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As Graphics Processing Units (GPUs) become more pervasive in High Performance
Computing (HPC) and safety-critical domains, ensuring that GPU applications can be protected from
data corruption grows in importance. The scaling of transistor sizes, operating voltages, and design
margins has exacerbated the susceptibility of GPU devices to soft errors. Due to the random nature of
these faults, predicting whether they will alter program output is a challenging problem. Traditional
methods of reliability estimation involve thousands of random fault injections per application, such
that one random bit used by the program is flipped during its execution and the outcome is recorded.
Despite prior efforts to mitigate errors, we still lack a clear understanding of how resilient these
applications are in the presence of transient faults. As a consequence, the same level of fault
protection is typically employed for all applications, regardless of their resiliency. This adversely
impacts the performance of the GPU applications, many times unnecessarily. Moreover, existing
fault protection schemes cannot be tailored based on the reliability requirements of the applications.

In this thesis, we tackle the above limitations of the prior work by building frameworks
that can predict and mitigate faults in GPU applications. We develop a toolset that can identify
micro-architecture agnostic characteristics in the program, based on the hardware resources they
stress during execution. Our study first aims to understand error propagation characteristics when
faults are injected in scalar, versus vector, instructions. We then extend this study to build a more
sophisticated learning-based framework, called PRISM, which enables us to predict failures in appli-
cations without running exhaustive fault injection campaigns, thereby reducing the error estimation
effort. We leverage the insights provided by PRISM to develop a framework called ArmorAll,
a light-weight, intelligent, adaptive, and portable software solution to protect GPUs against soft
errors. ArmorAll consists of a set of pure compiler-based redundancy schemes designed to optimize
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instruction duplication on GPUs, thereby enabling much more reliable execution. The choice of
the scheme determines the subset of instructions that must be duplicated in an application, allowing
adaptable fault coverage for different applications.
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Chapter 1

Introduction

The reliability of a system is one of the primary factors that determine its ability to operate

correctly and deliver the right data to the user. Any occurrence of a fault may have a detrimental

impact on the system if proper fault tolerance techniques are not employed. A fault tolerant system

can continue to operate in the event of a failure. The system can achieve this by either preventing the

fault, or detecting and correcting the state of data impacted by the fault. However, the criticality of

the reliability requirements depends on the application and the user’s needs. For example, an error in

a single pixel may not be perceivable to the user even if it changes the color from white to black.

On the other hand, a single error in a low-order bit in a commercial or scientific application can

invalidate a computation.

Today, due to the ever increasing demands for high performance and low power/area

overheads, we have witnessed exponential growth in the number of transistors per chip in the current

microprocessor technology. Packing more transistors on a chip leads to decreased feature sizes

makes circuits more susceptible to permanent (hard) and transient (soft) faults [1, 2, 3]. Permanent

faults are caused by physical phenomena affecting the hardware components, such as manufacturing

defects, thermal stress, or circuit aging, and may develop over time as a combination of these

phenomena. Permanent faults are reproducible and irreversible, and occur in the same micro-

architectural location. On the other hand, transient faults can be caused by temperature and voltage

variations, electromagnetic interference, crosstalk, and high energy particles in the atmosphere. An

alpha or neutron particle strike can invert the state of a logic gate or memory cell, and may drive a

wrong value temporarily [4]. Since these faults are temporary, they do not reoccur when the operation

is re-executed in the future. Transient faults induced by radiation have received much of the attention,

as reliability is claimed to be one of the major challenges for exascale computing [5].
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Major supercomputers in the TOP500 list (the fastest 500 supercomputers in the world,

published each year) today are taking advantage of the massively parallel floating point capabilities

of General Purpose Graphics Processing Units (GPGPUs)[6]. The scope of GPU applications has

steadily expanded and they have been introduced in a number of domains that come with significant

reliability constraints. These domains include scientific computing [7], bioinformatics [8], molecular

modeling [9], and finance [10], where workloads typically demand high precision and correctness;

and autonomous vehicles that perform a range of safety-critical tasks such as pedestrian detection

and avoidance, and vehicle control [11, 12]. While leveraging the inherent parallelism offered by

GPUs is crucial to accelerate these applications, it is equally important to ensure that applications

can overcome data corruption caused by transient or permanent faults. Errors in applications from

these domains are often very costly, both in financial terms and liability, and potentially in terms of

safety. Since GPUs were originally designed for graphics rendering, an operation that is inherently

quite resilient to bit flips, little emphasis was placed on the reliability of these devices. Therefore,

in order for GPUs to be accepted as the primary choice of processor by the high-performance and

automotive communities, vendors will have to address the reliability concerns of graphics processors.

Moreover, as the trends toward exascale computing and autonomous vehicles continue to grow, the

ability of these technologies to deliver heavily depends on the reliability of hardware and software

components [13].

