
Characterization and Remediation for Soft Error Reliability on GPU

A Dissertation Presented

by

Fritz Gerald Previlon

to

The Department of Electrical and Computer Engineering

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in

Computer Engineering

Northeastern University

Boston, Massachusetts

August 2019

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

22621894

22621894

2019

To my wife and my family.

i

Contents

List of Figures v

List of Tables vii

List of Acronyms viii

Acknowledgments ix

Abstract of the Dissertation x

1 Introduction 1
1.1 The growth of GPU Computing . 1
1.2 Emerging GPU Applications . 2
1.3 The Growing Need for Reliability in Emerging GPU Applications 2
1.4 Motivation for this Thesis . 3
1.5 Reliability Analysis for CPU vs. GPU . 4
1.6 Analysis of GPU Reliability . 5
1.7 Scope and Contributions of this thesis . 7

1.7.1 Contributions . 7
1.8 Organization of the Thesis . 8

2 Background 10
2.1 A brief history of GPU Computing . 10
2.2 Challenges to GPU Computing . 11
2.3 Overview of Transient Faults . 12
2.4 The Transient Fault problem in the industry . 13
2.5 Effects of Transient Faults . 14
2.6 Measuring Program Vulnerability to Transient Faults 15

2.6.1 Fault Injection . 15
2.6.2 Architecturally Correct Execution (ACE) Analysis 18

2.7 Evaluation Framework . 20
2.8 Fault Model Used in This Thesis . 21
2.9 Limitations . 22

ii

3 Related Work 24
3.1 Prior work in CPU Reliability . 24

3.1.1 Reliability assessment for CPU applications 24
3.1.2 Reliability Studies on CPU Systems in the Field 25

3.2 Prior work in GPU Reliability . 26
3.2.1 Studies on GPU systems in the field . 26
3.2.2 Beam Experiments . 27
3.2.3 Statistical Fault Injection Studies . 28
3.2.4 ACE Analysis studies . 29

3.3 Efficient Fault Injection . 30
3.4 GPU Program Phase Analysis . 32
3.5 Time-varying Reliability Characterization . 33
3.6 Summary . 33

4 Impact of Execution Parameters on GPU Program Vulnerability [1] 34
4.1 Input Data and Program Vulnerability . 36

4.1.1 Program Instruction Order . 36
4.1.2 Logical Masking . 37
4.1.3 Dynamic Replication of Code Sections 37

4.2 Results . 38
4.2.1 Impact of Input Data . 39
4.2.2 Effects of changes in kernel block sizes 48

4.3 Summary on the Impact of Execution Parameters on Program Vulnerability 50

5 PCFI: Program Counter Guided Fault Injection for Accelerating GPU Reliability As-
sessment 51
5.1 PCFI Overview . 51

5.1.1 Motivation . 51
5.1.2 PCFI Key Idea . 52

5.2 PCFI: Design and Implementation . 53
5.3 PCFI Evaluation and results . 58

5.3.1 Fault List Reduction . 59
5.3.2 Time savings . 60
5.3.3 Accuracy of PCFI compared against traditional fault injection, with 10K and

500 random injections. 62
5.4 Summary of PCFI . 63

6 Characterizing Vulnerability Phase Behavior in GPU applications 64
6.1 Motivation . 64
6.2 Time-Varying Vulnerability Behavior of GPU Programs 65
6.3 Resilience Groups: Capturing Dynamic Vulnerability Behavior 71
6.4 Summary on the Characterization of the Vulnerability Phase Behavior of GPU

applications . 74

iii

7 Spoti-FI: Reducing Fault Injection Time via Resilience Groups 75
7.1 Spoti-FI Methodology . 75
7.2 Results and Analysis . 76
7.3 Discussion . 78
7.4 Summary on Spoti-FI . 79

8 Exploiting Resilience Groups for Efficient Fault Mitigation 80
8.1 Mitigation Strategies for GPU . 81

8.1.1 Choice of Mitigation Strategy: ArmorAll [2] 82
8.1.2 ArmorAll: Resiliency Schemes . 82
8.1.3 ArmorAll: Evaluation and Overhead . 83

8.2 Application of Phase Analysis to ArmorAll . 84
8.2.1 Selective ArmorAll: Methodology . 84

8.3 Evaluation of Selective ArmorAll . 86
8.3.1 Fault Coverage and Overhead . 86

8.4 Summary on the Exploitation of Resilience Groups for Efficient Mitigation 87

9 Summary and Conclusion 88
9.1 Major Contributions of this Thesis . 88

9.1.1 Dependence of vulnerability on input size and configuration parameters . . 88
9.1.2 Automatic reduction of fault injection campaigns using Program Counters . 89
9.1.3 Characterization of time varying behavior of vulnerability 89
9.1.4 Exploitation of time varying behavior for efficient vulnerability assessment 90
9.1.5 Exploitation of the time varying behavior for efficient fault mitigation . . . 90

9.2 Future Work . 90

Bibliography 92

iv

List of Figures

1.1 Layers of the system stack where transient faults can propagate in a GPU. Arrows
indicate the extent of the propagation. In this thesis, we focus on faults that reach
user programs. 5

2.1 Stages during the compilation process. ptxas performs ISA-specific optimizations to
generate SASS assembly code. The SASS assembly code directly runs on the GPU.
SASSIFI performs fault injections at this level. 19

2.2 Three stages of a fault injection campaign for an application in SASSIFI [3] 20

4.1 Fault injection outcomes for applications with different input sizes. 40
4.2 Dynamic execution percentage for each basic block in gaussian, when the input

size changes and the fault injection results for the corresponding input sizes. Our
experiments found that a fault in the second kernel (K2) is more likely to induce an
SDC than a fault in K1. As the results show, the SDC rate grows as the input size
grows, with K2 dominating the execution. 41

4.3 Dynamic execution percentage for each basic block in lavaMD, when the input
size changes and the fault injection results for the corresponding input sizes. This
application scales well and increasing its input sizes simply results in repeatedly
executing the same basic blocks several times. 42

4.4 Fault injection outcomes for applications with different randomly generated input
values. The input values were randomly generated through the program’s own input
generator. 43

4.5 Fault injection outcomes for applications with randomly generated input values vs.
extremely biased values. ZERO and ONE input represent input values of all 0 or 1,
respectively. 45

4.6 Fault injection outcomes for applications with randomly generated input values. The
input values were randomly generated using the workload’s own input generator. . 46

4.7 Fault injection outcomes for applications when block sizes are changed. The x-axis
represents the thread-block sizes (1D and 2D) for the kernels. Runtime overhead
for respective block sizes over the baseline configuration (configuration with the
smallest block size) is also shown for each block size. 48

5.1 Traditional fault injection methods uniformly and randomly distribute faults across a
program’s dynamic instructions. 53

v

5.2 Applications from different domains, reduction (red) (data processing), dwtHaar1D
(signal processing), and mst (graph traversal), show that (1) few static instructions
(PCs) dominate overall dynamic execution of instructions, (2) vulnerability outcomes
in highly frequently PCs are likely to remain across injections for many PCs. . . . 55

5.3 PCFI approach for PC-guided fault injections . 56
5.4 Percent reduction of the total number of injections, after filtering out excess faults in

PCs. 58
5.5 Results for PCFI compared to a traditional fault injection campaign. In 5.5b, we

show outcomes for PCFI when starting with 500 faults (N=500). In 5.5a, we start
with a list of 10K faults (N=10K). 61

6.1 Three applications taken from three different problems domains, k-means clustering
(kmeans) (pattern recognition), LU Decomposition (lud) (linear algebra), and
Breadth-First-Search (bfs) (graph traversal). Both vulnerability and performance
(IPC) metrics are plotted, illustrating their time-varying and repetitive behavior over
program execution. Notably, GPU program vulnerability and performance do not
seem to be well correlated throughout their execution lifetime. 66

6.2 Code block executions for instruction sequences surrounding execution sequence
#36 in the kmeans application. From sequence #34 to sequence #36, the DUE
probability goes up from 3% to 11%, and the SDC probability goes down from 32%
to 3%. Black boxes represent basic blocks that are executed during the sequence. . 69

6.3 Forming resilience groups by combining different dynamic instruction sequences. . 72

7.1 Results for fault injections performed using Spoti-FI, compared with results of
traditional fault injections with 10K faults per program. Using Spoti-FI, we injected
an average of 1,317 faults per application, for an average error of 1.42% for masked
outcomes, 0.88% for DUE outcomes, and 3.92% for SDC outcomes, compared to a
fault injection experiment of 10,000 injections per application. 77

8.1 Overhead and fault coverage efficiency of global application vs our selective applica-
tion of Address Armor to bfs. For the selective application, we chose two resilience
groups with a high number of DUE cases. By applying AddressArmor to resilience
groups 2 and 4, we were able to detect about 21% of the bit flips that would cause a
crash in the appliction. This is equivalent to 80% of all the crash-causing bit flips. . 87

vi

List of Tables

4.1 Benchmarks and description of their input type and size 38
4.2 Outcome Categories for Injections . 38
4.3 A description of Workload specific biased input data. 46

5.1 Time savings using PCFI . 60
5.2 Min, Max and Average error observed between traditional fault injection and PCFI

for Masked, SDC and DUE outcomes. The error is the difference in the observed
fault breakdown percentage between PCFI and the traditional fault injection methods. 62

5.3 Comparing two techniques: 1) PCFI and 2) traditional fault injection with a reduced
fault list (as offered by PCFI with 500 faults) against a baseline of 500 fault injection
campaign. 63

6.1 GPU programs show a large standard deviation in terms of the number of Masked,
SDC and DUE outcomes across dynamic instruction sequences. 68

6.2 Benchmarks used in our experiments and the number of resilience groups found in
each application. A resilience group is a set of instruction sequences with similar
resilience characteristics. 73

7.1 Min, Max and Average error observed between traditional fault injection with 10K
faults and our methodology for Masked, SDC and DUE outcomes. The error is the
difference in the observed fault breakdown percentage between our methodology
and the traditional fault injection methods. 78

7.2 Number of faults injected based on the number of resilience groups per applica-
tion and fault list reduction from the standard 10K injections. For each resilience
group, one representative instruction sequence is selected for injection. Because the
resilience characteristics within one resilience group are stable, we injected only
enough faults in each resilience group to ensure 5% margin of error with a 95%
confidence level for the error injection. 78

8.1 Vulnerability characteristics per resilience group 80
8.2 ArmorAll: Evaluation and Overhead . 83
8.3 Vulnerability characteristics per resilience group in bfs after applying Selective

ArmorAll to resilience groups 2 and 4 (see Table 8.1). A side-effect of applying
ArmorAll is that it detects bit flips that would also result in Masked or SDC outcomes. 85

vii

List of Acronyms

GPU Graphics Processing Unit. a single chip processor with integrated transform, lighting, triangle
setup/clipping, and rendering engines that is capable of processing a minimum of 10 million
polygons per second. [4]. GPU’s are now widely used for general purpose applications.

viii

Acknowledgments

Here I wish to thank those who have supported me during the completion of this thesis.
First of all, I would like to thank my advisor, Prof. David Kaeli, for his help, support, and advice
throughout this process. I would also like to acknowledge Prof. Devesh Tiwari for his cooperation
on key parts of this thesis. I would also like to thank Dr. Charu Kalra, our collaboration contributed
to the refinement and improvement of this work.

Finally, I would like to thank my wife Michelle for her love, support, and encouragement
while going through graduate school.

ix

Abstract of the Dissertation

Characterization and Remediation for Soft Error Reliability on GPU

by

Fritz Gerald Previlon

Doctor of Philosophy in Computer Engineering

Northeastern University, August 2019

Dr. Kaeli, Advisor

Graphic Processing Units (GPUs) have become the accelerator of choice for improving
the performance of many of the most demanding applications. While performance of these devices
continues to improve generation after generation, reliability of these devices has not been studied
rigorously. Several sources of errors can undermine the reliability of these devices, including
radiation-induced transient faults, environmental perturbations, and process, temperature or voltage
variations. In particular, transient faults in GPU execution have become a significant threat to high
performance computing (HPC) and safety-critical applications. HPC systems experience transient
faults every few tens of hours and the trend is expected to become worse.

A key point in the study of transient faults and their effects on user programs is that
some faults do not cause undesirable results in the affected programs. This is especially true for
GPU applications. Past efforts to study and understand GPU vulnerability to transient faults have
demonstrated reliability can vary greatly across different applications. A significant amount of
resilience resides intrinsically in some GPU applications. Transient faults in these applications are
not likely to affect the results they produce. Other applications are highly sensitive to transient faults
and are likely to crash or produce incorrect results when they are affected by transient faults.

While it is generally a good idea to protect the GPU hardware from transient faults, the
penalties incurred in terms of performance, power and area are not always justifiable, depending
on the applications utilizing the hardware resources. Understanding the relationship between the
underlying program characteristics and their implications on vulnerability is crucial. The inherent
resilience in applications should be carefully considered when making decisions about designing
protection mechanisms to guard against nefarious transient faults.

In this thesis, we focus on program characteristics that contribute to their vulnerability. We
offer several methodologies that aim at alleviating the prohibitively expensive process of quantifying

x

and estimating the vulnerability of GPU applications, as this is the first step toward improving
the reliability of GPUs. Our analyses also demonstrate that beyond the variability between the
vulnerabilities of different applications, the vulnerability of GPU applications also varies during
their runtime, and present a phase behavior. This phase behavior opens new opportunities for not
only more efficient vulnerability estimation, but also more efficient fault mitigation approaches. We
demonstrate a methodology for application designers to reduce the cost of protection against transient
faults.

xi

Chapter 1

Introduction

The recent adoption of accelerators in high performance computing has resulted in tremen-

dous gains in performance of a wide range of applications. Graphics Processing Units (GPUs)

have been at the forefront of the field. GPUs provide much higher computational throughput as

compared to CPUs, providing high memory bandwidth, better energy efficiency, and overall better

power/performance. We have witnessed a steep rise in GPU deployments across a wide range of

computing domains. GPUs are present in many of the Top500 computing platforms in the world [5],

as well as in a growing number of general-purpose and safety-critical applications [6].

However, as with many breakthroughs, there are many obstacles to the continued adoption

of GPUs for non-graphics, general-purpose, applications. GPU designers and researchers alike have

devoted a significant amount of effort in finding solutions to these challenges. These challenges

include a range of issues, including programmability, performance, energy efficiency and reliability.

The last issue in this list is of particular concern, given that the reliable of graphic workloads is less of

a concern. As grow the number of applications that are enjoying acceleration from GPU computing,

there has been growing concerns related to the reliability of these devices [7, 8, 9, 10].

1.1 The growth of GPU Computing

As power and thermal constraints have made it very challenging to continue increasing

clock frequencies of microprocessors, the microprocessor industry turned to parallelism in order to

obtain higher performance. A number of new paradigms were explored and developed to facilitate

the development of parallel applications [11]. Application developers started to leverage parallelism

1

CHAPTER 1. INTRODUCTION

by utilizing middlewares, and targeting parallel hardware. Microprocessor manufacturers started

delivering multi-core processors, ready to take advantage of inherent parallelism in the applications.

As multi-core processors grew in popularity, Graphics Processing Units (GPUs) were a

natural next step, equipped with thousands of cores and streaming memory [12]. However, it was

challenging to program a GPU due to the lack of programmable shaders. Programmers were forced to

use graphics-oriented programming languages. But just in past 10 years, new programming languages

were introduced, which greatly reduced programmer burden [13, 14] these devices have become an

accelerator of choice for high-performance computing and other data-intensive applications.

GPUs are more effective than traditional CPUs in many applications where the workload

is computation-bound, and where processing can be performed concurrently. In addition to high

computational throughput, GPUs are able to access many memory locations in parallel, providing

a high degree of memory parallelism. GPUs are able to hide memory latencies with fast context

switching between threads.

1.2 Emerging GPU Applications

Beyond their graphics role, GPUs are now used in a growing range of computing domains,

including high-performance computing [15, 16], automotive [6], and scientific supercomputing [5].

Given their inherent parallelism, GPUs are well-suited for safety-critical applications such as naviga-

tion, guidance, and image understanding [17].

GPUs are no longer only used as graphics engines, they have expanded their role to become

an essential element in today’s desktop computers and smartphones, accelerating a number of data

intensive tasks. They are also used in datacenters, accelerating data mining, searches and queries, as

well as in many financial and scientific applications.

1.3 The Growing Need for Reliability in Emerging GPU Applications

While GPUs are being aggressively deployed in a growing range of computing domains,

their reliability remains an issue. More specifically, the reliability of a GPU to transient faults has

been an area of increased concern. These transient faults manifest as bit flips in the hardware. Given

that GPUs were primarily designed for graphic rendering, bit flips were not an issue. As pointed out

by Sheaffer et al. [18], it is unlikely that a user will notice when a single-bit error in a single frame

pixel is modified by the particle strike, even while playing a game or viewing a video.

2

CHAPTER 1. INTRODUCTION

For non-graphics applications however, bit flips are potentially more serious. For example,

in scientific computing on high performance computing system, bit flips can lead to incorrect results

of important scientific problems, or loss of computation time, as scientific applications can run for

days or weeks. In the automotive industry, bit flips may lead to fatal accidents, crashes and even loss

of life [19].

1.4 Motivation for this Thesis

This thesis addresses a growing reliability challenge in GPU computing: the GPU’s ability

to provide reliable execution in the presence of transient faults. Transient faults are intermittent

malfunctions in hardware that manifest as bit flips. Transient faults have become a key challenge in

computing and their importance increases with each new technology generation. They are caused

by single event upsets, which originate from energetic particles such as neutron particles from

cosmic rays and alpha particles from packaging materials. As these energetic particles pass through

semiconductor devices, they generate electron-hole pairs. These charges can be collected by a

transistor’s source and diffusion regions. If the amount of accumulated charge is sufficient, it may

invert the state of a logic device such as a latch, SRAM cell, or gate. This results in the introduction

of a logical fault in the circuits operation [20]. This type of fault is called transient or soft because it

does not result in permanent error in state or permanent damage to the device.

Reliability has long been an important focus in CPU design, but has not been heavily

studied for GPU designs. However, recent studies have reported that computer systems with GPUs

- where the GPU is used for general purpose computing - experience errors every few tens of

hours [21, 22], and that the level of fault tolerance in general-purpose GPU applications varies

significantly between applications [23, 3, 24]. Given that graphic applications and gaming have been

the main driving force in the graphics card market, resilience to bit flips has not always been a primary

concern in the design of GPUs. As pointed out by Wadden et al. [25], the sales for non-graphic GPUs

account for only 5-8% of the NVIDIA’s revenue. This makes it challenging to justify architectural

changes to GPU design in order to accommodate general purpose computing, if these changes impact

graphic applications. After all, a bit flip in a 3-D graphics program would only produce a wrong pixel,

highly unlikely to disturb the flow of a graphic application. Furthermore, solutions and mitigation

strategies for transient faults always come with additional overhead in either performance, area or

power. Manufacturers, designers and GPU programmers need to consider a range of trade-offs when

addressing GPU reliability, balancing efficiency/overhead and cost of the resulting design.

3

CHAPTER 1. INTRODUCTION

This thesis addresses a number of important aspects of GPU reliability, including:

1. characterization of the vulnerability of a wide range of GPU applications, and

2. mitigation of the effects of transient faults.

The first step in addressing the reliability problem is a thorough understanding of the level

of vulnerability of GPUs, and the applications that run on them. While prior work has considered the

issue of GPU reliability, a major drawback of these studies has been their use of lengthy fault-injection

experiments to collect results, providing limited insight regarding the resilience characteristics of

GPU applications [8, 22, 24, 26]. This thesis exploits unique properties of GPU applications to

propose a novel fault injection method that reduces the number of fault injection runs needed, without

sacrificing accuracy of the vulnerability assessment.

Furthermore, the same studies suggested that vulnerability of GPUs are highly correlated

to the applications running on the GPUs. To mitigate the effects of transient faults run on GPUs,

it is crucial to understand the resilience characteristics of GPU programs. This thesis studies the

resilience properties of GPU applications and how vulnerability changes across program execution.

We characterize the repetitive, time-varying behavior of vulnerability in these applications. We

argue that these observations provide opportunities for designing more efficient resilience mitigation

strategies for programs running on GPU systems.

1.5 Reliability Analysis for CPU vs. GPU

While radiation-induced faults have been well studied and understood in microproces-

sors, their impact on Graphic Processing Units (GPU) computations has received less attention.

Methodologies for evaluating vulnerability in CPU applications [27, 28] work with single-threaded

processes where one processing element operates on the data being computed by the application.

GPU programs are multi-threaded programs where threads can 1) work independently to compute

parts of a large chunk of an output data, 2) cooperate and communicate in the computation of the

output data. GPU programs have an in-order execution where many threads execute the same set

of instructions, with some occasional irregularities. There are a few cases in their execution where

threads in an application may diverge, with one group of threads (or a single thread) executes a set

of operations while another group executes a different set of operations. Moreover, threads in the

same group may share data with other threads. This means that corrupted values in one thread may

propagate to other threads in the program.

4

CHAPTER 1. INTRODUCTION

Reliability evaluation for GPUs needs to take into account the fact that different threads

may present different vulnerability behaviors. Many times, threads may execute the same instructions,

but with different input values. Moreover, the communication between threads is accomplished

at a block level. For many GPU programs, the block size is adjustable and dictates how data is

distributed between the streaming processors of the GPU. This can impact the performance and

also the resilience of GPU programs, as the fault propagation between threads may be limited to

fewer/larger number of threads. These considerations must be made when estimating vulnerability

for GPU applications.

faults

Focus in
this thesis

Figure 1.1: Layers of the system stack where transient faults can propagate in a GPU. Arrows indicate the extent

of the propagation. In this thesis, we focus on faults that reach user programs.

1.6 Analysis of GPU Reliability

When a particle strike is incident on a computer system, causing a transient fault, it

generally passes through many hardware/software before a user observes a failure in an application.

In many cases, the transient fault resulting from the particle strike is masked and does not propagate

to the application level. This masking can occur at different levels of a system stack, as shown in

Figure 1.1.

Architecting resilience support requires a thorough understanding of the interaction be-

5

CHAPTER 1. INTRODUCTION

tween applications, system software, and the underlying hardware layer. This cross-layer reliability

interaction is challenging to understand and fully characterize, since it is difficult to isolate the effects

of one layer on other layers. For example, effects of transient faults are challenging to reproduce

and vary significantly at each occurrence. The propagation of transient faults in hardware is heavily

dependent on multiple layers including micro-architecture, system software, and application [27, 29].

Transient faults can sometimes lead to observable errors in program visible behavior,

causing a program to crash, hang or produce an incorrect output (also referred to a Silent Data

Corruption). In some cases, these faults can also remain unactivated (i.e., masked) depending upon

the interaction among vulnerability layers in the system stack.

Researchers have begun to adopt multiple methods to assess the reliability of GPU devices,

as well as the sensitivity of application workloads. For example, to assess the reliability of a hardware

device, researchers and hardware manufacturers place the computing device into an electron beam of

charged particles [30]. This methodology of reliability assessment allows to operate the software of

interest on the real device and capture the interaction between underlying device, system software,

and the application. While the neutron beam experiments potentially offer a more realistic picture of

the effects of transient faults, they provide limited visibility into the application vulnerability behavior,

one of the key factors toward understanding the interaction across the different hardware/software

layers.

In this thesis, our focus is on vulnerability and remediation techniques that can be deployed

at a software level, especially given that hardware-based remediation scheme typically come with

signficant power and area costs, increasing the overall cost of the system.

Recent reliability studies on GPUs show that the overall impact of transient faults on GPU

applications is highly correlated with the type of application running on the device [31, 3, 24]. In

other words, some applications are inherently resilient and transient faults do not seem to impact

them, while other applications are highly sensitive to any bit flips during their execution. Techniques

to deal with transient faults exist, including special radiation-hardened circuit designs [32], localized

error detection and correction [33], architectural redundancy [34, 35, 36, 37]. These techniques,

however, introduce significant penalty in performance, power, die size, and design time. Resilience

techniques introduced at a software level provide us with more flexibility and result in more efficient

remediation solutions. A software-based scheme can be used adaptively (i.e., only when needed).

Our studies uncover several interesting insights on how GPU program characteristics can affect the

reliability of the underlying GPU device.

6

CHAPTER 1. INTRODUCTION

1.7 Scope and Contributions of this thesis

In this thesis, we focus on various aspects of the resilience characteristics in GPU applica-

tions. We specifically analyze the dependence of program resilience characteristics on their execution

parameters, and their time varying behavior and how it correlates to program code execution. We

propose a methodology for efficient assessment of vulnerability. Our end goal is to systematically

and efficiently assess the resilience of GPU programs and provide robust remediation techniques.

1.7.1 Contributions

This thesis makes the following contributions:

• We demonstrate that vulnerability is dependent on input and thread block sizes, as well

as corner cases of input values.

We carry out an extensive fault injection campaign to characterize the vulnerability of a suite of

GPU applications, when their input data changes. We found that a change in the input size of a

program, as well as corner cases of biased input data values, can significantly affect program

vulnerability. For example, the failure rate of some programs increased by as much as 30%

when the input size was changed.

As an example of a biased input data, the multiplication property of any value with a zero value

(zero times any number is equal to zero) makes it a biased input for multiplication operations.

When we examine the effects of changing the GPU thread-block size and its impact on

vulnerability, we found that, similar to performance, the vulnerability of an application can

depend on the block size of a kernel. In some applications, we found that the silent data

corruption rate can vary by as much as 8% when changing the block size of a kernel.

• PCFI: Automatic reduction of fault injection campaigns guided by program counter.

We propose a novel fault-injection method, PCFI [38], that automatically reduces the number

of fault injections by exploiting the predictability in fault-injection outcome based on the

program counter of the soft-error affected instruction. Evaluation on a variety of GPU programs

covering a wide range of application domains shows that PCFI reduces the time to complete

fault-injection campaigns by 22% on average, without sacrificing accuracy.

• Characterization of time varying behavior of vulnerability in GPU applications.

7

CHAPTER 1. INTRODUCTION

We show that the resilience characteristics of GPU programs change significantly during

program execution and these characteristics show repetitive, time-varying behavior. Inter-

estingly, these repetitive, time-varying, resilience characteristics of GPU programs do not

align or correlate well with the performance phases of GPU programs. We support that phase

changes in the vulnerability behavior during a program execution are due to changes in basic

block execution paths. This allows us to capture these phases in a program within one single

execution of the program.

• Spoti-FI: Exploitation of the vulnerability time varying behavior for fault injection ac-

celeration.

We demonstrate how characterization of the time-varying behavior of vulnerability can be

exploited to accelerate a fault injection campaign for reliability assessment of GPU programs.

We develop a methodology, Spoti-FI, which makes use of the characterization to reduce the

number of fault injection experiments by an order of magnitude required in a campaign.

• Exploitation of vulnerability phases for fault mitigation.

We present novel characterization data that also opens opportunities to design more effective

resilience mitigation strategies. The characterization of the vulnerability phase behavior allows

us to predict the vulnerability characteristics of time intervals of a program without performing

exhaustive fault injections in all intervals of the program. We demonstrate how to use phase

behavior characterization to dynamically enable or disable mitigation strategies in a program.

This will significantly improve runtime overhead for mitigation strategies in GPU programs.

1.8 Organization of the Thesis

This thesis is organized as follows. In Chapter 2, we present a background on GPU

computing as well as transient faults, and the traditional methodologies of reliability assessment

for GPUs. We review the body of work and the state of the art research related to this thesis in

Chapter 3. Chapter 4 describes our evaluation of the effects of execution parameters on resilience.

