
Power Aware External Bus Arbitration for

System-on-a-Chip Embedded Systems

Ke Ning12 and David Kaeli1

1 Northeastern University 360 Huntington Avenue, Boston MA 02115
2 Analog Devices Inc. 3 Technology Way Norwood MA 02062

Abstract. Power efficiency has become a key design trade-off in em-
bedded system designs. For system-on-a-chip embedded systems, an ex-
ternal bus interconnects embedded processor cores, I/O peripherals, a
direct memory access (DMA) controller, and off-chip memory. External
memory access activities are a major source of energy consumption in
embedded systems, and especially in multimedia platforms. In this paper,
we focus on the energy dissipated due to the address, data, and control
activity on the external bus and supporting logic. We build our exter-
nal bus power model on top of a cycle-accurate simulation framework
that quantifies the bus power based on memory bus state transitions.
We select an Analog Devices ADSP-BF533 multimedia system-on-a-chip
embedded system as our target architecture model. Using our power-
aware external bus arbitration schemes, we can reduce overall power by
as much as 18% in video processing applications, and by 12% on aver-
age for the test suites studied. Besides reducing power consumption, we
also obtained an average performance speedup of 24% when using our
power-aware arbitration schemes.

Keywords: power-aware, external memory, bus arbitration, embedded systems,
media processor.

1 Introduction

Modern embedded systems are becoming increasingly limited by memory per-
formance and system power consumption. The power associated with off-chip
accesses can dominate the overall power budget. The memory power/speed prob-
lem is even more acute for embedded media processors that possess memory in-
tensive access patterns and require streaming serial memory access that tends to
exhibit low temporal locality (i.e., poor data cachablity). Without more effective
bus communication strategies, media processors will continue to be limited by
memory power and memory performance.

One approach to addressing both issues is to consider how best to schedule
off-chip accesses. Due to the intrinsic capacitance of the bus lines, a considerable
amount of power is required at the I/O pins of a system-on-a-chip processor

when data has to be transmitted through the external bus [1, 2]. The capaci-
tance associated with the external bus is much higher than the internal node
capacitance inside a microprocessor. For example, a low-power embedded mi-
croprocessor system like an Analog Devices ADSP-BF533 running at 500 MHz
consumes about 374 mW on average during normal execution. Assuming a 3.65
V voltage supply and a bus frequency of 133 MHz, the average external power
consumed is around 170 mW, which accounts for approximately 30% of the
overall system power dissipation [3].

In modern CMOS circuit design, the power dissipation of the external bus is
directly proportional to the capacitance of the bus and the number of transitions
(1 → 0 or 0 → 1) on bus lines [4, 5]. In general, the external bus power can be
expressed as:

Pbus = CbusV
2
extfkµ + Pleakage (1)

In the above equation, Cbus denotes the capacitance of each line on the bus,
Vext is the bus supply voltage, f is the bus frequency, k is the number of bit
toggles per transition on the full width of the bus, and µ is the bus utilization
factor. This power equation is an activity-based model. It not only accounts for
the dynamic power dissipated on the bus, but includes the pin power that drives
the signal I/O’s related to external bus communication. Pleakage is the power
dissipated on the bus due to leakage current.

The techniques to minimize the power dissipation in buses have been well
explored in previous research. The main strategies have been to utilize improved
bus encodings to minimize the bus activity. Various mixed-bus encoding tech-
niques (e.g., Gray codes and redundant codes) were developed to save on bus
power. Gray code addressing is based on the fact that bus values tend to change
sequentially and they can be used to switch the least number of signals on the
bus.

However, better performance can be obtained by using redundant codes [1].
A number of redundant codes have been proposed that add signals on the bus
lines in order to reduce the number of transitions. Bus-invert coding [6]is one
class of the redundant codes. Bus-invert coding adds an INV signal on the bus
to represent the polarity of the address on the bus. The INV signal value is
chosen by considering how best to minimize the hamming distance between the
last address on the bus and the current one. Some codes can be applied to both
the data and address buses, though some are more appropriate for addresses.

