleaving method to explore the spatial-temporal

multitasking capability for concurrent kernel execution [57]. Their proposed spatial multitasking

scheme searches the optimal SM allocation for concurrent kernels, whereas the temporal multitasking

scheme finds the optimal scheduling order for a group of kernel sets. They have demonstrated

performance improvements of 46% and 37% over sequential execution and default CKE execution,

respectively. Their scheme allocated SMs for different kernels, without considering how best to

interleave thread blocks from different kernels on the same SM to improve resource utilization.

Jiao et al. applied kernel slicing and leveraged concurrent kernel execution and DVFS

(Dynamic Voltage and Frequency Scaling) to improve energy efficiency for GPUs [43]. Since running

more than two kernels concurrently did not yield enough benefit, they experimented with two-kernel

combinations in their work. A two-layer neural network model is trained to predict the optimal

performance per watt by varying the frequency settings, given a kernel pair and a specified block

ratio. By dynamically adjusting the block ratio and selecting different combinations of the clock and

memory frequency for concurrent kernels, they obtained performance per watt improvements of up

to 34.5% when compared to sequential execution.

Maestro was proposed by Park et al. to perform dynamic resource management for efficient

utilization of multitasking GPUs [81]. By integrating three components: 1) dynamic resource man-

agement framework, 2) 2-way resource allocation, and 3) kernel-aware warp scheduling mechanisms,

they proposed a framework that improved throughput by 20.2% over a spatial multitasking scheme,

and 13.9% over using a simultaneous multikernel (SMK) approach [102].

Gong et al. developed Twinkernels as a compiler solution to optimize the performance

of concurrent kernel execution [31]. Two kernels are analyzed at the binary level and the kernel
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instructions are interleaved to increase the utilization of device resources. Gong et al. achieved a

25% performance improvement as compared to the default SIMT model.

Wen et al. proposed MaxPair for OpenCL to optimize the throughput of concurrent kernel

execution [103]. They model the concurrent execution problem as a graph, where each kernel is

represented as a vertex and the edge weight captures the speedup ratio for co-running the two adjacent

vertices. They used a weighted max matching algorithm to find the best scheduling kernel pairs.

Compared to the state-of-the-art schemes, MaxPair can improve performance by 8% and 4% on an

AMD and an NVIDIA platform, respectively.

To reduce the corunning interference and minimize data cache trashing and memory

pipeline stalls for CKE, Dai et al. suggested: 1) balancing memory accesses for concurrent kernels,

and 2) limiting the in-flight memory instructions [20]. Their proposed schemes outperformed two

state-of-art intra-SM sharing schemes, Warped-slicer [107] and SMK [102], by 24.6% and 27.2%,

respectively.

3.3 GPU Workload Scheduling

For warehouse-scale computing, delivering the advertised quality-of-service (QoS) level is

critical, especially for commercial clouds. Workloads scheduled on the same node will compete for

shared resources, frequently leading to performance degradation. By characterizing shared resource

utilization of each workload, a cloud system can minimize the degree of interference. In this section,

we present previously published work on GPU workloads scheduling [40].

3.3.1 Standalone Environment

Bautin et al. proposed GERM, a scheduler for GPU workloads, that utilizes a Deficit

Round Robin scheduling policy [12]. By sampling the time of day register, the scheduler estimates

the computation time of the current command group from previously completed command groups.

Based on the timing information, GERM can adjust resource allocation for each process in the

following cycles.

TimeGraph, proposed by Kato et al. , is a real-time GPU scheduler implemented at the

device driver level to manage GPU resources in a responsive manner [50]. BifGraph supports two

scheduling policies, Predictable Response Time (PRT) and High-Throughput (HT), to achieve a

balance between response time and throughput. Compared to a tick-driven scheduler, TimeGraph

improved system throughput by 30x, with only a 4-10% performance overhead. Later, Kato et

al. developed a responsive GPGPU execution model (RGEM) to protect high-priority tasks from
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competing workloads in multitasking environments [49]. Two scheduling policies are presented in

their framework, 1) Memory-Copy Transaction scheduling (based on the default pageable memory)

and 2) Kernel Launch scheduling. The Memory-Copy Transaction policy truncates a large memory

copy operation into smaller pieces, providing preemption points at boundaries between the separate

pieces. The Kernel Launch policy adopts the Predictable Response Time (PRT) policy in the user

space. Their experiments showed that the response times of high-priority GPU workloads can

be guaranteed under the proposed execution model. To address the resource-sharing problems in

GPU-accelerated windowing systems, Kato et al. proposed 1) Priority Inheritance with a X-server

(PIX) protocol, and 2) Reserve Inheritance with a X-server (RIX) protocol [48]. By evaluating

the protocols on graphics rendering tasks, they observed that multiple GPU-accelerated graphics

applications running concurrently can be correctly prioritized and isolated. Then, they developed

Gdev at an operating system level to enhance GPU resource manangement [51]. They adopted the

same concept of Memory-Copy Transaction scheduling to split transactions, such that the staging

overhead of moving data from pageable memory to pinned memory can be hidden. To improve the

bandwidth utilization for virtual GPUs, they proposed a bandwidth-aware non-preemptive device

(BAND) scheduling algorithm. BAND does not reduce the priority when the resource budget is

exhausted, and it adds ”time-buffering” for bursty workloads to achieve fairness.

Menychtas et al. proposed disengaged scheduling to achieve both fairness and good

utilization for GPU resource management at the OS level [62]. By combining a token-based

timeslice scheduler with their scheme, they can better control fairness for a multitasking environment.

The disengaged scheduler limits idle time and incurs less than a 4% overhead on average.

3.3.2 Virtualization Environment

Virtualization technology allows us to abstract away the underlying hardware, improving

system utilization and reducing expenditures on hardware and energy. As GPUs emerge as the

first choice of accelerator in cloud environments, virtualized GPUs become important instances

for high-performance computing. Due to the non-preemptive nature of GPUs, efficiently sharing

resources while achieving a high degree of quality-of-service has emerged as a challenging task.

GViM, proposed by Gupta et al. , uses Round Robin and XenoCredict(XC)-based schedul-

ing schemes to dispatch GPU requests at the driver level [37]. In their framework, each GPU request

is assigned with credits which represent the given execution time. The higher the credits, the more

time is allocated to the execution of guest requests on the GPU. XC processes the GPU call buffer

for a period based on the credit obtained. This enables weighted fair-sharing between guest VMs.

Later, Gupta et al. proposed Pegasus to meet various requirements for GPU workloads
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across virtual machines [38]. Pegasus includes five scheduling schemes, including: 1) first-come-

first-served (FCFS), 2) proportional to the fair-share (AccCredit), 3) strict co-scheduling (CoSched),

4) augmented credit-based scheme (AugC) and 5) SLA feedback-based (SLAF) scheduling. With

moderate extra overhead, they report a 18-140% performance improvement as compared to the

default GPU-driver scheduling.

As GPU applications in VMs compete for shared resources, not every application has

enough parallelism to fully utilize the available GPU resources. To address the issue, Ravi et

al. proposed consolidating multiple GPU kernels from different VMs for space and time sharing [85].

Space sharing allows kernels to be assigned to different streaming multiprocessors (SMs), whereas

time sharing supports sharing resources within the same SM. Their framework computes the affinity

score between every two kernels to estimate the performance improvement. The affinity score is

assigned depending on the total number of kernel threads, with the idea that lower the thread volume,

the higher the affinity. The framework schedules n kernels for concurrent execution, depending on

the set of affinity scores.

GPUvm, proposed by Suzuki et al. , adopted the BAND scheduler from Gdev and incorpo-

rated CPU time into the credit adjustment to improve decision making based on a credit scheduling

policy [93]. Tian et al. proposed gVirt to control GPU commands in the guest ring buffer during

the VM’s time slice to minimize the wait period [84]. It ensures that the total number of submitted

commands is within the time slice.

To optimize gaming applications in the cloud, Qi et al. proposed the VGRIS scheduler to

address a range of performance requirements [84]. Three scheduling policies are included in the

scheduler: 1) SLA-aware, 2) Proportional Share and 3) Hybrid. SLA-aware scheduling provides the

minimum amount of GPU resources to each VM, while Proportional-Share scheduling distributes

resources based on the priority. Hybrid scheduling applies SLA-aware first, and then switches to

Proportional-Share scheduling if additional resources are available. Zhang advanced VGRIS by

proposing a vGASA scheduler for gaming applications run in the cloud [114]. It deploys a dynamic

feedback control loop using a proportional-integral controller, to calculate the SLA requirements

during runtime to improve SLA-aware scheduling.

gScale, proposed by Xue et al. , advances the gVirt scheduler by introducing a private

shadow graphics translation table (GTT) [108]. GTTs requires page table copying on every context

switch, except for idle vGPUs. The scheduler implements slot sharing, which divides graphics

memory into several slots and dedicates a single slot to each vGPU. With low runtime overhead,

gScale can achieve a 4x improvement in scalability compared to gVirt.
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3.3.3 Interference Analysis

As more and more applications are streamed onto the GPU for concurrent execution,

delivering guaranteed performance is a non-trial problem. A number of interference factors can lead

to performance degradation. Jog et al. showed that competing for DRAM bandwidth can severely

impact concurrent kernel execution performance [45]. They proposed a first-ready round-robin policy,

versus a strict first-come-first-serve policy, to improve the fairness between collocated applications.

Phull et al. observed that a major source of GPU interference is due the kernel runtime and the

kernel launch frequency, where GPUs are time-shared among jobs [82]. Later, Chen et al. pointed

out four major factors that could lead to long tail latency: 1) the duration and occupancy of GPU

kernels, 2) the kernel scheduling order, 3) the number of kernels, and 4) contention on the PCIe

bandwidth [17]. Based on these observations, they further developed a performance prediction model

for interference-aware scheduling [16]. Mystic, proposed by Y. Ukidave et al. , utilizes a short profile

of a GPU application and applies Collaborative Filtering to predict the full profile information [97].

After computing the similarity distance based on the predictive features, the least similar application

will be dispatched to the target GPU node to minimize the concurrent running interference.

Previous work has suggested interference factors covering the temporal and spatial behavior

of kernel execution and resource utilization for GPU workloads. To obtain these interference

factors, workloads are required to be profiled using vendor-specific profiling tools. Profiling all the

performance metrics is a time-consuming process. Short profile for targeted interference factors is

preferred to minimize the overhead. In this thesis, we are interested in applying machine-learning

techniques to identify a few prominent interference factors while reducing the profiling overhead.