In Chapter 5, we describe a methodology that reduces the number of faults for fault injections by

using program counter execution in GPU programs. Chapter 6 details our characterization of the

time-varying behavior of GPU program vulnerability, which constitutes the basis for our contributions

to 1) systematically perform fault injections in selected intervals of a program (Chapter 7), and

8

CHAPTER 1. INTRODUCTION

2) alleviate the performance penalties of fault mitigation strategies by dynamically applying these

strategies in executing GPU programs (Chapter 8).

9

Chapter 2

Background

In this chapter, we provide background information on GPU computing and the reliabilty

challenges faced in GPU computing. We focus on a particular area plaguing GPU reliaiblity,

specifically transient faults and the methods used to deal with these faults. We discuss techniques

and paradigms used at the architectural level to assess the error rate of a processor, then we discuss

the fault model as well as the evaluation framework we used throughout this thesis.

2.1 A brief history of GPU Computing

GPUs were originally designed to efficiently render 3-D graphics, providing highly opti-

mized datapaths for generating frames of pixel data. The research community recognized that GPUs

could also be used for massive data processing, and started migrating floating-point computations

to the GPU using shader languages such as OpenGL and DirectX. The applications that were first

ported to GPUs typically involved matrix-based operations. Matrix multiplication was one of the

first microprocessor (Central Processing Units or CPU) programs that performed significantly better

when run on a graphics card [39].

However, porting these general-purpose applications to GPUs was a very complex and

daunting task, as it required that the programmers recast their algorithms in terms of the graphics

Application Programming Interfaces (APIs). Industry leaders AMD and NVIDIA recognized this

trend, and proposed general purpose programming languages that would allow GPUs to be used

for a broader class of applications. OpenCL [14] and CUDA [13] have emerged as two standard

programming frameworks that allow GPUs to be integrated in supercomputers and desktops as

accelerators. Programmers were no longer tied to the underlying graphics programming model. They

10

CHAPTER 2. BACKGROUND

could focus more on high-performance computing, which attracted many more developers of general

purpose applications to a GPU platform.

Experts from a wide variety of computing domains started converting their sequential

CPU applications to GPU versions. One of the first ports of scientific computing to GPUs was the

Monte Carlo simulation of photon migration by Alerstam et. al [40]. They achieved a speedup in

the range of 1,000X over the CPU implementation by using a publicly available GPU (NVIDIA

GeForce 8800GT). In bio-informatics, Schatz et. al [41] implemented the first high throughput

parallel local sequence alignment (DNA sequencing), MUMerGPU, which runs on GPU and achieved

more than a 10-fold speedup over a serial CPU version. Stone et. al [42] demonstrated the use of

GPUs in molecular dynamics simulations, and showed that GPU-based calculations were typically

10-100 times faster than heavily optimized CPU-based implementations. In the financial domain,

Grauer-Gray et. al [43] accelerated a popular library of computational finance applications, QuantLib,

using hand-written GPU codes. They achieved orders of magnitudes of speedup over sequential

implementations of the QuantLib applications.

Today, application developers use GPUs even in personal computers to accelerate ordinary

applications. Popular desktop programs such as Adobe Photoshop, AutoCAD, SolidWorks and

Matlab are exploiting this resource to accelerate their computations [11].

GPUs have also become prevalent in a number of computing systems. With the addition of

error correcting codes to GPU structures in the NVIDIA’s Fermi microarchitecture [12], GPUs were

included in three of the top five supercomputers in 2010 [44]. Summit, an IBM-built supercomputer

located at Oak Ridge National Laboratory, and the best performing supercomputer in the world

as of the writing of this thesis, has 4,356 nodes, each one equipped with six NVIDIA Tesla V100

GPUs [5].

2.2 Challenges to GPU Computing

However, as mentioned in Chapter 1, there are many issues with GPU computing that need

to be addressed to continue moving forward. These issues mostly pertain to the management of the

large number of cores in one device, as both manufacturers and programmers seek to efficiently

leverage these highly parallel devices for better performance, reliability and energy efficiency.

For example, it is increasingly difficult to design efficient programming models and system

software that are able to completely leverage the opportunities offered by the numerous cores in a

GPU. Moreover, GPU concurrency contains many nuances that make it difficult to correctly optimize

11

CHAPTER 2. BACKGROUND

GPU code. These challenges include data races between threads, unfair scheduling across thread

blocks and floating point accuracy [45].

Another important challenge in GPU computing is thread synchronization. As GPU

programs become more complex, communication between the thousands of threads executing on the

GPU becomes more essential. Newer GPU programs now require that individual threads collaborate

more frequently to perform their computations, and accomplishing this in current GPUs is very

challenging.

As GPUs are increasingly utilized in the large data-centers and supercomputers [44, 5],

their energy consumption becomes a concern as system administrators look to reduce cooling costs.

The US Department of Energy has a goal of 20 MW for an exa-scale supercomputer. It was estimated

that Tianhe-2, the fastest supercomputer as of 2015, required at least a 26-fold improvement in power

efficiency, if its performance were to scale with its power requirements [46]. While the current top

supercomputers have better power efficiency, their current power requirement does not scale well to

stay within the energy budget at exa-scale. Moreover, battery life is a crucial concern for handheld

devices which utilize GPUs.

An often overlooked problem in computing devices, and especially GPUs is the problem

of reliability to transient faults. While these faults rarely occur in normal consumer systems, their

probability of occurrence increases significantly as more and more GPU nodes are included in a

system. One of the worst outcomes of a transient fault occurring in hardware is a silent failure: a

transient fault may cause a program to output an incorrect result without the knowledge of an end

user. This is extremely undesirable for accuracy-sensitive and safety-critical applications. This thesis

addresses the problem of transient faults in GPU applications.

2.3 Overview of Transient Faults

Transient faults are intermittent malfunctions of the hardware that cannot be reproduced.

Transient faults are dynamic and are changes to a cell’s contents, rather than changes in the circuitry.

Transient faults can be generated by a plethora of causes, including environmental perturbations,

software errors, and variations in process, temperature, or voltage.

In this thesis we focus on radiation-induced transient faults, which have been shown to

be the most critical type of faults in modern electronic devices, given that they account for most

of the faults in today’s computing systems and produce a failure rate that is higher than all the

other reliability mechanisms combined [47]. They are caused by single event upsets (SEUs) which

12

CHAPTER 2. BACKGROUND

are most often the result of particle strikes on silicon devices. These particles include high-energy

neutrons, produced by the interaction of cosmic rays within the terrestrial atmosphere, and alpha

particles that are emitted by the decay of radioactive impurities used in chip packaging.

Due to shrinking of transistor dimensions and the exacerbation of the amount of available

resources, electronic devices are becoming more susceptible to transient faults induced by ionizing

particles. As a result, today, high-energy neutrons generated by the interaction of cosmic rays with

the terrestrial atmosphere are a major issue for the reliability of modern electronic devices [47] in

general, and GPUs in particular [48, 49, 50, 51, 31].

When these strikes occur, the particles are able to inject a charge into the devices which can

alter values in the devices. Each cell in a device has a minimum charge needed to change the stored

value in the cell. This minimum charge is called the critical charge (Qcrit) for that cell. Following a

particle strike, if the accumulated charge exceeds the critical charge of the cell, the value stored in

the cell will be inverted; a transient fault occurs. Note that the cell containing this corrupted value is

not permanently damaged and an operation can overwrite this cell to correct the faulty value. Since a

radiation-induced fault does not cause a permanent failure, it is referred to as a soft fault, and is very

challenging to detect.

2.4 The Transient Fault problem in the industry

While the occurrence of transient faults in one single device is very rare, clusters and

datacenters with multiple CPU/GPU devices experience transient faults regularly. Moreover, the

occurrence of one transient fault may be devastating for the affected system if proper fault tolerance

is not implemented. The industry has seen firsthand the potential impact of transient faults.

Sun Microsystems lost a major customer to IBM after its flagship Enterprise server line

experienced random crashes. In 2000, the company recognized that the crashes were caused by

cosmic ray strikes on unprotected cache memories [52]. After the careful study of error logs of

several large computer systems, Normand [53] reported numerous incidents of cosmic ray strikes.

To ensure highly reliable operation of their processor, Fujitsu protected 80% of its 200,000

latches in its 5th generation SPARC64 microprocessor with parity. All their caches were protected

by some form of error detection [33].

In 2000, in the early days of Google, after one of their core systems had failed, the company

was on the verge of losing a major contract with Yahoo. Google engineers figured out that the failures

were caused by particle strikes. To keep costs down, the company did not use hardware with memory

13

CHAPTER 2. BACKGROUND

protection. However, as their computing systems scale, the occurrence of transient faults became

more and more frequent [54].

2.5 Effects of Transient Faults

In this thesis, we want to clearly distinguish faults from errors. A fault is an undesired state

change in hardware, and a fault in a particular layer in the computing stack may propagate to the

next layer of the stack. Moreover, when a transient fault occurs in a bit, this bit can be overwritten to

remove the fault. If the bit is not overwritten, the incorrect state that occurs as a consequence of this

fault is termed an error. In this thesis, we focus on transient faults that manifest as errors at the user

program level on the affected systems (see Section 1.1).

The occurrence of a transient fault can yield three outcomes in the program executing on

the system, described as follows.

1. Masked: Some transient faults do not cause any perceivable error to the executing program.

These faults are said to be masked. Masked outcomes occur when the occurrence of transient

faults do not influence the output of a program. In other words, the output of a program in the

presence of the transient fault is the same as the output in a fault-free environment. Transient

faults produce masked outcomes when the location of the transient fault is: 1) not read or not

used by the running program, 2) read, but corrected by hardware error correction mechanism

(e.g., error correcting codes), or 3) read, but the value has no effect on the program output, i.e.,

the corrupted value was masked by subsequent operations after being read.

2. Detected and Unrecoverable Error (DUE): Some faults produce Detected Unrecoverable

Errors (DUE). A DUE occurs when a system is able to detect the presence of a fault, but can

not correct or recover from this fault. The fault detection in a system can take place: 1) at the

hardware level (through parity bits), 2) at the operating system level (e.g., when a transient

fault causes a user program to request access to an unallocated memory location), or 3) at

the user program level through verification checks in the program. In the case of a DUE, the

hardware or software can decide to crash a system and restart the system from the last known

clean, fault-free, state.

3. Silent Data Corruption (SDC): The third major class of outcome is a Silent Data Corruption

(SDC). An SDC occurs when the location of the transient fault was read and utilized by the

14

CHAPTER 2. BACKGROUND

program, but the fault could not be detected. The faulty value eventually corrupts the dataflow

of the program and produces an incorrect output. This outcome is called a silent corruption

because both the user and the system are unaware that the program produced an incorrect

output, until the output is verified against the golden output obtained via a fault-free execution.

2.6 Measuring Program Vulnerability to Transient Faults

Applications have different levels of resilience and exhibit different sensitivities to transient

faults. It is important to understand the inherent levels of resilience in an application. In some

applications, a fault may be more likely to generate an SDC. In other applications, a fault may be

more likely to cause an DUE / crash. Other applications may be highly resilient, so that a fault in

these applications is unlikely to generate any type of failure. Assessment of application resilience is

an important step in developing highly resilient applications. To understand the inherent resilience

based on program code, application developers need a way to quickly evaluate the vulnerability of

their application. A developer can use either of the following techniques to measure the vulnerability

of their software:

• Fault Injection [55], and

• Architecturally Correct Execution (ACE) analysis [56].

2.6.1 Fault Injection

Fault injection is the most widespread method for assessing reliability. A fault injection

campaign compares the reference behavior of a system for a given workload (that is, the correct

behavior validated by the designer) with the behavior obtained in the presence of each fault in a

predetermined set of faults [57].

In a fault injection campaign, a fault is injected in a structure at a random time and at a

random location, while a workload is being executed on the device being tested. The output of the

workload is then examined against a golden output to determine whether the injected fault caused a

visible failure. This process is then repeated a number of times and as the number of runs becomes

statistically significant, the ratio between the number of failing runs to the total number of runs will

be the probability that a fault reaching this structure will cause a failure in the program. Hardware

fault injection and software fault injection are the most common approaches used to perform fault

injection.

15

CHAPTER 2. BACKGROUND

2.6.1.1 Statistical Significance

To determine the number of injections that is sufficient to achieve statistical significance,

we utilize the formula presented by Leveugle et al. [57].

n =
N

1 + e2 ∗ N−1
t2∗p∗(1−p)

(2.1)

According to the authors, given a confidence level, the sample size n, which is the number of faults to

randomly select for injection, can be computed with the formula in 2.1. The variables in this formula

are:

• N : initial population size. This is the number of all the potential injection sites.

• p: estimated probability of faults resulting in an error. The authors demonstrated that p=0.5 is

a sufficient value to use in our experiments.

• e: margin of error. This is the most sensitive parameter in the formula. Reducing this parameter

can increase the sample size very quickly. The margin of error is the amount of error that is

allowed in case of miscalculations.

• t: cut-off point or confidence level. This number represents the level of confidence in our

results, or the probability that our results are correct. For example, a 95% confidence level

means that our results will be correct 95% of the time.

2.6.1.2 Hardware Fault Injection

The objective of performing hardware fault injection is to assess the resilience of hardware,

with the end goal of designing more resilient hardware. For hardware fault injection, faults can be

inserted either in the actual device silicon or in a simulated version of the device.

Injections in real device can be done by either using a dedicated custom hardware [58] or by

injecting the faults into integrated circuits using heavy-ion radiation [30]. Radiation experiments help

fully understand the impact of particle strikes on real hardware. Using beam testing, radiation-induced

faults are generated across all layers of the computing stack.

Because the injection is done in actual hardware, it mimics the internals of the real system,

meaning there is no need to know the internal details of the hardware. It is therefore very accurate;

the effects of the operating system, the latency from I/O operations, and other non-deterministic

effects are already taken into account. Furthermore, since injections are done in the actual hardware

16

CHAPTER 2. BACKGROUND

that is running the workloads, a fault injection campaign in actual hardware takes significantly less

time than fault injection in simulated hardware.

However, there are also significant disadvantages to a fault injection campaign in real

hardware. First, it needs to be done after the silicon phase in the design cycle, as we need at least a

hardware prototype. This is usually too late considering that such reliability analysis is often needed

during the architectural exploration phase of a design. However, the results can help make reliability

decisions for future devices that use a similar technology or architecture. Second, it is very expensive

and time-consuming to build a dedicated custom hardware and submit a hardware through an electron

beam.

Injections in simulated hardware can be done in a performance simulator, which is usually

available during the architectural exploration phase of a microprocessor design project. Therefore,

the results of a software-implemented fault injection campaign can be used to influence the design of

a new chip. Moreover, since we are using a software implementation of the hardware, we naturally

have more visibility into the internals of the architecture under test.

However, simulated fault injection tends to be very slow compared to the execution of a

workload on the native hardware. Moreover, it requires that an accurate performance simulator be

available for the specific hardware under evaluation.

2.6.1.3 Software Fault Injection

Measuring program vulnerability implies quantifying the masking effects that are inherent

in a program. In general, transient faults can be masked at many levels. Device-level masking

reflects how likely it is for a fault not to propagate to the outputs of a device, and be exposed to the

microarchitecture. Microarchitecture-level masking reflects how likely it is for a fault (not masked

at device level) to propagate to the operating system. If the operating system does not mask this

fault, it will be exposed to a user program. In this thesis, software fault injection aims to measure the

vulnerability of programs in the presence of faults exposed to user programs.

A fault that is not masked by the microarchitecture of a system can manifest itself at

an architecturally-visible resource. As defined by Sridharan et al. [28], an architecturally-visible

resource is any ISA-visible structure or operation. Accordingly, architectural registers and memory

that are addressable by the ISA, are considered architectural resources. Additionally, any structures

that are part of the instruction datapath, such as the arithmetic logic unit or the load-store unit, can be

regarded as an architectural resource.

17

CHAPTER 2. BACKGROUND

A number of factors can influence the resilience properties of a program. One obvious

factor is the type of operation that each instruction performs. Other factors that impact resilience

directly correlate to the ordering of the instructions during the dynamic execution of the program.

This ordering of instructions is often non-deterministic. A programmers choice of algorithm to

implement a kernel and the compiler used to generate final binary are just two of the multiple

components that influence the dynamic ordering and the types of the instructions executed.

Software fault injection can be done at different levels of the software stack (program

source code, assembly instructions), depending on the goals of the analysis. The fault injection

campaign used in this thesis is performed at native ISA level of the GPU (i.e., the SASS level of an

NVIDIA GPU). This allows us to evaluate the the reliability of an application, as well as access any

ISA-specific optimizations that have been performed to produce the application binary. Since the

actual fault in hardware affect the final binary, working at this level should provide higher fidelity in

terms of reliability metrics.

2.6.2 Architecturally Correct Execution (ACE) Analysis

ACE analysis was first described by Mukherjee et al. [56]. ACE analysis provides the

ability to assess the vulnerability of individual pipeline structures, such as instruction queues and

reorder buffers, to transient faults. Traditional ACE analysis is performed during execution-driven

simulation, assessing the vulnerability of hardware structures by executing a single pass through a

program.

In ACE analysis, the vulnerability of hardware structures is estimated by tracking the

hardware state bits that are required for Architecturally Correct Execution (ACE). If any fault occurs

in a storage cell containing these ACE bits, and if there is no error correction technique present on

the system, there will be a visible error in the output of the program. The remaining state bits that are

not ACE are called un-ACE bits; they are not required for architecturally correct execution of the

program and a fault in a storage cell containing an un-ACE bit will not cause a visible error at the

output of the program.

The vulnerability for a single-bit storage cell is the fraction of time it holds an ACE bit.

Consequently, the vulnerability for a hardware structure is the average vulnerability of its storage cells.

ACE analysis on a structure starts by conservatively assuming that all bits in the structure are ACE bits,

then proceeds to identify bits that can be marked as un-ACE. Un-ACE bits can be categorized as either

architectural or micro-architectural un-ACE bits. Examples of architectural un-ACE bits include

18

CHAPTER 2. BACKGROUND

bits from NOP instructions, performance-enhancing instructions (e.g., prefetches), predicated-false

instructions, dynamically-dead code, and logical masking. Examples of microarchitectural un-ACE

bits are idle or invalid bits, mis-speculated bits (wrong-path instructions or predictor structure bits),

and microarchitecturally dead bits.

Because ACE analysis generates a conservative value for the vulnerability of a structure,

the vulnerability estimation obtained through ACE analysis can very often be too conservative. It has

been shown that even a refined ACE analysis can overestimate the error vulnerability of a structure

by 2-3x [59]. This can result in an overly-conservative design of a structure, which can make the

processor design less competitive. Furthermore, although ACE analysis gives more insight into

the resilience of a structure, performing ACE analysis on certain structures can be a very involved

process.

Virtual Assembly (PTX)

binary

Assembly (SASS)

Driver - GPU

LLVM IR

CUDA application
source

nvcc

ptxas

nvlink

SASSIFI

Figure 2.1: Stages during the compilation process. ptxas performs ISA-specific optimizations to generate SASS

assembly code. The SASS assembly code directly runs on the GPU. SASSIFI performs fault injections at this level.

19

CHAPTER 2. BACKGROUND

2.7 Evaluation Framework

In this section, we describe the framework used for vulnerability estimation throughout

this thesis. We utilize SASSIFI [3], which is a widely used GPU software fault injection tool for

evaluating the resilience of GPU programs. SASSIFI enables software-based fault injection on a real

system by instrumenting the program at the assembly level. This methodology allows architects to

assess the vulnerability of programs more accurately, as compared to approaches that perform fault

injections at higher levels of the compilation process (see Figure 2.1), as reported by Tselonis et

al. [60]. Injections at assembly level reflect the true effects of transient hardware faults.

CPU

GPU instructions -
Possible injection sitesCPU

code

GPU
kernel

GPU
kernel

GPU
kernel

GPU
kernel

(a) Profiling Stage

CPU
GPU instructions added
to fault injection list

(b) Fault list generation stage

Instruction to inject
fault

(c) Fault injection stage

Figure 2.2: Three stages of a fault injection campaign for an application in SASSIFI [3]

SASSIFI-based fault injection is built on top of SASSI [26], a compiler-based instrumenta-

tion framework which provides visibility into the application state, and retains information about the

application state at the moment a fault is injected. Fault injection with SASSIFI consists of three

stages: i) profiling, ii) fault generation, and iii) fault injection. Figure 2.2 provides an illustrated

description of the three stages of SASSIFI.

1. Profiling Stage In the profiling stage, SASSIFI uses the compiler-based instrumentation

framework (SASSI) to collect information about the application and identify all possible

fault injection locations. The information collected includes the number of kernels in the

application, the number of invocations for each kernel and the number of dynamic instructions

20

CHAPTER 2. BACKGROUND

(per instruction opcode) for each invocation of a kernel. We note that the profiling stage is run

only once for a chosen application-input pair.

Given that each dynamic instruction is a possible location for a fault injection, this stage

gives us the population size of all fault injection locations. In order for a fault injection

campaign to be statistically sound, it needs to inject a sufficiently high number of faults that is

representative of all possible fault locations. The number of required fault injections to achieve

statistical significance in terms of vulnerability assessment of an application depends on the

target confidence interval, the error margin, and the total number of dynamic instructions [57].

Previous research has shown that a 99.8% target confidence interval and a 0.63% error margin

yield accurate reliability estimates, although achieving this accuracy may require us to perform

more than 60,000 injections, taking multiple days to complete fault injections on a single

program [61, 62].

2. Fault list generation stage

In the fault list generation stage, SASSIFI uses the profiling information from the first stage and

generates a statistically significant number of faults. Statistical significance is determined using

the population size obtained during the profiling stage. The generated faults are uniformly

distributed across the entire execution time of the program for each kernel invocation, which

helps to ensure that a program’s vulnerability is sampled across the entire execution.

3. Fault injection stage

In the fault injection stage, SASSIFI is fed a target fault from the fault list generated in the

previous stage. The target location consists of a kernel, the invocation of the kernel and a

dynamic instruction for the kernel invocation. SASSI is used to identify when the target

dynamic instruction is reached. In this target dynamic instruction, a fault is injected as per the

fault model described in Section 2.8. Fault injection is performed during program execution.

SASSI is able to record the dynamic instruction, the program counter, and the basic block of

the instruction where the fault was injected.

2.8 Fault Model Used in This Thesis

In this thesis, we evaluate the resilience of unprotected structures in a GPU, including

pipeline stages, flip flops, arithmetic and logic units (ALUs), and load store units (LSU). We consider

21

CHAPTER 2. BACKGROUND

resilience in the presence of single-bit transient faults. To cover these structures, transient faults are

introduced at the instruction level, specifically at the output destination of the affected instruction (a

random bit is flipped in the destination register of the chosen instruction).

For our evaluations, we perform extensive fault injection campaigns, injecting faults into

the destination registers of all instructions that write to a general purpose register. For each dynamic

instruction, we estimate the probability that the program will not run correctly if the instruction

datapath encounters a transient fault. A fault in the datapath of the instruction will likely produce an

incorrect output. If this instruction writes to a register, a wrong value will be stored in the register,

which may be used by future instructions, and potentially produce an incorrect output or program

crash.

Our error model is similar to models used in other contemporary GPU fault injection

studies and tools, such as GPU-Qin [24] and LLFI-GPU [63]. Both tools evaluate faults in the

pipeline of a GPU by injecting single-bit faults at the output register of an executing instruction.

Also, similar to both GPU fault injection tools, SASSIFI assumes that the GPU cache and memory

are protected with Error Correction Codes (ECC). Note that our fault model does not specifically

cover multi-bit faults or multiple faults in the same run, as previous studies have shown that: 1) the

probability of multi-bit faults and multiple faults is relatively low, and 2) single-bit fault injection

campaigns provide accurate vulnerability assessment of programs [64, 65].

As mentioned earlier in section 2.7, SASSIFI performs error injection at an binary level,

specifically on SASS instructions. Note that the SASS instructions directly run on the GPU hardware.

Fault injection experiments at the SASS level benefit from the fact that they can evaluate the code

that directly runs on the GPU. This allows our thesis work to run on actual GPUs, versus on a

GPU architecture simulator, enabling us to capture the vulnerability characteristics of live program

execution.

2.9 Limitations

While our fault analysis methodology is rich, working on live hardware has some limita-

tions, which we enumeration here.

• Fault coverage: Our fault injection framework covers only transient faults that corrupt the

functional units in execution (e.g., the ALU and the LDS) datapaths, as described in Section 2.8.

As GPUs are increasingly used in safety-critical applications, GPU manufacturers incorporate

22

CHAPTER 2. BACKGROUND

fault tolerance mechanisms in the newer GPU models. For example, in NVIDIA Voltas

memory subsystem, the register file, shared memory, L1 cache and L2 cache are protected by

a Single-Error Correct Double-Error Detect (SECDED) ECC code [66].

• Hardware structure coverage: Our fault injection framework is able to inject faults in

hardware structures that are visible by a programmer. As a result, this thesis does not address

faults that can influence the execution of a program, but are not visible by the programmer.

While this remains an important limitation to be addressed, the aim in our analysis is to provide

insights to programmers and hardware vendors alike. We believe these insights can also be

instrumental in addressing reliability for physical structures, that are programmer-invisible.

• Portability: Our fault injection framework leverages SASSI [26]. SASSI is an instrumen-

tation tool and is compatible only with NVIDIA binary programs (SASS). This implies that

programs written for non-NVIDIA GPUs cannot be evaluated with our framework. However,

NVIDIA GPUs are the most widely used today in the HPC market and the majority of GPU

programs are written for CUDA.

• Program modification: Because our fault injection framework uses a compiler-based in-

strumentation framework, the program under evaluation is modified, and this can result in

an interference with the program running in the hardware, compromising the accuracy in

the assessment of the program resilience. However, SASSI applies instrumentation at the

SASS assembly level, after all optimizations have been applied in the compilation process (see

Figure 2.1). Since SASS code directly runs on the GPU, our framework has very minimal

interference with the original application in terms of the final instruction schedule or register

usage.

23

Chapter 3

Related Work

In this chapter we will provide a broad survey of prior work performed by other in topics

related to this thesis work. While our main focus will be on GPUs and GPU reliability, we will also

include related work in other areas.

3.1 Prior work in CPU Reliability

Transient fault reliability is a well-studied research area in the domain of CPUs. There is

a large body of work on CPU-based reliability modeling and vulnerability assessment. Here, we

summarize these studies.

3.1.1 Reliability assessment for CPU applications

Architecturally Correct Execution (ACE) analysis (Section 2.6.2) was first introduced

for CPU reliability assessment by Mukherjee et al. [56], who used it to study various processor

structures, including instruction queues and execution units. The methodology was further developed

and extended by Biswas et al. to include assessment of address-based structures [67].

Li et al. investigated the validity of the ACE analysis, and demonstrated that at very

high fault rates or in very large structures, the assumptions that failures of different components

are independent of each other may not always hold true [68]. Wang et al. compared results from

ACE analysis against results from fault injection campaigns and found that ACE analysis produced

conservative reliability estimates [59].

24

CHAPTER 3. RELATED WORK

Sridharan and Kaeli extended the ACE analysis methodology to introduce independent

measurements of vulnerability at a hardware level [69] and at a program level [28]. Researchers have

also applied fault injection to quantify vulnerability at a program level [70].

In this thesis, we evaluate vulnerability at a program level, using fault injections in GPU

programs. Our work also offers a more efficient fault injection methodology, and characterizes the

time varying behavior of vulnerability in GPU applications.

3.1.2 Reliability Studies on CPU Systems in the Field

Here, we highlight a few studies on failures in CPU systems and supercomputers in the

field.