In order to detect unwanted changes in the state caused by transient faults, most fault

protection techniques ultimately rely on some sort of redundancy (either temporal or spatial). Error

tolerance through hardware is usually achieved by using N-modular redundancy across computer

nodes. The most popular form of this redundancy is Triple Modular Redundancy (TMR), where the

same computation is repeated by three computer nodes and a voting mechanism is used to choose the

correct data [14]. The main problem with TMR is that it incurs prohibitive energy and area overheads,

which makes it unsuitable for deployment in commodity systems. Other hardware fault-tolerant

mechanisms such as parity, Error Correction Code (ECC), residue execution [15], are available, but

their benefits rarely come without significant area, power, and cost overheads. Moreover, hardware

protection is inflexible and is not necessary for select workloads (e.g., graphics) which are inherently

fault-tolerant. Hardware structures which are replicated are said to be within a Sphere of Replication

(SoR), and are assumed to be protected. In other words, SoR is a logical boundary that identifies

which hardware structures are protected by a fault detection scheme [16]. All values that enter the

SoR must be replicated (called input replication) and all redundant values that leave the SoR must be

compared (called output comparison) before a single correct copy is allowed to leave.
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On the other hand, software-directed approaches such as compiler-based Redundant Multi-

Threading (RMT) can be more flexible, but still come with significant slow-down due to high

synchronization overhead among threads [17, 18]. RMT accomplishes replication by running two

identical redundant threads - a producer and consumer - on replicated input. Whenever state needs

to exit the SoR (e.g., on a store to unreplicated global memory), the producer sends its value to the

consumer for checking before the consumer is allowed to execute the instruction. Two faults could

create simultaneous identical errors in redundant state, but this is considered sufficiently unlikely.

Hardware structures outside the SoR must be protected via other means. Figure 1.1 illustrates the

performance overhead of three variants of compiler-based RMT on a GPU [17]. The three variants

differ in terms of the level of fault coverage (i.e., the Sphere of Replication) provided on the device.

Intra-Group-LDS RMT protects the SIMD functional units and Vector General Purpose Registers

(GPRs), whereas Intra-Group+LDS, in addition, protects the Local Data Store (LDS). Inter-Group

RMT has the largest coverage and protects SIMD units, Vector GPRs, Scalar GPRs, Scalar Unit,

LDS, Instruction Fetch (IF), and Instruction Decode (ID). But clearly, Inter-Group RMT experiences

a significant increase in execution time, as compared to execution using Intra-Group RMT. Software-

based redundancy can also be applied at a finer grain than a thread, providing selective redundancy on

individual instructions. Software instruction-level replication has been studied extensively on CPUs,

but it is still an under-explored research area on GPUs. Prior work has leveraged a combination

of hardware and software techniques to improve the performance of full instruction duplication on

GPUs [19]. However, reliability researchers have not explored the rich data analyses provided by the

compiler.

Despite these attempts to protect different hardware structures on GPUs, we still lack

a clear understanding of how vulnerable they are in the presence of transient faults, and whether

we truly need to employ such expensive solutions to protect them. Given the random nature of

transient faults, predicting whether they will alter the program’s output is also a challenging question.

Although a fault causes an undesired change of state in the hardware, it may or may not cause an error

in the outcome of the program. For instance, if the location that was impacted by a transient fault is

never read by the program, or was over-written by a subsequent operation before the faulty value

was read, the fault will not manifest into an error. The fault may also be corrected by a redundancy

mechanism, such as ECC, before it propagates through the application and produces an undesirable

output. When a fault does not manifest into an error, it is said to be Masked. Other possible outcome

categories are Detected and Unrecoverable Errors (DUEs) or Silent Data Corruptions (SDCs). DUEs

occur when a system is able to detect an error and was unable to recover from it. This could happen

3
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Figure 1.1: Slowdown caused by Intra-Group+LDS, Intra-Group-LDS, and Inter-Group RMT, over

baseline, without RMT [17]. Slowdown is calculated by normalizing the runtime of the RMT variant

of the kernel by its original runtime.

when a fault causes the program to take an incorrect execution path which results in a system hang,

crash, or other unexpected behavior. For instance, a fault may alter an address and cause the user

program to access an unallocated memory location. SDCs occur when a faulty bit is used by the

program, and which results in the wrong output. Therefore, understanding the error propagation

behavior of an application is an important step towards designing cost-effective fault mitigation

schemes.

Traditional methods of reliability estimation involve thousands of random fault injections

per application. For each fault injection experiment, one random bit used by the program is flipped

during its execution and its outcome (SDC, DUE, or Masked) is recorded. To perform a statistically

significant number of injections, an application must be executed thousands of times, such that one

random bit is flipped per run of the program. It is not practical to execute an application so many

times in order to estimate its vulnerability and then launch it on the GPU. As a result, the same

level of fault protection is typically employed for all applications, regardless of their resiliency. The

problem with this approach is that not all applications require the same level of fault coverage. This

adversely impacts the performance of the GPU applications, many times unnecessarily. There is no

existing framework which can predict the vulnerability of GPU applications without performing these
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time-consuming fault injections. Moreover, existing fault protection schemes cannot be customized

based on the reliability requirements of the applications.