Since most of the developed schedulers focus on resource availability and few works have been

proposed to study the interference, we are motivated to develop an efficient interference-aware

scheduler for GPU workloads.
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Model-based Concurrent Kernel
Analysis

As discussed in Chapter 2.2.2, leveraging concurrent kernel execution can improve multi-

kernel concurrency and improve the overall throughput of a GPU application. However, it is

challenging to maximize the potential performance benefits of using CKE. Chapter 2.2.3 shows a

list of factors that can impact the CKE performance for a GPU application. Typically, a developer

will have to compile and tune the program many times to obtain the best performance. To tackle

this problem, we present Moka, an empirical model to estimate the performance benefits using

concurrent kernel execution. The model analyzes a non-CKE application comprising multiple

kernels and delivers an estimate of the performance ceiling that can be achieved by leveraging CKE

on a particular GPU. Moka attempts to answer the question of whether a programmer should
attempt to employ CKE for an application. The model also provides guidance to find the best

performing kernel-stream mapping, quickly identifying the best CKE configuration, resulting in

improved performance and improved utilization of the GPU. Moka accounts for many runtime factors

that could potentially impact performance, including the host-to-device data transfer overhead, the

stream-launch overhead, the block scheduling mechanism and other potential resource-associated

bottlenecks. In addition, we present an effective block size tuning technique that can further benefit

CKE.

An overview of Moka framework is presented in Figure 4.1. At first, GPU applications

are profiled to collect application characteristics. Based on the profiled metrics, Moka classifies a

GPU kernel as either compute-intensive and memory-intensive, and suggests the best block size

accordingly. After tuning kernel performance, Moka starts modeling the execution of concurrent

kernels encapsulated in the CUDA streams, taking into account data transfers and kernel execution
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behavior. Equipped with knowledge of the dynamic runtime characteristics, as well as the static

properties of the kernels, Moka includes a data transfer model and a kernel execution model to

estimate the CKE performance for an entire application. Since our work is based on the NVIDIA

GPU architecture, CUDA terminology is used, but our work can easily be adapted to other GPU

standards.

Figure 4.1: Overview of Moka.

4.1 Block Size Tuning

A kernel can launch hundreds of thousands of threads on a GPU. These threads are

organized in blocks, which run concurrently in a streaming multiprocessor (SM). If we perform

computation using small blocks, we may not fully utilize the available memory bus bandwidth.

Utilizing large blocks can oversubscribe device resources, such as registers and shared memory,

limiting the number of concurrent blocks run per SM. Finding the right thread block size can be

crucial to achieving good performance, especially for stencil computations [22, 47, 95]. Here, we

propose the Similar Kernel Method (SimK) for tuning the block size. Our SimK approach utilizes

the profiling information obtained from NVIDIA’s nvprof profiling tool, capturing information on

resource requirements and runtime characteristics of the application [72]. Based on the ratio of

memory accesses to compute operation cycles, each GPU kernel is categorized into one of two

groups: i) memory-intensive, or ii) compute-intensive. SimK computes the Euclidean distance

between the input kernel and training kernels to search for the most similar kernel. The block size of

the most similar kernel is then selected by SimK. Figure 4.2 shows the workflow of SimK.
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Figure 4.2: Similar Kernel Method for block size tuning.

4.1.1 Kernel Classification

To determine whether a kernel is memory intensive or compute intensive, Yang et al. evalu-

ated the memory-transaction intensity of an input kernel, computing the ratio of the number of global

memory transactions versus the number of compute instructions [44]. If we ignore the cycles per

memory transaction and other memory system usage, Yang’s method results in too much variance to

provide accurate guidance. To obtain a more accurate estimate, GPU simulators and PTX emulators

can be used [11, 96, 52]. The GPU low-level assembly instrumentation tool SASSI, can also provide

accurate traces on NVIDIA platforms, which are typically more accurate than using a simulator [90].

However, the effectiveness of these tools can be limited, given that most open source GPU simulators

lag behind the latest hardware features. Even the SASSI toolset, which is developed by NVIDIA, is

presently only supported on the CUDA 7 toolchain [89].

In SimK, we propose a warp-based scheme to classify each kernel. A warp, which is a

group of 32 threads on NVIDIA architectures, is the smallest non-divisible execution unit of a GPU

kernel, executing in Single Instruction Multiple Data (SIMD) mode. A single warp’s execution

characteristics should be representative of the execution for the entire kernel. Therefore, a kernel can

be considered memory-intensive if the warp is memory-intensive. To generate accurate cycle counts

for memory and arithmetic instructions in a warp, we need the frequency of each instruction in the

warp, and the cycles per instruction for those operationsd. From the kernel metrics generated by

nvprof, the frequency of executed GPU assembly instructions (SASS) can be obtained (see Table 4.1).

The distribution of different SASS instructions is approximated based on the SASS histogram in the

GPU kernel binary [76]. Meanwhile, we obtain the number of clock cycles for each SASS instruction

through benchmarking. In Tables 4.2 and 4.3, we provide cycle counts for the SASS instructions

obtained on a GTX 950 platform, an NVIDIA Maxwell GPU. During microbenchmarking, the

compiler option -Xptxas -O0 is used to short-circuit optimization by the PTX assembler. This is only

used during profiling.
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Table 4.1: Metrics used for characterizing SASS instruction execution.

Metric Name Metric Type Description
inst fp 32 Compute FP32 instructions
inst fp 64 Compute FP64 instructions
inst integer Compute Integer instructions
inst compute ld st Compute Compute load store instructions
gld transactions Memory Global memory load transactions
gst transactions Memory Global memory store transactions
shared load transactions Memory Shared memory load transactions
shared store transactions Memory Shared memory store transactions

To produce instruction frequencies for each warp, we apply the following equations:

warp fp32 = inst fp 32/total threads (4.1)

warp fp64 = inst fp 64/total threads (4.2)

warp int = inst integer/total threads (4.3)

warp ldst = inst compute ld st/total threads (4.4)

warp ldg = gld transactions/total threads (4.5)

warp stg = gst transactions/total threads (4.6)

warp lds = smld transactions/total threads (4.7)

warp sts = smst transactions/total threads (4.8)

To measure the compute instruction cycles per warp, we apply the following equations:

warp cmp = warp fp32× sass fp32 clks

+ warp fp64× sass fp64 clks

+ warp int× sass int clks

+ warp ldst× sass ldst clks (4.9)

To measure the memory instruction cycles per warp, we apply the following equations:

warp mem = warp ldg × sass ldg clks

+ warp stg × sass stg clks

+ warp lds× sass sts clks

+ warp sts× sass sts clks (4.10)
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Each GPU kernel is categorized, as shown below:

Compute-intensive : warp cmp > warp mem

Memory-intensive : warp mem > warp cmp

Table 4.2: Arithmetic SASS instructions on the GTX 950.

Inst. Type Opcode Clocks Inst. Type Opcode Clocks

Integer

IADD 15

Single

FADD 15
ISUB 15 FMUL 15
IMNMX 15 FMNMX 15
ISAD 15 FSET 15
IMUL 86 FFMA 15
IMAD 101

Double

DADD 48
ISET 15 DMUL 48
SHL 15 DMNMX 48
SHR 15 DFMA 51

Table 4.3: Memory SASS Instructions on the GTX 950.

Access Type SASS Clocks
Global Load LDG 650
Global Store STG 19
Shared Load LDS 26
Shared Store STS 19

In our warp-based scheme, we compute the SASS histogram after dumping the kernel

binary using the NVIDIA binary tool cuobjdump. The total clocks for a particular data type are

computed as the sum of the clocks from the SASS instructions belonging to this data type. For

instance, assuming there are 4 IADDs and 2 IMULs in the SASS histogram, and that the number of

integer instructions per warp is 6, the number of integer clocks for the warp is 232.

warp int× sass int clks = 4× 15 + 2× 86 = 232

4.1.2 Data Set

For each kernel, SimK helps to find the best match in a pool of GPU kernels. The

CUDA SDK suite is used here, where OpenGL applications are omitted since we are focusing on

compute [74]. Applying the aforementioned kernel classification method, we identify 20 compute-

intensive and 21 memory-intensive kernels, as shown in Tables 4.4 and 4.5. The block size of the
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selected kernels is adjustable. We benchmark the kernel’s performance on a GTX 950 and record the

best block size for each kernel. For 2-D kernels, the block size will be the overall thread block size

of the 2-D grid. For a 2-D kernel with 8 threads per block along each dimension, 64 is chosen for the

block size. The same rule applies to the 3-D case.

Table 4.4: Compute-intensive Kernels

Kernel Dims Kernel Name Application

1D

fwtbatch2kernel fastWalshTransform
mergeranksandindiceskernel mergeSort
mergesortsharedkernel mergeSort
dwthaar1d dwtHaar1D
blackscholesgpu BlackScholes
bitonicsortshared sortingNetworks
sppreprocess2d kernel convolutionFFT2D
sppostprocess2d kernel convolutionFFT2D
spprocess2d kernel convolutionFFT2D
test interval newton interval
computeangles kernel lineOfSight
binomialoptionskernel binomialOptions
inverseCNDKernel quasirandomGenerator

2D

transposeDiagonal transpose
shfl vertical shfl shfl scan
matrixMulCUDA matMul
padKernel kernel convolutionFFT2D
paddataclamptoborder kernel convolutionFFT2D
stereoDisparityKernel stereoDisparity
quasirandomGeneratorKernel quasirandomGenerator

38



CHAPTER 4. MODEL-BASED CONCURRENT KERNEL ANALYSIS

Table 4.5: Memory-intensive kernels.

Kernel Dims Kernel Name Application

1D

scalarProdGPU scalarProd
reduce6 reduction
vectoradd vectorAdd
modulateAndNormalize kernel convolutionFFT2D
modulatekernel fastWalshTransform
generatesamplerankskernel mergeSort
scanExclusiveShared2 scan
scanExclusiveShared scan
uniformupdate scan
mergeHistogram256Kernel histogram
histogram64Kernel histogram
mergeHistogram64Kernel histogram
reduceMultiPass threadFenceReduction
reduceSinglePass threadFenceReduction
uniform add shfl scan
computeVisibilities kernel lineOfSight

2D

transposeCoarseGrained transpose
transposeNoBankConflicts transpose
transposeCoalesced transpose
transposeFineGrained transpose
transposeNaive transpose

4.1.3 Feature Metrics

To find the best kernel match in terms of block size, we collect performance counters

values for each kernel (see Table 4.6). Both compute-intensive and memory-intensive kernels share

metrics, including the IPC (instructions per cycle), the achieved occupancy, the issue slot utilization

and the eligible warps per cycle, as shown in Table 4.6. For memory-intensive kernels, c2m ratio is

the ratio of warp cmp over warp mem, which measures the intensity of compute operations. The

ratios range between 0 and 1. Metrics related to loads and stores from/to global memory (gld ratio,

gst ratio) and shared memory (sld ratio, sst ratio) are computed based on the bandwidth utilization

of the memory system [61].