In 2006, Schroeder and Gibson published a study on failure data from high-performance

computer systems at Los Alamos National Labs [71]. They found that the failure rates differ wildly

depending on the system. In 2007, Li et al. presented a study of memory errors on real production

systems in three different data sets [72]. They found that it is highly probable that the actual soft

error rate on these production systems were at least two orders of magnitude lower than reported

in other studies. In 2009, Schroeder et al. published a large-scale field study using Googles server

fleet [73]. They found that memory errors in the field were dominated by hard errors rather than

soft errors. In 2010, Li et al. published an expanded study of memory errors on an Internet server

farm and other systems [74]. They found that non-transient errors form a majority of the memory

errors that are exposed to system software. In 2012, Hwang et al. published an expanded study

on Googles server fleet, as well as two IBM Blue Gene clusters [75]. Sridharan et al. conducted a

precise study of DRAM failures on Los Alamos National Labs Jaguar supercomputer over the course

of 11 months [76]. They found that approximately 30% of all DRAM failures are due to transient

faults, and that the entire system experienced about 900 faults per month, or a little more than 1 fault

per hour. Siddiqua et. al later found that transient faults are an even smaller proportion of overall

faults, and may be as low as 1.5% when accounting for faults in the entire memory path (including

memory controllers, buses, channels), and not just memory modules [77].

These studies above were mostly done on memory in high performance computing systems.

While many errors in DRAM memory are hard, non-transient errors, the majority of SRAM faults in

the field are transient faults, as reported by Sridharan et al. in 2015 [78].

25

CHAPTER 3. RELATED WORK

3.2 Prior work in GPU Reliability

As GPUs become more pervasive in high performance computing and in safety-critical

applications, researchers have investigated and analyzed their robustness to transient faults. The

research community has:

1. developed techniques and tools that improve how to assess vulnerability in applications,

2. studied the propagation of faults in applications, and

3. developed methodologies for improving their resilience.

In this section, we review work that evaluates GPU vulnerability, and work that develops

methodology to assess the reliability of GPU applications, then we present work that attempts to

characterize the error propagation in GPU programs. Finally, we will review the latest development

in transient fault remediation.

As mentioned before, research on assessing vulnerability in GPU programs can be done

either by directly introducing faults into the GPU (fault injection) or by systematically tracking

every bit of a GPU structure during the execution of a program (ACE analysis). We review GPU

vulnerability assessment in both categories.

3.2.1 Studies on GPU systems in the field

Reliability is a crucial and challenging topic for Graphics Processing Units. Studies on

real GPU systems have highlighted that transient faults are a real threat to GPU applications and

computer systems that use GPUs. Here, we highlight a few studies.

Martino et. al studied failures in the Blue Waters supercomputer at the University of

Illinois [8]. This supercomputer is equipped with 3,072 compute nodes with NVIDIA K20X GPU

accelerators. They found that the DRAM memory in the GPUs had 10 times more transient faults than

the DDR3 main memory. Their study suggested that GPU cards were the least reliable component in

their system, and that their findings were concerning for the GPU-based supercomputers. Haque et

al. [79] studied DRAM memory errors in a number of consumer-grade GPU cards on a network of

distributed computers. Their study revealed patterned hard errors in two-thirds of the cards that were

highly correlated with GPU architecture. Their analysis suggested that the memory systems of more

modern GPU architectures, and server-grade compute GPUs such as the NVIDIAs Tesla line, were

more reliable than gaming products. Tiwari et. al [22] conducted a more recent field study on GPU

26

CHAPTER 3. RELATED WORK

DRAM and on-chip SRAM in nodes on the Titan supercomputer at Oak Ridge National Labs. They

collected data over 18 months, and found that 899 of the 18,688 GPUs in the Titan supercomputer

experienced at least 1 error, an average of 1.66 per day across the entire system.

While these studies were conducted on real systems in the field, they only report on

transient faults that were either detected by hardware (through Error Correcting Codes or ECC), or

that manifested into program-visible errors. Some transient faults cause non-visible program errors,

resulting in incorrect value produced by programs executing on these systems. To capture all effects

of transient faults, we resort to controlled fault injection experiments.

A variety of fault injection tools have been developed for studies in GPU applications.

Examples are GPU-Qin [24], SASSIFI [3] and LLFI-GPU [63]. Fault injection campaigns with these

tools reveal that some GPU applications inherently possess resilience properties to transient faults. In

addition, studies with these tools have consistently found a wide variation in the level of vulnerability

among the studied applications.

3.2.2 Beam Experiments

A realistic error rate of devices can be achieved by exposing them to controlled neutron

beams while running workloads. The neutron flux at which the device is exposed during a radiation

test is typically 6-8 orders of magnitude higher than the terrestrial flux. A statistically significant

number of errors can then be observed in a relatively short time.

The first study that conducted radiation beam experiments in GPUs was by Tiwari et al. [22].

The authors use the neutron beam available at Los Alamos Neutron Science Center (LANSCE) and

the ISIS (Rutherford Appleton Laboratories, UK) to measure the resilience of different generations

of GPUs. The authors found that the per-bit failure rates for the older GPU cards were 2x to 3x

higher than the newer ones. This is because newer cards have better bit-cell design (exact details

regarding the improvements on older technology are confidential). The authors also found that the

double-bit errors were more likely to occur in the newer cards. This finding can be explained by the

fact that newer cards have a lower critical charge and thus neutrons are more likely to interact with

multiple bit cells.

Oliveira et al. evaluated neutron sensitivity of two generations of GPUs in memory

structures, L1, L2 caches, and register files [31]. They also found that the newer architecture shows

better reliability due to better bit cell design. The authors also highlight that bits set to 0 are more

prone to corruption than bits set to 1 in the L2 cache. This is because the L2 cache is designed

27

CHAPTER 3. RELATED WORK

to be dense and compact to minimize area. The authors also presented and evaluated hardening

strategies (ECC vs. software hardening) for GPU applications, as well as their overhead. They found

that software hardening can provide better resilience since they catch faults at program level and

not just memory faults which ECC covers. However, the software hardening schemes come with a

performance penalty.

Lunardi et al. experimentally investigated the effectiveness of using ECC in modern

GPUs [80]. They considered GPUs fabricated in both CMOS and FinFET technologies. Their results

showed that changes in transistor technology can be as beneficial as using ECC for reducing silent

data corruption rates. They found that in some cases, improved transistor layout can even be more

effective than ECC in reducing the failure rates in some applications.

Accelerated beam experiments do not provide an accurate fault model for GPU programs.

Given that the resilience of GPUs is a factor of the executing application, we need better understanding

of how faults will manifest at the program level. Fault injection studies and ACE analysis provide a

more controllable environment to help develop this understanding.

3.2.3 Statistical Fault Injection Studies

Researchers use statistical fault injection [57] to perform fault injection campaigns and

estimate the vulnerability of GPU programs. Statistical fault injection allows researchers to determine

the number of injected faults necessary to achieve a certain error margin, given a confidence level.

We highlight the studies on fault injections in GPU programs.

Farazmand et al. [81] use the Multi2Sim simulation framework [82] for a fault injection

campaign in an AMD GPU model, the HD 5870. For this fault injection campaign, faults are injected

in structures of the GPU microarchitecture. The results of this campaign show that a great number

of resources are not utilized by the GPU, especially for the small applications that were used. This

results in a very low rate of Silent Data Corruptions and crashes. For the injections in utilized

resources, the GPU demonstrated high resilience, and in many cases, the applications were able to

run to completion without any error in their output.

Tselonis et al. [23] implemented a comprehensive fault injection framework using a popular

GPU simulation framework, GPGPU-Sim [83]. This framework, GUFI performs fault injections

in any hardware components of the simulated GPU architecture. Their study also evaluates the

differences in fault injection performed in virtual NVIDIA GPU instruction set (ptx) vs. actual

instruction set (SASS) and found that these two methodologies yield remarkable differences. They

28

CHAPTER 3. RELATED WORK

found that the vulnerability is always underestimated in ptx mode. The differences in masked

percentage range from 0.65 percentage unit to 21.50 percentage units.

Li et al. developed LLFI-GPU [63], a fault injection tool that uses LLVM to perform fault

injections at the intermediate assembly level of GPUs. The authors also studied the propagation

of faults across kernel calls between CPU and GPU. They found that error propagation in GPU

applications is highly application specific.

GPU-Qin [24] is a fault injection tool for GPUs. The tool is built to perform fault injection

studies on real GPUs running CUDA-based applications. It uses CUDA-GDB, the NVIDIA tool for

debugging GPU applications. The applications are first profiled, and then instructions are selected as

fault injection sites. At runtime, GPU-Qin injects a fault into the selected instructions.

We use SASSIFI in our studies, unless specified otherwise. SASSIFI [3] is a fault injection

tool for NVIDIA GPU’s. It is based on SASSI, a low-level, compiler-based assembly-language

instrumentation framework that allows the injection of code at specific points in a program [26].

SASSIFI injects faults in the destination values of executing instructions of a running program at the

architectural level. This allows for faster fault injection, increased visibility into the applications and

the possibility for a detailed study and analysis of the magnitude of Silent Data Corruptions (SDC).

SASSIFI provides the user with the ability to trace an SDC all the way back to the

specific fault which produced it, and also the ability to correlate program properties with program

vulnerabilities, which is a key to develop low cost error mitigation schemes. Because SASSIFI injects

faults at the architecture level (as opposed to the microarchitecture level), fault injection experiments

with SASSIFI can only measure the derating that occurs at the application level.

Kalra et al. used SASSIFI to study the vulnerability behavior of vector and scalar instruc-

tions on a GPU [84]. They implemented a toolset that can identify dynamic scalar instructions in

a program and inject faults in these operations. Their study provided an understanding of error

propagation characteristics when faults are injected in scalar, versus vector, instructions. They also

found that errors in some opcodes show positive correlations with certain types of outcomes while

some others do not. These understandings can lay the foundation for predicting resiliency profile in

an application.

3.2.4 ACE Analysis studies

Tan et al. developed GPGPU-SODA [85], a framework to evaluate the vulnerability of

a GPU to transient faults. It is built on the cycle-accurate, open-source and publicly available,

29

CHAPTER 3. RELATED WORK

simulator, GPGPU-Sim. GPGPU-SODA is capable of estimating the vulnerability of the major

microarchitecture structures in a Streaming Multiprocessor using ACE analysis. GPGPU-SODA

attempts to characterize the vulnerability of different micro-architectural structures a GPU to transient

faults through architecture vulnerability factor (AVF) analysis. The authors found that the GPU

microarchitecture vulnerability is highly related to workload characteristics such as the percentage of

un-ACE instructions, the per-block resource requirements and the degree of branch divergence. They

also concluded that several structures are highly susceptible to transient faults, and that the entire

GPU should be considered for protection.

Jeon et al. developed a framework to perform ACE analysis on an integrated CPU-GPU,

or accelerated processing unit (APU). The framework is built in an in-house AMD simulator. Their

study highlights that the vulnerability of both CPU and GPU must be accounted for, given that they

share memory. They show how the reliability of the APU changes over time as computations transfer

between CPU and GPU.

Wilkening et al. proposed a methodology to calculate vulnerability for spatial multi-

bit transient faults, faults in multiple adjacent bits [86]. The authors found that vulnerability

measurements for multi-bit faults are not derivable from single-bit measurements. They also found

that the more adjacent bits that are affected in a multi-bit fault, the more likely it is for the multi-bit

fault to cause program failure. Their methodology did not fully consider whether a single bit fault bit

may lead to a single bit fault in a neighboring bit (ACE interference). Previlon et al. later showed

that this interference is a rare event in typical GPU benchmarks [87], confirming that the previously

proposed methodology for multi-bit vulnerability estimation is accurate.

Wilkening et al. also propose a practical method to measure resilience for multi-threaded

applications using ACE analysis [88]. Their work specifically targeted architectural structures that

are shared between multiple threads and can be accessed in various orders. They extended an ACE

analysis framework to measure the vulnerability of these shared resources.

3.3 Efficient Fault Injection

Several studies have proposed fault injection acceleration using FPGAs [89, 90]. However,

FPGA-based fault injection is not practical for modern microprocessors, and especially GPU’s, as we

cannot fit a design into an FPGA device. Moreover, these studies do not apply to faults that propagate

to the instruction level; mitigation techniques at instruction level offer more flexibility.

30

CHAPTER 3. RELATED WORK

Ebrahim et al.. [91], Cioroaica et al. [92] and Kaliorakis et al. [61] employ importance

sampling for fault injection acceleration. They focus on performing fault injections only on portions

of an application that are critical by first performing an ACE analysis. ACE analysis identifies

non-vulnerable parts of the application, with the identified parts removed from consideration for the

fault injection campaign. These studies perform fault injections in both live and dead architectural

state. The pruning steps in these studies allows for removing any faults that would be injected in dead

architectural state. We found that by injecting faults only at outputs of instructions that effectively

execute on the GPU, we can already account for any non-vulnerable portions of a program.

Kaliorakis et al. perform a fault list reduction by running an ACE-like analysis and

removing the faults that fall into the non-vulnerable intervals of a program. Subsequently, they group

the remaining faults based on the target instruction pointers and byte positions. They then select

representative faults from each group for the final fault injection campaign. Their work however

focuses on applications that run on CPU’s and their evaluation targets both hardware and software

levels of the stack.

Nie et al. have proposed a multi-stage technique to prune the GPU fault injection sites [62].

In the first stage of pruning, they randomly choose one representative thread from a thread-block

assuming that all threads in the block have similar reliability behavior. In the next stage, they

prune instructions assuming that common instruction blocks are likely to have similar resilience

characteristics. Through our evaluation on a diverse set of regular and irregular GPU applications,

we found that this assumption may not always hold true as faults in the same instruction can often

lead to different outcomes.

Similarly, Hari et. al propose a tool Relyzer [93] aimed at significantly reducing the number

of faults necessary for application resiliency analysis. Relyzer prunes an exhaustive fault injection

list using two methods. First, Relyzer finds instructions in a program in which faults would lead to

the same outcome (fault equivalence). This is accomplished by pruning: a) faults in instructions that

would follow the same control flow paths, b) faults in store instructions where the values stored are

used similarly, and c) faults in instructions that use a value for the first time (this fault is equivalent

to a fault in the instruction that defined the value). Secondly, Relyzer prunes faults that result in

instructions accessing an invalid address. These faults are predicted to cause exceptions in the

program. With Relyzer, a reduction of 3-6 orders of magnitude is achieved for the tested applications.

However, this pruning is done on a full list of fault sites. The length of the final fault list after

applying Relyzer is still on the order of millions of fault sites.

Kalra et al. introduced PRISM [94], a framework that uses machine learning to predict

31

CHAPTER 3. RELATED WORK

failures in GPU programs. Their framework utilizes instruction level features, such as the proportion

of control flow, load, store and arithmetic instructions, to characterize program resiliency and predict

failures in GPU applications without running fault injection campaigns.

Li et al. introduced Trident, a model that captures error propagation at instruction level

using a static analysis [95]. Their model tries to predict application vulnerability by evaluating the

probability for a fault to propagate at the granularity of each instruction.

3.4 GPU Program Phase Analysis

Since the introduction of phase-based performance characterization by Sherwood et al. [96],

many studies have characterized phase-based behavior of the performance for diverse CPU workloads.

A few studies have proposed microarchitecture-independent techniques, alternative to basic block

vectors, to capture the phase behavior of CPU workloads. These studies propose the usage of

working sets [97], program counters [98], subroutine invocations or loop iterations [99], and control

branch counters [100]. Dhodapkar et al. compared these various phase detection techniques and

observed that techniques based on basic block vectors tend to perform better at characterizing the

performance phase behavior of a program [101]. Other studies have also identified a phase behavior

in power dissipated during program execution and characterize the power phases using performance

counters [102, 103].

Phase analysis has also been evaluated in the context of multi-threaded and GPU applica-

tions for acceleration of architectural simulation. Carlson et al. developed BarrierPoint [104], which

partitions a multi-threaded program into regions separated by global synchronization points. They use

a variety of techniques to characterize similar regions in a program, namely basic block vectors, LRU

stack distance, and signature vectors. We have identified two studies that focus primarily on GPUs.

Huang et al. [105] introduce TB-Point (TB stands for thread block) for accelerating simulation of

GPU kernels. To characterize similarity between different program regions, they use a technique that

takes into account the total amount of work to be done and the memory accesses associated with a

GPU kernel. Kambadur et al. [106] explored combinations of different feature vectors, including a

combination of Basic Block Vectors per kernel and memory accesses within a basic block.

32

CHAPTER 3. RELATED WORK

3.5 Time-varying Reliability Characterization

Fu et al. evaluated the phase behavior of vulnerability in CPU applications [107], and

found that a single performance metric cannot indicate program vulnerability. They showed that

both program code-structure (basic block vectors) and runtime events (obtained through hardware

performance counters) can classify program reliability phases. However, they found that runtime

events were better at predicting reliability phases.

Oliveira et al. presented an experimental study in reliability for Intel Xeon Phi processors

using both radiation and fault injection experiments [108]. They also presented a time varying

vulnerability behavior for their applications. Their work includes both full application execution

and fault injections, which can be very time consuming. In contrast, the analysis developed in this

thesis presents a phase behavior characterization of resilience using only a single profile run of a

GPU application, without performing fault injections.

As mentioned before, Jeon et al. [109] evaluated the time-varying behavior of program

vulnerability in accelerated processing units in a performance simulator. Their studies evaluated

cross-layer vulnerability behaviors and their analysis did not characterize this behavior to program

specific behaviors.

3.6 Summary

This thesis provides an improved methodology to perform reliability assessment efficiently

for GPU programs executing on a live GPU. This work uses properties of GPU programs to improve

resilience analysis.

This thesis also addresses time varying behavior of a GPU in terms of reliability, developing

a methodology to characterize this behavior. It demonstrates that understanding phase behavior can

be beneficial in terms of improving the reliability for GPU programs.

33

Chapter 4

Impact of Execution Parameters on

GPU Program Vulnerability [1]

If our goal is to provide resiliency to soft errors in hardware, we need to understand how

software will use that hardware, propagating bit flips to impact program correctness. In this chapter

we address two particular aspects of the evaluation of vulnerability of applications run on Graphics

Processing Units (GPUs): i) their dependence on input data, and ii) their dependence on thread-block

size.

We demonstrate that the characteristics of input data should be taken into consideration

when evaluating the resilience of a program. We found that a change in the input size of a program, as

well as corner cases of input data values, can significantly affect program vulnerability. For example,

the failure rate of some programs increased by at least 30% when the input size was changed. If we

ignore the impact of input size on reliability, it can result in an incomplete or misguided reliability

evaluation.

In this chapter, we also study how changing the GPU thread-block size impacts vulner-

ability. We found that, similar to performance, the vulnerability of an application can depend on

the block size of the kernels in the application. In some applications, we found that the silent data

corruption rate can vary by as much as 8% when changing the block size of a kernel.

The degree of resilience variability in an application suggests that application-specific

measures should be developed to better understand the reliability of GPUs. We argue that application

developers that are working on reliability-sensitive applications should have guidance on how best to

design resilient applications. A programmer can use either methodology described in Chapter 2 to

34

CHAPTER 4. IMPACT OF EXECUTION PARAMETERS ON GPU PROGRAM VULNERABILITY [?]

measure the level of vulnerability in their code, then iteratively redesign their code until the level of

vulnerability corresponds to a pre-established reliability target.

While it is possible to only evaluate the vulnerability of a program, independent of hardware

parameters, program vulnerability is dependent on the input parameters as well as the specific binary

generated by the compiler (which is also dependent on user-specified compiler flags). Input values

that enable logical masking errors have the ability to effectively influence fault propagation. A

change in the input values of a program can change the vulnerability of this program. In this chapter,

we aim to develop a better understanding of this dependence.

The concern for the programmer is to effectively measure the vulnerability of their program.

Accounting for all possible combinations of input data values and optimization flags is unfeasible.

Our study aims at identifying reliability similarities based on patterns in both the input values and

the optimizations selected. Following this methodology we can significantly reduce the number of

cases to test. Our analysis can help inform future simulation studies, or help guide reliability ability

engineers in terms of qualifying reliability of their project.

Sridharan et al. investigated the effects of program input values on program vulnerabil-

ity [110] and concluded that the primary cause for changes in program vulnerability across varying

input data values directly relates to the execution profile (i.e., which code regions were executed)

of the program. The authors argued that an input that causes a program to touch all code regions

should provide a fairly accurate measure of the vulnerability of the program. Additionally, Jones et

al. examined the impact of compiler optimizations on system vulnerability and found that a compiler

flag, -freorder-blocks can reduce the vulnerability of a system across a number of applications [111].

Prior experiments carried out by Sridharan and Kaeli [110] and Jones [111] were conducted

on CPUs. In this work, we evaluate program sensitivity to changes in program inputs for applications

that run on GPUs, where the variability in the execution profile tends to be minimized.

We evaluate the effects of input data changes in three different aspects: 1) input size, 2)

general/generic input values, and 3) highly program-specific biased input values. Our analyses show

that, for the GPU workloads studied, the vulnerability of a program can change when the input size

is significantly increased, increasing the execution frequency of a portion (or portions) of the code.

We also find that the resilience of the code under evaluation is insensitive to changes in input values,

whenever these values are randomly generated. However, biased input data values can have a deep

influence on program vulnerability.

Additionally, we found that changing the thread-block size of the kernels in a GPU

application can change the rate of silent failures by as much as 7% on average for the impacted

35

CHAPTER 4. IMPACT OF EXECUTION PARAMETERS ON GPU PROGRAM VULNERABILITY [?]

applications.

The contributions of this chapter can be summarized in the following points:

1. we characterize how input sizes change the execution profile of a program, as well as the

vulnerability profile of the program,

2. we characterize how vulnerability changes with different input data values across a suite of

popular GPU benchmarks, while exploring biased data value cases, using program-specific

biased input data, and

3. we characterize how vulnerability changes as we modify the thread-block size of an application.

4.1 Input Data and Program Vulnerability

We found that input data can impact several aspects of program execution that can have a

large influence on resilience: 1) the ordering of instructions in the program (i.e., control flow), 2) the

amount of logical masking performed by the individual instructions in the program [110], and 3) the

dynamic replication of code sections.

4.1.1 Program Instruction Order

The dynamic instruction order in a program determines how a program manipulates its

data, which contributes to its resilience properties. While the instructions grouped into a basic block

always execute in the same order, changing the input parameters of a program has the potential to

influence the execution order across multiple basic blocks, modifying the control flow of the program.

If this occurs, different input values can cause a program to have a different dynamic execution

pattern, changing the traversal order of the basic blocks, changing the program’s vulnerability profile.

Given the SIMT nature of GPU execution, input values can sometimes influence the control

flow path taken by individual threads in a GPU program (e.g., a conditional statement that is based

on a function input). In such cases, a change in the input value may cause a different path to execute

in a program and therefore affect the resilience of the program.

Because GPU programs contain many threads, their resilience may not be significantly

affected if a change in control flow occurs in only one thread. This helps to explain why commonly

used input values do not influence resilience. However, in cases of extreme bias in the input values

36

CHAPTER 4. IMPACT OF EXECUTION PARAMETERS ON GPU PROGRAM VULNERABILITY [?]

(e.g., an input of all zeros), it is likely for all threads in the program see a change in the control flow

paths that are followed.

4.1.2 Logical Masking

Logical masking refers to the property of certain values and logical operations to impede

the propagation of faults. As an example, in a 2-input AND operation where one of its inputs is

equal to 0, a fault that occurs in its second input will not propagate, and the program will continue its

normal execution.

Different input values will change the output of arithmetic and logical operations of a

program. This has direct impact on the ability of a program to mask potential faults that may occur

during execution. For example, if a MUL (multiply) instruction receives a value of ZERO as one of

its input register operands, a fault in the second input register will always be masked and will not

affect the correct execution of the program. However, if we change the input value of the program in

such a way that the same MUL instruction does not receive a ZERO as an input operand, the amount

of masking present in the program will be changed. If the application developers want to develop

more resilient and reliable applications, they have to be able to estimate the reliability of their code

with every possible combination of input data values and program parameters, which is not always

possible. In this thesis we analyze if there are subsets of input data combinations that possess similar

reliability profiles. Such a result would significantly reduce the time needed to evaluate the reliability

of a program.

4.1.3 Dynamic Replication of Code Sections

The GPU programming model is tailored for highly data intensive applications. As a result,

general-purpose programs benefit as the size of heir input data grows. Changes in input sizes of a

program typically result in simply replicating the dynamic execution of the program. However, this

is not always the case. We found that changing the input size of a program sometimes changes the

execution behavior of selected code regions, causing some parts of a code to execute more (or less)

frequently. This leads to a change in the resilience behavior of the program if a particularly highly

vulnerable code is disproportionately replicated.

37

CHAPTER 4. IMPACT OF EXECUTION PARAMETERS ON GPU PROGRAM VULNERABILITY [?]

Table 4.1: Benchmarks and description of their input type and size

Benchmark Description Input Type
BFS Find the minimum number of edges Graph of N nodes

needed to reach every vertex with the list of edges
in an undirected graph and their weights

Gaussian Solves a system of equations using NxN Matrix
the Gaussian elimination method and a 1xN vector

Hotspot Estimates processor temperature based NxN temperature values
on an architectural floorplan and and NxN power values
simulated power measurements

KMeans Performs fuzzy k-means clustering N data points
on a set of data points of m features per data point

LavaMD Calculates particle potential and NxNxN boxes with their
relocation due to mutual forces between respective charges and distances

particles within a large 3D space between them
NW Nonlinear global optimization method 2 sequences of length N
(Needleman-Wunsch) for DNA sequence alignments

Table 4.2: Outcome Categories for Injections

Outcome Category Explanation
Masked All output files match the correct output files
DUE Detected and Unrecoverable Errors (Crash),

or App does not terminate in the allocated time
Potential DUE App exits with non-zero status,

error messages were recorded
SDC Error values at the program output

4.2 Results

Next, we present results of our experiments in two categories. In the first category, we

present variations in resilience when we change the input data for our programs. In the second

category, we examine the effects of adjusting the size of a thread block on the resilience of the

program.

For each application, we inject 1,000 single-bit faults at the output of instructions that write

to a General Purpose Register, which are sufficient to guarantee the worst case statistical error bars at

a 95% confidence level to be at most 3.1% (Figure 2.6.1.1). The benchmarks selected are from the

Rodinia suite and are representative across a range of application domains: linear algebra, physics

simulation, and fluid dynamics. A more detailed description of the benchmarks, along with the type

38

CHAPTER 4. IMPACT OF EXECUTION PARAMETERS ON GPU PROGRAM VULNERABILITY [?]

of input that is used, is provided in Table 4.1. The description for each outcome of an injection is

provided in Table 4.2.

4.2.1 Impact of Input Data

We evaluate 3 different aspects of the input workload data: 1) input size, 2) input value, and

3) biased configuration. We present the outcome for each program for each aspect of our evaluation.

We differentiate between these three aspects of the input data because they will produce different

impacts on program execution. Varying input sizes has the potential to scale the dynamic execution

of particular sections of a program. Input values have the ability to influence the logical masking in

individual operations and potentially influence the control flow of a program. Finally, we identify

specific biased input values and configurations that may induce irregular behavior in a program.

For example, for gaussian, we found that for some input matrix values, the system of equations

accepts an infinite number of solutions. In these cases, any fault that does not crash this application

will likely not influence the correctness of the resulting computation. Such an input matrix is a biased

input. The results of our experiments are presented next.

4.2.1.1 Input Sizes

Figure 4.1 shows how the resilience characteristics of our applications change when the

size of their inputs change. It is important to emphasize that our analyses only examine how the

resilience properties of an application change after a fault occurs in the application. By resilience

properties, we mean the probability for a fault to be masked or to cause an error. We do not take into

account the change in the likelihood for a fault to occur in the application in the first place, which

can change if an application experiences a significant increase/decrease in the number of dynamic

instructions.