Motivated by the above limitations of the prior work, we develop a research plan to address

soft error assessment and remediation in this thesis. We develop a toolset that can identify micro-

architecture agnostic characteristics in the program based on the hardware resources they stress

during execution. Having micro-architecture agnostic features allows our techniques to be applied

to multiple target processors and across different generations. Our study first aims to understand

error propagation characteristics when faults are injected in scalar, versus vector, instructions. As

mentioned earlier, understanding the fault propagation behavior of different applications is important

as it can provide insights into designing cost-effective fault mitigation schemes. We then extend

the study to build a more sophisticated learning-based framework named PRISM, which uses a

systematic approach to predict the resilience of GPU programs without running exhaustive fault

injection campaigns. Once PRISM gives insights into the vulnerability of an application, we must

leverage that information to provide high fault coverage to the application and at the same time,

minimize the performance overhead incurred by the fault protection scheme. This is possible if

the scheme is tailored as per the requirements of the application. The overheads incurred by the

hardware and its lack of flexibility prompted us to explore low-cost, portable software solutions for

improving reliability on processors. A software-level solution is generally more flexible and can be

tuned depending on the reliability characteristics of the application. Therefore, we develop ArmorAll,

which is a set of pure compiler-based schemes that exploit redundancy at an instruction level. The

redundancy schemes are designed to leverage the vulnerability characteristics of the applications

and optimize instruction duplication, thereby providing high fault coverage with low performance

overhead. Our work focuses on reliable execution on the processor pipelines, while memory, caches,

and register file are assumed to be protected by ECC/parity. This assumption is in line with other

work in this domain [19, 20, 21]. We summarize the benefits of both the frameworks in detail, as

follows:

PRISM provides many benefits, including:

• PRISM enables us to predict error outcomes in applications without running exhaustive fault

injection campaigns on a GPU, thereby reducing the error estimation effort. The application is

only required to be executed once, in order to capture its dynamic execution profile.

• PRISM can also be used to gain insight into potential hardware and software support required to
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improve the reliability of GPU applications. We can then design more cost-effective solutions

to mitigate faults. As a result, PRISM can be deployed as an intelligent module that generates

the error profile of an application before it is scheduled for execution on the GPU. Based on the

error profile, the system can either recompile the application by activating optimizations such

as selective instruction duplication; or enable ECC for specific hardware structures, thereby

improving performance and power efficiency.

• Finally, programmers can leverage this framework to write more robust code. PRISM can

guide programmers to write or choose more error-resilient algorithms. They can also insert

informed ‘checks’ in their programs to ensure correct execution or graceful exits. PRISM will

allow programmers to better understand how their coding choices translate into more reliable

code.

Our vulnerability characterization of applications has helped us properly design the selec-

tive fault protection properties of ArmorAll, which includes multiple compiler-based redundancy

schemes that optimize instruction duplication on GPUs. The novel features and benefits of Ar-

morAll are:

• Lightweight: Duplicating all instructions can increase the register usage per thread, adversely

impacting the performance and occupancy (number of active threads) of a GPU application [22].

Instruction duplication techniques developed for CPUs do not have to deal with the same

issues that GPUs do in terms of the register usage versus occupancy tradeoff. Moreover, CPU

redundancy schemes have only been evaluated on a single thread [23, 24, 25]. Therefore,

applying CPU-based techniques directly to GPUs without considering these constraints can

result in a significant loss in performance. One of the benefits of ArmorAll is that it judiciously

applies instruction duplication to protect only those segments of code that are likely to result in

user-visible faults when experiencing a soft error. Equipped with ArmorAll, we can produce a

GPU binary that leverages our low-cost, high-coverage, solution for addressing soft errors on

GPUs.

• Adaptive: Prior research on instruction-based duplication replicated a fixed class of instruc-

tions in all applications, regardless of their resiliency characteristics [19, 23]. While our work

is motivated by their work, exhaustively applying duplication everywhere in the code can

adversely impact the performance of GPU applications. Our work differs significantly from

this prior approach by recognizing that not all applications are equally vulnerable. Based
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on our observations, we propose three redundancy schemes as part of ArmorAll. The extent

of duplication can be adapted by the compiler, depending on the choice of the redundancy

scheme, which determines the subset of instructions that must be duplicated in an application.

• Selective: To provide both high fault coverage and low overhead, ArmorAll first intelligently

identifies critical instructions in an application that produce program visible outputs. Ar-

morAll then performs dependence analysis to identify candidate instructions that directly or

indirectly influence these critical instructions. A transient fault in any of these instructions

is likely to propagate and cause a program-visible corruption. ArmorAll judiciously applies

instruction duplication to these instructions to optimize coverage while minimizing perfor-

mance overhead. On average, the redundancy schemes duplicate between 20.4% to 52.2% of

the static instructions, considerably lower than exhaustive duplication.

• Portable: The redundancy schemes provided with ArmorAll are implemented in an open-

source LLVM compilation framework, which provides independence from the underlying

hardware and supports portability [26]. Though our evaluation is done on a specific GPU

architecture, ArmorAll can be easily applied to other existing or future GPU architectures.

• Static: ArmorAll does not rely on any dynamic profiling counters for assistance in choosing

the best redundancy scheme. All of the decision-making by ArmorAll is done by heuristics

at compile-time, which eliminates the need of executing an application multiple times on the

GPU to gather statistics.

1.1 Contributions of this thesis

The main contributions of this thesis include:

• We identify and extract micro-architecture agnostic vulnerability characteristics from GPU

applications that drive the prediction and mitigation of faults.

• We analyze the error propagation characteristics of scalar and vector operations on GPUs.

• We extend the above analysis and explore machine learning models that predict the resiliency

of the applications based on the program characteristics.

• We propose three novel reliability-aware compiler-based redundancy schemes that can provide

the desired level of fault coverage to an individual GPU application.
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• We develop a technique which intelligently selects a redundancy scheme that provides the best

coverage to an application, at compile-time.