In our previous work, we described a bus modeling system that can capture
bus power in the same framework of a cycle-accurate simulator for an embedded
media processor [7]. We discussed an initial design of a power-aware bus arbi-
tration scheme. The main contributions of this paper are a completed design
of our power-aware bus arbitration scheme that also considers using pipelined
SDRAM, and we also consider a broader range of multimedia applications. This
paper is organized as follows. In section 2 we describe the target architecture for
our work, which contains a system-on-a-chip media processor, SDRAM mem-
ory, and an external bus interface unit. We also present our power modeling

methodology. Section 3 describes a number of different bus arbitration algo-
rithms that we consider for power and performance optimizations. Section 4
presents power/performance results of MPEG-2, JPEG, and PGP benchmarks
for traditional arbitration schemes and our power-aware schemes. Finally, Sec-
tion 5 presents conclusions.

2 System-on-a-Chip Architectures

2.1 Interconnect Subsystem

Modern system-on-a-chip embedded media systems include many components: a
high-speed processor core, hardware accelerators, a rich set of peripherals, direct
memory access (DMA), on-chip cache and off-chip memory. The system archi-
tecture considered in our study includes a single core, several peripherals, and
off-chip SDRAM memory, and is similar to many current embedded platforms.

Fig. 1. Our target embedded media system architecture.

For multimedia applications, throughput requirements are increasing faster
and faster. Today, for a D1 (720x480) video codec (encoder/decoder) media
node, we need to be able to process 10 million pixels per second. This work-
load requires a media processor for computation, devices to support high speed
media streaming and data conversion via a parallel peripheral interface (PPI),
and a synchronous serial port (SPORT) for interfacing to high speed telecom
interfaces. The high data throughput requirements associated with this plat-
form make it impossible to store all the data in an on-chip memory or cache.
Therefore, a typical multimedia embedded system usually provides a high-speed
system-on-a-chip microprocessor and a very large off-chip memory. The Analog

Devices Blackfin family processors, the Texas Instrument OMAP, and the Sig-
maDesign EM8400 series are all examples of low-power embedded media chipsets
which share many similarities in system design and bus structure. The system
architecture assumed in this paper is based on these designs and is shown in
Figure 1.

When trying to process streaming data in real-time, the greatest challenge
is to provide enough memory bandwidth in order to sustain the necessary data
rate. To insure sufficient bandwidth, hardware designers usually provide multiple
buses in the system, each possessing different bus speeds and different protocols.
An external bus is used to interface to the large off-chip memory system and other
asynchronous memory-mapped devices. The external bus has a much longer
physical length than other buses, and thus typically has higher bus capacitance
and power dissipation. The goal of this work is to accurately model this power
dissipation in a complete system power model so we can explore new power-
efficient scheduling algorithms for the external memory bus.

2.2 External Bus Interface Unit

In the system design shown in Figure 1, there are two buses, one internal bus and
one external bus, These two buses are bridged by an external bus interface unit
(EBIU), which provides a glue-less interface to external devices (i.e., SDRAM
memory, flash memory and asynchronous devices).

There are two sub-modules inside the EBIU, a bus arbitrator and a mem-
ory controller. When the units (processor or DMA’s) in the system need to
access external memory, they only need to issue a request to the EBIU buffer
through the internal bus. The EBIU will read the request and handle the off-chip
communication tasks through the external bus. Due to the potential contention
between users on the bus, arbitration for the external bus interface is required.
The bus arbitrator grants requests based on a pre-defined order. Only one access
request can be granted at a time. When a request has been granted, the mem-
ory controller will communicate with the off-chip memory directly based on the
specific memory type and protocol. The EBIU can support SDRAM, SRAM,
ROM, FIFOs, flash memory and ASIC/FPGA designs, while the internal units
do not need to discriminate between different memory types. In this paper,
we use multi-banked SDRAM as an example memory technology and integrate
SDRAM state transitions into our external bus model (our modeling framework
allows us to consider different memory technologies, without changing the base
system-on-a-chip model).

2.3 Bus Power Model

The external bus power includes dynamic power to charge and discharge the
capacitance along the external bus, and the pin power to drive the bus current.
The external bus power is highly dependent on the memory technology chosen.
In past work on bus power modeling, little attention has been paid to the impact
of the chosen memory technology. While we have assumed an SDRAM in our

power model in this work, we can use the same approach with other types of
memory modules. The external bus power associated with each transaction will
be the total number of pins that toggle on the bus. We include in our model
the power consumption due to the commands sent on the control bus, the row
address and column address on the address bus, and the data on data bus. The
corresponding leakage power is also considered in our model.

Fig. 2. Timing diagram showing two memory accesses for both sequential and pipelined
command SDRAM.