The results in Figure 4.1 show that resilience characteristics can significantly change for

an application when its input sizes change. The application gaussian experiences a change in its

SDC rate from 3.8% with a 4x4 matrix, to 36.7% with a 32x32 matrix. For k-means, the SDC rate

changes from 8.5% (with 100 objects) to 22.9% (with 3,000 objects). For Needleman-Wunsch

(nw), while the SDC rate stays constant, the DUE rate reduces from 50.4% (with an input sequence

of 512) to 36.8% (with an input sequence of length 8,000).

Contrary to the hypothesis that input sizes only scales the execution time of a program

and not its resilience [63], our results are in accordance with beam experiment results presented by

39

CHAPTER 4. IMPACT OF EXECUTION PARAMETERS ON GPU PROGRAM VULNERABILITY [?]

0

100

200

300

400

500

600

700

800

900

1000

25
6 4k 8
k

4x
4

16
x1

6

32
x3

2

64
x6

4

12
8x

12
8

51
2x

51
2

10
0 1K 3K

 2
x2

x2

4x
4x

4

5x
5x

5

51
2 4k 8
K

bfs gaussian hotspot kmeans lavaMD nw

N
um

be
r

of
 in

je
ct

io
ns

Vulnerability with different input sizes

Masked SDC DUE

Figure 4.1: Fault injection outcomes for applications with different input sizes.

Rech et al. [17], showing that vulnerability of a program can significantly change when its input size

changes. We found that the reason for the change in resilience resides in the non-uniform scaling that

occurs in the dynamic execution of specific code sections. In other words, as the input size changes

in an application, some sections of the application code account for more (or less) of the dynamic

instruction count.

For example, the application gaussian experiences a significant increase in the SDC

rate as the input size increases. Figure 4.2 shows the dynamic execution weight for each basic block

in the two kernels of gaussian as the input size changes. What we find is that, for small input

sizes, the majority of the dynamic instructions are due to the first kernel (K1). However, as the input

size increases, a majority of the dynamic instructions are from the second kernel (K2). Our fault

injection experiments in gaussian found that a fault in the second kernel (K2) is more likely to

induce an SDC than a fault in K1. As the results show, the SDC rate grows as the input size grows,

with K2 dominating execution. Similar trends are observed for other applications where there is a

significant change in the dynamic execution weight of individual basic blocks.

40

CHAPTER 4. IMPACT OF EXECUTION PARAMETERS ON GPU PROGRAM VULNERABILITY [?]

0% 10% 20% 30% 40% 50%

BB0
BB1

BB2

BB3
BB4

BB5

BB0

BB1
BB2

BB3
BB4

BB5
K1

K2

Basic Block Execution Percentage

Ba
sic

 B
lo

ck
s p

er
 K

er
ne

l
Gaussian

32x32 16x16 4x4

(a) Dynamic execution percentage for each basic block in both kernels.

0

100

200

300

400

500

600

700

800

900

1000

4x4
16x1

6
32x3

2

Nu
m

be
r o

f I
nj

ec
tio

ns

Input Sizes

Gaussian

Masked SDC DUE

(b) Fault injection results for each in-

put size.

Figure 4.2: Dynamic execution percentage for each basic block in gaussian, when the input size changes and the

fault injection results for the corresponding input sizes. Our experiments found that a fault in the second kernel

(K2) is more likely to induce an SDC than a fault in K1. As the results show, the SDC rate grows as the input size

grows, with K2 dominating the execution.

It is important to note however, that if one continues to increase the input size for this

application, the vulnerability characteristics will reach a more stable point. We noticed this occurred

for gaussian. The results for 64x64 input size are slightly different from the results of 32x32 (with

a 3% increase in DUE outcomes), but beyond this point the dynamic behavior of this application

reached a more stable behavior, and as a result its vulnerability remained unchanged past this input

size.

In contrast, some applications experience no change in their resilience characteristics. This

is the case for lavaMD. Our analysis of the dynamic behavior of this application for different input

41

CHAPTER 4. IMPACT OF EXECUTION PARAMETERS ON GPU PROGRAM VULNERABILITY [?]

0% 1% 2% 3% 4% 5% 6%

BB12

BB15

BB17

BB19

BB21

BB23

BB25

BB29

BB31

BB35

BB37

BB41

BB43

BB47

BB49

BB51

Basic Block Execution Percentages

Ba
sic

 B
lo

ck
s

lavaMD by BB

5x5 4x4 2x2

(a) Dynamic execution percentage for each basic block in both kernels.

0

100

200

300

400

500

600

700

800

900

1000

2x2
x2

4x4
x4

5x5
x5

Nu
m

be
r o

f I
nj

ec
tio

ns

Input Sizes

LavaMD

Masked SDC DUE

(b) Fault injection results for each in-

put size.

Figure 4.3: Dynamic execution percentage for each basic block in lavaMD, when the input size changes and the

fault injection results for the corresponding input sizes. This application scales well and increasing its input sizes

simply results in repeatedly executing the same basic blocks several times.

sizes shows that the larger/smaller input sizes uniformly scale the dynamic execution of the different

code sections of the application. This is illustrated in Figure 4.3. As we change the input size of the

application, we do not see a significant change in the execution profile (as measured as a percentage

of the overall execution) of any individual basic block. This is because this GPU application is highly

42

CHAPTER 4. IMPACT OF EXECUTION PARAMETERS ON GPU PROGRAM VULNERABILITY [?]

0

100

200

300

400

500

600

700

800

900

1000

RD
M

1

RD
M

2

RD
M

3

RD
M

1

RD
M

2

RD
M

3

RD
M

1

RD
M

2

RD
M

3

RD
M

1

RD
M

2

RD
M

3

RD
M

1

RD
M

2

RD
M

3

RD
M

1

RD
M

2

RD
M

3

bfs gaussian hotspot kmeans lavaMD nw

N
um

be
r

of
 In

je
ct

io
ns

Vulnerability with different input values

Masked SDC DUE

Figure 4.4: Fault injection outcomes for applications with different randomly generated input values. The input

values were randomly generated through the program’s own input generator.

regular, and increasing its input sizes simply results in repeatedly executing the same basic blocks

several times.

4.2.1.2 Input Values

Figure 4.4 shows how the vulnerability of applications changes when the input values

change. We randomly changed the input values (shown by RDM 1 through RDM 3). These input

values were obtained by using each workload’s own input generator. Our programs allow users to

change their input values by re-running the input generator scripts. We generated the new input

values and verified that both sets of values in RDM1 - RDM3 were completely different from each

other.

The results show that random changes in the input values do not significantly alter the

vulnerability behavior of the applications. The difference between outcome rates using RDM1 -

RDM3 is about 3%, which is within the error margin in our experiments.

43

CHAPTER 4. IMPACT OF EXECUTION PARAMETERS ON GPU PROGRAM VULNERABILITY [?]

Based on our results we can claim that, when evaluating the reliability of generic GPU

applications, it is reasonably sufficient to use randomly generated inputs. However, it is worth noting

that, whenever available, realistic inputs and configurations are preferred.

Our investigation shows that changing the input values for the programs under investigation

does not significantly alter their control flow. In other words, when the input values are changed,

though remain in a restricted range of values, we found that the control flow graph of our applications

was not altered enough to significantly affect their vulnerability. A similar trend was observed for

programs run on CPUs [110]. This work reported that different program inputs lead to different

vulnerability behaviors for a program, because different program inputs were inducing different

execution profiles (different instruction streams) for that program.

4.2.1.3 Biased Inputs

We evaluate two types of biased inputs in our experiments: 1) the extreme cases of biased

input values, ZERO and ONE input arrays/matrices where all the elements are 0 or 1, respectively;

and 2) the application-specific biased input data where the input is specifically crafted to influence

the vulnerability of an application.

ZERO/ONE Biased Input Data

[112] For the two input sets of all ZEROs and all ONEs in bfs, we gave all the nodes

in the input graph 0 or 1 edge, respectively. Consequently, all the nodes in the graph are visited in

one iteration of the kernels. For typical inputs, with an average of 8 edges per node, the program

converges after 8 iterations of the kernels. Faults in bfs are more likely to be propagated with

more iterations of these kernels. To obtain a worst case result for SDC’s, we should select for an

upper-bound a realistic number of edges per node for bfs.

For ZERO and ONE input datasets for gaussian, we set the values in the input matrix

and vector to be all ZEROs and all ONEs, respectively. For these input values, there exist an infinite

number of solutions to the system of equations. A fault in this program will not likely produce an

incorrect result when the input is ZERO or ONE. Biased inputs for gaussian include the set of inputs

for which there exist an infinite number of solutions.

For kmeans, using the ZERO and ONE input datasets utilize data points such that the

associated features are all ZERO and ONE, respectively. A large portion of this algorithm iteratively

computes the distance of each data point to its assigned cluster center. For a ZERO input set, the

44

CHAPTER 4. IMPACT OF EXECUTION PARAMETERS ON GPU PROGRAM VULNERABILITY [?]

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

RD
M

ZE
RO O
N

E

RD
M

ZE
RO O
N

E

RD
M

ZE
RO O
N

E

RD
M

ZE
RO O
N

E

RD
M

ZE
RO O
N

E

RD
M

ZE
RO O
N

E

bfs gaussian hotspot kmeans lavaMD nw

N
um

be
r

of
 In

je
ct

io
ns

Applications

ZERO/ONE Biased Input Values

Masked SDC DUE

Figure 4.5: Fault injection outcomes for applications with randomly generated input values vs. extremely biased

values. ZERO and ONE input represent input values of all 0 or 1, respectively.

distance is always 0, as all points are located at the cluster centers. A fault is not likely to change the

membership of the data points.

A similar case arises for lavaMD, where an input data set of ZERO means that the

distances and charges of the particles are all ZEROs. Consequently, there are no relocations of any

particles and it is unlikely for a fault to change that result. The ONE input set, however, which

assigns the distances and charges of all the particles to 1, corresponds to the maximum value for both

distances and charges. This leads to a very large displacement of the particles, and more opportunities

for fault propagation.

Overall, the changes in resilience caused by our ZERO/ONE biased inputs, with the

exception of the ONE input set for lavaMD, correspond to an increase in masked outcomes. This is

because the ZERO and ONE biased input sets are extreme corner cases for our applications, and they

happen to maximize fault masking. Some should never actually occur, such as in kmeans.

45

CHAPTER 4. IMPACT OF EXECUTION PARAMETERS ON GPU PROGRAM VULNERABILITY [?]

Application-specific biased inputs and configurations

Table 4.3: A description of Workload specific biased input data.

App Biased input description
Higher edge density. The average number of

BFS edges per node is 200, compared to 8.
The input values were chosen such that

GAUSSIAN the system accepts infinitely many solutions.
Input parameters were changed to increase

HOTSPOT the number of iterations of the kernel.
The maximum number of clusters possible

KMEANS was changed to 50, instead of the default 5.

0

100

200

300

400

500

600

700

800

900

1000

Standard Biased Standard Biased Standard Biased Standard Biased

bfs gaussian hotspot kmeans

N
um

be
r

of
 in

je
ct

io
ns

Application-specific biased inputs

Masked SDC DUE

Figure 4.6: Fault injection outcomes for applications with randomly generated input values. The input values

were randomly generated using the workload’s own input generator.

We investigated the effects of biased inputs that are especially crafted to influence the

resilience of our applications. This section shows that, some inputs, which do not exhibit extreme

46

CHAPTER 4. IMPACT OF EXECUTION PARAMETERS ON GPU PROGRAM VULNERABILITY [?]

cases of all zero inputs, can still produce irregular execution behavior in applications.

We analyze cases where specific changes in the inputs of our applications could have a

significant impact on their resilience behavior. Table 4.3 highlights the specific changes that we made

to turn the standard inputs into biased ones. Figure 4.6 shows how the resilience of our applications

change when we perform assessment with the biased inputs.

For bfs, we regenerated the graph input such that the edge density becomes much higher

than the standard input. The first kernel of bfs contains a loop in which every node in the input graph

visits the adjacent edges. Increasing the average number of edges in the graph results in a significant

increase in the number of loop iterations inside the first kernel of the application. Consequently, the

number of DUEs significantly increases, as faults in the first kernel are more likely to yield a DUE.

The application gaussian solves a system of linear equations. We exploited a corner

case of a system of equations which has infinite solutions. We created an input for the program that

would yield the case of infinite solutions. Because there exists an infinite number of correct solutions

with this particular input, a fault that does not cause a program crash would likely produce a solution

to the program that is acceptable as a correct solution. This particular case of input for gaussian

makes the the program more tolerant to faults that do not result in termination of the program.

For hotspot, we explored execution parameters that can impact program behavior.

Specifically, we doubled the number of iterations of the application kernel. This also further

increased the number of iterations in a loop inside the kernel. Faults that occur during the execution

of this loop are likely to be masked, and in turn, the increase in iterations of this loop yielded a more

resilient application, as shown by the increase in masked outcomes in Figure 4.6.

For kmeans, we also changed an execution parameter and allowed the application to test

for up to k = 50 to find the best number of clusters, as opposed to using only 5. This simply replicates

the number of iterations of both kernels of the application. However, there is a loop inside one of the

kernels where the number of iterations depends on the number of clusters being used. As the number

of clusters increases, so does the number of iterations of this loop. This portion of the code therefore

becomes a more significant percentage of the dynamic execution of the application. Faults in this

portion of the loop also will likely yield a DUE outcome, as this portion of the code contains memory

accesses and a fault can easily corrupt the address used to access memory. Consequently, there is an

increase in the number of DUE outcomes with this change to k in kmeans, as shown in Figure 4.6.

The results in Figure 4.6 show that specific cases of input values can influence our resilience

assessment. When evaluating the resilience of an application, we need to take into account whether

there is a program input that could yield an unusual dynamic behavior (e.g., an increase in the

47

CHAPTER 4. IMPACT OF EXECUTION PARAMETERS ON GPU PROGRAM VULNERABILITY [?]

90%

95%

100%

105%

110%

115%

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

12
8

25
6

51
2

12
8,

16
x1

6

25
6,

8x
8

51
2,

4x
4

16
x1

6

24
x2

4

32
x3

2 32 64 12
8 16 32 64

bfs gaussian hotspot lavaMD nw

Block Sizes

Ru
nt

im
e

O
ve

rh
ea

d
(%

)

N
um

be
r

of
 in

je
ct

io
ns

Applications

Impact of Changing Block Sizes

Masked SDC DUE Runtime overhead (%)

Figure 4.7: Fault injection outcomes for applications when block sizes are changed. The x-axis represents the

thread-block sizes (1D and 2D) for the kernels. Runtime overhead for respective block sizes over the baseline

configuration (configuration with the smallest block size) is also shown for each block size.

number of loops executed or an increase in the number of kernel launches), significantly impacting

our conclusions from a reliability assessment. To come up with biased inputs, we chose inputs or

configurations that would cause a change in behavior in the program dynamics. For most of our

programs, the change in their input affected the number of iterations executed of an individual kernel

or specific loops inside a kernel.

4.2.2 Effects of changes in kernel block sizes

A common practice for GPU programmers is to change the number of threads that each

instance of their kernel can launch, also called the block size. The block size can significantly

influence the performance of the program. A programmer often chooses the optimal block size

depending on the complexity of their code, the pressure placed on system resources (e.g., registers

and memory) and the compute capability of their device.

Some of the applications used in this experiment allow a user to adjust the block size of

the kernel. A user can then experiment with the program by increasing (decreasing) the number of

48

CHAPTER 4. IMPACT OF EXECUTION PARAMETERS ON GPU PROGRAM VULNERABILITY [?]

threads in each block while decreasing (increasing) the number of blocks in a grid.

Changing the block size may improve the performance of a program, depending on the

capabilities of the hardware. Block size has already been demonstrated to significantly impact the

reliability of GPUs [113]. Using our architectural-level fault injection framework, we aim at better

understanding the reasons for the dependence of reliability on block size.

In Figure 4.7, we show the results of a fault injection campaign for our applications while

changing the block size of their kernels. We also show the runtime overhead for the respective block

sizes, as compared to the baseline configuration (i.e., the configuration with the smallest block size).

Our results show that, just as performance of an application is affected by adjusting the block size for

a kernel, the resilience of an application is also affected by this configuration parameter. For example,

the SDC rates experience a change of as much as 8% for (hotspot and gaussian). These results

show that changing a block size in an application can affect an application’s resilience.

Our results suggest that the changes observed in reliability when we modify the block size

are not only due to corruption at the microarchitecture level (see Figure 1.1), specifically in the block

scheduler, as proposed by Rech et al. [113]. Our fault model does not account for faults occurring at

the microarchitecture level.

Changing the block size of a kernel may change the number of blocks that can be assigned

to a particular streaming multiprocessor of a GPU. The exact number of blocks assigned to a

streaming multiprocessor depends on the amount of resources needed by each thread (e.g., registers)

in the block, as well as the amount of shared resources needed by the threads (e.g., shared memory).

Some blocks may be queued for later execution if the number of blocks in the kernel exceeds the

number of blocks that can be scheduled in the GPU streaming multiprocessors. This potentially

increases the vulnerability exposure time for data in the blocks that are scheduled for later execution.

Additionally, changing the thread block size in a program changes the distribution of data

across the Streaming Multiprocessors. This results in a new arrangement of threads within the new

blocks. Any resilience that came from the collaboration between threads in the same block is also

impacted.

The degree of error propagation displayed is application dependent. In gaussian, for

example, 512,4x4 means that the first kernel has 512 threads per block, while the second kernel has

thread blocks of 2 dimensions (4x4). We found that the thread divergence present in the first kernel

code made it more likely for a fault to be masked in this kernel with a larger block size.

Our results also suggest that in reliability estimation, we should not only use realistic input

values, but we should also be mindful of the block size that is to be used with the application. In

49

CHAPTER 4. IMPACT OF EXECUTION PARAMETERS ON GPU PROGRAM VULNERABILITY [?]

our programs, there is no direct correlation between the change in performance and the change in

resilience. We plan to investigate this relationship further in the remainder of this thesis.

4.3 Summary on the Impact of Execution Parameters on Program

Vulnerability

This chapter examined how changes in input data values of a GPU program impact

vulnerability. We also evaluated the impact of changing the thread-block size of a program, a

common practice among developers when tuning an application for performance.

When GPU programmers start to test the resilience of their applications, it is important

that they consider whether the results of their testing will hold true with different types of input sizes

and values. Our investigation here has found that resilience in GPU applications can change with

changes in input sizes and using biased input values. These changes are mostly due to changes in the

scaling the dynamic contributions of individual code sections in an application. Changes in input size

that cause a portion of an application to scale disproportionately will likely influence the resilience of

an application. Similarly, programmers should be wary of specific values that can affect the number

of iterations of a single kernel, or input values that may induce a corner use case in an application.

Our experiments on the variation of the thread block size found that the SDC rates can

change by as much as 8% for some applications. A programmer needs to carefully evaluating the

reliability trade-offs of tuning the performance of an application when modifying the block size of

the kernels. For the experiments carried out in this thesis, we use realistic input sizes and values for

all vulnerability estimation experiments.

50

Chapter 5

PCFI: Program Counter Guided Fault

Injection for Accelerating GPU

Reliability Assessment

The software fault-injection process is prohibitively expensive, requiring multiple days

to complete a statistically sound fault-injection campaign. To address this challenge, this chapter

proposes a novel fault-injection methodology named Program Counter Guided Fault Injection (PCFI).

PCFI is designed to reduce the number of fault injections by exploiting redundancy in fault injection

experiments. PCFI utilizes the program counter value to characterize corrupted instruction execution.

We consider the behavior of a range of GPU programs covering diverse application domains. Our

goal is to design PCFI to reduce the time to complete fault-injection campaigns, without sacrificing

accuracy.

5.1 PCFI Overview

5.1.1 Motivation

The software fault-injection process is prohibitively expensive since the number of faulty

runs in a fault injection campaign needs to be sufficiently high to produce statistically significant

results. Previous research papers have reported the number of fault injection runs to be more than

60,000 for achieving high accuracy [62, 61]. Prior work has reported that 10,000 injections is the

right number of injections in order to obtain low error margins (close to 1%) and a 95% confidence

51

CHAPTER 5. PCFI: PROGRAM COUNTER GUIDED FAULT INJECTION FOR ACCELERATING GPU RELIABILITY ASSESSMENT

interval [57] [63] (see Section 2.6.1.1). Assuming the average execution time for each of our

applications is around 15 seconds on a GPU, it will take more than 45 days on a single GPU to

perform 10,000 fault injection runs for the 26 benchmarks considered in this study.

As the execution time of a GPU program increases, and such is the case for long-running

GPU-based HPC applications, this overhead makes reliability assessment impractical or even in-

feasible in some cases. We note that when researchers devise new resilience mitigation strategies,

they need to run multiple 10,000 fault injection runs in order to compare trade-offs of competing

solutions.

To address this challenge, we propose a novel fault-injection method, PCFI, that reduces

the number of fault injection runs needed during a fault injection campaign to assess the vulnerability

of GPU programs to soft errors. PCFI attempts to reduce the time and effort associated with soft

error analysis, without comprising the accuracy of the results.

5.1.2 PCFI Key Idea

Traditional fault injection methods perform a large number of fault-injected runs during a

fault injection campaign. In each run, one fault is injected and the effect on the program outcome

is observed (i.e., crash, incorrect result, no effect). Across all the runs in a campaign, faults are

uniformly and randomly distributed over all the dynamically executed instructions to achieve high

statistical significance [3].

We show that GPU programs tend to execute a small subset of static instructions (i.e., a sub-

set of all possible program counter values) multiple times during their dynamic execution. This small

set of static instructions (PCs) often constitute a significant fraction of the total dynamic instructions.

This tendency follows the 90/10 rule described in many Computer Architecture textbooks [114].

Hence, these PCs also account for a major fraction of injected faults, even when faults are uniformly

and randomly distributed over all dynamically executed instructions.

Furthermore, we discovered that the outcome of injected faults in these PCs remain the

same across different dynamic execution instances of the same static instruction. PCFI exploits

these observations to reduce the number of fault injection runs. PCFI identifies frequently executed

PCs and carefully limits the number of fault injections in those PCs if the outcome of a fault in

those PCs does not change across different dynamic execution instances. PCFI is able to exploit

the predictability in outcomes to maintain the same accuracy, but significantly reduces the time by

eliminating many fault injection runs in the same PC that are likely to result in the same outcome

52

CHAPTER 5. PCFI: PROGRAM COUNTER GUIDED FAULT INJECTION FOR ACCELERATING GPU RELIABILITY ASSESSMENT

behavior. We discuss the challenges and trade-offs involved in designing and implementing PCFI to

achieve its goal. To the best of our knowledge, this is the first work to exploit PC-based behavior to

reduce the fault injection campaign effort.

5.2 PCFI: Design and Implementation

Traditional fault-injection methods involve running a large number of fault injections,

where a single fault is injected in each run and the effects on program correctness are observed (i.e.,

crash, incorrect result, no effect). Widely-used GPU fault injectors, such as SASSIFI (described

in Chap. 2.7), take the following steps to perform fault injection. SASSIFI identifies all possible

vulnerable locations (i.e., all the dynamic instructions of the program under evaluation). SASSIFI

randomly and uniformly selects threads and instructions within a thread to cover different program

phase behavior in space and time. Finally, SASSIFI injects faults in each chosen instruction.

Traditional software fault injection methods use such an approach and inject high number of faults in

a fault-injection campaign [24, 3, 63]. Therefore, we use the fault-list obtained from this method as

the baseline fault list that PCFI prunes.

|||||||||…||||||||||||||||…||||||…|||||||||||||||||…|||||…||||||||||||…||||||||||…|||||||

kernel 0 kernel 0 kernel 0kernel 1 kernel 1 kernel 1kernel 2 kernel 2

faults
dynamic
instructions

GPU program execution over time

Figure 5.1: Traditional fault injection methods uniformly and randomly distribute faults across a program’s dy-

namic instructions.

PCFI exploits the following two observations to reduce the number of fault-injected runs

from an original fault injection list. First, GPU programs tend to have a small set of static instructions

(PCs) that often constitute a significant fraction of total dynamic instructions. Consequently, this

set of PCs also account for a major fraction of the injected faults in the baseline case. Second, the

outcome of injected faults in many frequently executed PCs remain identical across different dynamic

instances of the same static instruction.

Next, we provide quantitative evidence to support our observations. We show results

53

CHAPTER 5. PCFI: PROGRAM COUNTER GUIDED FAULT INJECTION FOR ACCELERATING GPU RELIABILITY ASSESSMENT

for three representative applications: i) reduction (red), ii) dwtHaar1D, and iii) minimum

spanning tree (mst). We obtained similar results and trends for other benchmarks during

their execution.

Figures 5.2a, 5.2c, and 5.2e show the execution breakdown across each PC in these

programs. These results show that some PCs are highly dominant. That is, their execution frequencies

can be an order of magnitude higher than other PCs in the same application. This is due to the fact

that these PCs belong in code blocks that are in loops with high trip counts. Using dynamic profiling

of the red, dwtHaar1D, and mst applications, we found that 86, 83, and 615 unique PCs are

executed, respectively. However, very few PCs dominate most of the execution in these programs.

For example, in red, 99% of the dynamic instructions were execution from only 12 unique PCs,

because the main code executed by each thread for this application resides in a loop with a high

number of iterations.

Figures. 5.2b, 5.2d, and 5.2f show the number of faults injected into unique PCs for a full

fault injection campaign with SASSIFI. During this campaign, we chose a 95% confidence interval,

and a 5% error margin, and the faults were randomly and uniformly distributed.

We only show the PCs with the highest execution frequencies (dominant PCs) to highlight

their predictability. Many of the top 10 PCs are tied to a significantly higher number of faults.

For example, in the application red, the top 10 PCs account for 80% of total faults out of all the

injections. Moreover, we observe that the outcome of the injected faults is identical for many of the

frequently executed PCs across all three benchmarks: red, dwtHaar1D, and mst. To exploit this

opportunity, one could limit the number of injections in these “hot”-PCs and extrapolate the results

for each PC according to its respective execution frequency.

We note, however, that some PCs do not follow this model, mainly due to changes in control

flow behavior over the lifetime of the program. For example, in dwtHaar1D (see Figure 5.2d),

injections in PC1, the most frequently executed PC, sometimes get masked and other times lead to

SDCs. We further investigated this behavior and found that the different outcomes depend on the

execution phase of the program. The injections over time in PC1 demonstrate a phase-based behavior,

resulting in phases with a high probability for SDC outcomes and phases with a high probability of

fault masking. We further examine the resilience phase behavior in Chapter 6.

When we encounter control-flow depend fault profiles, the number of injections should not

be limited, since we will need capture all phases of their behavior. So before we reduce the number

of injections in a PC, PCFI injects faults across the whole execution time of the application.