For compute-intensive kernels, the m2c ratio, which quantifies the intensity of mem-

ory operations, and the utilization of single and double-precision units (sp fu util, dp fu util), are

also included. Note that the sp fu util is the normalized utilization of the special function units

(special fu utilization) and single precision units (single precision fu utilization), derived from the
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default profiling metrics.

Table 4.6: Performance counters used to judge kernel similarity.

Memory-Intensive Compute intensive
c2m ratio gld raito m2c ratio dp fu util

IPC gst ratio IPC sp fu util
achieved occupancy sld ratio achieved occupancy -
issue slot utilization sst ratio issue slot utilization -

eligible warps per cycle shared utilization eligible warps per cycle -

4.1.4 t-SNE Analysis

In our evaluation, each kernel is represented by a high-dimensional feature vector (see

Table 4.6), a 10-D vector for memory-intensive kernels, and a 7-D vector for compute-intensive

kernels. Identifying the most similar kernel in this high-dimensional space is challenging. Using

the Similar Kernel Method, the t-SNE technique is applied to visualize the high-dimensional feature

data and measure the kernel distances in a lower dimensional space [59]. As opposed to Principal

Component Analysis, which produces a linear mapping to perform dimensionality reduction, t-SNE

uses a nonlinear transformation to preserve the local structure of the high-dimensional data. During

our analysis, the Euclidean distance is used to compute the distances between kernels in 2-D space.

SimK selects three most similar kernels, whose block size will be recommended to the target kernel.

SimK uses a majority voting scheme when evaluating the recommendations of the top-3 most similar

kernels and makes a suggestion accordingly. In the case where all three kernels suggest different

block sizes, the block size, matching the number of CUDA cores per streaming multiprocessor, is

recommended.

4.2 Concurrent Kernel Execution Modeling

Besides tuning kernel performance, Moka models concurrent kernel execution by taking

into account both data transfers and kernel execution. In the following sections, we will discuss a

PCIe-based data transfer model to predict the data transfer time, and a GPU performance model to

estimate concurrent kernel execution time.

4.2.1 Data Transfer Model

For concurrent kernel execution, each CUDA stream is responsible for copying data to

the device, as well as for the kernel computation. There are two types of data transfers: i) blocking
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calls using pageable memory, and ii) asynchronous calls using pinned memory. Figure 4.3 shows the

performance impact of different types of data transfer when running a vector addition operation on

1M floats. Using pageable memory for data transfers introduces significant kernel launch overhead

in stream-0, see Figure 4.3(a). Using pinned memory can avoid much of this overhead, reducing the

overall runtime from 4.75ms to 3.59ms on the GTX 950, achieving a 1.3x speedup. Our data transfer

model is based on using pinned memory over the PCIe bus.

Figure 4.3: Comparing pageable and pinned memory performance impact on two CUDA streams on

a GTX 950.

Van Werkhoven et al. proposed the LogGP model for CPU-GPU data transfers [99]. Their

model is based on linear interpolation for sending a long message, assuming a fixed communication

overhead. To quantify the long message transfer speed, we increased the data size from 2 to 1024

bytes. We compared their LogGP prediction with linear regression. To train the linear regression

model, we measured the data transfer time for data sizes ranging from 1 to 10K floats, with a step

size of 4. We use 4 floats as the step size since 128 bits are encoded for each lane of a PCIe 3.0 bus.

Three linear regression models are trained, LR-256, LR-1K, LR-10K, by using the first 256, 1K and

10K floats from the training set. Figure 4.4 compares performance by predicting the elapsed time to

transfer 1K, 1M, 10M and 100M floats.

As shown in Figure 4.4, LogGP overestimates the performance by 17% to 49%. Using

the same 1K bytes for training, LR-256 performs better than LogGP, predicting the performance

of transfers within 0.3%-26%. As the training set grows, the prediction accuracy increases. LR-1K

and LR-10K can predict within 8% and 3%, respectively, as compared to the actual runtime. Hence,

linear regression is employed for modeling data transfers.

However, the current model does not consider any PCIe contention that can occur when

multiple CUDA streams compete for the same bandwidth. PCIe supports full-duplex communication,

where data transfers in opposite directions can be handled simultaneously. Therefore, there is no

contention over the PCIe bus since two transfers can be serviced when they are in opposite directions,
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Figure 4.4: Comparison of LogGP and linear regression to characterize the host-to-device data

transfer on a GTX 950.

whereas the bandwidth is shared when transferring data in the same direction. Bandwidth contention

is considered in our data transfer model, as shown in Algorithm 1.

Algorithm 1 The PCIe Bandwdith Contention for CKE.
if H2D/D2H Contention then

BW (Si) = BWPCIe/
∑

Si

else if No Contention then
BW (Si) = BWPCIe

end if
TransT ime(Si) = TransBytes(Si)/BW (Si)

Si : CUDA stream

4.2.2 Average Block Execution Model

When a kernel is dispatched on a device, the GigaThread Engine on the NVIDIA GPU is

in charge of scheduling thread blocks on each streaming multiprocessor (SM). The thread blocks

are issued in a round-robin fashion based on the leftover policy [43][80]. Given the independent

nature of thread blocks on a GPU, each block contains the same instructions, so we propose using

the Average Block Execution (AvgBlkExe) to model kernel execution.
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Before dispatching thread blocks, the GigaThread Engine will ensure the availability of

resources on the target SM. These resources, including registers, shared memory and busy threads,

will limit the maximum number of blocks that can be allocated per SM, as expressed in Equation 4.11.

BlkLmt Reg = SM Reg/BLK Reg

BlkLmt Shared = SM Shared/BLK Shared

BlkLmt Thread = SM maxThread/BLKSize

BlkLmt Dev = SM maxBLK

maxBlkPerSM = min{BlkLmt Reg,

BlkLmt Shared,

BlkLmt Thread,

BlkLmt Dev} (4.11)

The AvgBlkExe assumes each block has an identical lifetime. In a round-robin fashion,

batches of threads blocks are dispatched to each SM. When device resources are fully occupied, the

rest of the blocks will be launched in future iterations. The AvgBlkExe metric measures the average

block execution time from the kernel execution time, using Equation 4.12.

KernBlksPerIter = GPU SMs×maxBlkPerSM

Iters = KernelBlks/KernBlksPerIter

AvgBlkT ime = KernelT ime/Iters (4.12)

Based on the block trace on each SM, the overall kernel time is the runtime of the most

time-consuming SM, see Equation 4.13.

SM Time(Ki) = BLK Start(Ki)−BLK End(Ki)

Kernel T ime(Ki) =MAX {SM Time(Ki)} (4.13)

For multiple kernel instances, concurrent kernel execution on the GPU can be modeled

based on the AvgBlkExe pattern. In Figure 4.5, we assume that a maximum of three blocks can be

allocated per SM for Kernels A and B, due to resource constraints. Kernels A and B have 8 and 5
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blocks, respectively. Kernel A is dispatched ahead of Kernel B, whose average block execution time

is half of the Kernel B’s. It takes two iterations for Kernel A to execute all blocks. During the second

iteration, each SM has enough resources to host two additional blocks from Kernel B. On SM-0, as

soon as BLK 6 from Kernel A ends, BLK4 (which is waiting) from Kernel B can start immediately

due to the availability of resources.

Figure 4.5: The average block execution pattern for two kernels on a GPU with two streaming

multiprocessors.

4.2.3 Resource Contention Model

As multiple kernels share the GPU simultaneously, blocks from different kernels some

interference will be generated between blocks [97, 31]. If blocks contend for the same resource, the

block execution time of the current kernel will probably be extended. To quantify the interference

factor, we apply the Max Method to the performance metrics shown in Table 4.7.

For a performance metric i, the corresponding contention factor Ci is the sum of the metric

utilization from all concurrent kernels. If the combined utilization is less than 1, Ci becomes 1, as
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Table 4.7: Performance metrics used for contention nalysis.

Metrics Name Resource Type Metrics Name Resource Type
eligible warps per cycle occupancy dram utilization memory
cf fu utilization function unit tex utilization memory
tex fu utilization function unit shared utilization memory
ldst fu utilization function unit l2 utilization memory
single precision fu utilization function unit sysmem utilization memory
double precision fu utilization function unit flop sp efficiency compute
special fu utilization function unit flop dp efficiency compute

shown in Equation 4.14.

Ci = (
kern∑
j=0

Utilji > 1)?
kern∑
j=0

Utilji : 1 (4.14)

For each resource type, the maximum utilization across all metrics is used as the contention

ratio, since that resource will end up being the limiting factor, as expressed in Equation 4.15.

Ctype =MAX
{
Ctype
i

}
(4.15)

The overall contention factor of running multiple concurrent kernels C
′

is the max con-

tention ratio among all the resource types Ctype.

C
′
=MAX {Coccupancy, Cfu, Cmem, Ccmp} (4.16)

For concurrent blocks from different kernels, the average block execution time is adjusted

using Equation 4.17.

AvgBlkT ime
′
(Ki) = AvgBlkT ime(Ki)× C

′
(4.17)

4.2.4 Stream Launch

Initializing a CUDA stream when leveraging CKE comes with some cost. As more and

more streams will be present in the scheduling queue, the launch overhead will increase accordingly.

Equation 4.18 describes our stream launch model.

StreamStarti = StreamStarti−1 + StreamLaunchOvhd (4.18)

On NVIDIA GPUs, the cost of issuing a CUDA call is around 5-10µs[94]. On our

experimental platform, the measured StreamLaunchOvhd is 7µs. Figure 4.7 compares our model
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Figure 4.6: Overlapped data transfers using two CUDA streams, where the transfer size includes

10K, 100K and 10M floats. Three gaming GPUs (GTX 950, TITAN X and GTX 980 Ti) and two

computing GPUs (Tesla K40c and K20c) are benchmarked.

prediction with the actual stream launch overhead. As the number of streams grows larger than 6, the

model prediction tends to overestimate the overhead.

On the GTX 950, there are two copy engines: i) host-to-device (H2D) and ii) device-

to-host (H2D). Previously, we assumed that the host-to-device transfers between CUDA streams

have no overlap since there was only one H2D engine. However, this assumption only applies to

the Tesla series for NVIDIA GPUs. As shown in Figure 4.6, there is no H2D overlap for the 10K

and 100K cases on the gaming GPUs. But for the 10M case, the H2D transfers for two concurrent

CUDA streams conflict with each other. The specific starting point for the observed H2D overlap,

H2D Ovlp Threshold, is quantified through benchmarking. If the transfer size is larger than the

threshold, the start time will be adjusted accordingly, as captured in Equation 4.19. The scheme for

launching a CUDA stream is described in Algorithm 2.

StreamStarti = StreamStarti−1 + H2D Ovlp Threshold (4.19)
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Figure 4.7: Comparison of the stream launch model prediction with actual timings on the GTX 950.