SDRAM is commonly used in cost-sensitive embedded applications that re-
quire large amounts of memory. SDRAM has a three-dimensional structure
model. It is organized in multiple banks. Inside each bank, there are many pages,
which are selected by row address. The memory access is on a command-by-
command basis. An access involves processing a PRECHARGE and an ACTI-
VATE command before a physical READ/WRITE command. At the same time
of an ACTIVATE and READ/WRITE command, the corresponding row and
column addresses are sent on the address bus.

To maximize memory bandwidth, modern SDRAM components allow for
pipelining memory commands [8], which eliminates unnecessary stall cycles and
NOP commands on the bus. While these features increase the memory band-
width, they also reduce the bus command power. Consecutive accesses to dif-
ferent rows within one bank have high latency and cannot be pipelined, while
consecutive accesses to different rows in different banks can be pipelined. Fig-
ure 2 is a timing diagram for processing two read operations in sequential access
SDRAM and pipelined access SDRAM.

In our bus model, we assume that the power to drive the control bus and
address bus are the similar. For each read/write request, we first determine
the series of commands needed to complete that request. For each command,

the bus state transitions, the number of pin toggles, and the bus utilization
factor is recorded. Finally, the average bus power dissipated is calculated using
Equation 1.

3 Bus Arbitration

The bandwidth and latency of external memory system are heavily dependent
on the manner in which accesses interact with the three-dimensional SDRAM
structure. The bus arbitration unit in the EBIU determines the sequencing of
load/store requests to SDRAM, with the goals of reducing contention and max-
imizing bus performance. The requests from each unit will be queued in the
EBIU’s wait queue buffer. When a request is not immediately granted, the re-
quest enters stall mode. Each request can be represented as a tuple (t, s, b, l),
where t is the arrival time, s identifies the request (load or store), b is the address
of the block, and l is the extent of the block. The arbitration algorithm schedules
requests sitting in the wait queue buffer with a particular performance goal in
mind. The algorithm needs to guarantee that bus starvation will not occur.

3.1 Traditional Algorithms

A number of different arbitration algorithms have been used in microprocessor
system bus designs. The simplest algorithm is First Come First Serve (FCFS). In
this algorithm, requests are granted on the bus based on the order of arrival. This
algorithm simply removes contention on the external bus without any optimiza-
tion and pre-knowledge of the system configuration. Because FCFS schedules the
bus naively, the system performs poorly due to instruction and data cache stalls.
The priority of cache accesses and DMA access are equal (though cache accesses
tend to be more performance critical than DMA accesses). An alternative is to
have a Fixed Priority scheme where cache accesses are assigned higher priority
than DMA accesses. For different DMA accesses, peripheral DMA accesses will
have higher priority than memory DMA accesses. This differentiation is needed
because if a peripheral device access is held off for a long period of time, it could
cause the peripheral to lose data or time out. The Fixed Priority scheme selects
the request with highest priority in the waiting queue instead of just selecting
the oldest. Using Fixed Priority may provide similar external bus performance
as the FCFS algorithm, but the overall system performance should be better if
the application is dominated by cache accesses. For real-time embedded applica-
tions which are dominated by DMA accesses, cache accesses can be tuned such
that cache misses are infrequent. Cache fetches can be controlled to occur only
at non-critical times using cache prefetching and locking mechanisms. There-
fore, for real-time embedded applications, the FCFS and Fixed Priority schemes
produce very similar external bus behavior.

3.2 Power Aware Algorithms

To achieve efficient external bus performance, FCFS and Fixed Priority are not
sufficient. Power and speed are two major factors of bus performance. In previous
related work, dynamic external bus arbitration and scheduling decisions were
primarily driven by bus performance and memory bandwidth [8, 9]. If a power-
efficient arbitration algorithm is aware of the power and cycle costs associated
with each bus request in the queue, each request can be scheduled to achieve
more balanced power/performance. The optimization target can be to minimize
power P , minimize delay D, or more generally to minimize PnDm. This problem
can be formulated as a shortest Hamiltonian path (SHP) on a properly defined
graph. The Hamiltonian path is defined as the path in a directed graph that
visits each vertex exactly once, without any cycles. The shortest Hamiltonian
path is the Hamiltonian path that has the minimum weight. The problem is
NP-complete, and in practice, heuristic methods are used to solve the problem
[10].