Leveraging these insights, PCFI identifies frequently executed PCs via a profile run and

54

CHAPTER 5. PCFI: PROGRAM COUNTER GUIDED FAULT INJECTION FOR ACCELERATING GPU RELIABILITY ASSESSMENT

0 25 50 75 100
PC

101

103

105

107

Nu
m

be
r o

f E
xe

cu
tio

ns
(lo

g
sc

al
e)

reduction

(a)

1 2 3 4 5 6 7 8 9 10
PC

0

20

40

60

Nu
m

be
r o

f I
nj

ec
tio

ns

reduction Masked
SDC
DUE

(b)

0 25 50 75 100
PC

103

104

105

106

Nu
m

be
r o

f E
xe

cu
tio

ns
(lo

g
sc

al
e)

dwtHaar1D

(c)

1 2 3 4 5 6 7 8 9 10
PC

0

20

40

60

Nu
m

be
r o

f I
nj

ec
tio

ns

dwtHaar1D Masked
SDC
DUE

(d)

0 25 50 75 100
PC

104

105

106

107

108

Nu
m

be
r o

f E
xe

cu
tio

ns
(lo

g
sc

al
e)

mst

(e)

‘
1 2 3 4 5 6 7 8 9 10

PC
0

20

40

60

Nu
m

be
r o

f I
nj

ec
tio

ns

mst Masked
SDC
DUE

(f)

Figure 5.2: Applications from different domains, reduction (red) (data processing), dwtHaar1D (signal

processing), and mst (graph traversal), show that (1) few static instructions (PCs) dominate overall dynamic

execution of instructions, (2) vulnerability outcomes in highly frequently PCs are likely to remain across injections

for many PCs.

55

CHAPTER 5. PCFI: PROGRAM COUNTER GUIDED FAULT INJECTION FOR ACCELERATING GPU RELIABILITY ASSESSMENT

||||||||…||||||||||||||||…||||…||||||||||||||||||||…||||||…|||||||||||…||||||||||…|||||||

PC1 PC3PC2

(a) In GPU programs majority of dynamic instructions is dominated by a handful of static instructions (PCs). In this example,

3 PC’s dominate the dynamic execution of the program.

|||||||||…|||||||||||||||…||||…||||||||||||||||||||…||||||…|||||||||||…||||||||||…|||||||

Only select few instructions for injections

(b) PCFI limits the number of injections into instances of individual static instructions.

Figure 5.3: PCFI approach for PC-guided fault injections

carefully limits the number of fault injections in the those PCs if the outcome of a fault in those

PCs does not change across different dynamic execution instances. Figure 5.3b shows that PCFI

limits the number of injections in PCs for the baseline shown in Figure 5.3a, where most of the

dynamic instructions in this example are different dynamic occurrences of 3 dominant PCs. The

outcome of faults in PCFI-friendly PC’s is extrapolated to match the execution frequency of the PC.

PCFI accounts for cases where faults at different instances of a PC do not have the same outcome by

keeping a history of outcomes for each PC. PCFI is able to exploit the predictability in outcomes to

maintain the same accuracy, but significantly reduces the time by eliminating many fault injection

runs in the same PC that are likely to result in the same outcome behavior. Our results show that by

limiting the number of injections based on history outcomes, we do not compromise the accuracy of

our results.

PCFI Implementation Details

Next, we describe how PCFI is implemented in our open-source GPU fault injector,

SASSFI [3]. The steps below detail how PCFI can be adapted for any generic GPU fault injector,

and is independent of the detailed implementation of the GPU fault injector.

• Profiling Stage: First, PCFI performs a profiling step which records the count of all dynamic

instances of each static instruction in the given GPU program. Note that the overhead of this

step is equivalent to performing a single fault injection run. At the end of this step, PCFI has

56

CHAPTER 5. PCFI: PROGRAM COUNTER GUIDED FAULT INJECTION FOR ACCELERATING GPU RELIABILITY ASSESSMENT

identified all static instructions (PCs) that were executed most frequently, and their respective

execution frequencies.

• Fault List Generation Stage: In this step, SASSFI generates the fault list - the dynamic

instruction list where faults will be injected. SASSIFI generates these faults such that they

are randomly and uniformly distributed across the dynamic executions of each PC. This also

ensures that PC behavior across all different program phases is captured. Note that the number

of injections that map to a PC is directly proportional to the dynamic execution frequency of

the PC. The total number of faults is provided by the user. The user decides the number based

on the error margin and confidence level she/he desires.

We note, that up to this stage, PCFI would yield the same vulnerability profile (i.e., the

same ratio for each type of outcome of fault injections) as the traditional methodology (as

implemented in earlier studies [3, 63], and described in Section 2.7), since the fault list has not

been pruned yet.

• Fault Injection Stage: In this step, PCFI instruments the fault injection handler in SASSIFI

to inject a fault based on the PC value. Once the correct execution count for a specific PC is

reached, the PCFI handler injects a fault in a destination register of the instruction, as per the

fault model described in Section 2.8.

To reduce the number of fault-injected runs, PCFI keeps track of the vulnerability outcomes

of faults injected in each PC. If a particular PC is a frequently executed PC (i.e., it receives

a greater number of faults than a threshold), then PCFI first randomly and uniformly picks a

“threshold” for the total number of faults corresponding to this PC and executes these runs.

If the outcomes of these runs are identical (e.g., all producing DUE), then PCFI eliminates

further fault injections to this particular PC, and thus, reduces the number of fault-injected

runs. If the outcomes differ for first “threshold” number of faults, then, PCFI continues to

inject faults.

PCFI chooses the threshold to be 1% of total number of faults in the base case. For a 10,000

fault injection campaign, PCFI will track and observe PCs which receive 100 or more faults.

This choice is guided by our experiments where we find that 1% of uniformly distributed faults

serve as a good indicator if a particular PC results in the same outcome, without affecting the

accuracy, independent of the fault list size for the applications studied (Section 5.3).

57

CHAPTER 5. PCFI: PROGRAM COUNTER GUIDED FAULT INJECTION FOR ACCELERATING GPU RELIABILITY ASSESSMENT

Advanced optimization techniques, such as tracking the relative proportion of outcome types

for PCs that produce different outcomes, can be used to limit the number of injections in

PCFI-unfriendly PCs. This approach can further reduce the number of fault injections, but

only produces very moderate time savings.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

BS
CH

LS IIR
SQ

RN
G

BP
RO

P
BF

S
BH

BO
PT

DW
T1

D
FW

T
G

SS
N

HW
AL

L
HS

O
RT

KM
N

S
LV

M
D

LK
CY

T
LU

D
M

M
U

L
M

GS
RT

M
ST N
N

RE
D

SP
RO

D
SC

AN SP
SR

D_
V2

TP
O

SE

AV
G

10K injections
(1% threshold)

500 injections
(1% threshold)

Figure 5.4: Percent reduction of the total number of injections, after filtering out excess faults in PCs.

5.3 PCFI Evaluation and results

We evaluate PCFI on a mix of 26 applications, selected from 2 well-known benchmark

suites for GPU applications, the Rodinia suite of applications [115] and the CUDA-SDK [116]. These

applications are representative across a range of application domains: linear algebra, graph traversal,

image processing, physics simulation, fluid dynamics, signal processing, financial computation, data

mining, and pattern recognition.

We present our results in two categories. First, we look at the fault list reduction and

corresponding time savings achieved from the baseline fault list (i.e., 10K random fault injections).

Then, we will evaluate the accuracy of our methodology by comparing our results to a traditional

fault injection campaign performed using SASSIFI.

58

CHAPTER 5. PCFI: PROGRAM COUNTER GUIDED FAULT INJECTION FOR ACCELERATING GPU RELIABILITY ASSESSMENT

5.3.1 Fault List Reduction

Starting with the original number of injections, we apply our methodology to skip fault

injections in dominant PCs, where multiple fault injections produce the same outcome. We compare

our results to two different baselines: 10,000 random injections (a 95% confidence level, with a 0.98%

error margin) and 500 random injections (a 95% confidence level, with a 4.4% error margin). We

limit the maximum number of injections in the frequently executed (or dominant PCs) which produce

identical outcomes to using 1% of the total number of injections performed in the baseline/traditional

case. This threshold can be adjusted to a higher or lower value, however we observed that changing

the threshold does not affect the accuracy of the results for the baseline since there are a sufficient

number of injections (e.g., 500 faults). In our experiments, 1% produces effective results for both a

high number and low number of baseline random injections, with minimal impact on accuracy, as is

shown later.

Figure 5.4 shows the percent reduction in the number of faults injected. Our results show

that PCFI is effective in both cases as compared to the baseline case of 10K injections, and even

when we reduce the number to 500 injections. For 10K injections, PCFI achieves a fault list reduction

of 22.38% on average, resulting in an average of 7,762 faults injected per application. For a 500

injections baseline, PCFI reduces the number of injections by 22.68% on average, resulting in 387

faults injected per application on average.

The magnitude of the fault list reduction changes based on the specific workload character-

istics. For our 10,000 fault baseline, the fault list reduction varies between 0 and 78.8% (SQRNG).

Our analysis reveals that the wide range in fault list reductions can be attributed to the

following factors:

1. The Number of Dominant PCs in the Application: If there are fewer dominant PCs in the

application, it means that the majority of the execution is confined to a small set of the PCs.

This increases the opportunity for PCFI to reduce the number of injections that target those

PCs.

2. Execution Frequency of the Dominant PCs: As we mentioned earlier, the number of faults

targeting a particular PC is proportional to its execution frequency. Therefore, execution

frequency of all PCs dictates how faults are distributed across the application. This implies

that having fewer dominant PCs that are executed significantly more often, compared to other

PCs, offer a bigger margin for fault reduction through PCFI. In the case where execution is

59

CHAPTER 5. PCFI: PROGRAM COUNTER GUIDED FAULT INJECTION FOR ACCELERATING GPU RELIABILITY ASSESSMENT

spread out across many dominant PCs, the margin for fault reduction per PC reduces and PCFI

will not be able to offer much savings. It is important to note that in GPU programming, best

practices include developing code with high temporal locality, where most of the run time is

spent in a limited amount of code [117].

Embarrassingly parallel applications tend to spend most of their execution time in a limited

number of code blocks. These applications have highly dominant PCs: dominant PCs, where the

number of executions that are not only significantly higher (by several orders of magnitude in terms

of their frequency) than the non-dominant PCs, but also represent a large percentage of all dynamic

instructions. Additionally, when the number of highly dominant PCs is small, the majority of the

faults will be injected into the highly dominant PCs, increasing the opportunity for PCFI to reduce

injections. These instances represent applications that have loops with high trip counts. These

applications also have fewer conditional branches during dynamic execution.

The application reduction (red) experiences a very significant fault list reduction

(58% for 10K faults, and 66% for 500 faults). We find that this application spends 99% of its dynamic

execution in 12 unique PCs (out of a possible 86 unique PCs present in the application), with the

number of executions 3 orders of magnitude greater than the remaining PCs in the application (see

Figure 5.2a). This application is a classic parallel GPU application, that can greatly benefit from

using PCFI.

On the other hand, the execution time for the minimum-spanning-tree (mst)

application is spread out fairly evenly across a large number of unique PCs (see Figure 5.2e). In this

program, 95% of dynamic instructions are confined to 233 unique PCs (out of a total of 615 unique

PCs). This application does not present many opportunities to use PCFI for fault list reduction.

Table 5.1: Time savings using PCFI

N Traditional PCFI
10,000 48.15 days 36.16 days

500 57.73 hours 42.57 hours

5.3.2 Time savings

Table 5.1 shows time for a fault injection campaign for the 26 applications in our testing

framework. We compare the time expended using the traditional approach versus PCFI. Even with

an already small number of injections per application (i.e., 500), PCFI offers significant time savings

60

CHAPTER 5. PCFI: PROGRAM COUNTER GUIDED FAULT INJECTION FOR ACCELERATING GPU RELIABILITY ASSESSMENT

of 1̃5 hours. This time savings can rapidly increase when researchers perform multiple fault injection

runs, as mitigation efforts need to be evaluated and new resilience mitigation strategies are being

devised.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

BS
CH

LS IIR
SQ

RN
G

BP
RO

P
BF

S
BH

BO
PT

DW
T1

D
FW

T
G

SS
N

H
W

AL
L

H
SO

RT
KM

N
S

LV
M

D
LK

CY
T

LU
D

M
M

U
L

M
G

SR
T

M
ST N
N

RE
D

SP
RO

D
SC

AN SP
SR

D
_V

2
TP

O
SE

Masked FULL SDC FULL DUE FULL Masked PC-FI SDC PC-FI DUE PC-FI

(a) Starting with 10K faults

0%
10%
20%
30%

40%
50%
60%
70%
80%

90%
100%

BS
CH

LS IIR
SQ

RN
G

BP
RO

P
BF
S

BH
BO

PT
DW

T1
D

FW
T

G
SS
N

H
W
AL
L

H
SO

RT
KM

N
S

LV
M
D

LK
CY

T
LU

D
M
M
U
L

M
G
SR
T

M
ST N
N

RE
D

SP
RO

D
SC
AN SP

SR
D
_V

2
TP
O
SE

(b) Starting with 500 faults

Figure 5.5: Results for PCFI compared to a traditional fault injection campaign. In 5.5b, we show outcomes for

PCFI when starting with 500 faults (N=500). In 5.5a, we start with a list of 10K faults (N=10K).

61

CHAPTER 5. PCFI: PROGRAM COUNTER GUIDED FAULT INJECTION FOR ACCELERATING GPU RELIABILITY ASSESSMENT

5.3.3 Accuracy of PCFI compared against traditional fault injection, with 10K and
500 random injections.

Table 5.2: Min, Max and Average error observed between traditional fault injection and PCFI for Masked, SDC

and DUE outcomes. The error is the difference in the observed fault breakdown percentage between PCFI and

the traditional fault injection methods.

N Outcome Type Min Error Max Error Avg Error
Masked 0% 2.49% 0.46%

10K SDC 0% 0.90% 0.17%
DUE 0% 2.04% 0.42%

Masked 0% 2.66% 0.53%
500 SDC 0% 1.82% 0.45%

DUE 0% 1.82% 0.32%

Next, we evaluate the accuracy of the fault injection campaign performed using PCFI. In

Figure 5.5, we show the results of a fault injection campaign performed using PCFI, along with a

traditional fault injection campaign. These results show that PCFI achieves the same results as the

traditional fault injection campaign. They also show that for all 26 applications, a fault injection

campaign performed with PCFI can produce results that are consistently well within the error margin

for all fault outcome categories. We also show the average, maximum, and minimum error between

PCFI results, and the results from a traditional fault injection in Table 5.2. Notably, PCFI achieves an

average error in accuracy of less than 0.55% across all cases, and maximum accuracy error of 2.49%.

To demonstrate that PCFI produces better results than a traditional fault injection strategy

using a reduced fault list (the same number of faults as PCFI), but injected using the traditional method

(as described in Section 2.7), we selected the 3 applications which represent the smallest number of

faults, starting with the original fault list of 500 injections: SobolQRNG (136 faults), reduction

(170 faults) and IIR (207 faults). We evaluate whether the reduced number of injections obtained

with PCFI could provide similar error margins as compared with a traditional methodology. PCFI

uses 136, 170, and 207 faults, whereas the baseline uses a fault list of 500. Now, these faults (136,

170, and 207 faults) are being injected randomly in the respective benchmarks to demonstrate that

PCFI is more effective than randomly pruning the fault list by the same amount.

We perform a fault injection campaign for each approach (PCFI and the traditional method

with a reduced fault list) 5 times to check the consistency of the results. For each campaign, we take

the difference between the results of the technique and the results of a baseline using 500 random

62

CHAPTER 5. PCFI: PROGRAM COUNTER GUIDED FAULT INJECTION FOR ACCELERATING GPU RELIABILITY ASSESSMENT

App Outcome Avg. Error Max Error Std Dev Avg Error Max Error Std Dev
Masked 1.145% 1.731% 0.406% 3.124% 4.591% 1.135%
SDC 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%
DUE 1.145% 1.731% 0.406% 3.124% 4.591% 1.135%
Masked 0.163% 0.285% 0.109% 0.527% 1.485% 0.536%
SDC 1.196% 1.531% 0.237% 2.363% 5.245% 2.450%
DUE 1.148% 1.449% 0.272% 2.889% 5.553% 2.287%
Masked 0.887% 1.452% 0.373% 2.118% 2.936% 1.022%
SDC 0.476% 1.000% 0.385% 0.780% 1.899% 0.713%
DUE 0.604% 1.246% 0.548% 1.560% 2.828% 0.883%

PCFI Traditional

SQRNG

RED

IIR

Table 5.3: Comparing two techniques: 1) PCFI and 2) traditional fault injection with a reduced fault list (as

offered by PCFI with 500 faults) against a baseline of 500 fault injection campaign.

fault injections. We find the differences in the maximum, average, and standard deviation across the

5 fault injection campaigns. The baseline is obtained by taking the average results of 5 fault injection

campaigns of 500 faults. The results are presented in Table 5.3, showing PCFI consistently produced

similar results as the baseline (max error being 1.73%), while the equivalent number of faults in the

traditional methodology shows a much higher variation over the five fault injection run (max error

being 5.55%). These results indicate that, compared to the full traditional methodology, PCFI offers

a lower margin for error (2x better in many cases), and a more consistent assessment (lower standard

deviation).

5.4 Summary of PCFI

PCFI significantly reduces the number of fault injection runs needed during a fault injection

campaign, without comprising the accuracy of vulnerability assessment of GPU programs. This is the

first work that exploits PC-based behavior for predicting the soft-error vulnerability of instructions.

We show we can reduce the time spent in fault injection campaigns by up to 78% for a wide variety

of GPU benchmarks. The proposed method is implemented in SASSIFI, an open-source GPU fault

injector. This methodology is able to help researchers accelerate live-system fault-injection studies

and evaluate the resilience of different mitigation strategies.

63

Chapter 6

Characterizing Vulnerability Phase

Behavior in GPU applications

In this chapter we explore resilience characteristics of GPU programs. We find that

they can significantly change during program execution and that these characteristics repeat over

time. Interestingly, these temporal-based resilience characteristics of GPU programs do not align or

correlate well with the performance phases of GPU programs. Furthermore, we have identified that

temporal changes in the vulnerability behavior during a kernel execution tend to coincide more with

changes in basic block execution paths.

6.1 Motivation

Time varying behavior of applications is a well explored subject in the CPU domain. Pre-

vious work [96, 118, 119, 120] has shown that performance and power features of CPU applications

exhibit a time-varying behavior characterized as phases. These phases are time periods during which

applications exhibit the same performance or power behavior.

Researchers in both academia and industry have used the phase-based behavior of work-

loads to reduce the time needed for architectural simulation and performance evaluation. While many

studies have explored application phase behavior in terms of performance, only a few of them have

been applied to GPU execution. Huang et al. introduced TBPoints [105] for accelerating simulation

of GPU kernels. TBPoints uses a feature vector that takes into account the total amount of work

to be done and the memory accesses associated with a GPU kernel. Kambadur et al. introduced

GTPin [106], a tool which accelerates the simulation of large GPU programs. GT-Pin profiles a

64

CHAPTER 6. CHARACTERIZING VULNERABILITY PHASE BEHAVIOR IN GPU APPLICATIONS

program and collects a number of features that include memory operations and kernel parameters.

These features are then utilized to select a few representative regions of the program, serving as a

model of the full program for simulation.

Nonetheless, in terms of understanding reliability characteristics, time-varying behavior is

an under-explored area. Few studies have explored the time-varying behavior of performance and

reliability for various CPU programs, but not for GPU programs, which are fundamentally different

from their CPU counterparts due to architecture and execution style differences [107]. Previous

work has also explored time-varying behavior of GPU applications from the performance analysis

perspective [106, 105]. However, time-varying vulnerability behavior of GPU applications has not

been well explored. There is little guidance on which program features can best characterize the

runtime vulnerability of GPU programs. This thesis is the first work to evaluate how basic block

vectors, in the context of GPU applications, are related to time-varying reliability behavior.

In Chapter 7, we present how the time-varying behavior can be exploited for accurately

capturing the resilience characteristics of GPU programs Chapter 8. We will present a use-case of

the application of this time-varying behavior analysis for efficient placement of mitigation strategies,

contributing to a lower overhead of these strategies.

This chapter makes the following contributions:

• We show that the vulnerability of GPU programs exhibit phase-based behavior, (i.e., GPU

program vulnerability behavior changes and repeats over time).

• We leverage execution profiles of GPU programs to capture this time varying behavior of their

vulnerability characteristics. We group dynamic instruction sequences in GPU applications

based on their resilience characteristics.

The results of this characterization study can be further leveraged in the design of remedia-

tion mechanisms to handle transient faults in GPU applications. System administrators can make use

of our findings to apply selective protection techniques (e.g., checkpointing) during the phases of

high vulnerability during the execution of GPU applications.

6.2 Time-Varying Vulnerability Behavior of GPU Programs

Prior research has shown that: 1) GPU and CPU programs have repetitive, time-varying

performance characteristics (i.e., performance-based phases are present) [105, 106], and 2) GPU

programs show different resilience characteristics (i.e., different GPU programs have different fault

65

CHAPTER 6. CHARACTERIZING VULNERABILITY PHASE BEHAVIOR IN GPU APPLICATIONS

 0% 20% 40% 60% 80% 100%
Dynamic Execution

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

M
as

ke
d

%
kmeans

(a)

 0% 20% 40% 60% 80% 100%
Dynamic Execution

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

M
as

ke
d

%

lud

(b)

 0% 20% 40% 60% 80% 100%
Dynamic Execution

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

M
as

ke
d

%

bfs

(c)

 0% 20% 40% 60% 80% 100%
Dynamic Execution

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

DU
E

%

kmeans

(d)

 0% 20% 40% 60% 80% 100%
Dynamic Execution

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

DU
E

%

lud

(e)

 0% 20% 40% 60% 80% 100%
Dynamic Execution

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

DU
E

%

bfs

(f)

 0% 20% 40% 60% 80% 100%
Dynamic Execution

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

SD
C

%

kmeans

(g)

 0% 20% 40% 60% 80% 100%
Dynamic Execution

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

SD
C

%

lud

(h)

 0% 20% 40% 60% 80% 100%
Dynamic Execution

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

SD
C

%

bfs

(i)

 0% 20% 40% 60% 80% 100%
Dynamic Execution

 20
 30
 40
 50
 60
 70
 80
 90

100

%
 o

f M
ax

 IP
C

kmeans

(j)

 0% 20% 40% 60% 80% 100%
Dynamic Execution

 0
 20
 40
 60
 80

100

%
 o

f M
ax

 IP
C

lud

(k)

 0% 20% 40% 60% 80% 100%
Dynamic Execution

 20
 40
 60
 80

100

%
 o

f M
ax

 IP
C

bfs

(l)

Figure 6.1: Three applications taken from three different problems domains, k-means clustering (kmeans) (pat-

tern recognition), LU Decomposition (lud) (linear algebra), and Breadth-First-Search (bfs) (graph traversal).

Both vulnerability and performance (IPC) metrics are plotted, illustrating their time-varying and repetitive be-

havior over program execution. Notably, GPU program vulnerability and performance do not seem to be well

correlated throughout their execution lifetime.

injection outcome probabilities in terms of masked, SDC, and DUE) [3, 24]. This chapter will show

that: 1) the resilience characteristics of GPU programs change significantly during program execution

and these characteristics show repetitive, time-varying behavior, and 2) these repetitive, time-varying,

resilience characteristics of GPU programs do not align or correlate well with the performance phases

of GPU phases.

66

CHAPTER 6. CHARACTERIZING VULNERABILITY PHASE BEHAVIOR IN GPU APPLICATIONS

To demonstrate the time-varying resilience characteristics of GPU programs, we conduct a

simple experiment where we randomly inject faults throughout the program execution and observe

outcomes (i.e., masked, SDC, DUE). We divide the dynamic execution of a program into dynamic

instruction sequences. An instruction sequence contains of a number of dynamic instructions in

program execution order. The size of an instruction sequence is chosen on to be from 1M to 100M

instructions, depending upon the total number of dynamic instructions in the program, which can

range from 100M to 100B for the workloads we evaluate. The choice of these instruction sequence

sizes is in line with related work studying program runtime behavior [96, 106]. To characterize the

vulnerability behavior present in each instruction sequence, we injected enough faults into each

instruction sequence to reach a 5% error margin and a 95% confidence level [57]. This corresponds

to approximately 350 faults injected in each instruction sequence and over 50,000 total injections

per application. The faults in each instruction sequence are evenly distributed across the dynamic

execution of the program.

Figure 6.1 shows: (a) the percentage of fault injection outcomes in each instruction

sequence that are either masked, or resulted in DUEs, or SDCs, and (b) the performance metric

(IPC) for each sequence for the applications kmeans, LU decomposition (lud), and bfs. We

obtained similar trends for other applications in our test suite of 24 applications, but do not show

them for brevity. The IPC measurements were obtained using SASSI [26] instrumentation, collected

by recording a count of the number of GPU cycles used during each instruction sequence.

From our results, we make a few observations. First, as expected, the vulnerability

outcome probabilities change across different applications (e.g., bfs has higher avg. DUE rate than

kmeans). However, these characteristics also change significantly during program execution for a

given application, although such phases are not straight-forward to extract from the vulnerability

outcome profile in Figure 6.1.

Second, as expected, GPU programs exhibit phase-based behavior when considering

performance characteristics such as IPC, as shown in Figure 6.1 (we saw similar trends for cache

miss rates and other performance-related metrics). Interestingly, we observe that the time-varying

behavior of vulnerability and performance do not necessarily always track each other or align with

each other. In other words, these results indicate that a program’s performance behavior can not be

used as a proxy for the program’s resilience behavior. This motivates the need to better understand

the repetitive, time-varying, resilience characteristics of GPU programs and investigate ways to

exploit such an understanding as demonstrated in this work.

To further explore the degree of variation in program vulnerability across instruction

67

CHAPTER 6. CHARACTERIZING VULNERABILITY PHASE BEHAVIOR IN GPU APPLICATIONS

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
backprop 74.62% 17.06% 0.07% 0.49% 25.31% 17.12%
bfs 55.86% 22.22% 16.31% 15.37% 27.83% 18.45%
gaussian 21.20% 5.27% 49.21% 6.16% 29.58% 5.93%
kmeans 43.88% 13.67% 16.03% 9.72% 40.09% 13.41%
lud 19.56% 8.34% 42.15% 10.19% 38.28% 16.07%

Masked SDC DUE

Table 6.1: GPU programs show a large standard deviation in terms of the number of Masked, SDC and DUE

outcomes across dynamic instruction sequences.

sequences, we measured the percent of masked, DUE and SDC outcomes for all the instruction

sequences and report the standard deviation for all three fault-injection outcome types. Table 6.1

shows the probability of the different outcome types, as well as the standard deviation, for five

applications from different application domains. We only include results for applications where

the fault injection campaigns could be completed in a reasonable amount of time, while ensuring

a significant number of injections in each dynamic instruction sequence (more than a thousand

injections per instruction sequence were needed in many cases to achieve high accuracy).

Our result shows that vulnerability in GPU programs varies significantly during program

execution (i.e., across different dynamic instruction sequences). For example, in backprop, the

average probability for a fault to be masked, an SDC or a DUE is 74.62%, 0.07% and 17.12%,

respectively. However, the standard deviations for these outcomes are 17.06%, 0.49% and 13.00%

over all instruction sequences. To understand the reasons for the variation in outcomes, we perform

program-level analysis.

Factors Affecting the Variance of Vulnerability Behavior

Our analysis of the program runtime behavior reveals that the variability in resilience

characteristics during program execution can be attributed to the differences in execution characteris-

tics across “kernels” of a given program, as well as changes in the characteristics of the dynamic

execution within a kernel execution.

1. Different kernels show different vulnerability outcomes

GPU programs are composed of one or more kernels which can be executed multiple times

and in different orders. As expected, the variability in resilience characteristics during program

execution is correlated with the kernel being executed.

68

CHAPTER 6. CHARACTERIZING VULNERABILITY PHASE BEHAVIOR IN GPU APPLICATIONS

INTERVALS (..34,37..)