1.2 Organization of this thesis

In Chapter 2, we describe the possible error outcomes in the event of a transient fault

and fundamentals of NVIDIA’s Kepler GPU architecture. We will review statistical principles and

terminology that we will use throughout this thesis. We will also cover the LLVM IR and optimization

framework, and the role of an Intermediate Representation (IR) in the compilation process.

In Chapter 3, we review the body of work dedicated to comprehensive studies of vulner-

ability and the analytical measurement of vulnerability. Our study spans both the fields of GPU

architecture/reliability and machine learning. We identify and present three categories of research

related to our study. The first category includes the studies that have tried to characterize GPU

applications. In the second category, we will present the studies on prediction of system vulnerability.

Finally, in the third category, we review related work on hardware and software redundancy-based

fault mitigation.

In Chapter 4, we describe micro-architecture agnostic features to characterize program

resiliency. These features are subsequently used in PRISM and ArmorAll to predict and enhance the

resilience of GPU applications. We also study the error propagation characteristics when faults are

injected in scalar, versus vector, instructions.

In Chapter 5, we introduce the PRISM framework. PRISM uses SASSIFI, a binary in-

strumentation tool, to generate dynamic execution and error profiles of the applications [27]. The

features generated in Chapter 4 undergo a dimensionality reduction process in order to identify

the program features that have the highest impact on program correctness. The selected features

serve as predictors to drive our statistical model. Our model is trained using a diverse set of CUDA

applications from a variety of application domains.

In Chapter 6, we will present three redundancy schemes, as part of ArmorAll, designed to

optimize instruction duplication on GPUs.

In Chapter 7, we will summarize the contributions of this thesis, and outline the potential

directions for future work.

8



Chapter 2

Background

In this chapter, we will first provide an overview on compiler basics and LLVM intermediate

code representation. Since the target processor of our compiler belongs to the NVIDIA’s Kepler

family, we will describe its architecture and the compilation flow. We will then describe our profiling

and fault injection tool, SASSIFI, and the possible error outcomes when a fault is injected in a

program. Lastly, we will review some statistical terminology which we will use in reference to our

prediction models in the subsequent chapters.

2.1 Overview of a Compiler

A compiler is a software program that translates source code written in a programming

language (the source language) into another computer language (usually the machine code). A

program that translates between high-level languages is usually called a source-to-source compiler.

A compiler may be comprised of two or more phases, referred to as the frontend, the middle-end,

and the backend. In some simpler compilers, the middle-end may be absent. A two phase compiler

is comprised of only a frontend and a backend. The frontend of the compiler does lexical analysis,

parsing, semantic analysis, and translation to the intermediate representation or IR. The middle-end

is usually designed to perform optimizations on a form other than the source code or machine code.

This source code/machine code independence is intended to enable generic optimizations to be shared

between versions of the compiler supporting different languages and target processors. The backend

performs optimizations on the IR and code generation for a particular processor. The structure of a

three-phase compiler is shown in Figure 2.1.
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Figure 2.1: Structure of a three-phase compiler.

2.2 Intermediate Representation

Intermediate Representations (IRs) are low level, machine independent languages that

compilers use to analyze and optimize code in a retargetable way. IRs allow compilers to maintain a

generic set of optimizations for multiple ISAs, rather than duplicating these optimizations for each

supported ISA. As an example, the intermediate representation of the LLVM compiler infrastructure

can support many languages (C, Objective C, C++, OpenCL, Python, Ruby, Haskell, etc.) and

ISAs (x86, ARM, MIPS, PowerPC, SPARC, etc.) with a mature set of analyses and optimizations

developed in terms of the IR [26].

2.2.1 Types of Intermediate Representations

IRs broadly fall into three structural categories [28]:

• Graphical IRs encode the compiler’s knowledge in the form of a graph. All algorithms are

expressed in terms of nodes, edges, trees, or lists. An example of graphical IR is an Abstract

Syntax Tree (AST).

• Linear IRs resemble assembly code for some abstract machine. The algorithms iterate over

simple, linear, sequences of instructions. LLVM IR is an example of a linear IR.

• Hybrid IRs are a combination of both linear and graphical IRs. A common hybrid representation

uses a linear IR to represent blocks of straight code and a graph to represent the control flow

among those blocks. A Control Flow Graph (CFG) is an example of a hybrid IR.

2.2.2 Role of the Intermediate Representation

Intermediate Representations are used by the compilers for two purposes:

• Portability: Without an IR, compiling N different source languages to M different machines

would require N x M compilers, as shown in Figure 2.2a. A portable compiler translates the
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Figure 2.2: Compilation support from N source languages to M targets.

source language into an IR, that then translates the IR into machine language, as shown in

Figure 2.2b. This way only N + M compilers have to be built [29].

• Modularity: When developing a compiler, an IR can keep the frontend of the compiler

independent of machine specific details. At the same time, an IR can help the backend

compiler to be independent of the peculiarities of the source language, therefore making the

development of the compiler more modularized.