R3 (t3,s3,b3,l3)

R0 (t0,s0,b0,l0)

R1 (t1,s1,b1,l1)

R2 (t2,s2,b2,l2)

w(0,1)

w(0,2)

w(2,3)

w(3,2)

w(1,3)

w(3,1)

w(0,3)

w(2,1)

w(1,2)

Hamiltonian Path

Fig. 3. Hamiltonian Path Graph

Let R0 denote the most recently serviced request on the external bus. R1,
R2, ... RL are the requests in the wait queue. Each request Ri consists of four
elements (ti, si, bi, li), representing the arrival time, the access type (load/store),
the starting address, and the access length. The bus power and delay are de-
pendent on the current bus state and the following bus state for each request.
The current bus state is the state of the bus after the previous bus access has
completed. P (i, j) represents the bus power dissipated for request Rj , given Ri

was the immediate past request. D(i, j) is the time between when request Rj is
issued and when Rj is completed, where Ri was the immediate past request. The

cost associated with scheduling request Rj after request Ri can be formulated
as Pn(i, j)Dm(i, j). We can define a directed graph G = (V,E) whose vertices
are the requests in the wait queue, with vertex 0 representing the last request
completed. The edges of the graph include all pairs (i, j). Each edge is assigned
a weight w(i, j), and is equal to the power delay product of processing request
Rj after request Ri.

w(i, j) = Pn(i, j)Dm(i, j), n,m = 0, 1, ... (2)

The problem of optimal bus arbitration is equivalent to the problem of finding
a Hamiltonian path starting from vertex 0 in graph G with a minimum path
traversal weight. Figure 3 describes a case when there are 3 requests are in the
wait queue. One of the Hamiltonian paths is illustrated with a dot line. The
weight of this path is w(0, 3) + w(3, 1) + w(1, 2). For each iteration, a shortest
Hamiltonian path will be computed to produce the minimum weight path. The
first request after request R0 on that path will be the request selected in next
bus cycle. After the next request is completed, a new graph will be constructed
and a new minimum Hamiltonian path will be found.

Finding the shortest Hamiltonian path has been shown to be NP-complete.
To produce a shortest path, we use heuristics. Whenever the path reaches vertex
Ri, the next request Rk with minimum w(i, k) will be chosen. This is a greedy
algorithm, which selects the lowest weight for each step. The bus arbitration
algorithm only selects the second vertex on that path. We avoid searching the
full Hamiltonian path, and so the bus arbitration algorithm can simply select a
request based on finding the minimum w(0, k) from request R0. The complexity
of this heuristic is O(L). When w(i, j) = P (i, j), arbitration will try to minimize
power. When w(i, j) = D(i, j), then we can minimize delay. To consider the
power efficiency, the power delay product can be used. Selecting different values
for n and m change how we trade off power with delay using weights w(i, j).

3.3 Target Architecture

In our experimental study, we used a power model of the Analog Devices Black-
fin family system-on-a-chip processors as our primary system model. We run
code developed for ADSP-BF533 EZ-Kit Lite board using the VisualDSP++
toolset. This board provides a 500 MHz ADSP-BF533 microprocessor, 16 MB of
SDRAM, and a CCIR-656 video I/O interface. Inside the ADSP-BF533 micro-
processor, there are both L1 instruction and data caches. The instruction cache
is 16 KB 4-way set associative. The data cache is 16 KB 2-way set associative.
Both caches use a 32 byte cache line size. The SDRAM module selected is the
Micron MT48LC16M16A2 16 MB SDRAM. The SDRAM interface connects to
128 Mbit SDRAM devices to form one 16 MB of external memory. The SDRAM
is organized in 4 banks, with a 1 KB page size. It also has following characteris-
tics to match the on-chip SDRAM controller specification: 3.3V supply voltage,
133 MHz operating frequency, burst length of 1, column address strobe (CAS)
latency tCAS of 3 system clock cycles, tRP and tRCD equal to 2 system clock

cycles, refresh rate programmed at 4095 system clock cycles. We used the Ana-
log Devices Blackfin frio-eas-rev0.1.7 toolkit to integrate this model. The power
model has been validated with physical measurements as described in [11]. To
make sure the arbitration algorithm does not produce long-term starvation, a
time-out mechanism was added for the requests. The timeout values for cache
and memory DMA are 100 and 550 cycles, respectively.

Table 1. Benchmarks

Name Description
MPEG2-ENC MPEG-2 Video encoder with 720x480 4:2:0 input frames.