BB0

BB1

BB2

BB12

BB4

BB3

BB5

BB11

BB6

BB8

BB7 : 2x

BB10

BB9

BB13

BB14

BB15

(a) 32%SDC, 0%DUE

INTERVAL 35

BB0

BB1

BB2

BB12

BB4

BB3

BB5

BB11 : 1x

BB6

BB8 : 1x

BB7

BB10 : 2x

BB9

BB13

BB14

BB15

(b) 29%SDC, 3%DUE

INTERVAL 36

BB0 : 1x

BB1 : 1x

BB2 : 1x

BB12 : 1x

BB4 : 1x

BB3

BB5 : 1x

BB11

BB6 : 1x

BB8

BB7 : 1x

BB10

BB9

BB13 : 1x

BB14 : 1x

BB15 : 1x

(c) 4%SDC, 11%DUE

Figure 6.2: Code block executions for instruction sequences surrounding execution sequence #36 in the kmeans

application. From sequence #34 to sequence #36, the DUE probability goes up from 3% to 11%, and the SDC

probability goes down from 32% to 3%. Black boxes represent basic blocks that are executed during the sequence.

For example, the application kmeans (Figures 6.1a, 6.1d, 6.1g) is composed of two ker-

nels. The dynamic execution of the kernels of this application is in this order: kernel1 -

kernel2 - kernel2. The first kernel is executed during the first 15% of the dynamic

execution, where most of the faults causing DUEs occur. The second invocation of kernel2

occurs around the 55% mark in the dynamic execution, where there is a significant drop in the

SDC probability. These two kernels exhibit drastically different resilience characteristics. All

69

CHAPTER 6. CHARACTERIZING VULNERABILITY PHASE BEHAVIOR IN GPU APPLICATIONS

of the SDC’s in this application come from faults in the second kernel.

Other applications also exhibit this same behavior. For example, lud exhibits 15 repeated

patterns (Figures 6.1b, 6.1e, 6.1h), which become shorter towards the end of the execution. This

coincides with 15 invocations of 3 kernels in the application, with their execution becoming

shorter (fewer dynamic instructions) towards the end of the application. For bfs, two kernels

that make up this application are invoked 8 times. However, starting with their 5th invocation

(around the 30% mark in the dynamic execution), one of the kernels executes significantly

more dynamic instructions for its 5th, 6th and 7th invocation. This can be observed in the

resilience patterns in Figures 6.1c, 6.1f, 6.1i, the 3 invocations with long execution are apparent

in Figure 6.1f.

2. The same kernel may also exhibit different resilience characteristics during its execution

While differences in the resilience characteristics across different kernels is expected, our

analysis reveals that the resilience characteristics may change significantly within a kernel’s

execution, depending on the chain of basic blocks executed. For example, as shown in

Figure 6.1), we found that around the 55% mark in the dynamic execution of the kmeans

application, the probability for a fault to result in an SDC drops to 3%, from 32%. During the

same dynamic instruction sequence (at sequence #36, sequence numbers are not shown in the

figure), the probability for a fault to result in a DUE spikes to 11% (from 3%). As we noted,

this change in vulnerability characteristics occurred during the re-invocation of kernel2. We

looked closer into the reasons behind this change in resilience behavior.

Our code profile showed that a different code region from the same kernel dominated execution

during this instruction sequence (sequence #36). Figure 6.2 shows a snapshot of the control

flow graph from the instruction sequences before and after sequence #36. We see the basic

blocks (BBs) that executed, along with the normalized number of executions for each basic

block. For kmeans, the majority of the dynamic executions is confined to basic block 7

(BB7), which is an inner loop that updates the distance of a point to a respective cluster.

This can also be noted in the graph for the instruction sequences before #34, and after #37.

However, the execution graph of this application changes during sequences #35 and #36, which

leads to a change in the vulnerability behavior of the application during these instruction

sequences. Upon further analysis, we discovered and validated that these trends also occur

in other applications: sudden changes in the vulnerability behavior during a kernel execution

tends to coincide with changes in basic block execution paths. These observations motivated

70

CHAPTER 6. CHARACTERIZING VULNERABILITY PHASE BEHAVIOR IN GPU APPLICATIONS

us to investigate how basic block execution paths can be utilized to assess the vulnerability of

programs toward transient faults.

6.3 Resilience Groups: Capturing Dynamic Vulnerability Behavior

In the previous section, we found that the execution path, analyzed at a basic block

granularity, can identify and distinguish instruction sequences which show different vulnerability

behaviors. In this section, we describe how we can leverage basic block based information to identify

and group dynamic instruction sequences that have similar characteristics. More specifically, we

propose the concept of resilience groups which can be used to accurately represent the resilience

characteristics of the whole program.

While the vulnerability behavior in a program tends to exhibit repeated patterns, the length

of these patterns varies throughout the execution of a program and across different programs, as

discussed in Sec. 6.2. Therefore, capturing the vulnerability behavior accurately, and representing it

concisely, is a challenging task. Our proposed concept of resilience groups addresses this challenge.

A program’s resilience characteristics can be represented by a number of resilience groups, where

each resilience group is a set of dynamic instruction sequences that have similar vulnerability behavior

(i.e., the masked, SDC, and DUE outcome probabilities from a fault-injection campaign).

We build resilience groups without having to perform a large number of fault injections

at every instruction sequence. We had earlier shown that basic block level analysis can identify

and distinguish instruction sequences which show different vulnerability behaviors. Therefore,

we leverage Basic Block Vectors (BBV) to capture a program’s behavior during an instruction

sequence [96]. The BBV is a vector that keeps information about the basic block execution frequency

for each sequence of a program. The basic block vectors are then weighted by the number of

instructions present in the basic block.

Figure 6.3 describes the steps involved in our characterization of time-varying vulnerability

behavior. After the collection of BBV’s for each instruction sequence in a program, our next step

is to group the instruction sequences with similar characteristics. We call a group of instruction

sequences with similar characteristics a resilience group. We apply k-means clustering to produce

this grouping, with the number of clusters (m) varied from 1 to 15. For each m, we note the silhouette

score [121]. The silhouette score is a measure of how well each sequence fits within its cluster. The

number of clusters m that yields the highest silhouette score is selected and the corresponding number

of k-means clusters is the number of resilience groups contained in the program.

71

CHAPTER 6. CHARACTERIZING VULNERABILITY PHASE BEHAVIOR IN GPU APPLICATIONS

Interval 1

Interval 2

Interval 3

Interval 4

...

Interval n-2

Interval n-1

Interval n

BBV [interval]= {BB1: #insts x #execs, BB2: #insts x #execs ,..., BBN: #insts x #execs}

BBV 1

BBV 2

BBV 3

BBV 4

BBV n-2

BBV n-1

BBV n

...
Clustering

with KMeans

BBV 2 BBV 3 ...

BBV 1 BBV 4 ...

BBV n ...
...

Res. Grp 1

Res. Grp 2

Res. Grp m

Figure 6.3: Forming resilience groups by combining different dynamic instruction sequences.

Traditionally, researchers have used BBVs for performance characterization and prediction

purposes for CPU architectures. Previous studies have also shown that for GPU architectures,

BBVs are not suitable for performance prediction, unless they are combined with other metrics such

as memory access intensity [105, 106]. However, we show that BBVs are effective in capturing

resilience characteristics of programs, even without augmenting them with other techniques. To

support this claim, we present results to show that instruction sequences within the same resilience

group, formed using our BBV methodology, have very similar resilience characteristics.

We perform fault injections into 10 randomly selected instruction sequences belonging

to the same resilience group in our applications. We injected faults in 10 instruction sequences per

resilience group as an alternative to performing an exhaustive campaign of 800K+ injections per

application, in order to reach a 95% confidence level, with a 5% error margin, in all instruction

sequences across all applications.

Next, we sum the standard deviations from each resilience group, weighted by the per-

centage of total application instruction sequences that each resilience group represents. A low

standard deviation means that there was little variation between the instruction sequences in each

resilience group of the program, and confirms that our methodology appropriately grouped the

dynamic instruction sequences with similar resilience characteristics.

In Table 6.2, we list all the applications evaluated in this study. To achieve a representative

range of parallel programming styles and application domains, we selected twenty-four applications

with a range of different characteristics from three GPU benchmark suites: the Rodinia benchmark

suite for heterogeneous computing [115], the CUDA-SDK suite of applications [116], and the

72

CHAPTER 6. CHARACTERIZING VULNERABILITY PHASE BEHAVIOR IN GPU APPLICATIONS

LonestarGPU suite of irregular GPU applications [122]. The benchmarks selected are representative

across a range of application classes: algebraic applications, particle simulation, physics simulation

and fluid dynamics.

Table 6.2 also presents the number of resilience groups obtained for each application

using our method, and includes the standard deviations within the resilience groups for each type

of outcome. We observe that the standard deviations are quite low (less than 5% in most cases),

indicating that our methodology correctly groups sequences with similar resilience characteristics.

Our results reveal that the average number of resilience groups per application is less than four for

many benchmarks.

In the next chapter, we exploit this finding to reduce the number of fault injections when

assessing how vulnerable a program is to transient faults.

Table 6.2: Benchmarks used in our experiments and the number of resilience groups found in each application. A

resilience group is a set of instruction sequences with similar resilience characteristics.

Application Domain
Number of Standard Deviation in Resilience groups
resilience

groups Masked (%) SDC (%) DUE (%)
BlackScholes Financial computation 4 2.38% 1.87% 3.21%

IIR Signal processing 2 1.21% 0.4% 1.06%
SobolQRNG Financial computation 2 4.87% 2.98% 2.06%

bfs Graph traversal 4 3.54% 3.24% 2.76%
bh Astrophysics 2 1.76% 2.56% 0.8%

binomialOptions Financial computation 2 0.73% 0.75% 0.03%
cfd Fluid dynamics 2 3.23% 2.10% 1.32%

dwtHaar1D Image processing 3 6.35% 2.71% 4.18%
gaussian Linear algebra 5 7.45% 4.34% 5.3%
heartwall Image processing 2 1.98% 1.23% 0.74%
hotspot Physics simulation 2 4.67% 2.83% 3.03%

hybridsort Sorting 2 3.45% 2.18% 1.87%
kmeans Data mining 2 2.78% 2.99% 0.85%
lavaMD Molecular dynamics 2 4.31% 3.88% 2.14%

leukocyte Fluid dynamics 3 1.82% 0.65% 1.45%
lud Linear algebra 2 3.86% 4.85% 4.02%

matrix mul Linear algebra 3 1.32% 1.03% 0.78 %
mst Graph traversal 10 2.33% 1.91% 2.09%
nw Bioinformatics 2 3.05% 1.08% 3.16%

reduction Data reduction 6 1.45% 0.54% 0.93%
sp Graph traversal 2 2.32% 1.12% 1.28%

srad v1 Image processing 9 2.21% 0.23% 2.09%
srad v2 Image Processing 2 1.09% 2.42% 1.27%

transpose Linear algebra 4 1.87% 1.23% 3.98%

73

CHAPTER 6. CHARACTERIZING VULNERABILITY PHASE BEHAVIOR IN GPU APPLICATIONS

6.4 Summary on the Characterization of the Vulnerability Phase Be-

havior of GPU applications

In this chapter, we described our observations on phase behavior of vulnerability in GPU

applications, as well as the factors contributing to these phases. We presented a characterization

methodology and experiments for characterizing this runtime vulnerability of GPU applications, with

just one single application execution.

With our characterization methodology, we are able to form resilience groups. Resilience

groups are portions of a program that are similar in resilience characteristics. Resilience groups allow

us to capture the resilience of a program with only a few representative parts. The knowledge of which

parts of a program where resilience will behave similarly is powerful in addressing the reliability

problem, as it can greatly contribute to powerful mitigation strategies. Chapter 8 demonstrates how

we can use this concept for efficient application of a mitigation strategy.

74

Chapter 7

Spoti-FI: Reducing Fault Injection Time

via Resilience Groups

The characterization of the runtime vulnerability behavior of GPU applications, as pre-

sented in Chapter 6, is useful in both vulnerability estimation and remediation. Next, we present

Spoti-FI [123], a methodology that leverages our proposed runtime vulnerability characterization to

guide systematic fault injection campaigns in a range of GPU applications. Using Spoti-FI, we can

reduce the number of fault injections needed by an order of magnitude, as compared to the traditional

fault injection campaign. Spoti-FI can maintain the same accuracy of vulnerability estimation as an

exhaustive fault injection campaign. We use the time-varying behavior in an application to identify

representative sections of that GPU application, thereby reducing the total number of faults necessary

for fault injection campaigns.

7.1 Spoti-FI Methodology

To reduce the required number of injections for a fault injection campaign, we leverage the

resilience group concept (Chapter 6, Section 6.3). Our approach exploits the observation that faults

occurring in sequences in the same resilience group result in the same outcome, and hence, can be

pruned intelligently by leveraging the repetitive, though time-varying, resilience characteristics of

GPU programs.

For each resilience group, we carefully select one representative instruction sequence in

which to perform fault injections, as described below. The steps required to exploit the resilience

groups for fault injections are as follows:

75

CHAPTER 7. SPOTI-FI: REDUCING FAULT INJECTION TIME VIA RESILIENCE GROUPS

1. First, we select one target instruction sequence for each resilience group in the program. We

make use of k-means clustering to select the target instruction sequence within a group. Our

k-means implementation uses the Euclidean distance between the instruction sequences to

establish the similarity between them. We also use the Euclidean distance, scannning all

the instruction sequences in each group (or in a k-means cluster) and select the instruction

sequence that is the closest to the center of each cluster.

2. We then perform a fixed number of injections in the selected instruction sequences. We

instrumented our fault injector to allow it to inject faults during specific instruction instruction

sequences for the application of interest. The faults injected into each instruction sequence are

uniformly distributed across the dynamic instructions of the sequence.

3. Finally, we compute the final fault injection outcome rates for the target applications. To

do this, we use the occurrence frequency of each resilience group. We call this frequency

Freq(groupi). The frequency of group i is the ratio of the number of instruction sequences

that make up group i to the total number of instruction sequences in the program:

Freq(i) =
number of sequences of group i

total number of sequences

The final rate for each outcome category (SDC, DUE or Masked) is then computed as:
n∑

i=1

Outcome RatetargetInstSequence(i) ∗ Freq(i)

where i is a resilience group, targetInstSequence(i) is the representative instruction sequence

for group i, selected for injection (step 1), and Freq(i) is the frequency of occurrence of group

i (step 3).

7.2 Results and Analysis

Our experiments were performed with SASSIFI on an NVIDIA Kepler K20 GPU, a device

based on the GK110 architecture [124]. The K20 has 5GB of global memory. The configuration of

the GPU does not impact our results because faults are injected into the live application state. All the

applications use the CUDA 7.0 toolkit.

We compare our fault injection results with fault injection campaigns performed with

10,000 random faults in each of the studied applications. As mentioned before, this number of

injections is in accordance with other studies on resilience of GPU applications [63, 125, 29].

76

CHAPTER 7. SPOTI-FI: REDUCING FAULT INJECTION TIME VIA RESILIENCE GROUPS

Bl
ac

kS
ch

ol
es IIR

So
bo

lQ
RN

G bf
s bh

bi
no

m
ia

lO
pt

io
ns cf
d

dw
tH

aa
r1

D

ga
us

sia
n

he
ar

tw
al

l

ho
ts

po
t

hy
br

id
so

rt

km
ea

ns

la
va

M
D

le
uk

oc
yt

e

lu
d

m
at

rix
_m

ul

m
st nw

re
du

ct
io

n sp

sr
ad

_v
1

sr
ad

_v
2

tra
ns

po
se

 0

 20

 40

 60

 80

100
Ou

tc
om

e
%

Masked
SDC
DUE

Masked
SDC
DUE

Spoti-FI
10K

Figure 7.1: Results for fault injections performed using Spoti-FI, compared with results of traditional fault injec-

tions with 10K faults per program. Using Spoti-FI, we injected an average of 1,317 faults per application, for an

average error of 1.42% for masked outcomes, 0.88% for DUE outcomes, and 3.92% for SDC outcomes, compared

to a fault injection experiment of 10,000 injections per application.

Figure 7.1 shows the results of the faults injected using Spoti-FI, and compares against

traditional fault injections results with 10K injections per application. For the Spoti-FI experiments,

we injected a number of faults sufficient to achieve a 95% confidence level and a 5% error margin in

one instruction sequence of each resilience group, for each application [57]. These results show that

Spoti-FI is almost as accurate as an exhaustive fault injection campaign, with an average error rate

below 1.5% across different outcome types and all applications.

The accuracy of Spoti-FI, as compared to 10K random injections, is also summarized

in Table 7.1. Our results demonstrate that Spoti-FI provides accurate reliability measurements via

leveraging resilience groups. Notably, Spoti-FI is able to provide accurate results even for cases where

a particular outcome type has a low probability. For example, a fault in BlackScholes has the

chance 2.70% of the time to result in an SDC, and 3.53% in a DUE. In IIR, binomialOptions

and heartwall, the chances that an injected fault results in a DUE is 1.02%, 1.53% and 1.27%,

respectively. With resilience groups, Spoti-FI is able to accurately predict these probabilities without

running an extensive fault injection campaign.

77

CHAPTER 7. SPOTI-FI: REDUCING FAULT INJECTION TIME VIA RESILIENCE GROUPS

Table 7.1: Min, Max and Average error observed between traditional fault injection with 10K faults and our

methodology for Masked, SDC and DUE outcomes. The error is the difference in the observed fault breakdown

percentage between our methodology and the traditional fault injection methods.

Outcome Min Error Max Error Avg Error
Masked 0.01% 3.18% (bfs) 1.42%

SDC 0% 3.92% (lavaMD) 1.22%
DUE 0.001% 3.37% (sp) 0.88%

Table 7.2: Number of faults injected based on the number of resilience groups per application and fault list re-

duction from the standard 10K injections. For each resilience group, one representative instruction sequence is

selected for injection. Because the resilience characteristics within one resilience group are stable, we injected only

enough faults in each resilience group to ensure 5% margin of error with a 95% confidence level for the error

injection.

Number of Fault Number of Fault
Application Spoti-FI List Application Spoti-FI List

injections Reduction injections Reduction
BlackScholes 1,540 6.49x kmeans 766 13.05x
IIR 768 13.02x lavaMD 768 13.02x
SobolQRNG 770 12.99x leukocyte 1,152 8.68x
bfs 1,536 6.51x lud 768 13.02x
bh 768 13.02 matrix mul 1,149 8.70x
binomialOptions 770 12.99x mst 3,850 2.60x
cfd 770 12.99x nw 768 13.02x
dwtHaar1D 1,155 8.66x reduction 1704 5.07x
gaussian 1,920 5.21x sp 768 13.02x
heartwall 772 12.95x srad v1 3,465 2.89x
hotspot 770 12.99x srad v2 766 13.05x
hybridsort 768 13.02x transpose 1,538 6.5x

7.3 Discussion

Table 7.2 shows the number of injections that we performed in each application using Spoti-

FI. With our approach, we discovered that vulnerability characteristics of most GPU applications can

be captured by a small number of resilience groups. For example, for 14 out of 24 applications, two

resilience groups were enough to characterize the resilience properties. This implies that we are able

to group the BBV’s of each of these 12 applications in two categories, and capture the resilience of

these programs by limiting the injected faults to only two dynamic instruction sequences.

Spoti-FI can be leveraged by application developers to obtain early vulnerability estimates,

78

CHAPTER 7. SPOTI-FI: REDUCING FAULT INJECTION TIME VIA RESILIENCE GROUPS

which can help guide developing more resilient code during the development cycle of a program.

Our methodology can also be applied to not only identify vulnerable regions of a program, but also

accelerate a fault injection campaign.

Using our methodology, we are able to greatly reduce the duration of fault injection

experiments. As shown in Table 7.2, on average, Spoti-FI injects approximately 1,317 faults in

each application, achieving a difference (compared to results from 10K injections) of 1.42% on

masked outcomes, 0.88% on DUE outcomes, and 3.92% on SDC outcomes. With significantly fewer

injections, Spoti-FI can cut down the vulnerability estimation time by a significant factor. This makes

it feasible to perform a fault injection experiment on a single GPU in 5.5 days.

7.4 Summary on Spoti-FI

Leveraging the vulnerability characterization methodology presented in Chapter 6, we

developed Spoti-FI, a framework that allows us to spot the best places (dynamic instruction sequences)

for fault injection. We described Spoti-FI, and demonstrated its utility with fault injection experiments

on workloads selected from three benchmark suites.

Our novel methodology provides vulnerability measurements that are very close in fidelity

to exhaustive fault injection campaigns, injecting 1-2 orders of magnitude fewer injections. Carrying

out a proper fault injection campaign involves injecting 10,000 faults into a program that runs for 15

seconds, and would consume approximately 42 hours. Applying Spoti-FI, and injecting 1,317 faults

on average per application, a fault injection campaign for a single application would be reduced to

approximately 5.5 hours.

Assuming the worst case where we needed to inject 3,850 faults, a fault injection campaign

would be reduced to 16.04 hours, a 2.5x reduction. In the best case, we only needed to inject 766

faults in 3.2 hours. In the future, we plan to explore new use cases for our characterization that will

contribute to mitigate the effects of transient faults at application runtime.

79

Chapter 8

Exploiting Resilience Groups for

Efficient Fault Mitigation

Table 8.1: Vulnerability characteristics per resilience group

Resilience Res. Grp. Masked % SDC % DUE %Group # Frequency
gaussian

1 41.32% 23.25% 49.25% 27.5%
2 17.56% 53.75% 27.5% 18.75%
3 12.03% 40.25% 35.75% 24%
4 14.31% 80.75% 5.5% 13.75%
5 14.77% 75% 9.75% 15.25%

kmeans
1 13.28% 58.75% 0% 41.25%
2 86.7% 71% 27.25% 1.75%

bfs
1 10.53% 60.75% 24.75% 14.5%
2 25.00% 66.75% 15.75% 17.5%
3 23.68% 56.25% 32% 11.75%
4 40.79% 49.25% 8% 42.75%

hybridsort
1 44.44% 32.75 5.5% 61.75%
2 55.56% 14.25 25.5% 60.25%

srad v2
1 66.67% 44.5% 34.75% 20.75%
2 33.33% 28.75% 31% 40.25%

80

CHAPTER 8. EXPLOITING RESILIENCE GROUPS FOR EFFICIENT FAULT MITIGATION

Our phase analysis can also be leveraged to adaptively turn on resilience mitigation strate-

gies such as crash or SDC detectors, depending on which instruction sequence is being executed.

Spoti-FI identifies multiple resilience groups, which by definition, have different resilience charac-

teristics, while dynamic instruction sequences belonging to the same resilience group have similar

resilience characteristics. Hence, without performing an exhaustive fault injection (i.e., faults in all

instruction sequences), Spoti-FI can predict the vulnerability outcomes for all instruction sequences

based on which resilience group they belong to. Our results (Table 8.1) show that resilience char-

acteristics of different resilience groups differ and present an opportunity to exploit dynamically

adjustable resilience mitigation strategies.

Table 8.1 shows the results of fault injections in each resilience group for five applications.

In gaussian, for two out of five resilience groups, the probability for a fault to be masked is more

than 75% and the SDC probability is less than 10%. These two resilience groups account for 29% of

the execution of this application. In the other three resilience groups, the probability for a fault to be

masked is 53% or less, while the SDC probability is as high as 49%. This knowledge can be useful

for applying adaptive resilience mitigation techniques to strike a balance between fault coverage and

runtime overhead. In kmeans, one of the two identified resilience groups is not prone to DUEs,

while the other is significantly more prone to DUEs. Similarly, other applications also exhibit a

range of resilience characteristics across different resilience groups. It is important to note that DUEs

(Detected and Unrecoverable Errors) are crash-causing bit flips that are detected by an application

or the device driver, and from which it (application or driver) can not recover. It is worthwhile to

detect these bit flips before they lead to crashes in an application.

In this chapter, we explore applying an adaptive resilience mitigation technique in order to

strike a balance between fault coverage and runtime overhead. We will demonstrate how combining

resilience group characterization with a mitigation strategy, we can dynamically reduce overhead of

vulnerability mitigation strategies.

8.1 Mitigation Strategies for GPU

In this section, we describe the mitigation strategy that we use to show how our phase

analysis can be beneficial in reducing mitigation overhead. We use ArmorAll [2] as our mitigation

strategy.

Mitigation strategies for transient faults are based on redundancy. Examples of these

strategies include using Error Correction Codes (ECC) and exploiting the benefits of Redundant

81

CHAPTER 8. EXPLOITING RESILIENCE GROUPS FOR EFFICIENT FAULT MITIGATION

Multithreading (RMT) [126, 127]. A few studies have employed other techniques to enhance the

reliability of GPUs [36, 128, 129]. However, as previously mentioned, these techniques introduce

substantial overhead in terms of area, power, and performance.

These techniques are generally hardware-based or software-based. Hardware solutions for

reliability can be more efficient and lightweight than their software-based counterparts, but they are

inflexible and add unnecessary overhead for naturally resilient applications which do not require

high levels of reliability (i.e., image processing applications). On the other hand, software-directed

approaches such as compiler-based RMT are more flexible, but can introduce significant slow-down

due to high synchronization overhead among threads. A more efficient software solution is to

apply redundancy at an instruction granularity, as opposed to thread granularity. This approach

(instruction-level replication) has been studied extensively on CPUs, but it is still an under-explored

research area on GPUs. Prior research has leveraged hardware techniques to optimize instruction

duplication on GPUs [130]. Kalra et al. introduced pure software solution to bridge this gap by

proposing ArmorAll [2]. ArmorAll is a set of pure compiler-based redundancy schemes designed to

optimize instruction duplication on GPUs, thereby enhancing their reliable execution.

8.1.1 Choice of Mitigation Strategy: ArmorAll [2]

ArmorAll is a light-weight and portable software solution to protect GPUs against soft

errors. ArmorAll consists of a set of pure compiler-based redundancy schemes designed to optimize

instruction duplication on GPUs. Based on the resilience scheme opted for by the user, ArmorAll

will select a subset of the instructions for duplication in an application. For example, an application

that is more susceptible to produce a DUE in the presence of transient faults will benefit more from a

resilience scheme that is optimized for crash protection. Similarly, an application that is likely to

produce an SDC will benefit from a resilience scheme optimized for SDC protection. This allows

adaptable fault coverage for different applications. ArmorAll can provide good fault coverage for

an application, with an accuracy of 91.7%. The high coverage provided by ArmorAll comes at an

average improvement of 64.5% in runtime when using the selected redundancy scheme, as compared

to the existing redundancy schemes [129, 127].

8.1.2 ArmorAll: Resiliency Schemes

ArmorAll works by running a static analysis that selects appropriate instructions for

duplication, depending on the goals of the analysis. ArmorAll has three resiliency schemes:

82

CHAPTER 8. EXPLOITING RESILIENCE GROUPS FOR EFFICIENT FAULT MITIGATION

• AddressArmor protects the addresses used by memory instructions. Wang et al. found that

illegal memory accesses and addressing exceptions can be caused by transient faults [131].

Our analyses have also shown that most DUE’s are the result of an addressing exception. They

are often the result of an address being corrupted either due to bit flips in registers that hold

addresses, or the propagation of a fault into one of those registers. Address Armor tracks all

instructions that participate in memory address computation. Interestingly, Address Armor

is also able to detect SDCs. Since addresses are protected by Address Armor, it can prevent

threads from accessing incorrect (but not illegal) memory addresses and reading/writing wrong

values, which can eventually lead to an SDC. Therefore, Address Armor is able to protect

more than what it was originally designed for.

• ValueArmor protects the values written to memory by store instructions. An incorrect output

is often a result of corruption caused by either a bit flip in a register that holds an output value,

or propagation of a fault into one of those registers. Therefore, the goal of Value Armor (VA)

is to track all instructions that contribute to the computation of the output value.