2.2.3 LLVM Intermediate Representation

LLVM IR is a RISC-like instruction set, but without any notion of the source language

constructs, such as classes, inheritence and other semantics [26]. It has no knowledge about machine

specific details such as processor pipeline, the number of registers, etc. LLVM is a load/store

architecture: programs transfer values between registers and memory solely via load and store

operations using typed pointers. The entire LLVM instruction set consists of only 31 opcodes. Most

opcodes in LLVM are overloaded (for example, the add instruction can operate on integer or floating

point operand types). Most instructions, including all arithmetic and logical operations, are in one

of three address forms: they take one or two operands and produce a single result. LLVM uses

SSA form as its primary code representation, i.e., each virtual register is written in only a single

instruction, and each use of a register is dominated by its definition [30]. Memory locations in

LLVM are not in SSA form. SSA form requires that each variable is assigned exactly once, and
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Figure 2.3: (a) A CFG in non-SSA form (b) CFG converted to SSA form by inserting phi instructions.

every variable is defined before it is used, as shown in Figure 2.3. SSA improves the results of a

variety of compiler optimizations by simplifying the properties of variables. SSA form is achieved

by inserting phi nodes, which are represented by using phi instructions. The syntax of phi instruction

is as follows [31]:

<result> = phi <ty> [ <val0>, <label0>], ...

The type field determines the type of the incoming values. The phi instruction takes a list

of pairs as arguments, with one pair for each predecessor basic block of the current block. Only

values of the first class type may be used as the value arguments to the phi node, and labels can only

be used as the label arguments. The phi instructions must always be first in a basic block.

LLVM has received attention for many years. A variety of compiler frontends and backends

have been developed to support a diverse range of high level languages and modern architectures

using the LLVM code representation and transformations. The advanced and robust features offered

by LLVM led us to utilize it’s intermediate code representation in our compiler infrastructure.

2.3 Graphics Processing Units

GPUs have become the most widely used accelerators available in the market today.

The use of GPUs is no longer limited to graphics, but has been extended to support a broad
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Figure 2.4: Overview of NVIDIA Kepler GK110 architecture.

range of compute-based applications. Effective exploitation of the massively parallel resources

of a GPU have resulted in large speedups for applications in a number of computational domains

including scientific computing, biomedical imaging, global positioning system, and signal processing

applications [32, 33, 34]. The popularity of GPUs has led to extensive research in developing

workloads for GPUs and optimizing them to enhance their performance. CUDA and OpenCL are the

most commonly used parallel programming frameworks to create applications that can execute on

GPUs [35, 36]. CUDA is currently supported on NVIDIA GPUs and multicore CPUs [37], whereas

OpenCL is supported on different heterogeneous devices including GPUs, multi-core CPUs and

FPGAs. Many techniques have been developed to exploit the potential parallelism in applications by

understanding their interaction with the GPU architecture [38, 39, 40, 41].

Architecturally, a GPU is composed of thousands of cores that can handle many thousands

of concurrent threads. We describe the NVIDIA Kepler architecture, given that we have chosen it

to serve as our evaluation platform [42]. Streaming Multiprocessors (SMX) are the fundamental

units of computation on NVIDIA GPU architectures, as shown in Figure 2.4. The smallest unit of

execution is a thread, which executes on one CUDA core of an SMX on the device. There are 192

CUDA cores per SMX on the Kepler architecture. Each thread has access to 255 registers. Each

thread can only access its own private register file, but register values can be shared with other threads

via special instructions. Each CUDA core is equipped with a floating point and integer arithmetic and

logic unit (ALU). The SMX schedules work in groups of 32 parallel threads, called warps. Threads
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Figure 2.5: The flow of the NVIDIA nvcc CUDA compiler.

within a warp execute in a Single Instruction Multiple Data (SIMD) fashion. Each SMX has four

warp schedulers and eight instruction dispatchers, which allows four warps and eight independent

instructions (two per warp) to be issued and executed concurrently. An instruction is said to be scalar

if all active threads in a warp operate on the same data, otherwise it is vector.

Each SMX has 64 KB of on-chip memory that can be configured as 48 KB shared memory

with 16KB of L1 cache, or 32 KB of shared memory with 32 KB of L1 cache, or a 16KB/48KB

split between shared memory and L1 cache. In addition to L1 cache, Kepler has a 48 KB cache

for read-only data, and an L2 cache which serves as the primary point of data unification between

the SMX units. Kepler’s register file, shared memory, L1 cache, L2 cache, and DRAM memory

are protected by a Single-Error Correct Double-Error Detect (SECDED) ECC code, whereas, the

Read-Only Data Cache supports single-error correction through a parity check.

Programs that run on NVIDIA GPUs are written in the CUDA C/C++ language and

compiled using NVIDIA’s LLVM-based CUDA Compiler, nvcc [43]. The front-end converts CUDA

code into an intermediate representation, LLVM-IR, and subsequently to a virtual instruction set

architecture (ISA) called PTX (Parallel Thread Execution), as shown in Figure 2.5. The backend

compiler, ptxas, translates PTX to machine code, called SASS, that runs on the GPU. We run our

profiling and fault injection campaign at the LLVM IR and SASS level. We will now describe

NVIDIA’s dynamic instrumentation and fault injection framework, SASSIFI, in further detail.
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2.4 Fault Injections for Reliability Estimation

Fault injection is one of the most commonly used methods to evaluate the dependability

of a computer system. Researchers and engineers have created many novel methods to inject faults

at both the hardware level and the software level. The difference between hardware and software

methods mainly lie in the fault injection points they can access, the cost and the level of perturbation.