Algorithm 2 Stream Launch Model
Initialize CUDA calls for the first stream S1

for Next Stream Si do . i = 2 : StreamNum

Check the first call type with previous stream Si−1

if H2D for Si−1, H2D for Si then
Run H2D Ovlp Threshold analysis

else if H2D for Si−1, Kernel for Si then
Apply StreamStarti

else if Kernel for Si−1, H2D for Si then
Apply StreamStarti

else if Kernel for Si−1, Kernel for Si then
Run AvgBlkExe to determine StreamStarti

end if
Update the following calls in the stream

end for

4.2.5 Model Consolidation

Leveraging the aforementioned models, concurrent kernel performance can be predcited

based on Algorithm 3. In our model, there are three states for each CUDA call: i) sleep, ii) active

and iii) done. Moka utilizes a trace table to keep track of all the CUDA calls. Once a CUDA call is

selected, it transitions from the sleep state to the active state. Then the algorithm returns back to the

done state once it finishes.
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Given multiple CUDA streams, we can customize their dispatched order. Then the Stream

Launch Model is applied to initialize the starting point. The following CUDA calls in the current

stream will have an offset based on the updated starting point. After all CUDA calls are configured in

the trace table, we sort them based on their start time. Moka goes through each call in the sorted trace

table and checks for the possibility of leveraging concurrency. The data transfer model is applied to

quantify transfer contention, whereas the block execution and contention models are used to quantify

kernel concurrency. After all the CUDA calls are completed, the modeling for concurrent kernel

execution ends. The timing trace can be obtained from the trace table.

Algorithm 3 Modeling Concurrent Kernel Execution
Initialize CUDA call for each stream

Initialize trace table based on Stream Launch Model

Sort trace table by the starting time of CUDA calls

while not all CUDA calls are done do
wake a call from sleep

check concurrency among the wake list

if concurrent data transfer then
Apply Data Transfer Model

else if concurrent kernel execution then
Apply AvgBlkExe and Contention Model

end if
Update wake list and trace table

end while
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4.3 Evaluation Platform

To carry out our evaluation of CKE on an NVIDIA the same GTX 950 GPU as used earlier,

which is based on the Maxwell architecture. On the Maxwell, each streaming multiprocessor (SM)

has 128 cores and 4 warp schedulers, as shown in Figure 4.8. Each warp scheduler issues instructions

on 32 CUDA cores. Shared memory becomes independent from the L1 cache, and a unified L1 and

texture cache is engineered in the SM design.

The GTX 950 is equipped with two copy engines and supports concurrent copy and kernel

execution. We use the CUDA 8.0 driver version and CUDA 8.0 runtime version in our experiments.

A more detailed list of features supported on the GTX 950 is provided in Table 4.8.

SMM
N

SMM
1

SMM
2

...
Registers

Shared MemoryTexture / L1 Cache

Constant Memory

Global Memory

Warp Scheduler

32 SP
CUDA Cores 8

 S
F

P

8
 L

D
/S

T

Warp Scheduler

32 SP
CUDA Cores 8

 S
F

P

8 
LD

/S
T

Warp Scheduler

32 SP
CUDA Cores 8

 S
F

P

8
 L

D
/S

T

Warp Scheduler

32 SP
CUDA Cores 8

 S
F

P

8 
LD

/S
T

SMM

Figure 4.8: The NVIDIA’s Maxwell GPU architecture.

Table 4.8: GTX 950 Specifications

CUDA Cores 768 Global Memory 1997 MB
Multiprocessors 6 L2 Cache 1 MB
CUDA Cores / SMM 128 Constant Memory 64 KB
Core Clock 1393 MHz Shared Memory per Block 48 KB
Memory Clock 3305 Mhz Register per Block 65536
Memory Bus Width 128-bit Integrated GPU sharing Host Memory No
Copy engines 2 Unified Virtual Addressing Yes
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4.4 Evaluation on Real-world Applications

4.4.1 Monte Carlo eXtreme (MCX)

MCX is a GPU-accelerated Monte Carlo method for modeling light propagation inside

complex media such as human tissue [26]. The MCX kernel is classified as compute-intensive

since the memory-to-compute ratio (m2c ratio) is 0.27. Given that the kernel runs in 1-D, all of

the 1-D compute-intensive kernels in Table 4.4 are included for block size tuning. If we record the

compute-intensive performance counters in Table 4.6, we record 14 samples across the 7 different

features, which are input for t-SNE analysis. These samples are then mapped to a 2-D embedded

space using t-SNE, where principal component analysis is applied for initialization. After mapping

the sample data to a lower dimension space, the three most similar kernels (blacks, dwt, interval)

are identified, as shown in Figure 4.10. For blacks and interval, their best block size is 32, whereas

dwt’s best block size is 128 threads per block. Based on a majority vote, a block size of 32 is

selected for MCX. Compared to the default block size of 64, either configuration will produce the

best performance.

fwt

mergerank
dwtblacks

bitonic

sppre
sppost

sppro
mergesort

interval

cmpang
binom

invCND

MCX

bs-1024
bs-16

bs-128
bs-64

bs-32
bs-256

Figure 4.9: Block size tuning for MCX using t-SNE.

Next, we apply Moka to predict the concurrent kernel execution performance for MCX.

Figure 4.10 shows that Moka can accurately capture the kernel’s execution runtime, producing

estimates within 5% of the actual runtime.
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Figure 4.10: CKE performance prediction using Moka for MCX.

4.4.2 Hidden Markov Model (HMM)

Hidden Markov Model is a popular machine learning algorithm used in speech recog-

nition [112]. We utilize concurrent kernel execution in the Expectation-Maximization stage to

accelerate the recognition speed. During each iterative training step, the mean and covariance of the

multivariate Gaussian density for each hidden state need to be updated. Since the update to each state

is independent, CKE can be applied to improve performance. There are two kernels (em gammaobs

and em expectmu) that run in a 2-D grid, each possessing different memory-to-compute intensity

ratios, as reported in Table 4.9. For either the memory-intensive or compute-intensive group, we use

the corresponding 2-D training kernels in Tables 4.4 and 4.5. Applying t-SNE analysis, a block size

of 64 is recommended for em gammaobs by tranCoalesced and tranNaive, whereas a block size of

256 is suggested for running em expectmu by all 3 of the nearest kernels. If we use an 8× 8 grid for

em gammaobs, and a 16× 16 grid for em expectmu, we achieve the best performance on the GTX

950.

Table 4.9: Characteristics of the HMM kernels.

Memory-intensive Kernel Dims c2m ratio
em gammaobs 2D 0.45
Compute-intensive Kernel Dims m2c ratio
em expectmu 2D 0.92

For HMM kernels, Moka can predict runtime performance within 12% of the actual

runtime, as shown in Figure 4.12. When evaluating the concurrent execution pattern, Moka tends

to overpredict the runtime. This is because the aforementioned StreamLaunchOvhd introduces a

fixed interval between the CUDA calls, whereas the actual overhead can vary. For the small kernels
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(a) em_gammaobs
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(b) em_expectmu
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padKernel
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em_expectmu

bs-768 bs-128 bs-256

Figure 4.11: Block size tuning for HMM kernels using t-SNE.

present in the HMM application, this fixed launch overhead leads to a longer predicted runtime.

(a) Native : 61 (us)

Stream-0
Stream-1
Stream-2

3CKE
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(c) Comparison
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Figure 4.12: CKE performance prediction using Moka for HMM.

4.4.3 Workload Scheduling

Given the performance estimation capabilities of Moka for concurrent kernel execution,

we can also use Moka to guide workload scheduling by adjusting the stream launch order. Here, we

simulate the concurrent execution of three GPU applications in a shared context, which includes

vectorAdd (V) and matrixMul (M) from the CUDA SDK, and pathfinder (P) from the Rodinia

benchmark suite. The batch coding style (as mentioned in Chapter 2.2.3) is applied, and pinned

memory is used to replace the default pageable memory.

The native and Moka predictions are plotted for each launch combination in Figure 4.13.

For VMP, there is no contention for data transfer and kernel execution. A significant degree of

52



CHAPTER 4. MODEL-BASED CONCURRENT KERNEL ANALYSIS

concurrency between compute-intensive (matrixMul) and memory-intensive (pathfinder) kernels

is observed. For VPM, the actual H2D starting point for matrixMul occurs earlier than the model

predicted. The H2D contention between pathfinder and matrixMul is also observed. Moka tends to

overestimate the contention for data transfers, see PVM and PMV. For MVP, the concurrent kernel

execution between matrixMul and vectroAdd is hidden by the H2D transfer of pathfinder. H2D

contention is also observed for MPV.
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s0
s1
s2

[VPM] vecadd(s0) - matmul(s1) - pathfd(s2)
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s0
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Native - 7.60 ms

s0
s1
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[VPM] vecadd(s0) - pathfd(s1) - matmul(s2)
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s0
s1
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[VPM] vecadd(s0) - pathfd(s1) - matmul(s2)
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Figure 4.13: Modeling concurrent kernel execution of vector addition, matrix multiplication and

pathfinder using Moka. Prediction results on six different combinations of launch order are illustrated.

According to the prediction, Moka will recommend both VMP and MVP as the best launch

order. On the native device, VPM performs best. One of the shortcomings of Moka is that linear
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modeling schemes are applied to capture dynamic runtime behavior. The performance difference

between MVP, as suggested by Moka, and the best VPM is less than 1%. In all, Moka can capture the

CKE performance trend and provides a highly accurate recommendation for workload scheduling.

4.5 Summary

In this chapter, we proposed an empirical model for concurrent kernel execution on the

NVIDIA Maxwell GPU architecture. The major contributions of our modeling scheme are to tune

GPU kernels by predicting the best block size and estimate CKE performance of multi-kernel

applications using profiled performance counters. Our proposed CKE performance model Moka uses

average block execution to model kernel execution and includes multiple performance factors to

estimate the impact of resource competition on the device.

Our evaluation shows that the average estimation error is within 12% versus the measured

runtime, with a geometric mean less than 5%. For multi-kernel applications, our model can suggest a

close-to-optimal solution to drive dispatching orders for concurrent kernel execution. We believe that

our model provides a convenient tool for GPU programmers to estimate the performance ceiling of

concurrent kernel execution on modern GPUs.
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Chapter 5

Interference-aware scheduling for GPU
workloads

As modern GPUs increase device resources with every generation, the computational

and memory resources may not be fully utilized by a single application. With the introduction of

concurrent kernel execution, applications can be co-located and co-scheduled on the same GPU, sig-

nificantly improving resource utilization. However, contention for shared resources, such as memory

bandwidth and the computational pipeline, results in interference and often leads to performance

degradation for co-located GPU workloads. Scheduling workloads to minimize interference and

satisfy quality-of-service requirements, becomes a challenging issue, especially for cloud-based

GPUs.