MPEG2-DEC MPEG-2 Video decoder of 720x480 sequence with 4:2:2 CCIR frame output.

JPEG-ENC JPEG image encoder for 512x512 image.

JPEG-DEC JPEG image decoder for 512x512 image.

PGP-ENC Pretty Good Privacy encryption and digital signature of text message.

PGP-DEC Pretty Good Privacy decryption of encrypted message.

4 Experimental Setup

4.1 Benchmarks

Experiments were run on a set of multimedia workloads. We chose MPEG-2 for
video processing, JPEG for image compression and PGP for cryptography. All
three benchmark suites are representative and commonly used applications for
multimedia processing. MPEG-2 is the dominant standard for high-quality dig-
ital video transmission and DVD. We selected real-time MPEG-2 encoder and
decoder source codes that include optimized Blackfin MPEG-2 libraries. The
input datasets used are the cheerleader for encoding (the size is 720x480 and the
format is interlaced video) and tennis for decoding (this image is encoded by
the MPEG-2 reference encoder, the size is also 720x480, and the format is pro-
gressive video). Both inputs are commonly used by the commercial multimedia
community.

JPEG is a standard lossy compression method for full color images. The
JPEG encoder and decoder used also employ optimized Blackfin libraries. The
input image is Lena (the size is 512x512 in a 4:2:2 color space).

PGP stands for Pretty Good Privacy, and provides for encryption and signing
data. The signature we use is a 1024 bit cryptographically-strong one-way hash
function of the message (MD5). To encrypt data, PGP uses a block-cipher IDEA
and RSA for key management and digital signature.

In order to measure the external bus power and be able to assess the impact
of our power-efficient bus arbitration algorithm, we developed the following sim-
ulation framework. First, we modified the Blackfin instruction-level simulator
to include the system bus model and cache activity. From this model, we feed
all accesses generated on the external bus to an EBIU model. The EBIU model
faithfully simulates the external bus behavior, capturing detailed SDRAM state

transitions and allows us to considered different bus arbitration schemes. The
average bus power and performance are computed from the simulation results
produced by our integrated simulator.

4.2 Results

There are eleven different bus arbitration schemes evaluated in our simulation
environment. We considered two traditional schemes: (1) Fixed Priority (FP),
(2) First Come First Serve (FCFS), and 9 different power-aware schemes. For
Fixed Priority, we assign the following priority order (from highest to lowest):
instruction cache, data cache, PPI DMA, SPORT DMA, memory DMA. In the
power-aware schemes, each scheme is represented by the pair of power/delay
coefficients (n,m) of the arbitration algorithm. n and m are the exponents shown
in Equation 2. Different n and m values will favor either power or delay. (1, 0)
is the minimum power scheme, (0, 1) is the minimum delay scheme, and (1, 1),
(1, 2), (2, 1), (1, 3), (2, 3), (3, 2), (3, 1) consider a balance between power and
delay by using different optimization weights. We present experimental results for
both power and delay. The MPEG-2 encoder and decoder simulation results are
shown in Figure 4, JPEG encoder and decoder are shown in Figure 5 and PGP
encryptor and decryptor are shown in Figure 6. All the experiments consider both
sequential command mode SDRAM and pipelined command mode SDRAM.

In all applications, the power dissipation for the power-aware arbitration
schemes is much lower when compared to using Fixed Priority or FCFS. The
power-aware schemes also benefit from fewer bus delays. These conclusions are
consistent across all of the applications studied and are also consistent when
using either sequential command SDRAM or pipelined command SDRAM. In
the MPEG-2 case, the power-aware scheme (1, 0) enjoys an 18% power savings
relative to a Fixed Priority scheme for encoder and 17% for decoder. The same
power-aware scheme also achieved a 40% reduction in cycles when compared
to the Fixed Priority scheme on MPEG-2 decoder, and a 10% reduction for
MPEG-2 encoder.

To factor out the impact of sequential versus pipelined command mode from
the power savings, we show in Table 2 the bus power savings and we show
in Table 3 the cycle savings. Inspecting the two tables, we can see that the
power-aware arbitration scheme achieves an average power savings of 12% and
an average speedup of 24% over all 6 applications. There exist some variations
in power savings and speed up achieved. These variations are primarily due to
differences in bus utilization across the different applications. For high traffic
applications, external memory access requests are more bursty, In those cases,
our power-aware schemes provide a larger improvement than in low traffic appli-
cations, in which the requests are less bursty. The greater the number of requests
in the queue, the greater the opportunity that the arbitrator can effect an im-
provement. Similarly, in Tables 4 and 5, the pipelined command SDRAM obtains
on average a 13% power savings and a 18% performance speedup.