Hardware methods can inject faults into chip pins and internal components, such as combinational

circuits and registers that are not software-addressable. On the other hand, software methods are

convenient for directly producing changes at the architecturally visible state. Thus, hardware methods

are used to evaluate low-level error detection and masking mechanisms, and software methods to test

higher level mechanisms [44]. Software fault injection methods are attractive as they do not require

expensive hardware.

Software fault injection can be performed either at compile-time or during run-time. To

inject a fault at compile-time, the source or the assembly of a program is modified to emulate the

effect of a transient fault. The modification in the code alters the target instructions causing the fault

to be activated when the program executes on the device. Compile-time fault injection is very simple,

but does not enable a fault to be injected at runtime because the fault is hard coded. The second

option is to perform fault injection at runtime. In this technique, instructions are inserted into the

code that trigger fault injection before a particular instruction. Additional instructions are inserted in

the code for run-time fault injection, rather than modifying the original instructions. In our work,

we use a run-time fault injection tool called SASSIFI, to inject faults at the GPU assembly level.

Injecting faults at the assembly level allows us to take advantage of the ISA-specific optimizations

performed prior to producing the binary. Since the final binary executes on the hardware, working at

this level provides higher fidelity in terms of reliability metrics. We will now describe the SASSIFI

tool in more detail.

2.4.1 SASSIFI

The SASSIFI tool is based on SASSI, which is a dynamic instrumentation tool for GPUs,

similar to the Pin tool for CPUs [27, 45]. SASSI instruments the SASS code at runtime by linking

user-written instrumentation handlers with the application binary [46]. SASSI instrumentation

handlers are written in CUDA C/C++ and can be inserted before, after, or both before and after an

instruction executes.

15



CHAPTER 2. BACKGROUND

Figure 2.6: Different stages in the SASSIFI tool.

SASSIFI mainly comprises three stages, as shown in Figure 2.6. In the first stage (Profiling

Stage), the profile handler profiles the applications and generates a population count of different

instruction groups (IG). It is important to note that this handler is inserted before the instruction

executes, which allows us to scan the values of its source registers (the importance of this is described

in the next section).

This profiling information is processed by the Seed Generator that generates a statistically

significant number of injection seeds using a uniform random distribution. A Seed specifies the

location where the fault will be injected. It is a combination of kernel ID, kernel invocation ID, and

dynamic instruction ID of the specified instruction type. Each seed is equivalent to one fault. To

generate the seeds, the Seed Generator requires other information from the user, such as injection

mode, bit flip model (BFM), Instruction Group ID (IGID), and the number of injections. Our

selection of these parameters uses the following process:

• Injection mode:

SASSIFI currently supports three injection modes - Register File (RF), Instruction Output

Address (IOA), and Instruction Output Value (IOV). RF mode supports the injection of faults

randomly across all registers that are used by the program. IOA mode supports error injection

into the register indices and store addresses. Lastly, IOV support injections into the destination

register of an instruction after it has executed. In our study, we use IOV mode to inject errors

in the instructions.

• Instruction Groups:

SASSIFI identifies different types of instructions and allows the user to select them in order to

study how the errors injected propagate to an application output. Some examples of Instruction
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Groups include:

GPR - Instructions that write to a destination register,

ST - Store Instructions,

CC - Instructions that write to a condition code,

PR - Instructions that write to Predicate Registers, etc. We added capability to SASSIFI to

inject a fault randomly in any kind of destination register (GPR, Predicate, or CC). Before this

modification, a user could select only one of the three kinds of destination register during a

fault injection run.

• Bit Flip Model (BFM):

For IOV mode, we use Single Bit Flip mode in which one bit in one register in one thread is

flipped.

• Number of Injections:

Here, we specify the number of unique seeds that we would like to generate for our fault

injection campaign.

Finally, in the Injector Stage, we perform error injection based on the seeds generated by

the previous stage. The injector keeps track of the kernel ID, kernel invocation ID, and Instruction

Group ID, and when their value matches with the seed, a fault is injected. We generate 1000

uniformly random seeds while injecting one seed per run. The results have an error margin of 3.1%,

with a 95% confidence level [47]. Unlike the profiler handler, the injector handler is inserted after

the instruction executes and flips a bit in the destination register, implying that a fault has occurred in

the datapath of the instruction. Since we only inject faults in the instruction outputs, our analysis

takes into account only the live architectural state. We perform our fault injection campaign on a real

NVIDIA Kepler K20 GPU. which is significantly faster than using a simulator. Once a fault injection

is done, the outcome of the program can fall into one of the three categories - Masked, DUE, or SDC,

as described in Chapter 1.

2.5 Statistical Terminology

We next review the statistical terminology that we will use throughout this thesis [48].

• The term sample refers to a single, independent unit of data. In our study, each CUDA

application is a sample.
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Figure 2.7: Demonstration of 5-fold Cross Validation (CV) technique. CV is used to prevent the

problem of overfitting.

• The training set consists of samples used to develop a model, while the test set contains

samples used solely for evaluating the performance of the model. It must be noted that training

and test sets are mutually exclusive.

• The predictors are the independent variables that are used as input for the prediction equation.

In our study, predictors are the program features that we derive through dynamic profiling.

• Outcome refers to the outcome event that is being predicted. Our focus in this thesis is to

predict resiliency of GPU applications, therefore our outcomes are categorized into Masked,

DUE, and SDC.