If we try to run two applications concurrently without considering the underlying char-

acteristics of the two workloads, the resulting interference is difficult to estimate. We need to

characterize the applications if we want to minimize interference and improve system throughput. In

Figure 1.5, we show the performance impact on 6 target GPU applications when co-executed with

another application on an NVIDIA GTX 1080 Ti GPU. Tests include a total of 79 GPU applications

including the 6 target applications. We can see that the concurrent kernel benchmark from the CUDA

SDK [74] (cuda concurrKerns) and the reduction application from the SHOC benchmark suite [21]

(shoc reduction) are more sensitive to interference than the other 4 applications, showing more that a

90% slowdown on average. We can see that each GPU application has its own pattern of sensitivity

when co-executed with a second application. Thus, it is key to characterize and accurately predict

the interference impact before launching the concurrent execution. An efficient GPU workload

scheduler should be aware of the characteristics of queued workloads and select the appropriate pair

for co-execution with the goal of avoiding interference and achieving the best overall throughput.
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In this chapter, we present Magic, a machine learning based interference-aware scheduler

for GPU workloads. Magic utilizes profiling metrics, provides automated feature extraction to

characterize GPU workloads, and predicts the sensitivity in terms of potential interference for

concurrently scheduled applications. In addition, we also add support for clusters equipped with

multiple GPUs from different GPU generations and configurations. On a single GPU system, our

proposed scheduler improves performance as compared to a first-come-first-serve policy by 16%,

and achieves 10% better throughput than a state-of-art similarity-based scheduler. On a multi-GPU

system, our proposed scheduler outperforms a least-loaded policy by 21%, and increases performance

over a round-robin policy by 22%.

5.1 Magic Framework

The Magic framework implements interference-aware scheduling using two stages of

analysis. The first stage involves workload analysis, where incoming workloads from the clients

pass through a short profiling process. During this process, the workloads are profiled to obtain a set

of prominent features to represent each workload. These targeted features are preprocessed offline

using the proposed Principal Feature Analysis method. We refer to the set of selected features as

the Short Profiling features. The second stage applies our interference prediction model to estimate

the sensitivity in terms of the degree of interference for the targeted workload. Leveraging our

predicted interference outcome and interference-aware scheduling policy, the scheduler rearranges

the dispatch order for the workloads in the job queue, improving throughput while minimizing the

impact of interference. An application’s status and the GPU’s status are constantly updated as soon

as dispatching decisions are made.

5.2 Offline Analysis for Short Profiling

A GPU has a limited supply of resources to share across concurrent workloads. These

resources include registers, shared memory and copy engines for data transfer. As multiple GPU

workloads are streamed onto a device, contention for these shared resources become inevitable.

Depending on the availability of the resource and the degree of contention, the performance impact for

co-located workloads can be significant. Therefore, it is key to understand the resource requirements

of each pending workload so the GPU workload scheduler can make better decisions when it comes

to minimizing interference. In this section, we utilize Principle Feature Analysis to select features
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Figure 5.1: Magic framework workflow.

that can best characterize resource requirements of GPU workloads. We run a similarity-based

scheduler to demonstrate the effectiveness of the chosen parameters.

5.2.1 Feature Selection Method

Profiling tools for GPU workloads, such as the NVIDIA command profiler nvprof [70]

and AMD’s CodeXL[9], profile a wide spectrum of performance counters. However, not all of the

profiled metrics are useful for interference analysis. In this study, we have implemented a feature

selection method to choose interference-related metrics, as shown in Figure 5.2.

To provide a rich data set for our analysis, we begin by profiling 56 compute applications

from the NVIDIA CUDA SDK 8.0, where the OpenGL-related and long-running applications are

excluded. The resulting profile metrics represent execution in a total of 287 distinct kernels that are

present in these 56 GPU applications. For each kernel, there are 120 performance counter values

collected using nvprof on an NVIDIA Pascal-based GTX 1080 Ti GPU [70]. In all, a feature matrix
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Figure 5.2: Feature selection method for offline analysis.

of 287 x 120 is generated. Next, Feature Scaling is applied to normalize these profiling metrics,

where the min and max values are used to scale the data between 0 and 1. The MinMaxScaler

is applied due to the fact that it is robust when working with features with very small standard

deviations, and can preserve zero entries when working with sparse data [4]. For the Feature

Reduction step, features with low variance are removed since they provide less useful information

about a workload’s characteristics versus features with higher variance. In our case, this step results

in the original 120 performance metrics being reduced to 64. Note that the number of features after

Feature Reduction may not be exactly 64, depending on the feature matrix and configurations used

during the preprocessing steps. Furthermore, among the selected 64 features, Principal Feature

Analysis (PFA) is used to identify a subset that can be representative for interference analysis.

5.2.2 Cases for Feature Selection

In this section, we explore whether a reduced set of features can perform as well as the full

set of profiling features. Here, we label the case where we consider the entire set of performance

counters reported by the NVIDIA profiler as FeatAll. We label the case where we used the 64 features

after applying the Feature Reduction step as Feat64. Then, we set up a few more cases with learned

features using PFA, varying the hand-picked variance coverage on Feat64, as shown in Table 5.1.

Each feature set is labeled as Feat{N}, where N is in the range of 9-42 features. In addition, we also

include the feature set used in the Mystic framework [97], labeled FeatMystic, in order to compare

with the PFA selected features.

58



CHAPTER 5. INTERFERENCE-AWARE SCHEDULING FOR GPU WORKLOADS

Table 5.1: Variance coverage of Feat64 by selecting different number of features using PCA.

Num. of Feature Variance Coverage Num. of Feature Variance Coverage
42 99% 14 85%
26 95% 12 80%
18 90% 9 75%

Table 5.2: GPU applications for feature set evaluation.

GPU Applications Features GPU Applications Features
interval Recursion Computational Finance

transpose Linear Algebra
MC SingleAsianOptionP

CURAND Library
matrixMul Linear Algebra Image Processing

scan Data Parallel
convolutionFFT2D

CUFFT Library
reduction Data Parallel mergeSort Sorting, Data Parallel

binomialOptions Computational Finance sortingNetworks Sorting, Data Parallel
SobolQRNG Computational Finance Sorting, Data Parallel

quasirandomGenerator Computational Finance
radixSortThrust

Thrust Library

5.2.3 Evaluation Method

To compare the benefits of using different feature sets, we use 13 GPU applications

from the CUDA SDK, as shown in Table 5.2. This subset includes a range of domains, including

linear algebra, computational finance, image processing and popular GPU libraries. Here, we use a

state-of-art similarity-based approach, the same as used in the Mystic framework, to dispatch these

workloads[97]. Similarity-based scheduling analyzes the resource usage patterns (i.e., similarities)

among GPU applications and co-locates workloads with the least similar usage pattern to minimize

the potential interference.

To measure the similarity, two popular distance metrics are compared: i.) euclidean

distance, and ii.) cosine distance. The euclidean distance focuses on the magnitude of the data,

whereas the cosine distance emphasizes the direction. After generating the pairwise distance matrix,

Agglomerative Clustering is performed [23]. We compare 7 methods to compute the cluster distance,

which include: single, complete, average, weighted, centroid, median and ward methods. To find the

best combination of methods and metrics, we use the Cophenetic Correlation Coefficient to measure

the relationship between the clustering result and the pairwise distance matrix [46]. The closer the

coefficient is to 1, the better the clustering preserves the distance. After testing on the FeatAll case,

which includes the entire set of profiling metrics, the euclidean metric for pairwise distance and

the centroid method for the Agglomerative Clustering are chosen, where the highest Cophenetic

Correlation is achieved. In this thesis, the similarity between GPU workloads is measured based on

the euclidean distance.
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We have visualized the clustering patterns using a dendrogram for each case, as shown in

Figure 5.3. We can see that FeatMystic generates a distinct clustering pattern compared to the FeatAll

case. For instance, two sorting applications, mergeSort and sortingNetworks, are more distant from

each other using FeatMystic versus when using FeatAll. In addition, we also notice the clustering

pattern changes when using fewer features. For instance, Feat18 and Feat14 show a dissimilar

clustering structure.
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Figure 5.3: Dendrograms of 13 GPU applications using different feature sets. The distance option

uses euclidean distance and the linkage option, applying the centroid method.
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Figure 5.4: Performance impact when co-executing two GPU applications on a single NVIDIA GTX

1080Ti GPU. For each test, App2 is selected as the least similar application to co-run with App1.

The dashed line shows the QoS. The higher the speedup, the lower the interference, and vice versa.
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To dispatch workloads and obtain the elapsed time, an in-house scheduler implementation

is used, as described in Section 5.6.1. The software allows us to launch independent processes at

the same time. During our experiments, we select the least similar application (App2) to co-locate

with the target application (App1). Therefore, there are 13 cases for each feature set, as shown in

Figure 5.4.

To measure the performance, given that co-execution involves some imprecision in terms

of when exactly an application starts execution, we report on the co-execution runtime (T Corun)

for each application (Appi) by taking the average of 100 runs for each test case. We also measure

the dedicated execution runtime (T Dedicate) for each application. The performance slowdown is

calculated using Equation (5.1).

Slowdown(Appi) = T Corun(Appi)/T Dedicate(Appi)− 1 (5.1)

Here, we consider a 20% slowdown for co-located kernels as our Quality-of-Service (QoS)

target, which is shown as the dashed line in Figure 5.4. FeatAll performs the best, where 7 out of

26 cases violate QoS, observing a 12% slowdown on average. FeatMystic produces 14 out of 26

cases below the QoS threshold, with an average slowdown of 22%. Surprisingly, Feat9 achieves an

average slowdown of 16%, where 9 out of 26 cases missed the 20% QoS target. When using fewer

than 10% of the metrics from FeatAll, Feat9 achieves a comparable performance, which ranks as

the second best in terms of the average slowdown. In Table 5.3, we list the subset of 9 prominent

features learned. These metrics provide coverage of several important device resources, including

streaming multiprocessors, system memory, global memory, shared memory and cache.

Table 5.3: The Feat9 metrics identified using PFA.
Metric Name Resources
warp execution efficiency Streaming Multiprocessor
branch efficiency Streaming Multiprocessor
issue slot utilization Streaming Multiprocessor
global hit rate Global Memory
gst transactions per request Global Memory
tex cache hit rate Cache
local store transactions per request Cache
shared load transactions Shared Memory
sysmem write throughput System Memory

Furthermore, we analyze the profiling overhead when using the full set of performance

metrics (FeatAll), versus the case of only profiling a subset (Feat9). We observed that profiling 9

performance metrics can reduce the time spent on collecting all the performance counters by 1.1x-

2.4x, as shown in Figure 5.5. We also found the profiling overhead reduction in sdk binominalOpt is
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Figure 5.5: Compare the profiling overhead between analyzing all the performance counters (FeatAll)

and a selected 9 performance counters (Feat9).