From inspecting the results shown in Tables 2-5, we can see that the choice
of using sequential versus pipelined command modes is not a factor when con-

Fig. 4. External bus power/delay results for MPEG-2 video encoder and decoder.

Fig. 5. External bus power/delay for JPEG image encoder and decoder.

Fig. 6. External bus power/delay for PGP encryption and decryption.

Table 2. External bus power savings of (1, 0) arbitration vs. fixed priority arbitration
in sequential command SDRAM.

Fixed priority power (mW) Arbitration (1, 0) Power (mW) Power savings
MPEG2-ENC 55.85 45.94 18%

MPEG2-DEC 58.47 48.62 17%

JPEG-ENC 17.64 16.57 6%

JPEG-DEC 13.77 12.99 6%

PGP-ENC 6.33 5.66 11%

PGP-DEC 6.81 5.94 13%

Average savings 12%

Table 3. External bus speedup of (1, 0) arbitration vs. fixed priority in sequential
command SDRAM.

Fixed priority delay (SCLK) Arbitration (1, 0) Delay (SCLK) Speedup
MPEG2-ENC 140.36 126.10 10%

MPEG2-DEC 171.94 101.52 41%

JPEG-ENC 13.30 10.19 23%

JPEG-DEC 51.22 36.04 30%

PGP-ENC 34.87 25.21 28%

PGP-DEC 40.28 35.22 13%

Average Speedup 24%

Table 4. External bus power savings of (1, 0) arbitration vs. fixed priority arbitration
in pipelined command SDRAM.

Fixed Priority Power (mW) Arbitration (1, 0) Power (mW) Power savings
MPEG2-ENC 52.51 42.84 18%

MPEG2-DEC 56.29 44.58 21%

JPEG-ENC 16.97 15.93 6%

JPEG-DEC 12.41 11.68 6%

PGP-ENC 6.05 5.39 11%

PGP-DEC 6.40 5.54 13%

Average savings 13%

Table 5. External bus speedup of (1, 0) arbitration vs. fixed priority in pipelined
command SDRAM.

Fixed priority delay (SCLK) Arbitration (1, 0) Delay (SCLK) Speedup
MPEG2-ENC 136.73 122.79 10%

MPEG2-DEC 128.82 97.57 24%

JPEG-ENC 9.50 7.93 16%

JPEG-DEC 48.02 28.20 41%

PGP-ENC 27.61 24.92 10%

PGP-DEC 37.34 34.78 7%

Average Gain 18%

sidering the performance impact of the bus arbitration algorithm. However, the
pipelined command mode does decrease the request delay period by overlapping
bus command stall cycles with other non-collision producing commands. Pipelin-
ing also helps to reduce the bus power by using one command’s PRECHARGE
or ACTIVATE stall cycles to prepare for the next READ/WRITE command
(versus sending NOP commands). Table 6 summarizes the results between the
sequential command mode and pipelined command mode SDRAMs. The results
show that the pipelined command mode SDRAM can produce a 6% power sav-
ings and a 10% speedup.

Table 6. Power and speed improvements for pipelined vs. sequential command mode
SDRAM.

Avg. power Avg. power Power reduction Avg. delay Avg. delay Speedup of
in sequential in pipelined of pipelined sequential in pipelined in pipelined
mode (mW) mode (mW) commands mode (SCLK) mode (SCLK) commands

MPEG2-ENC 47.45 44.40 6% 128.31 124.99 3%

MPEG2-DEC 50.13 46.64 7% 113.38 103.38 9%

JPEG-ENC 16.86 16.26 4% 10.68 8.10 24%

JPEG-DEC 13.21 11.89 10% 38.74 31.28 19%

PGP-ENC 5.78 5.50 5% 26.95 25.40 6%

PGP-DEC 6.11 5.70 7% 36.09 35.25 2%

Avg. speedup 6% 10%

Comparing the results across the power-efficient schemes, we can see that the
performance differences are small, and that no one scheme provides significant
advantages over the rest. The scheme (1, 0) (i.e., the minimum power approach)
is actually more favorable with regards to design implementation. Scheme (1, 0)
basically needs a Hamming distance (XOR) computation unit and a comparator.
For each iteration, the arbitrator uses the Hamming distance computation unit
to accumulate the power used for each request that is pending in the wait queue,
and uses the comparator to select the minimum. For 0.13µm CMOS technology
and a 1.2 V power supply, an XOR transistor takes about 30 fJ to switch the
transistor state in the slow N and slow P process corner. In our case, the number
of transistors to implement the (1, 0) arbitrator is on the order of 103.