• HybridArmor protects both the values and addresses of load and store instructions. The goal

of Hybrid Armor (HA) is to track all instructions that contribute to the computation of the

output value and addresses.

8.1.3 ArmorAll: Evaluation and Overhead

Table 8.2: ArmorAll: Evaluation and Overhead

ArmorAll Increase in Effectiveness:
Scheme Dynamic Instructions (%) Failures detected (%)

AddressArmor 60.7% 100% crash-causing faults
ValueArmor 42.8% 80% SDCs

HybridArmor 90.1% 100% crash-causing faults and 98% SDCs

Although ArmorAll allows programs to detect transient faults, it affects the performance

of the applications, as it increases the number of dynamic instructions. This increase in the number

of dynamic instructions comes from the duplicated instructions, verification instructions, as well

the notification instructions. The percent increase in the dynamic instruction count varies across

applications, with an average increase of 60.7%, 42.8% and 90.1% for Address Armor, Value Armor,

83

CHAPTER 8. EXPLOITING RESILIENCE GROUPS FOR EFFICIENT FAULT MITIGATION

and Hybrid Armor, respectively. As expected, Hybrid Armor protects both addresses and values,

hence it adds more duplication and verification.

Address Armor protects the addresses used by load and store instructions. It is highly

efficient and is able to detect 100% of the crash-causing bit flips. Value Armor is able to detect more

than 95% the SDCs, for some applications. In other applications, Value Armor can detect over 70%

the SDCs. Similar to Address Armor, Hybrid Armor is able to detect all crash-causing bit flips. In

terms of SDC detection, Hybrid Armor provides the combined detection capability of Address Armor

and Value Armor, and can detect over 98% of the SDCs across all applications. We summarize the

overhead and effectiveness of ArmorAll in Table 8.2.

8.2 Application of Phase Analysis to ArmorAll

ArmorAll is an efficient software mitigation strategy. However, the overhead of running

ArmorAll is significant (Table 8.2). In this section, we show how we apply our phase analysis, as

described in Chapter 6, to ArmorAll to reduce the overhead. This new approach is termed Selective

ArmorAll.

8.2.1 Selective ArmorAll: Methodology

Our approach is similar to Spoti-Fi (Chapter 7), in that we start out with one representative

instruction sequence for each resilience group. Our methodology has two stages. In the first stage,

we use our phase analysis to find the instruction sequences that need to be protected. In the second

stage, we apply ArmorAll to specific instruction sequences, in order to reduce the number of dynamic

instructions that are duplicated, and reduce the overhead of this mitigation strategy.

The detailed steps are outlined as follows:

1. We repeat steps 1 and 2, as outlined in Section 7.1, to select a representative instruction

sequence from each resilience group. We use k-means clustering to select the instruction

sequence for each resilience group. We then perform fault injections in each representative

instruction sequence. The results of the fault injection campaign for each instruction sequence

are applied to its entire resilience group. The results of the fault injections in each resilience

group are recorded. As pointed out in Table 8.1, vulnerability between resilience groups in the

same application can vary widely. Our methodology marks resilience groups with high DUE

rates and high SDC rates.

84

CHAPTER 8. EXPLOITING RESILIENCE GROUPS FOR EFFICIENT FAULT MITIGATION

2. In this step, we find the basic blocks that contribute to high DUE and high SDC rates.

We profile the representative instruction sequence for each resilience group and find the most

executed basic blocks in the instruction sequence. For resilience groups with high DUEs

(crashes), we mark the most executed basic blocks in the instruction sequence to be protected

by AddressArmor. For resilience groups with high SDCs, we mark the most executed basic

blocks for protection with Value Armor.

In order to accomplish the second step, ArmorAll needs to be modified in order to allow protection

for only a section of the code. Because ArmorAll is implemented at the LLVM level, this requires us

to trace the basic blocks back to the application source code, then approximately link the source code

to LLVM instructions.

Moreover, in the current implementation of ArmorAll, the automatic instruction duplication

can only be applied globally to all the instructions in an application. In order to allow for local basic

blocks, we first apply ArmorAll to the entire program and then prune the non-vulnerable basic blocks

from the list of duplicated instructions. This is possible as ArmorAll works on static instructions and

marks them for duplication.

Our current implementation is not yet automated and requires manual intervention to prune

the basic blocks that do not need duplication. In the future, we plan on automating this process by

adding a method to connect the original source code to the corresponding LLVM instruction(s). We

provide the results of our evaluation in the following section.

Table 8.3: Vulnerability characteristics per resilience group in bfs after applying Selective ArmorAll to resilience

groups 2 and 4 (see Table 8.1). A side-effect of applying ArmorAll is that it detects bit flips that would also result

in Masked or SDC outcomes.

Res. Res. Grp. Masked % Masked SDC % SDC DUE % Crash
Grp # Frequency Detected Detected Detected

bfs
1 10.53% 60.75% 0% 24.75% 0% 14.5% 0%
2 25.00% 40.25% 20.5% 10.45% 5.3% 0% 17.5%
3 23.68% 56.25% 0% 32% 0 % 11.75% 0%
4 40.79% 26.85% 22.4 5.4% 2.6% 0% 42.75%

85

CHAPTER 8. EXPLOITING RESILIENCE GROUPS FOR EFFICIENT FAULT MITIGATION

8.3 Evaluation of Selective ArmorAll

In order to show the effectiveness of Selective ArmorAll, we use one of our applications:

bfs. Our analysis in Table 8.1 showed that bfs has four resilience groups, one of which is highly

susceptible to DUEs. Faults in this resilience group have a likelihood of 42% to lead to a DUE. This

resilience group also accounts for 40.8% of all dynamic executions of this application. While faults

in thie application are 26.156% likely to yield a crash (DUE), the crashes from Resilience Group 4

and from Resilience Group 2 account for 42.8% * 40.8% + 25%*17.5% = 21.84% of all crashes in

the app. Applying the same resilience scheme to the whole application would result in unnecessary

duplication of instructions.

Also, our analysis in Section 6.2 highlighted that bfs has two kernels that are invoked

8 times in sequence. Starting with their 5th invocation (around the 30% mark into the dynamic

execution of the application), one of the kernels executes significantly more dynamic instructions for

its 5th, 6th and 7th invocation (see the resilience patterns in Figures 6.1c, 6.1f, 6.1i).

To apply ArmorAll to bfs, we apply Address Armor (crash-causing fault detection) to

the first two Resilience Groups in which faults are likely to result in crash. These resilience groups

correspond to all but one basic block in kernel1 of the application. We first apply Address Armor

to kernel1, then remove the duplicated instructions that are not part of the resilience groups of

interest. The results are shown in the following section.

8.3.1 Fault Coverage and Overhead

Next, we show the percentage of bit flips which would cause a crash that were detected

with ArmorAll, as well as the increase in dynamic instructions that we achieved. We compare our

results to the global use of Address Armor, without our selective usage.

Figure 8.1 shows the increase in dynamic instructions when the crash protection scheme

of ArmorAll is applied both globally to the whole application, and to selected parts of the applica-

tion. Our phase analysis guides this selection. The baseline is the application with no duplicated

instructions. Using our methodology provides in a significant reduction in the overhead incurred

with ArmorAll. With the selective application of AddressArmor, we were able to detect 80% of the

faults that would cause crashes while incurring an overhead of only 30% in the number of dynamic

instructions.

The use of Global Address Armor can be preferred in some circumstances as it has the

ability to detect all possible crashes in an application. Users need to find the correct balance between

86

CHAPTER 8. EXPLOITING RESILIENCE GROUPS FOR EFFICIENT FAULT MITIGATION

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Global AddressArmor Selective Address Armor

 Dynamic Instruction Overhead Percent of DUEs detected

Figure 8.1: Overhead and fault coverage efficiency of global application vs our selective application of Address

Armor to bfs. For the selective application, we chose two resilience groups with a high number of DUE cases. By

applying AddressArmor to resilience groups 2 and 4, we were able to detect about 21% of the bit flips that would

cause a crash in the appliction. This is equivalent to 80% of all the crash-causing bit flips.

performance and reliability. Furthermore, these current results correspond to selective Address

Armor applied to two resilience groups. This implementation can be further refined to add protection

to more resilience groups. While this will add more overhead, it can be beneficial for users looking

for higher levels of reliability while keeping the performance overhead to a low level.

8.4 Summary on the Exploitation of Resilience Groups for Efficient

Mitigation

Different resilience groups, by definition, have different resilience characteristics, while

dynamic instruction sequences belonging to the same resilience group have similar resilience charac-

teristics. Our results show that resilience characteristics of different resilience groups are significantly

different and present an opportunity to exploit dynamically-adjustable resilience mitigation strategies.

This section introduces the first work on efficient local software mitigation strategies

for GPU programs. Our technique utilizes a robust mitigation tool, ArmorAll [2] to apply our

mitigation technique. Our results show that this technique provides a significant reduction in the

overhead introduced by redundancy schemes. In the future, we plan on automating the process so

that ArmorAll can automatically apply the appropriate resilience scheme to the correct code section.

87

Chapter 9

Summary and Conclusion

As GPUs continue to be used for General Purpose computing and deployed in High

Performance Computers and supercomputers, their resilience to transient faults will continue to be a

major concern for manufacturers and programmers alike. This thesis focuses on various aspects of

the resilience of GPU programs, ranging from the efficient assessment of the vulnerability of GPU

programs in presence of transient faults to the time varying behavior of the vulnerability of these

faults as they occur during program execution. Understanding this behavior is critical in mitigating

these faults for GPU programs. In this Chapter we will summarize the lessons learned in this thesis,

and also provide directions for future work.

9.1 Major Contributions of this Thesis

9.1.1 Dependence of vulnerability on input size and configuration parameters

As discussed in this thesis in Section 5.1.1, the assessment of the effects of transient faults

in GPU programs (fault injection campaigns) is a crucial step in addressing reliability. However,

researchers generally report on a single set of data inputs and program parameters. Chapter 4

addressed this aspect.

This thesis shows that program vulnerability can be dependent on the size of the input

used during the reliability assessment, as a larger data inputs can greatly increase the contributions

of individual dynamic code sections in a non-uniform manner. This may result in increasing the

execution weight of a specific code section that is more (or less) vulnerable.

Moreover, some corner cases of input data values can greatly influence the vulnerability of

88

CHAPTER 9. SUMMARY AND CONCLUSION

programs. We show specific cases of biased input values where all values were either equal to 0, or 1.

We also show some cases of program-specific biased input values, which can be particularly chosen

to influence the vulnerability of a program.

Our guidance for reliability researchers is to be aware of these pitfalls associated input

values and input sizes that can dramatically change execution patterns in a program. Researchers

should profile their target applications, taking note of the dynamic execution weights of individual

basic blocks for different input sizes and values. A drastic change in the execution weight of

individual basic blocks will generally indicate that the vulnerability of this program is susceptible to

input changes.

9.1.2 Automatic reduction of fault injection campaigns using Program Counters

Assessment of vulnerability is also a prohibitively expensive step, as the number of faulty

runs in a fault injection campaign needs to be sufficiently high to produce statistically significant

results.

Chapter 5 presented a methodology, PCFI, that automatically reduces the number of faulty

runs necessary to achieve assessment fidelity during a fault injection campaign. Our analysis was

built on the predictability of faults in different instances of some static instructions.

The results obtained with PCFI do not introduce any compromise on the accuracy of the

vulnerability assessment. PCFI helps researchers to accelerate live-system fault injection studies and

quickly establish the resilience of different mitigation strategies.

9.1.3 Characterization of time varying behavior of vulnerability

Runtime vulnerability behavior has not been well explored for GPU applications. Under-

standing this behavior can help guide the use of selective application of mitigation strategies and

selective fault injection campaigns.

In Chapter 6, we evaluated how vulnerability changes over time. We divide applications

into instruction sequences and evaluated the vulnerability of individual instruction sequences. Our

analyses show that vulnerability across different instruction sequences can widely vary. We leverage

Basic Block Vectors to capture this vulnerability behavior and we introduced the term resilience

groups, a group of instruction sequences with similar vulnerability behavior. Basic Block Vectors can

be obtained with a profile of an application, without a fault injection campaign. The characterization

of the time-varying behavior of vulnerability for GPU applications can be captured with one single

89

CHAPTER 9. SUMMARY AND CONCLUSION

execution of the application. This characterization can help reduce the performance overhead of

mitigation by only applying the mitigation to resilience groups that are vulnerable.

9.1.4 Exploitation of time varying behavior for efficient vulnerability assessment

In Chapter 7, we showed how resilience groups can be leveraged to accelerate fault

injections by only injecting faults in representative intervals from each resilience group. We build

on the observation that faults at different intervals of the same resilience group result in the same

outcome. We developed a methodology to allow us to select the best intervals for each resilience

group for fault injection.

Our studies reveal that, for the set of applications studied in this thesis, that resilience

groups account for a high percentage of the execution intervals of the applications. For example,

some resilience groups represent up to 75% of all intervals in their applications. This means that

we can study the resilience of one interval of execution to predict the resilience of up to 75% of all

intervals of these applications. We use this methodology, and show we can greatly reduce the number

of faults necessary versus a traditional fault injection approach. Our results show a fault reduction of

an order of magnitude. Hence, without performing an exhaustive fault injection (i.e., faults in all

execution intervals), we can predict the vulnerability outcomes for all execution intervals based on

which resilience group it belongs to.

9.1.5 Exploitation of the time varying behavior for efficient fault mitigation

After performing fault injections in each representative instruction sequences per resilience

group, and extending the vulnerability behaviors to all instruction sequences in the resilience groups,

we identified the most vulnerable resilience groups. This knowledge is then transferred to an effective

mitigation strategy, ArmorAll. We instrument ArmorAll to locally apply its resilience scheme. Our

phase-based behavior applied to ArmorAll allows us to reduce the overhead of mitigation even

further.

9.2 Future Work

• Optimization of PCFI: PCFI works by identifying static instructions in which faults lead to

the same outcome and capping injections at these static instructions. Our current methodology

does not make any attempt to predict static instructions which will have the same vulnerability

90

CHAPTER 9. SUMMARY AND CONCLUSION

profile. It is possible to optimize this methodology and even further reduce the number of

injections in a campaign. We identify at least two ways to achieve this improvement.

1. Selected instructions that reside on the same execution control flow path are likely to

lead to the same reliaiblity outcome. Identifying the set of these instructions can help

when trying to reduce the number of injections needed, avoiding duplicate injections.

2. It is possible to predict the outcome of some faults in some instructions. For example,

for instructions that access memory, it is possible to predict when a fault will cause

the instructions to access illegal memory. Such faults can be pruned from an injection

campaign.

• Automatic placement of mitigation strategy: In our current implementation for the efficient

placement of ArmorAll resilient schemes, we manually pruned duplicated instructions that

were not part of vulnerable instruction sequences. As such, it is challenging to apply these

resilience schemes to all the applications in our test suite. It is possible to automate this process

and directly receive feedback from the phase characterization analysis obtained from SASSIFI.

It is possible to add a method to connect the original source code to its corresponding LLVM

instruction(s), and this will help automate pruning of the unnecessary duplicated instructions.

• Software Recovery Mechanisms: The majority of DUEs that occur in GPUs are caused

by an illegal memory accesses. In terms of mitigation strategies, it is worth exploring the

development of a software-based recovery mechanism, developing a scheme to implement

an error handler. This would intercept messages from the GPU driver before crashing the

executing GPU program. An more robust solution would be to try to correct the faulty bit

flip which caused an address to be incorrect in the first place. In general, error recovery is a

challenging topic, and could be a ripe area to student as fault rates continue to grow in future

technology nodes.

91

Bibliography

[1] F. G. Previlon, C. Kalra, D. R. Kaeli, and P. Rech, “A comprehensive evaluation of the effects

of input data on the resilience of gpu applications,” in The 32nd IEEE International Symposium

on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), October 2019.

[2] C. Kalra, F. Previlon, N. Rubin, and D. Kaeli, “Armorall: Compiler-based resilience targeting

gpu applications,” in Under Review, 2019.

[3] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and J. Emer, “Sassifi: An architecture-

level fault injection tool for gpu application resilience evaluation,” in IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS), April 2017.

[4] Nvidia, “Graphics processing unit (gpu).” [Online]. Available: http://www.nvidia.com/object/

gpu.html

[5] S. E., D. J., S. H., and M. M., “Top500 lists,” June 2018. [Online]. Available:

https://www.top500.org/lists/2018/06/

[6] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque, L. Tang, and J. Mars,

“The architectural implications of autonomous driving: Constraints and acceleration,” in

Proceedings of the Twenty-Third International Conference on Architectural Support for

Programming Languages and Operating Systems, ser. ASPLOS ’18. New York, NY, USA:

ACM, 2018, pp. 751–766. [Online]. Available: http://doi.acm.org/10.1145/3173162.3173191

[7] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi, P. Balaji, J. Belak,

P. Bose, F. Cappello, B. Carlson, A. A. Chien, P. Coteus, N. A. Debardeleben, P. C. Diniz,

C. Engelmann, M. Erez, S. Fazzari, A. Geist, R. Gupta, F. Johnson, S. Krishnamoorthy,

S. Leyffer, D. Liberty, S. Mitra, T. Munson, R. Schreiber, J. Stearley, and E. V. Hensbergen,

92

http://www.nvidia.com/object/gpu.html
http://www.nvidia.com/object/gpu.html
https://www.top500.org/lists/2018/06/
http://doi.acm.org/10.1145/3173162.3173191

BIBLIOGRAPHY

“Addressing failures in exascale computing,” Int. J. High Perform. Comput. Appl., vol. 28, no. 2,

pp. 129–173, May 2014. [Online]. Available: http://dx.doi.org/10.1177/1094342014522573

[8] C. D. Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop, and W. Kramer, “Lessons

learned from the analysis of system failures at petascale: The case of blue waters,” in 2014

44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, June

2014, pp. 610–621.

[9] R. Lucas, J. Ang, K. Bergman, and S. e. a. Borkar, “Top ten exascale research challenges,”

Feb 2014. [Online]. Available: http://science.energy.gov/∼/media/ascr/ascac/pdf/meetings/

20140210/Top10reportFEB14.pdf

[10] P. Rech, C. Aguiar, R. Ferreira, C. Frost, and L. Carro, “Neutron radiation test of graphic

processing units,” in 2012 IEEE 18th International On-Line Testing Symposium (IOLTS), June

2012, pp. 55–60.

[11] NVIDIA, “Gpu applications catalog.” [Online]. Available: https://www.nvidia.com/en-us/

data-center/gpu-accelerated-applications/catalog/

[12] P. N. Glaskowsky, “Nvidia’s fermi : The first complete gpu computing architecture,” 2009.

[13] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel programming

with cuda,” Queue, vol. 6, no. 2, pp. 40–53, Mar. 2008. [Online]. Available:

http://doi.acm.org/10.1145/1365490.1365500

[14] T. K. G. T. O. Standard, www.khronos.org/opencl.

[15] J. Krüger and R. Westermann, “Linear algebra operators for gpu implementation of numerical

algorithms,” ACM Trans. Graph., vol. 22, no. 3, pp. 908–916, Jul. 2003. [Online]. Available:

http://doi.acm.org/10.1145/882262.882363

[16] C. Barnes, E. Cule, J. Liepe, K. Erguler, M. P. Stumpf, P. Kirk, and T. Toni, “ABC-

SysBioapproximate Bayesian computation in Python with GPU support,” Bioinformatics,

vol. 26, no. 14, pp. 1797–1799, 06 2010. [Online]. Available: https://dx.doi.org/10.1093/

bioinformatics/btq278

[17] P. Rech, L. L. Pilla, P. O. A. Navaux, and L. Carro, “Impact of gpus parallelism management on

safety-critical and hpc applications reliability,” in 2014 44th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks, June 2014, pp. 455–466.

93

http://dx.doi.org/10.1177/1094342014522573
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
https://www.nvidia.com/en-us/data-center/gpu-accelerated-applications/catalog/
https://www.nvidia.com/en-us/data-center/gpu-accelerated-applications/catalog/
http://doi.acm.org/10.1145/1365490.1365500
http://doi.acm.org/10.1145/882262.882363
https://dx.doi.org/10.1093/bioinformatics/btq278
https://dx.doi.org/10.1093/bioinformatics/btq278

BIBLIOGRAPHY

[18] J. W. Sheaffer, D. P. Luebke, and K. Skadron, “The visual vulnerability spectrum:

Characterizing architectural vulnerability for graphics hardware,” in Proceedings of

the 21st ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware,

ser. GH ’06. New York, NY, USA: ACM, 2006, pp. 9–16. [Online]. Available:

http://doi.acm.org/10.1145/1283900.1283902

[19] F. F. d. Santos, L. Draghetti, L. Weigel, L. Carro, P. Navaux, and P. Rech, “Evaluation and

mitigation of soft-errors in neural network-based object detection in three gpu architectures,” in

2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

Workshops (DSN-W), June 2017, pp. 169–176.

[20] J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, B. Chin, M. Nicewicz, C. A.

Russell, W. Y. Wang, L. B. Freeman, P. Hosier, L. E. LaFave, J. L. Walsh, J. M. Orro, G. J.

Unger, J. M. Ross, T. J. O’Gorman, B. Messina, T. D. Sullivan, A. J. Sykes, H. Yourke, T. A.

Enger, V. Tolat, T. S. Scott, A. H. Taber, R. J. Sussman, W. A. Klein, and C. W. Wahaus, “Ibm

experiments in soft fails in computer electronics (19781994),” IBM Journal of Research and

Development, vol. 40, no. 1, pp. 3–18, Jan 1996.

[21] L. B. Gomez, F. Cappello, L. Carro, N. DeBardeleben, B. Fang, S. Gurumurthi, K. Pattabira-

man, P. Rech, and M. S. Reorda, “Gpgpus: How to combine high computational power with

high reliability,” in 2014 Design, Automation Test in Europe Conference Exhibition (DATE),

March 2014, pp. 1–9.

[22] D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai, D. Oliveira, D. Londo,

N. DeBardeleben, P. Navaux, L. Carro, and A. Bland, “Understanding gpu errors on large-

scale hpc systems and the implications for system design and operation,” in 2015 IEEE 21st

International Symposium on High Performance Computer Architecture (HPCA), Feb 2015, pp.

331–342.

[23] S. Tselonis and D. Gizopoulos, “Gufi: A framework for gpus reliability assessment,” in 2016

IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS),

April 2016, pp. 90–100.

[24] B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi, “Gpu-qin: A methodology for

evaluating the error resilience of gpgpu applications,” in Performance Analysis of Systems and

Software (ISPASS), 2014 IEEE International Symposium on, 2014.

94

http://doi.acm.org/10.1145/1283900.1283902

BIBLIOGRAPHY

[25] J. Wadden and K. Skadron, Advances in GPU reliability research, 12 2017, pp. 617–647.

[26] M. Stephenson, S. K. S. Hari, Y. Lee, E. Ebrahimi, D. R. Johnson, D. Nellans, M. O’Connor,

and S. W. Keckler, “Flexible software profiling of gpu architectures,” in 2015 ACM/IEEE 42nd

Annual International Symposium on Computer Architecture (ISCA), June 2015, pp. 185–197.

[27] V. K. Sridharan, “Introducing abstraction to vulnerability analysis,” p. 175, 2010, copyright

- Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual

underlying works; Last updated - 2016-03-10.

[28] V. Sridharan and D. R. Kaeli, “Eliminating microarchitectural dependency from architectural

vulnerability,” in Int’l Symposium on High Performance Computer Architecture (HPCA-15),

2009, pp. 117–128.

[29] F. G. Previlon, B. Egbantan, D. Tiwari, P. Rech, and D. R. Kaeli, “Combining architectural

fault-injection and neutron beam testing approaches toward better understanding of gpu

soft-error resilience,” in 2017 IEEE 60th International Midwest Symposium on Circuits and

Systems (MWSCAS), Aug 2017, pp. 898–901.

[30] J. Karlsson, P. Liden, P. Dahlgren, R. Johansson, and U. Gunneflo, “Using heavy-ion radiation

to validate fault-handling mechanisms,” IEEE Micro, vol. 14, no. 1, pp. 8–23, Feb 1994.

[31] D. A. G. de Oliveira, L. L. Pilla, T. Santini, and P. Rech, “Evaluation and mitigation of

radiation-induced soft errors in graphics processing units,” IEEE Transactions on Computers,

vol. 65, no. 3, pp. 791–804, March 2016.

[32] T. Calin, M. Nicolaidis, and R. Velazco, “Upset hardened memory design for submicron cmos

technology,” IEEE Transactions on Nuclear Science, vol. 43, no. 6, pp. 2874–2878, Dec 1996.

[33] H. Ando, Y. Yoshida, A. Inoue, I. Sugiyama, T. Asakawa, K. Morita, T. Muta, T. Motokuru-

mada, S. Okada, H. Yamashita, Y. Satsukawa, A. Konmoto, R. Yamashita, and H. Sugiyama,

“A 1.3ghz fifth generation sparc64 microprocessor,” in Proceedings 2003. Design Automation

Conference (IEEE Cat. No.03CH37451), June 2003, pp. 702–705.

[34] T. J. Slegel, R. M. Averill, M. A. Check, B. C. Giamei, B. W. Krumm, C. A. Krygowski, W. H.

Li, J. S. Liptay, J. D. MacDougall, T. J. McPherson, J. A. Navarro, E. M. Schwarz, K. Shum,

and C. F. Webb, “Ibm’s s/390 g5 microprocessor design,” IEEE Micro, vol. 19, no. 2, pp.

12–23, March 1999.

95

BIBLIOGRAPHY

[35] E. Rotenberg, “Ar-smt: a microarchitectural approach to fault tolerance in microprocessors,” in

Digest of Papers. Twenty-Ninth Annual International Symposium on Fault-Tolerant Computing

(Cat. No.99CB36352), June 1999, pp. 84–91.

[36] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt, “Detailed design and evaluation of redun-

dant multi-threading alternatives,” in Proceedings 29th Annual International Symposium on

Computer Architecture, May 2002, pp. 99–110.

[37] S. K. Reinhardt and S. S. Mukherjee, “Transient fault detection via simultaneous multithread-

ing,” in Proceedings of 27th International Symposium on Computer Architecture (IEEE Cat.

No.RS00201), June 2000, pp. 25–36.

[38] F. G. Previlon, C. Kalra, D. Tiwari, and D. R. Kaeli, “Pcfi: Program counter guided fault

injection for accelerating gpu reliability assessment,” in 2019 Design, Automation Test in

Europe Conference Exhibition (DATE), March 2019, pp. 308–311.

[39] E. S. Larsen and D. McAllister, “Fast matrix multiplies using graphics hardware,” in Super-

computing, ACM/IEEE 2001 Conference, Nov 2001, pp. 43–43.

[40] E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics

processing units for high-speed monte carlo simulation of photon migration,” Journal of

biomedical optics, vol. 13, p. 060504, 2008.

[41] M. C. Schatz, C. Trapnell, A. L. Delcher, and A. Varshney, “High-throughput sequence

alignment using graphics processing units,” BMC Bioinformatics, vol. 8, no. 1, pp. 1–10,

2007. [Online]. Available: http://dx.doi.org/10.1186/1471-2105-8-474

[42] J. E. Stone, J. C. Philips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco, and K. Schulten, “Accel-

erating molecular modeling applications with graphics processors,” Journal of Computational

Chemistry, vol. 28, pp. 2618–2640, 2007.

[43] S. Grauer-Gray, W. Killian, R. Searles, and J. Cavazos, “Accelerating financial applications on

the gpu,” in Proceedings of the 6th Workshop on General Purpose Processor Using Graphics

Processing Units, ser. GPGPU-6. New York, NY, USA: ACM, 2013, pp. 127–136. [Online].