Figure 5.6: The runtime breakdown of CPU versus GPU execution for the selected applications.

much less than the other three applications. To understand what is causing this, for each application,

we can look at the portion of time spent on the CPU versus the GPU, which is presented in Figure 5.6.

For sdk binominalOpt, CPU computation dominates the entire execution, thus only 10% of the

profiling overhead is reduced. For applications which spend more time executing on the GPU, the

runtime benefits of selecting to use shorter profiling runs is more significant. Note that the NVIDIA

profiling tool replays kernels multiple times during the profiling process to collect the required

metrics [70]. Depending on the portion of portion of time execution uses the GPU, the benefits of

reduced profiling time can vary.
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5.2.4 Other Observations

We have found that the feature metrics contained in Feat9 subset can achieve a high level

of QoS. However, there are still cases where the two least similar GPU applications do not run

harmoniously. For instance, running matrixMul with MC OptP achieves a 30% slowdown on average,

which violates the targeted 20% threshold (see Figure 5.4). We consider that the similarity-based

approach can provide a good estimate of the co-execution interference, while achieving a sub-optimal

scheduling outcome. In the following section, we introduce our interference analysis to estimate the

sensitivity level to the interference for each GPU application. We will target integrating our analysis

model with the proposed scheduling policy to build an efficient interference-aware scheduler.

5.3 Interference Analysis

A similarity-based scheduler considers the relative distance in terms of resource usage

of two kernels in order to estimate the potential interference. As shown in Figure 1.5, some GPU

workloads (e.g., the concurrent kernel application from the CUDA SDK, and the reduction application

from SHOC benchmark suite) are extremely sensitive to interference, so no matter what type of

workload is co-run, the kernel will be impacted significantly. Therefore, rather than calculating

the relative similarity, we consider how to characterize the sensitivity level to any interference.

This factor could potentially guide the scheduler to make better decisions when dispatching GPU

workloads so that the overall interference can be minimized. In this section, we will go through the

process to characterize each workload’s sensitivity level.

5.3.1 Methodology

To quantify the sensitively level of a GPU workload to interference, one approach is to

build a regression model to predict the slowdown ratio. However, since the standard deviation of the

slowdown ratio is high, according to the experiments in Figure 1.5, regression models could result

in high variance in terms of prediction accuracy. In our analysis, we transform the regression task

into a classification task by using two classes (i.e., sensitive and insensitive to interference) to label

the targeted GPU workloads. If the average slowdown ratio is below a predefined threshold, the

workload is considered to be insensitive to the co-running interference, and vice versa. Classifying

incoming workloads into two distinct classes provides a better generalization of the sensitivity level

of each kernel.

To build classification models, we use a total of 79 distinct workloads (see Section 5.6.3)

for training and testing. To generate the ground truth for interference sensitivity, we measure the
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slowdown for the targeted workload when running concurrently with a different workload. Each

combination of two co-located workloads is run and timed 3 times. The best performance across the

3 runs is used to compute the performance (see Equation 5.1). The average slowdown ratio for the

targeted workload is calculated using Equation 5.2, where K stands for the number of tests.

AvgSlowDownRatio(Appi) =
1

K

K∑
test=0

Slowdown(Appi) (5.2)

Using a predefined threshold Thld for interference sensitivity, each GPU workload is

assigned to a class using Equation 5.3, where i represents the workload, 1 is an interference-

insensitive class and 0 is an interference-sensitive class.

InterferSensitivityi = (AvgSlowDownRatioi < Thld)?1 : 0 (5.3)

So far we have built a dataset for our interference analysis, where each application is

represented by a feature set and the classes (i.e., interference-sensitive or interference-insensitive)

are labeled. Since our dataset is limited to 79 workloads, a stratified k-fold cross validation is used.

The difference between a stratified k-fold and a traditional k-fold is that stratification preserves the

percentage of samples of each class for the folds [2].

Figure 5.7: Interference analysis workflow.

Eight popular classification models are introduced to the model pool Decision Trees, K-

Nearest Neighbor, Support Vector Machines, Random Forest, Neural Networks, Adaboost, Gaussian
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Naive Bayes and Quadratic Discriminant Analysis [1]. Greedy search is applied to find the best

configuration for each model (see FindBestModelParam in Figure 5.7). To identify the candidate,

we choose the model that generates the lowest average error over all k folds. Next, we run k-fold

cross validation again for all of the models in the model pool, using their best configurations (see

FindBestModel in Figure 5.7). Finally, the model with the lowest error is selected for our interference-

aware scheduler. The workflow for our interference analysis is summarized in Figure 5.7.

For our interference analysis, two separate feature sets are analyzed: 1) all the perfor-

mance metrics (FeatAll), and 2) PFA selected metrics (Feat9). The reason to select Feat9 is that it

achieves a balance between quality during interference estimation and limited profiling overhead, as

demonstrated in Section 5.2.3. Compared with using all of the profiling metrics, we want to see how

well the reduced feature set (Feat9) can perform in terms of classification accuracy and scheduling

outcome.

5.3.2 Interference-aware Scheduling Policy

Based on the interference characteristics of GPU workloads, an efficient scheduling policy

is needed to guide scheduling of incoming GPU workloads to minimize interference and improve

system throughput. To develop best practices for interference-aware scheduling, we conduct exper-

iments on six distinctive GPU workloads mentioned at the beginning of current Chapter 5, which

include concurrent kernel, scan, binomialOptions, reduction, 3mm and fdtd2d. We consider the

concurrent kernel and reduction kernels belong to the interference-sensitive class, and the rest of the

applications belong to the interference-insensitive class. Here, we seek to select the best job to be

co-located with binomialOptions. Weighted Speedup is used to measure the system throughput, as

described in Equation 5.4.

Weighted Speedup(Appi) =
∑
i

Slowdown(Appi) (5.4)

The performance of running different workloads with binomialOptions is presented in

Figure 5.8. Note that binomialOptions belongs to the interference-insensitive class. We can see that

co-locating two interference-insensitive jobs achieves a weighted speedup ranging from 1.81 to 1.98.

Meanwhile, co-locating interference-sensitive applications (e.g., reduction and concurrent kernel)

with the interference-insensitive applications (e.g., binomialOptions), results in an average weighted

speedup of 1.46. Since co-locating interference-insensitive jobs achieves a better weighted speedup

than co-locating interference-sensitive jobs, we consider prioritizing co-location of interference-

insensitive applications for GPU multitasking in our proposed scheduling policy.
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Figure 5.8: Performance measured by weighted speedup, when multitasking two GPU workloads on

a GTX 1080 Ti GPU.

Figure 5.9: Performance comparison of selecting workloads with the least similar and least similar

resource requirements for GPU multitasking, where we assume that a maximum of only two processes

can run concurrently.

In addition to interference sensitivity, it is helpful to know how long a GPU workload

may run in order to improve system throughput. In Figure 5.9, we consider how to schedule three

workloads on the same GPU, where only two jobs maximum are allowed to run at the same time.

Here, we assume the slowdown ratio for all 3 applications is 10%. In the case of co-locating jobs

with the least similar runtime, the overall elapsed time is 4.2T, where App(1) is extended to 2.2T

due to interference and App(2) remains 2T. On the other hand, by scheduling jobs with similar

runtime requirements, the overall runtime is reduced to 3.2T, where the runtime of App(2) is hidden

by App(1) and the overall runtime is reduced. Currently, we use the binary size of a workload as a

coarse-grained estimate of the runtime. Instead of accurately predicting the runtime, we focus on the

relative runtime ratios between jobs in our scheduler.
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Overall, we have developed an interference-aware scheduling policy InferBin, as described

in Algorithm 4. To begin, InferBin loads the interference prediction model. Then it obtains the feature

metrics for the workloads in the waiting list and predicts whether a GPU workload is interference-

sensitive or not using the model. For workloads belonging to either interference classes, we sort

them according to their binary size. Similar to selecting jobs by the most similar runtime for GPU

multitasking, we arrange the workload order by selecting the most similar binary size for jobs in

both classes. Next, we place the sorted jobs belonging to the interference-insensitive class ahead of

jobs belonging to the interference-sensitive class, which is recommended according to the previous

analysis (see Figure 5.8). InferBin starts scheduling the rearranged workloads in the job queue until

the job queue is empty. It keeps monitoring the status of actively running jobs. When the number

of concurrently running jobs reaches the limit, InferBin will wait until one of the active jobs ends

before dispatching the next job.

Algorithm 4 The InferBin scheduling policy.
1: procedure INFERBIN SCHEDULE( )

2: load the interference prediction model

3: obtain the feature metrics for waiting jobs

4: predict the interference sensitivity for waiting jobs

5: sort interference-insensitive jobs by the binary size

6: sort interference-sensitive jobs by the binary size

7: modify job order using most similiar runtime method

8: prioritize interference-insensitive jobs in the queue

9: while job queue is not empty do
10: if activeJobs < maxCoRun then
11: dispatch next job

12: else
13: spin for an available slot to corun

14: dispatch next job

15: end if
16: end while
17: end procedure

68



CHAPTER 5. INTERFERENCE-AWARE SCHEDULING FOR GPU WORKLOADS

5.4 Support for Heterogeneous GPU clusters

The interference analysis presented earlier is specifically tailored for homogeneous GPUs

(multiple identical GPUs). To tune GPU sharing on heterogeneous GPU clusters, where GPUs are

present representing different microarchitectures or from different device generations, the Magic

framework would need to run interference analysis once for each different GPU microarchitecture/-

generation. As shown in Figure 5.2, the performance for the target workload on different GPU

devices could vary significantly. For instance, the gaussian kernels run on a GTX 760 executes 1.8x

faster than the same implementation on a GTX 950. For the three memory-intensive applications

(backprop, bfs and gaussian) in Rodinia benchmark suite [15], the speedup using GTX 760 over GTX

950 ranges from 0.9x to 1.8x. For the three compute-intensive applications (lavaMD, dtw2d and

heartwall), the speedup achieved using a GTX 760 can vary wildly as compared to execution on a

GTX 950, ranging from 0.6x to 1.4x. Performance will depend upon both the resource requirements

of the workload (e.g., the memory and compute intensity) and the microarchitecture of the targeted

GPU devices (e.g., the number of computing cores, the memory bandwidth and latency, the number of

registers and the shared memory size) could impact the performance. Due to the complex interaction

between a workload and targeted device microarchitectures, it becomes quite challenging to predict

which device will produce the best performance for the GPU workload.

In previous work, analytical models [41, 10, 56], empirical models [115, 110] and machine

learning models [53, 105] have been used to predict GPU performance. These models are designed

to estimate the runtime performance on real hardware. Distinct from these prior approaches, we

study the relative performance benefits among all the GPU devices using neural networks. We utilize

a trained neural network model to estimate the probability of producing the best performance and

select the candidate with the highest probability.