• Model Training or Parameter Estimation refers to the process of using data to determine the

values of model equation.

• Cross Validation is a technique to generalize the model to an independent data set. Training

and testing the model on the same data will give it a perfect score, but will perform poorly on

yet unforeseen data. This situation is called overfitting. The solution to this problem is to use

cross-validation (CV). We use a k-fold CV approach, in which the training set is divided into k

smaller subsets or folds, as shown in Figure 2.7. The model is trained on k − 1 of the folds

and tested on the remaining part of the training data. This process is repeated for each of the
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k-folds. The final performance is measured by taking the average of the values computed in

the loop. In our work, we use 5-fold cross validation to prevent overfitting.

• A Confidence Interval is the probability that the value of the parameter-of-interest falls within

the given range of values.

• Error Margin is the range of values above and below the sample value in a confidence level.
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Related Work

In this chapter, we perform a comprehensive review of the prior work related to our research

area. In the first section, we will cover research in the field of GPU workload characterization and its

application towards performance and power optimizations. In the following sections, we will discuss

work carried out in the area of GPU vulnerability and vulnerability prediction. In the last section,

we will present research conducted in the area of hardware and software redundancy-based fault

mitigation.

3.1 GPU application characterization

As GPUs have gained popularity in high performance computing domains, many studies

have tried to characterize the performance of GPU workloads and identify the bottlenecks. Character-

ization is typically done by either profiling or instrumenting an application which helps understand its

architectural and microarchitectural behavior. Alternatively, benchmarking is also used to understand

the interaction between the hardware and the application. The data collected through characterization

is then analyzed in order to optimize the performance, power, or reliability of an application or to

improve the hardware.

Kerr et al. introduce a set of metrics for GPU workloads and utilize these metrics to

analyze the behavior of GPU workloads [49]. They characterize applications at the PTX level based

on control flow, data flow, parallelism, and memory behavior. They use this information to guide

compiler optimizations, application re-structuring, and micro-architecture design. Goswami et al.

propose a set of microarchitecture-agnostic workload characteristics to capture the behavior of GPU

applications [50]. The authors use statistical methods, such as dimensionality reduction and clustering,
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to characterize workload behavior. Burtscher et al. quantitatively study the behavior of irregular GPU

programs in which the control flow and memory access patterns are data-dependent and unpredictable

at compile-time [51]. The authors use performance counters to measure the control-flow and memory-

access irregularity and identify that irregular codes more frequently underutilize GPU resources

due to branch divergence, load imbalance, and synchronization overheads, as compared to regular

applications. In their subsequent work, the authors accelerate irregular CUDA applications and

assess the impact of their optimizations on caches, DRAM bandwidth, and execution latency. Che

et al. present a detailed characterization of the Rodinia benchmark suite on a Fermi architecture

GPU and contrast its performance with the Parsec suite [52]. Seo et al. characterize and compare the

performance of the NAS Parallel Benchmark suite written in OpenCL and OpenMP [53]. The above

papers study characterize GPU applications in terms of their performance, whereas our work focuses

on characterization based on the reliability of GPU applications.

Sherwood et al. characterize the time-varying behavior of the program using a hardware

independent metric called Basic Block Vector (BBV) [54]. The authors use BBVs to identify common

patterns and codes that repeat during program execution. They cluster the BBVs and identify

the representative models for each cluster. These representatives form simulation points (called

SimPoints), which, when combined, accurately capture the behavior of the entire program. Unlike

our work, the goal of SimPoints is to reduce the overall simulation time by executing single or

multiple SimPoints. Previlon et al. have exploited the time varying behavior of the program to reduce

the fault injection time [55].

Prior research has also characterized power and energy efficiency of GPU applications.

Jiao et al. identified the correlation between power consumption and voltage/frequency levels for

applications with different memory and compute behavior [56]. Abe et al. characterize the power and

performance of GPU and provide a statistical model that can predict them across multiple generations

of GPU [57]. Hong et al. propose a system that takes the GPU kernel as an input and predicts its

power and performance together without using hardware performance counters [58]. Wu et al. use

machine learning techniques to predict the power and performance of GPU applications [59]. With

their trained model, they are able to estimate the power and performance of new kernels within 15%

and 10% of real hardware, respectively. However, none of the prior work has attempted to predict the

reliability of GPUs using statistical methods, which is a major our focus area in this thesis.
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3.2 GPU Vulnerability Analysis

Vulnerability analysis plays an important role in determining which faults matter and

which do not. This allows us to make informed decisions about which structures to protect. Recently,

there have been a number of studies that have considered GPU reliability, given the growth in

popularity of GPUs in HPC and safety-critical applications [60, 61]. Studies have measured GPU

application resilience using Program Vulnerability Factor (PVF) or related metrics using both

fault injection [62, 63, 27] and ACE analysis [64, 65]. PVF is a vulnerability metric that only

considers program-level effects on vulnerability [66]. PVF can be measured with either statistical

fault injection or through Architecturally Correct Execution (ACE) analysis [67]. ACE analysis

systematically identifies state in a program structure (such as the architectural register file) that is

necessary for correct execution of the program. Because ACE analysis conservatively assumes that

all bits in an architectural structure are important until proven otherwise, the vulnerability estimation

obtained from ACE analysis is often overestimated [68]. Farazmand et al. quantify the Architectural

Vulnerability Factor (AVF) of the register file, local memory, and active mask on the GPU via

statistical fault injection [69]. AVF is the measure of the percentage of injected faults that result in

program failures [67].