Available: http://doi.acm.org/10.1145/2458523.2458536

[44] S. E., D. J., S. H., and M. M., “Top500 lists,” November 2010. [Online]. Available:

https://www.top500.org/lists/2010/11/

96

http://dx.doi.org/10.1186/1471-2105-8-474
http://doi.acm.org/10.1145/2458523.2458536
https://www.top500.org/lists/2010/11/

BIBLIOGRAPHY

[45] A. Donaldson, G. Gopalakrishnan, N. Chong, J. Ketema, G. Li, P. Li, A. Lokhmotov, and

S. Qadeer, Formal analysis techniques for reliable GPU programming: Current solutions and

call to action. United States: Elsevier Inc., 9 2016, pp. 3–21.

[46] P. E. Bailey, D. K. Lowenthal, V. Ravi, B. Rountree, M. Schulz, and B. R. d. Supinski,

“Adaptive configuration selection for power-constrained heterogeneous systems,” in 2014 43rd

International Conference on Parallel Processing, Sep. 2014, pp. 371–380.

[47] R. Baumann, “Radiation-induced soft errors in advanced semiconductor technologies,” Device

and Materials Reliability, IEEE Transactions on, vol. 5, no. 3, pp. 305–316, Sept 2005.

[48] N. DeBardeleben, S. Blanchard, L. Monroe, P. Romero, D. Grunau, C. Idler, and C. Wright,

“GPU Behavior on a Large HPC Cluster,” 6th Workshop on Resiliency in High Performance

Computing (Resilience) in Clusters, Clouds, and Grids in conjunction with the 19th Interna-

tional European Conference on Parallel and Distributed Computing (Euro-Par 2013), Aachen,

Germany,, August 26-30 2013.

[49] H. J. Wunderlich, C. Braun, and S. Halder, “Efficacy and efficiency of algorithm-based fault-

tolerance on gpus,” in On-Line Testing Symposium (IOLTS), 2013 IEEE 19th International,

July 2013, pp. 240–243.

[50] L. A. B. Gomez, F. Cappello, L. Carro, N. DeBardeleben, B. Fang, S. Gurumurthi, K. Pattabi-

raman, R. Rech, and M. S. Reorda, “GPGPUs: How to Combine High Computational Power

with High Reliability,” in DATE, Dresden, Germany, 2014.

[51] D. Oliveira, P. Rech, H. Quinn, T. Fairbanks, L. Monroe, S. Michalak, C. Anderson-Cook,

P. Navaux, and L. Carro, “Modern gpus radiation sensitivity evaluation and mitigation through

duplication with comparison,” Nuclear Science, IEEE Transactions on, vol. 61, no. 6, pp.

3115–3122, Dec 2014.

[52] R. C. Baumann, “Soft errors in commercial semiconductor technology: Overview and scaling

trends,” 04 2002.

[53] E. Normand, “Single event upset at ground level,” IEEE Transactions on Nuclear Science,

vol. 43, no. 6, pp. 2742–2750, Dec 1996.

[54] J. Somers. (2018, Dec. 7) The friendship that made google huge. [Online]. Available:

https://www.newyorker.com/magazine/2018/12/10/the-friendship-that-made-google-huge

97

https://www.newyorker.com/magazine/2018/12/10/the-friendship-that-made-google-huge

BIBLIOGRAPHY

[55] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, “Ferrari: a tool for the validation of

system dependability properties,” in [1992] Digest of Papers. FTCS-22: The Twenty-Second

International Symposium on Fault-Tolerant Computing, July 1992, pp. 336–344.

[56] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin, “A systematic

methodology to compute the architectural vulnerability factors for a high-performance

microprocessor,” in Proceedings of the 36th Annual IEEE/ACM International Symposium on

Microarchitecture, ser. MICRO 36. Washington, DC, USA: IEEE Computer Society, 2003,

pp. 29–. [Online]. Available: http://dl.acm.org/citation.cfm?id=956417.956570

[57] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault injection: Quantified

error and confidence,” in Design, Automation Test in Europe Conference Exhibition, 2009.

DATE ’09., April 2009, pp. 502–506.

[58] J. Arlat, Y. Crouzet, and J.-C. Laprie, “Fault injection for dependability validation of fault-

tolerant computing systems,” in Fault-Tolerant Computing, 1989. FTCS-19. Digest of Papers.,

Nineteenth International Symposium on, June 1989, pp. 348–355.

[59] N. J. Wang, A. Mahesri, and S. J. Patel, “Examining ace analysis reliability estimates using

fault-injection,” in Proceedings of the 34th Annual International Symposium on Computer

Architecture, ser. ISCA ’07. New York, NY, USA: ACM, 2007, pp. 460–469. [Online].

Available: http://doi.acm.org/10.1145/1250662.1250719

[60] S. Tselonis and D. Gizopoulos, “Gufi: A framework for gpus reliability assessment,” in 2016

IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS),

April 2016, pp. 90–100.

[61] M. Kaliorakis, D. Gizopoulos, R. Canal, and A. Gonzalez, “Merlin: Exploiting dynamic

instruction behavior for fast and accurate microarchitecture level reliability assessment,”

SIGARCH Comput. Archit. News, vol. 45, no. 2, pp. 241–254, Jun. 2017.

[62] B. Nie, L. Yang, A. Jog, and E. Smirni, “Fault site pruning for practical reliability analysis of

gpgpu applications,” in International Symposium on Microarchitecture (MICRO) 2018, 2018.

[63] G. Li, K. Pattabiraman, C. Cher, and P. Bose, “Understanding error propagation in gpgpu

applications,” in SC ’16: Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, Nov 2016, pp. 240–251.

98

http://dl.acm.org/citation.cfm?id=956417.956570
http://doi.acm.org/10.1145/1250662.1250719

BIBLIOGRAPHY

[64] B. Sangchoolie, K. Pattabiraman, and J. Karlsson, “One bit is (not) enough: An empirical

study of the impact of single and multiple bit-flip errors,” in 2017 IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN).

[65] F. Ayatolahi, B. Sangchoolie, R. Johansson, and J. Karlsson, “A study of the impact of

single bit-flip and double bit-flip errors on program execution,” in Proceedings of the 32Nd

International Conference on Computer Safety, Reliability, and Security - Volume 8153, ser.

SAFECOMP 2013. New York, NY, USA: Springer-Verlag New York, Inc.

[66] NVIDIA, “NVIDIA TESLA V100 GPU ARCHITECTURE,” 2017. [Online]. Available:

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

[67] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. S. Mukherjee, and R. Rangan, “Comput-

ing architectural vulnerability factors for address-based structures,” in 32nd International

Symposium on Computer Architecture (ISCA’05), June 2005, pp. 532–543.

[68] X. Li, S. V. Adve, P. Bose, and J. A. Rivers, “Architecture-level soft error analysis: Examining

the limits of common assumptions,” in 37th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN’07), June 2007, pp. 266–275.

[69] V. Sridharan and D. R. Kaeli, “Using hardware vulnerability factors to enhance avf analysis,”

in Proceedings of the 37th Annual International Symposium on Computer Architecture,

ser. ISCA ’10. New York, NY, USA: ACM, 2010, pp. 461–472. [Online]. Available:

http://doi.acm.org/10.1145/1815961.1816023

[70] Q. Guan, N. Debardeleben, S. Blanchard, and S. Fu, “F-sefi: A fine-grained soft error fault

injection tool for profiling application vulnerability,” in 2014 IEEE 28th International Parallel

and Distributed Processing Symposium, May 2014, pp. 1245–1254.

[71] B. Schroeder and G. Gibson, “A large-scale study of failures in high-performance computing

systems,” IEEE Transactions on Dependable and Secure Computing, vol. 7, no. 4, pp. 337–350,

Oct 2010.

[72] X. Li, K. Shen, M. C. Huang, and L. Chu, “A memory soft error measurement on production

systems,” in 2007 USENIX Annual Technical Conference on Proceedings of the USENIX

Annual Technical Conference, ser. ATC’07. Berkeley, CA, USA: USENIX Association,

2007, pp. 21:1–21:6. [Online]. Available: http://dl.acm.org/citation.cfm?id=1364385.1364406

99

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://doi.acm.org/10.1145/1815961.1816023
http://dl.acm.org/citation.cfm?id=1364385.1364406

BIBLIOGRAPHY

[73] B. Schroeder, E. Pinheiro, and W.-D. Weber, “Dram errors in the wild: A large-scale field

study,” in Proceedings of the Eleventh International Joint Conference on Measurement and

Modeling of Computer Systems, ser. SIGMETRICS ’09. New York, NY, USA: ACM, 2009,

pp. 193–204. [Online]. Available: http://doi.acm.org/10.1145/1555349.1555372

[74] X. Li, M. C. Huang, K. Shen, and L. Chu, “A realistic evaluation of memory

hardware errors and software system susceptibility,” in Proceedings of the 2010

USENIX Conference on USENIX Annual Technical Conference, ser. USENIXATC’10.

Berkeley, CA, USA: USENIX Association, 2010, pp. 6–6. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1855840.1855846

[75] A. A. Hwang, I. A. Stefanovici, and B. Schroeder, “Cosmic rays don’t strike

twice: Understanding the nature of dram errors and the implications for system

design,” SIGPLAN Not., vol. 47, no. 4, pp. 111–122, Mar. 2012. [Online]. Available:

http://doi.acm.org/10.1145/2248487.2150989

[76] V. Sridharan and D. Liberty, “A study of dram failures in the field,” in SC ’12: Proceedings

of the International Conference on High Performance Computing, Networking, Storage and

Analysis, Nov 2012, pp. 1–11.

[77] T. Siddiqua, A. E. Papathanasiou, A. Biswas, and S. Gurumurthi, “Analysis and modeling of

memory errors from large-scale field data collection,” in SELSE 2013, 2013.

[78] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley, J. Shalf, and

S. Gurumurthi, “Memory errors in modern systems: The good, the bad, and the ugly,”

SIGARCH Comput. Archit. News, vol. 43, no. 1, pp. 297–310, Mar. 2015. [Online]. Available:

http://doi.acm.org/10.1145/2786763.2694348

[79] I. S. Haque and V. S. Pande, “Hard data on soft errors: A large-scale assessment of real-world

error rates in gpgpu,” in 2010 10th IEEE/ACM International Conference on Cluster, Cloud

and Grid Computing, May 2010, pp. 691–696.

[80] C. Lunardi, F. Previlon, D. Kaeli, and P. Rech, “On the efficacy of ecc and the benefits of finfet

transistor layout for gpu reliability,” IEEE Transactions on Nuclear Science, vol. 65, no. 8, pp.

1843–1850, Aug 2018.

100

http://doi.acm.org/10.1145/1555349.1555372
http://dl.acm.org/citation.cfm?id=1855840.1855846
http://doi.acm.org/10.1145/2248487.2150989
http://doi.acm.org/10.1145/2786763.2694348

BIBLIOGRAPHY

[81] N. Farazmand, R. Ubal, and D. Kaeli, “Statistical fault injection-based analysis of a GPU

architecture,” in Workshop on Silicon Errors in Logic - System Effects (SELSE), 2012.

[82] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “ Multi2Sim: A Simulation Framework for

CPU-GPU Computing ,” in Proc. of the 21st International Conference on Parallel Architectures

and Compilation Techniques, Sep. 2012.

[83] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt, “Dynamic warp formation and scheduling

for efficient gpu control flow,” in 40th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO 2007), Dec 2007, pp. 407–420.

[84] C. Kalra, F. Previlon, X. Li, N. Rubin, and D. Kaeli, “Analyzing the vulnerability of vector-

scalar execution on data-parallel architectures,” in The 14th Workshop on Silicon Errors in

Logic-System Effects, SELSE, 2018.

[85] J. Tan, N. Goswami, T. Li, and X. Fu, “Analyzing soft-error vulnerability on gpgpu microar-

chitecture,” in 2011 IEEE International Symposium on Workload Characterization (IISWC),

Nov 2011, pp. 226–235.

[86] M. Wilkening, V. Sridharan, S. Li, F. Previlon, S. Gurumurthi, and D. R. Kaeli, “Calculating

architectural vulnerability factors for spatial multi-bit transient faults,” in 2014 47th Annual

IEEE/ACM International Symposium on Microarchitecture, Dec 2014, pp. 293–305.

[87] F. Previlon, M. Wilkening, V. Sridharan, S. Gurumurthi, and D. Kaeli, “Examining the impact

of ace interference on multi-bit avf estimates,” Proceedings of SELSE: Silicon Errors in

Logic-System Effects, 2015.

[88] M. Wilkening, F. Previlon, and D. R. Kaeli, “Evaluating the resilience of highly parallel

applications,” in The 12th Workshop on Silicon Errors in Logic-System Effects, SELSE, 2016.

[89] W. Mansour and R. Velazco, “An automated seu fault-injection method and tool for hdl-based

designs,” IEEE Transactions on Nuclear Science, vol. 60, no. 4, pp. 2728–2733, Aug 2013.

[90] A. Mohammadi, M. Ebrahimi, A. Ejlali, and S. G. Miremadi, “Scfit: A fpga-based fault injec-

tion technique for seu fault model,” in 2012 Design, Automation Test in Europe Conference

Exhibition (DATE), March 2012.

101

BIBLIOGRAPHY

[91] M. Ebrahimi, N. Sayed, M. Rashvand, and M. B. Tahoori, “Fault injection acceleration by

architectural importance sampling,” in 2015 International Conference on Hardware/Software

Codesign and System Synthesis (CODES+ISSS), Oct 2015, pp. 212–219.

[92] E. Cioroaica, J. Jahi, T. Kuhn, C. Peper, D. Uecker, C. Dropmann, P. Munk, A. Rakshith,

and E. Thaden, “Accelerated simulated fault injection testing,” in 2017 IEEE International

Symposium on Software Reliability Engineering Workshops (ISSREW), Oct 2017, pp. 228–233.

[93] S. K. S. Hari, S. V. Adve, H. Naeimi, and P. Ramachandran, “Relyzer: Exploiting

application-level fault equivalence to analyze application resiliency to transient faults,”

SIGPLAN Not., vol. 47, no. 4, pp. 123–134, Mar. 2012. [Online]. Available:

http://doi.acm.org/10.1145/2248487.2150990

[94] C. Kalra, F. Previlon, X. Li, N. Rubin, and D. Kaeli, “Prism: Predicting resilience

of gpu applications using statistical methods,” in Proceedings of the International

Conference for High Performance Computing, Networking, Storage, and Analysis, ser.

SC ’18. Piscataway, NJ, USA: IEEE Press, 2018, pp. 69:1–69:14. [Online]. Available:

http://dl.acm.org/citation.cfm?id=3291656.3291748

[95] G. Li, K. Pattabiraman, S. K. S. Hari, M. Sullivan, and T. Tsai, “Modeling soft-error propaga-

tion in programs,” in 2018 48th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN), June 2018, pp. 27–38.

[96] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically characterizing large

scale program behavior,” SIGOPS Oper. Syst. Rev., vol. 36, no. 5, pp. 45–57, Oct. 2002.

[97] A. S. Dhodapkar and J. E. Smith, “Managing multi-configuration hardware via dynamic work-

ing set analysis,” in Proceedings of the 29th Annual International Symposium on Computer

Architecture. Washington, DC, USA: IEEE Computer Society, 2002.

[98] M. Annavaram, R. Rakvic, M. Polito, J. . Bouguet, R. Hankins, and B. Davies, “The fuzzy

correlation between code and performance predictability,” in International Symposium on

Microarchitecture’04.

[99] W. Liu and M. C. Huang, “Expert: Expedited simulation exploiting program behavior repeti-

tion,” in Proceedings of the 18th Annual International Conference on Supercomputing, ser.

ICS ’04, NY, USA.

102

http://doi.acm.org/10.1145/2248487.2150990
http://dl.acm.org/citation.cfm?id=3291656.3291748

BIBLIOGRAPHY

[100] R. Balasubramonian, D. Albones, A. Buyuktosunoglu, and S. Dwarkadas, “Memory hierarchy

reconfiguration for energy and performance in general-purpose processor architectures,” in

IEEE/ACM International Symposium on Microarchitecture. MICRO 2000.

[101] A. S. Dhodapkar and J. E. Smith, “Comparing program phase detection techniques,” in

Proceedings of the 36th Annual IEEE/ACM International Symposium on Microarchitecture,

ser. MICRO 36. Washington, DC, USA: IEEE Computer Society, 2003.

[102] C. Isci and M. Martonosi, “Identifying program power phase behavior using power vectors,”

in 2003 IEEE International Conference on Communications (Cat. No.03CH37441), Oct 2003,

pp. 108–118.

[103] ——, “Phase characterization for power: evaluating control-flow-based and event-counter-

based techniques,” in The Twelfth International Symposium on High-Performance Computer

Architecture, 2006., Feb 2006.

[104] T. E. Carlson, W. Heirman, K. V. Craeynest, and L. Eeckhout, “Barrierpoint: Sampled simula-

tion of multi-threaded applications,” in 2014 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS), March 2014.

[105] J. C. Huang, L. Nai, H. Kim, and H. H. S. Lee, “Tbpoint: Reducing simulation time for

large-scale gpgpu kernels,” in IEEE 28th International Parallel and Distributed Processing

Symposium, May 2014.

[106] M. Kambadur, S. Hong, J. Cabral, H. Patil, C. K. Luk, S. Sajid, and M. A. Kim, “Fast

computational gpu design with gt-pin,” in 2015 IEEE International Symposium on Workload

Characterization, Oct 2015, pp. 76–86.

[107] X. Fu, J. Poe, T. Li, and J. A. B. Fortes, “Characterizing microarchitecture soft error vulnera-

bility phase behavior,” in 14th IEEE International Symposium on Modeling, Analysis, and

Simulation, Sept 2006, pp. 147–155.

[108] D. Oliveira, L. Pilla, N. DeBardeleben, S. Blanchard, H. Quinn, I. Koren, P. Navaux,

and P. Rech, “Experimental and analytical study of xeon phi reliability,” in Proceedings

of the International Conference for High Performance Computing, Networking, Storage

and Analysis, ser. SC ’17. New York, NY, USA: ACM, 2017, pp. 28:1–28:12. [Online].

Available: http://doi.acm.org/10.1145/3126908.3126960

103

http://doi.acm.org/10.1145/3126908.3126960

BIBLIOGRAPHY

[109] H. Jeon, M. Wilkening, V. Sridharan, S. Gurumurthi, and G. H. Loh, “Architectural vulnerabil-

ity modeling and analysis of integrated graphics processors,” in Workshop on Silicon Errors in

Logic - System Effects (SELSE), 2013.

[110] V. Sridharan and D. Kaeli, “The effect of input data on program vulnerability,” 2009.

[111] T. M. Jones, M. F. P. O. ’boyle, and O. G. Ergin, “Evaluating the effects of compiler optimi-

sations on avf,” in Workshop on Interaction Between Compilers and Computer Architecture

(INTERACT-12), 2008.

[112] F. G. Previlon, C. Kalra, D. R. Kaeli, and P. Rech, “Evaluating the impact of execution

parameters on program vulnerability in gpu applications,” in 2018 Design, Automation Test in

Europe Conference Exhibition (DATE), March 2018, pp. 809–814.

[113] P. Rech, L. L. Pilla, P. O. A. Navaux, and L. Carro, “Impact of GPUs Parallelism Management

on Safety-Critical and HPC Applications Reliability,” in IEEE International Conference on

Dependable Systems and Networks (DSN 2014), Atlanta, USA, 2014.

[114] D. A. Patterson and J. L. Hennessy, Computer Architecture: A Quantitative Approach. San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1990.

[115] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H. Lee, and K. Skadron, “Rodinia: A

benchmark suite for heterogeneous computing,” in 2009 IEEE International Symposium on

Workload Characterization (IISWC), Oct 2009, pp. 44–54.

[116] NVIDIA, “NVIDIA, CUDA SDK, V7.0.”

[117] ——, “CUDA C BEST PRACTICES GUIDE,” 2018. [Online]. Available: https:

//docs.nvidia.com/cuda/pdf/CUDA C Best Practices Guide.pdf

[118] E. Duesterwald, C. Cascaval, and S. Dwarkadas, “Characterizing and predicting program

behavior and its variability,” in International Conference on Parallel Architectures and Compi-

lation Techniques, 2003.

[119] C. Isci and M. Martonosi, “Runtime power monitoring in high-end processors: methodology

and empirical data,” in IEEE/ACM International Symposium on Microarchitecture, 2003.

MICRO-36.

104

https://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf

BIBLIOGRAPHY

[120] X. Shen, Y. Zhong, and C. Ding, “Locality phase prediction,” SIGPLAN Not., vol. 39, no. 11,

pp. 165–176, Oct. 2004.

[121] P. J. Rousseeuw”, “”silhouettes: A graphical aid to the interpretation and validation of cluster

analysis”,” ”Journal of Computational and Applied Mathematics”, vol. ”20”, no. ”Supplement

C”, ”1987”.

[122] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study of irregular programs on gpus,”

in IEEE International Symposium on Workload Characterization (IISWC), Nov 2012.

[123] F. G. Previlon, C. Kalra, D. Tiwari, and D. R. Kaeli, “Characterizing and exploiting soft error

vulnerability phase behavior in gpu applications,” in Under Review, 2019.

[124] NVIDIA, “NVIDIAs Next Generation CUDA Compute Architecture: Kepler

GK110,” 2015. [Online]. Available: http://www.nvidia.com/content/PDF/kepler/

NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

[125] K. S. Yim, C. Pham, M. Saleheen, Z. Kalbarczyk, and R. Iyer, “Hauberk: Lightweight

silent data corruption error detector for gpgpu,” in IEEE International Parallel Distributed

Processing Symposium, May 2011.

[126] M. Dimitrov, M. Mantor, and H. Zhou, “Understanding software approaches for gpgpu

reliability,” in Proceedings of 2Nd Workshop on General Purpose Processing on Graphics

Processing Units, ser. GPGPU-2. New York, NY, USA: ACM, 2009, pp. 94–104. [Online].

Available: http://doi.acm.org/10.1145/1513895.1513907

[127] C. Wang, H. Kim, Y. Wu, and V. Ying, “Compiler-managed software-based redundant multi-

threading for transient fault detection,” in International Symposium on Code Generation and

Optimization (CGO’07), March 2007, pp. 244–258.

[128] S. Mukherjee, J. Emer, and S. Reinhardt, “The soft error problem: an architectural perspective,”

in High-Performance Computer Architecture, 2005. HPCA-11. 11th International Symposium

on, Feb 2005, pp. 243–247.

[129] J. Wadden, A. Lyashevsky, S. Gurumurthi, V. Sridharan, and K. Skadron, “Real-world design

and evaluation of compiler-managed gpu redundant multithreading,” in 2014 ACM/IEEE 41st

International Symposium on Computer Architecture (ISCA), June 2014, pp. 73–84.

105

http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://doi.acm.org/10.1145/1513895.1513907

BIBLIOGRAPHY

[130] A. Mahmoud, S. K. S. Hari, M. B. Sullivan, T. Tsai, and S. W. Keckler, “Optimizing

software-directed instruction replication for gpu error detection,” in Proceedings of the

International Conference for High Performance Computing, Networking, Storage, and

Analysis, ser. SC ’18. Piscataway, NJ, USA: IEEE Press, 2018, pp. 67:1–67:12. [Online].

Available: https://doi.org/10.1109/SC.2018.00070

[131] N. J. Wang and S. J. Patel, “Restore: symptom based soft error detection in microprocessors,”

in 2005 International Conference on Dependable Systems and Networks (DSN’05), June 2005,

pp. 30–39.

106

https://doi.org/10.1109/SC.2018.00070

	Cover
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Acknowledgments
	Abstract of the Dissertation
	1 Introduction
	1.1 The growth of GPU Computing
	1.2 Emerging GPU Applications
	1.3 The Growing Need for Reliability in Emerging GPU Applications
	1.4 Motivation for this Thesis
	1.5 Reliability Analysis for CPU vs. GPU
	1.6 Analysis of GPU Reliability
	1.7 Scope and Contributions of this thesis
	1.7.1 Contributions

	1.8 Organization of the Thesis

	2 Background
	2.1 A brief history of GPU Computing
	2.2 Challenges to GPU Computing
	2.3 Overview of Transient Faults
	2.4 The Transient Fault problem in the industry
	2.5 Effects of Transient Faults
	2.6 Measuring Program Vulnerability to Transient Faults
	2.6.1 Fault Injection
	2.6.2 Architecturally Correct Execution (ACE) Analysis

	2.7 Evaluation Framework
	2.8 Fault Model Used in This Thesis
	2.9 Limitations

	3 Related Work
	3.1 Prior work in CPU Reliability
	3.1.1 Reliability assessment for CPU applications
	3.1.2 Reliability Studies on CPU Systems in the Field

	3.2 Prior work in GPU Reliability
	3.2.1 Studies on GPU systems in the field
	3.2.2 Beam Experiments
	3.2.3 Statistical Fault Injection Studies
	3.2.4 ACE Analysis studies

	3.3 Efficient Fault Injection
	3.4 GPU Program Phase Analysis
	3.5 Time-varying Reliability Characterization
	3.6 Summary

	4 Impact of Execution Parameters on GPU Program Vulnerability previlondft
	4.1 Input Data and Program Vulnerability
	4.1.1 Program Instruction Order
	4.1.2 Logical Masking
	4.1.3 Dynamic Replication of Code Sections

	4.2 Results
	4.2.1 Impact of Input Data
	4.2.2 Effects of changes in kernel block sizes

	4.3 Summary on the Impact of Execution Parameters on Program Vulnerability

	5 PCFI: Program Counter Guided Fault Injection for Accelerating GPU Reliability Assessment
	5.1 PCFI Overview
	5.1.1 Motivation
	5.1.2 PCFI Key Idea

	5.2 PCFI: Design and Implementation
	5.3 PCFI Evaluation and results
	5.3.1 Fault List Reduction
	5.3.2 Time savings
	5.3.3 Accuracy of PCFI compared against traditional fault injection, with 10K and 500 random injections.

	5.4 Summary of PCFI

	6 Characterizing Vulnerability Phase Behavior in GPU applications
	6.1 Motivation
	6.2 Time-Varying Vulnerability Behavior of GPU Programs
	6.3 Resilience Groups: Capturing Dynamic Vulnerability Behavior
	6.4 Summary on the Characterization of the Vulnerability Phase Behavior of GPU applications

	7 Spoti-FI: Reducing Fault Injection Time via Resilience Groups
	7.1 Spoti-FI Methodology
	7.2 Results and Analysis
	7.3 Discussion
	7.4 Summary on Spoti-FI

	8 Exploiting Resilience Groups for Efficient Fault Mitigation
	8.1 Mitigation Strategies for GPU
	8.1.1 Choice of Mitigation Strategy: ArmorAll armorall
	8.1.2 ArmorAll: Resiliency Schemes
	8.1.3 ArmorAll: Evaluation and Overhead

	8.2 Application of Phase Analysis to ArmorAll
	8.2.1 Selective ArmorAll: Methodology

	8.3 Evaluation of Selective ArmorAll
	8.3.1 Fault Coverage and Overhead

	8.4 Summary on the Exploitation of Resilience Groups for Efficient Mitigation

	9 Summary and Conclusion
	9.1 Major Contributions of this Thesis
	9.1.1 Dependence of vulnerability on input size and configuration parameters
	9.1.2 Automatic reduction of fault injection campaigns using Program Counters
	9.1.3 Characterization of time varying behavior of vulnerability
	9.1.4 Exploitation of time varying behavior for efficient vulnerability assessment
	9.1.5 Exploitation of the time varying behavior for efficient fault mitigation

	9.2 Future Work

	Bibliography