To train the neural network model, we use the metrics generated from the NVIDIA

command line profiler [71]. Two metrics sets, FeatAll and Feat9, are included in our analysis so that

the benefits of using the reduced feature sets for interference-aware scheduler can be evaluated. GPU

workloads from six popular open source benchmark suites are studied (described in Chapter 5.6.3).

For each workload, we run on real (versus simulated) GPU hardware to obtain a ground truth

execution.

To identify the best neural network model structure for the modeling task at hand [5], we

explored the sensitivity for the hidden layer sizes, activation functions, optimization solvers and

L2 regularization penalty. For the hidden layer sizes, we tested 3 fully-connected hidden layers,

where each hidden layer can have 30 / 60 / 100 neurons. Therefore, we have 3 different hidden layer

structures (30,30,30), (60,60,60) and (100,100,100). In our experiments, we found that 3 hidden
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Figure 5.10: Relative performance comparing a GTX 760 and a GTX 950 for six Rodinia GPU

benchmarks. The GTX 950 performance is used as the baseline, which is shown as the 1x speedup.

layers generate good prediction accuracy without increasing the computational complexity. For

activation functions, we compare results for identify (no activation), logistic(the logistic sigmoid

function), tanh (the hyperbolic tan function) and relu (the rectified linear unit function). We also

take different optimizing solvers into consideration, which include sgd, adam and lbfgs. We consider

four different values for the L2 regularization parameter (1/0.1/0.01/0.001). In all, our search space

comprises 144 combinations of these four model parameters.

For each combination, we perform a stratified k-fold cross validation for training and

testing, which can maintain the sample ratio for each class among the folds [2]. For example, given

5-fold cross validation, there will be 80% samples for training and 20% samples for testing. When

splitting the total data set, random shuffling is enabled. After testing, the average error is recorded

for each combination. We identify the combination of model parameters that produce the lowest

error rate for predicting the fastest device/workload pair.
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5.5 Magic Scheduling Policy

Our Magic framework schedules GPU workloads according to the proposed interference-

aware analysis for both homogeneous and heterogeneous GPU clusters. For homogeneous GPU

clusters, since GPUs have identical configurations, the offline interference analysis only needs

to be run once to develop a prediction model. To dipatch a GPU workload, we first identify the

least-loaded GPU in the cluster using the GPU Status Table (see Figure 5.1). For the selected GPU,

the InferBin scheduling (see Algorithm 4) is applied, where we first run our interference prediction

model to analyze the interference sensitivity of the workload. The dispatching sequence in the queue

is reordered by prioritizing the interference-insensitive workloads and sorting them according to

job size. For heterogeneous GPU clusters, a trained neural network model is used to predict the

fastest device for each workload. Each GPU has its own job queue, where job dispatching order

is maintained using the InferBin scheduling policy. Due to imbalance across GPUs in terms of the

number of jobs and job runtime, some GPUs may finish earlier than others. Thus, work stealing is

employed to increase cluster utilization. The mechanics of the Magic scheduling policy is presented

in Algorithm 5.

5.6 Experimental Setup

5.6.1 Implementation of Magic Framework

We implement the Magic framework in Python. As illustrated in Figure 5.11, communica-

tion between clients and the server is handled through the INET socket using IPv4 as the TCP/IP

protocol. As soon as the server receives a client’s message, it collects a short profile of the workload

and enters the workload into the job queue. Guided by the scheduling policy, the scheduler decides

which job to be dispatched. A Python multiprocessing package [83] is used to launch jobs, where

each job is encapsulated in an independent process. A cluster status table is created to monitor

workload activity on the GPU. The job status table is maintained to keep track of the job id, GPU

id, job status (dispatched or done), start time and end time. The job status table can be saved and is

used to evaluate system performance. Users can define the maximum number of co-located jobs to

explore the multitasking capabilities of the GPU.

5.6.2 Platform

We evaluate Magic using a platform equipped with a NVIDIA GTX 1080Ti GPU. This

Pascal-based GPU has 3586 CUDA cores and 28 streaming multiprocessors, and supports concurrent
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Algorithm 5 Magic Scheduling Policy for GPU Clusters
1: procedure MAGIC SCHEDULE( )

2: if GPU cluster is homogeneous then
3: select the least loaded GPU

4: apply InferBin Schedule() on the selected GPU

5: end if
6: if GPU cluster is heterogeneous then
7: load trained neural network model

8: predict the best GPU for waiting jobs

9: set up the job queue for each GPU

10: sort the interference-insensitive and interference-sensitive jobs by the binary size

11: prioritize interference-insensitive jobs for each job queue

12: while job queue is not empty do
13: select the least loaded GPU considering the maxCoRun constraint

14: if queue is not empty for the selected GPU then
15: dispatch next job in the queue

16: else
17: steal jobs from the next least loaded GPU

18: dispatch the new job

19: end if
20: end while
21: end if
22: end procedure

kernel execution and concurrent copy operations. The details of our software and hardware evaluation

system are summarized in Table 5.4. Persistent mode is turned on during our experiments, allowing

the driver to remain loaded, even when there are no clients running [78]. The number of concurrent

compute and copy engine connections is set to 8, as the default [3].

Table 5.4: Platform specifications for a single GPU system.

Hardware
Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz
NVIDIA GeForce GTX 1080Ti (Pascal Architecture)

Software
Ubuntu 14.04 x86 64 with kernel 4.4.0-87-generic
CUDA Driver Version: 375.88
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Figure 5.11: Implementation of the Magic framework.

For multi-GPU systems, we use a platform installed with two NVIDIA GPUs: 1) a Kepler-

based GTX 760 and 2) a Maxwell-based GTX 950. Both GPUs have 6 streaming multiprocessors

(SM). The GTX 760 has 192 CUDA cores per SM, with a total of 1152 CUDA cores. The GTX 950

has 128 CUDA cores per SM, with a total of 768 CUDA cores. Both GPUs support concurrent kernel

execution. The GTX 760 has 1 copy engine, whereas the GTX 950 has 2 copy engines. Persistent

mode is also turned on during all experiments. The details of the heterogeneous GPU system are

described in Table 5.5.

Table 5.5: Platform specifications for a multi-GPU system.

Hardware
Intel(R) Core(TM) i7-4790K CPU @ 4GHz
NVIDIA GeForce GTX 760 Ti (Kepler Architecture)
NVIDIA GeForce GTX 950 Ti (Maxwell Architecture)

Software
Ubuntu 16.04 x86 64 with kernel 4.4.0-124-generic
CUDA Driver Version: 367.48

5.6.3 Workloads

For our analysis and performance evaluation of Magic, we use 79 GPU applications selected

from the CUDA SDK, Lonestar, Parboil, PolyBench, Rodinia and SHOC benchmark suites. The

CUDA SDK includes applications from a broad range of fields, including finance, image processing,

and linear algebra [74]. Lonestar includes several irregular parallel GPU applications [55]. Parboil

covers throughput-oriented applications, including image processing, biomolecular simulation, fluid

dynamics and astronomy [92]. Polybench/GPU is a collection of GPU-based benchmarks targeted for

linear algebra, data-mining and stencil computations [32]. Rodinia is a benchmark suite developed to
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evaluate heterogeneous platforms [15]. SHOC is designed to test the performance and stability of a

heterogeneous computing system [21]. Among these 79 workloads, 24% run in less than 1 second,

43% take 1 to 2 seconds to complete, 21% take 2 to 5 seconds to complete, and 3% take 5 to 10

seconds to complete. 9% run longer than 10 seconds.

5.6.4 Evaluation Metrics

We use two popular system-level metrics for performance evaluation, proposed by Eyerman

and Eeckhout, to evaluate multiprogram workloads [25].

System Throughput (STP) measures the work completed per unit of time, with values

ranging between 1 to N, as described in Equation 5.5. STP is a the-higher-the-better metric.

STP =
N∑
i=1

T Dedicatei
T Coruni

(5.5)

Average Normalized Turnaround Time (ANTT) measures the arithmetic average of the

turn-around time slowdown due to multitasking, as described in Equation 5.6. ANTT is a the-lower-

the-better metric.

ANTT =
1

N

N∑
i=1

T Coruni
T Dedicatei

(5.6)

T Coruni is the runtime for ith application when it is co-scheduled with other applications.

T Dedicatei is the runtime for ith application when it is the only application executing on the GPU.

N stands for the total number of applications.

5.6.5 Scheduling Policies

For the single GPU system, three scheduling policies are evaluated: 1) a first-come-

first-serve (fcfs) policy, 2) a similarity-based policy and 3) our proposed InferBin policy. The

first-come-first-serve policy schedules workloads based on the order in which they arrive. The

similarity-based policy schedules workloads with distinctive resource utilization patterns. For the

similarity-based policy, FeatAll is used to calculate the similarity distance. For the InferBin policy,

both FeatAll and Feat9 are used for comparison. Given the number of scheduling policies and

feature sets developed in this thesis, we evaluate four different schedulers: 1) fcfs, 2) sim-FeatAll, 3)

InferBin-Feat9, and 4) InferBin-FeatAll.
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For the multi-GPU system, we also studied three scheduling policies: 1) the least-loaded

(ll) policy, 2) the round-robin (rr) policy and 3) the proposed InferBin policy. For the least-loaded

policy, a least-loaded GPU is selected for queuing jobs. For the round-robin policy, workloads take

turns to be scheduled on each GPU in the round-robin fashion. When the total number of co-running

workloads reaches the limit, the scheuler will wait until one of the running jobs completes. Both the

FeatAll and Feat9 metrics are used for the InferBin policy. For performance comparison, we have

four schedulers to evaluate: 1) ll, 2) rr, 3) InferBin-Feat9, and 4) InferBin-FeatAll. Next, we compare

the performance of these schedulers.

5.7 Evaluation of the Benefits of Magic

While the 79 workloads can be dispatched in 1 of 79! different sequence, we select 3

random launch sequences to evaluate different schedulers. We explore the multitasking capabilities

of the GPU by varying the maximum number of co-located running jobs (MaxCoRun) from 2 to

8. For the single-GPU system, workloads are executed on a NVIDIA GTX 1080 Ti GPU. For the

heterogeneous multi-GPU system, we use two NVIDIA GPUs (GTX 750 and GTX 950) from Kepler

and Maxwell generations, respectively.

5.7.1 Single-GPU System

According to the interference analysis presented in Section 5.3, we need to train the

interference prediction model based on a pool of different machine learning models. We have

identified the best models for FeatAll and Feat9 feature sets, where an Adaboost model is used for

FeatAll and a K-Nearest Neighbor model is used for Feat9. Both models are able to achieve better

than a 70% prediction accuracy on average.