Fig. 7. Our power-aware bus arbitration architecture.

Figure 7 shows the architecture of the (1, 0) power-aware arbitrator. It con-
tains three major components, a single request queue, a single minimum power
comparator, and the memory access command generator. As memory access re-
quests arrive, they allocate storage space while waiting for service in the request
queue. The power estimator computes a request’s power relative to the previous
request. The comparator selects the minimum power request and stores it. When
the currently active request finishes, the minimum power request will be sent to
the bus by the access command generator, which also updates the previous re-
quest register which will be used to perform request selection in the next cycle.
Power estimation is performed serially for each request in the queue. All requests
will share the same power estimator logic. Using such a shared structure will re-
duce the hardware complexity, but may introduce some latency. In future work
we will investigate how to provide for parallel power estimation that balances
latency and power overhead.

5 Conclusions

Memory bandwidth has become a limiting factor in high performance embedded
computing. For future multimedia processing systems, bandwidth and power
are both critical issues that need to be addressed. This paper proposes a set
of new external bus arbitration schemes that balance bus power and delay. Our
experiments are based on modeling a low-end embedded multimedia architecture
while running six multimedia benchmarks. Our results show that significant
power reductions and performance gains can be achieved using power-aware
bus arbitration schemes compared to traditional arbitration schemes. We also
considered the impact of using both sequential and pipelined SDRAM models.
Finally, a hardware implementation of (1, 0) power-aware arbitrator is proposed.

References

1. Benini, L., De Micheli, G., Macii, E., Sciuto, D., Silvano, C.: Address bus encoding
techniques for system-level power optimization. In: Proceedings of the Conference
on Design, Automation and Test in Europe, IEEE Computer Society (1998) 861–
867

2. Panda, P.R., Dutt, N.D.: Reducing address bus transitions for low power memory
mapping. In: Proceedings of the 1996 European Conference on Design and Test,
IEEE Computer Society (1996) 63

3. Analog Devices Inc. Norwood, MA: Engineer-to-Engineer Note EE-229: Estimating
Power for ADSP-BF533 Blackfin Processors (Rev 1.0). (2004)

4. Givargis, T.D., Vahid, F., Henkel, J.: Fast cache and bus power estimation for pa-
rameterized system-on-a-chip design. In: Proceedings of the Conference on Design,
Automation and Test in Europe (DATE), ACM Press (2000) 333–339

5. Sotiriadis, P., Chandrakasan, A.: Low-power bus coding techniques considering
inter-wire capacitances. In: Proceedings of IEEE Conference on Custom Integrated
Circuits (CICC’00). (2000) 507–510

6. Stan, M., Burleson, W.: Bus-invert coding for low-power I/O. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems (1995) 49–58

7. Ning, K., Kaeli, D.: Bus power estimation and power-efficient bus arbitration for
system-on-a-chip embedded systems. In: Workshop on Powre-Aware Computer
Systems PACS’04, 37th Annual IEEE/ACM International Symposium on Microa-
chitecture (2004)

8. Rixner, S., Dally, W.J., Kapasi, U.J., Mattson, P., Owens, J.D.: Memory access
scheduling. In: ISCA ’00: Proceedings of the 27th Annual International Symposium
on Computer Architecture, New York, NY, USA, ACM Press (2000) 128–138

9. Lyuh, C.G., Kim, T.: Memory access scheduling and binding considering energy
minimization in multi-bank memory systems. In: DAC ’04: Proceedings of the
41st Annual Conference on Design Automation, New York, NY, USA, ACM Press
(2004) 81–86

10. Rubin, F.: A search procedure for hamilton paths and circuits. J. ACM 21 (1974)
576–580

11. VanderSanden, S., Gentile, R., Kaeli, D., Olivadoti, G.: Developing energy-aware
strategies for the blackfin processor. In: Proceedings of Annual Workshop on High
Performance Embedded Computing, MIT Lincoln Laboratory (2004)