The total elapsed time of running all the jobs using four different schedulers (fcfs, sim-

FeatAll, InferBin-FeatAll, and InferBin-Feat9) are shown in Figure 5.12. For the case where the

MaxCoRun is 2, sim-FeatAll and InferBin-FeatAll did not outperform fcfs, except for InferBin-Feat9,

which outperformed fcfs by 6%. For the case where MaxCoRun is 4, InferBin-FeatAll and InferBin-

Feat9 clearly outperforms fcfs by 10% and 15%, respectively. For the case where MaxCoRun

is 6, sim-FeatAll, InferBin-FeatAll and InferBin-Feat9 outperform fcfs by 14%, 18% and 22%,

respectively. For the case where MaxCoRun is 8, the performance of fcfs was outpaced by the other

three schedulers by more than 17% on average. We have observed that both simliarity-based and our

proposed InferBin policies perform well when there are more than 4 jobs allowed to run concurrently
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Figure 5.12: Performance of four schedulers (fcfs, sim-FeatAll, InferBin-FeatAll and -Feat9) for

three different application launch sequences (s1/s2/s3), where the maximum number of co-located

jobs on the GTX 1080 Ti GPU was increased from 2 to 8.

on the GPU. In all, InferBin-Feat9 performed the best. It outperformed fcfs and sim-FeatAll by 16%

and 10% on average, respectively.

The System Throughput (STP) and Average Normalized Turnaround Time (ANTT) are

presented in Figures 5.13 and 5.14. Our proposed InferBin-Feat9 scheduler improves STP by 10%-

36% for fcfs, 5%-37% for sim-FeatAll and 2%-9% for InferBin-FeatAll. Meanwhile, InferBin-Feat9
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reduced ANTT by 13%-56% for fcfs, 6%-68% for sim-FeatAll and 6%-17% for InferBin-FeatAll.

Figure 5.13: The system throughput using different schedulers.

Figure 5.14: The Average Normalized Turn-around Time using different schedulers.
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5.7.2 Multi-GPU System

In Section 5.4, we proposed using a neural network model to predict the best device to run

for the GPU workloads in a multi-GPU system. After defining the model parameter search space and

training the model with stratified 5-fold cross validation, our finalized neural network models for

FeatAll and Feat9 are able to achieve better than a 97% prediction accuracy on average.

Figure 5.15: Performance of four schedulers (least-loaded, round-robin, InferBin-FeatAll and -Feat9)

for three different application launch sequences (s1/s2/s3), where the maximum number of co-located

jobs on two GPUs (GTX 760 and GTX 950) was increased from 2 to 8.

The total elapsed time of running all the jobs using four different schedulers (least-loaded,
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round-robin, InferBin-FeatAll, InferBin-Feat9) is presented in Figure 5.15. For the case where the

MaxCoRun is 2, InferBin-FeatAll and InferBin-Feat9 perform as good as least-loaded. Compared

to the round-robin policy, InferBin-FeatAll and InferBin-Feat9 achieve a 15% and 14% average

improvement, respectively. For the case where MaxCoRun is 4, InferBin-FeatAll and InferBin-Feat9

outperform least-loaded by 21%. On average, InferBin-FeatAll and InferBin-Feat9 perform 22%

better than round-robin. For the case where MaxCoRun is 6, InferBin-FeatAll and InferBin-Feat9

outperform the least-loaded policy by 21% and 19%, respectively. InferBin-FeatAll achieves a 15%

performance improvement over round-robin, whereas InferBin-Feat9 obtains a 14% improvement.

For the case where MaxCoRun is 8, InferBin-FeatAll and InferBin-Feat9 outpace the least-loaded

policy by 13% and 16%, respectively. Similarly, the performance of round-robin was outperformed

by InferBin-FeatAll and InferBin-Feat9, by more than 17%.

We have noticed that our proposed InferBin policies perform best when maximum concur-

rent running jobs (MaxCoRun) is set at 4. As we increase MaxCoRun, the performance benefits of

adopting our InferBin policies drops. Since the CPU is a 4-core Intel chip with the hyper-threading

enabled, running more than 8 threads could introduce more contention on the CPU resources. This

could lead to the observation that when more than 8 jobs are enabled for concurrent execution on

the 2-GPU system, the overall performance does not improve. In all, InferBin-Feat9 can perform as

good as InferBin-FeatAll. Our proposed InferBin policies have outperformed the least-loaded and

round-robin policies by 14% and 18% on average, respectively.

The System Throughput (STP) and Average Normalized Turnaround Time (ANTT) are

presented in Figure 5.16 and Figure 5.17. On average, the proposed InferBin-FeatAll and InferBin-

Feat9 schedulers improve STP by 36% for least-loaded and 24% for round-robin. Overall, InferBin-

FeatAll can reduced ANTT by 1.8x for least-loaded and 1.5x for round-robin, whereas InferBin-Feat9

can reduce ANTT by 2.6x for least-loaded and 1.7x for round-robin.
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Figure 5.16: The system throughput using different schedulers on a 2-GPU (GTX 760 and GTX 950)

system.

Figure 5.17: The Average Normalized Turn-around Time using different schedulers on a 2-GPU

(GTX 760 and GTX 950) system.
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5.8 Summary of Magic

In this chapter, we have presented Magic, an interference-aware scheduler for GPU work-

loads. Magic adopts an automatic feature selection algorithm, based on Principle Feature Analysis,

to identify prominent metrics for interference analysis. Magic requires a small amount of profile

information from a queued workload to estimate the potential interference with other workloads.

We proposed a greedy search method to build an effective interference prediction model for GPU

workloads. Guided by our InferBin scheduling policy, we achieved an average speedup of 16%

versus a first-come-first-serve policy and 10% versus a Similarity scheduling policy. We have found

that using a few prominent metrics (Feat9) can many times result in better scheduling decisions than

using the full set of profiling metrics (FeatAll). In a best-case scenario, our scheduler can improve

STP by 37% and reduce ANTT by 68%.

For a heterogeneous GPU cluster, the Magic framework uses a neural network model to

predict the best device for an incoming workload before applying the InferBin scheduling policy.

We have observed that our proposed InferBin can outperform a least-loaded policy by 15% and

outperform a round-robin policy by 17%, on average. In addition, our scheduler can improve STP

on average, providing a 36% benefit over a least-loaded scheduler and 24% over a round-robin

scheduler. On average, our scheduler can reduce ANTT by 1.9x over least-loaded and 1.6x over

round-robin. We observed that using a reduced feature set (Feat9) can achieve similar performance

benefits as using a full profiling metric set (FeatAll).
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Conclusion

Modern GPUs support concurrent execution for kernels and applications to improve device

resource utilization and boot system throughput. Running kernels and applications concurrently

without considering the interference often lead to a suboptimal outcome. As we see new cloud-

based GPU instances being offered to the public, it becomes increasingly important to reduce

the interference from co-located kernels and jobs, while maintaining a good level of quality-of-

service. We explored how to properly design interference-aware scheduling support at the kernel and

application level on modern GPUs to meet the demands of future cloud-based GPU computing.

In this thesis, we presented the challenges to achieve a high degree of multilevel concur-

rency on modern GPUs. For kernel-level concurrent execution, we characterized occupancy metrics,

kernel configurations and computational characteristics, showing the how each can impact perfor-

mance. Leveraging profiling information and instruction cycles measured via microbenchmarks, we

can categorize a GPU kernel into two groups, memory-intensive and compute-intensive. Based on

the kernel similarity, we developed a Similar Kernel Method to recommend the best block size for the

target kernel configuration. Furthermore, we developed an empirical performance model called Moka

to explore the design space for concurrent kernel execution (CKE), which takes into consideration

data transfer patterns, GPU execution patterns, resource contention and stream launch overhead.

Using real-world GPU applications, our study shows Moka can estimate the CKE performance

within 12% of the actual CKE runtime. In addition, Moka can suggest a close-to-optimal solution to

determine the dispatch order when funneling different kernels for concurrent kernel execution.

In this thesis we explored optimizing execution efficiency for GPU workloads not only at

the kernel level, but also at the application level. We have found that considering GPU resources

used by a workload by concurrently executing application can benefit performance significantly.

We can achieve better utilization of the available GPU resources. However, GPU workloads can
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exhibit varying levels of performance degradation due to concurrent execution. It is challenging

to improve system throughput and maintain a high level of fairness, especially for cloud providers.

Little prior work has studied the factors contributing to concurrent execution interference. We applied

Principal Feature Analysis to identify prominent metrics associated with interference, rather than

relying on the programmer’s domain expertise. We demonstrated that trained interference metrics

can be integrated into a model that can produce optimized scheduling decisions and reduce runtime

overhead. We proposed training an interference prediction model to categorize GPU workloads

into two groups, interference-sensitive and interference-insensitive, based on a pool of different

machine learning algorithms. Our best model can achieve higher than 70% prediction accuracy. By

incorporating an interference prediction model, our proposed interference-aware scheduling policy

named InferBin improves system performance by 16% as compared to a first-come-first-serve policy,

and outperforms a state-of-art similarity-based scheduler by 10%. Furthermore, we added support for

heterogeneous GPU clusters for the interference-aware scheduler. Leveraging a neural network model

for cross-GPU performance prediction, our scheduler selects the fastest device for each workload

and applies our InferBin policy to mitigate interference. On a heterogeneous multi-GPU system, our

proposed scheduler outperformed a least-loaded policy and a round-robin policy by 21% and 22%,

respectively.
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6.1 Future Work

Our proposed Moka framework explores the design space for concurrent kernel execution.

If we have the ability to predict the CKE performance accurately, Moka can be integrated into the GPU

compiler to automatically funnel different kernels into the same context for higher computational

throughput.

Figure 6.1: Average execution slowdown comparing a GTX 950 and a GTX 760.

In Section 1.3.2, we demonstrated how each workload introduces a specific level of

interference when co-located with a second workload on a specific GPU (i.e., a GTX 1080 Ti GPU).

In Figure 6.1, we plot the average slowdown for the same six workloads on two different NVIDIA

GPUs: 1) a GTX 950 and 2) a GTX 760. While we can observe that the sensitivity classification

varies for each workload, the general trend observed across sensitivity classes remain the same.

The threshold used to decide whether a GPU workload is sensitive or insensitive should be set

on a per GPU architecture basis. For our interference-aware scheduling exploration applied at an

application level, our proposed scheduling policy (InferBin) used the binary size as an indicator of

workload execution time, which introduces some inaccuracy in our work. A more robust performance

prediction model is needed for GPU workloads to guide the scheduler to mitigate the interference of

concurrently executed GPU workloads. Our proposed interference prediction model estimates the

sensitivity level of an application with the default data size. Revisiting sensitivity analysis, using

different application input sizes, should be a fruitful direction for future work. Our framework can

also be extended to support GPU virtualization technology such as rCUDA [24] to further optimize

the concurrent execution efficiency for cloud computing.
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