In addition, Li et al. have investigated the propagation of errors across GPU kernel calls

using fault injection experiments [70]. They have also developed a comprehensive fault injection tool,

LLFI-GPU, which allows users to perform fault injection experiments at the intermediate assembly

level. Although the LLVM IR is not directly exposed to the user, LLFI-GPU attaches a dynamic

library to nvcc which can intercept the call to the LLVM compilation module [71]. At this point, the

passes of LLFI-GPU are invoked to instrument the program. LLFI-GPU then returns the instrumented

LLVM IR to nvcc, which proceeds with the rest of the compilation process to transform it into PTX

code. Hari et al. proposed SASSIFI which is a Pin-like tool for injecting faults at the GPU assembly

level (SASS) and analyzing the propagation of faults during program execution [27, 45]. Li et al.

introduced Trident, a model that captures error propagation at an instruction level using a static

analysis [72]. Their model tries to predict application vulnerability by evaluating the probability for

a fault to propagate, measured at the granularity of an instruction. However, their work is limited to

CPUs and has only been evaluated on single-threaded programs.

Previlon et al. have studied the impact of input data and execution parameters on the

resiliency of GPU applications [73, 74]. They have reported that random changes in the input values

do not alter the vulnerability behavior of the applications significantly, unless the inputs are extremely
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biased. Their work, PCFI, exploits the predictability in fault-injection outcome based on the program

counter that is impacted by soft-errors [75], thereby reducing the number of fault injections. Our

work in this thesis aims at simplifying the process of vulnerability estimation, avoiding lengthy and

exhaustive fault injection experimentation, as well as the inaccuracy and overestimation of the ACE

analysis.

3.3 Vulnerability Prediction

Numerous studies have been conducted on the prediction of vulnerability. These studies

propose methods to estimate the vulnerability of a system during its execution, and is called online

vulnerability. Such a technique allows a system administrator to adapt any vulnerability protection

scheme to the current vulnerability state of the system. Kalra et al. quantify the linear correlation

between the proportion of scalar instructions and different outcomes. However, their work solely

focuses on understanding the vulnerability of scalar and vector opcodes, and does not predict the

resilience of applications [76]. Fang et al. introduce a fault injection methodology, and present

some error resilience characteristics of GPU application kernels based on the results observed from a

fault injection study [62]. They found that program behavior can influence application resilience.

They categorized the applications according to their respective patterns of computations. Their

categorization follows the 13 dwarfs of parallelism, as presented by Asanovic et al. [77]. However,

their work is focused on understanding the resilience of GPU applications, and does not use the

categorization for resilience prediction.

X. Li et al. use tainted analysis on microarchitectural registers to approximate the effects

of faults injected into these registers [78]. The taint analysis is able to identify all the detectable

faults in registers that would later be used in stores, branches or system calls. Fu et al. proposed a

correlation between vulnerability of core microarchitectural structures and performance counters [79].

Walcott et al. [80], Biswas et al. [81], and Duan et al. [82], propose training-based models that use

performance variables to estimate Architectural Vulnerability Factor (AVF) at runtime.

As these studies only estimate vulnerability at a hardware level, they do not take into

account the resilience properties from a programming perspective. Wibowo et al. use a cross-

layer approach which accounts for, not only the microarchitecture-level vulnerability, but also for

the inherent resilience present in the algorithms being executed [83]. Moreover, Farahani et al.

dynamically predict the vulnerability of a program during its execution [84]. They utilize machine
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learning to predict program vulnerability. Their algorithm learns from performance features at both

architecture and microarchitecture levels.

All of these approaches differ from our work in that:

1. The vulnerability is evaluated at different layers of the system stack, while our work only targets

the ISA level. Moreover, they predict vulnerability at runtime in order to allow a dynamic

vulnerability protection scheme to save energy, while only enabling soft error protection when

necessary. Since this kind of support is not available in many systems, a developer would

need to be responsible for managing resilience of their own programs. With our framework, a

programmer is able to evaluate the robustness of his/her program, regardless of the hardware

that it is running on.

2. They target CPU applications, while our work focuses on GPU applications. The GPU

architecture implements an in-order SIMD pipeline, with thousands of threads concurrently

executing. Given the execution model of the GPU, error propagation within a GPU application

is different from a CPU. It is possible for errors to propagate across threads in a block, or across

invocations of a GPU kernel. Furthermore, the control flow changes in GPU applications

are minimized, so that the application can fully take advantage of the parallel hardware. The

features that we consider in our work are suited for GPU applications.

3.4 Redundancy-based Fault Mitigation on GPUs and CPUs

In order to detect errors in the execution state caused by transient faults, most fault

protection techniques ultimately rely on some sort of redundancy (either temporal or spatial). We

reflect on our approach in the context of prior research in the field of software and hardware-based

fault mitigation on GPUs and CPUs.

Software Redundant Multithreading (RMT): Wadden et al. proposed RMT, which is

implemented at a software-level targeting GPUs. RMT creates two copies of a thread, a leading thread

and a trailing thread [17]. The leading thread places the value in a local or global buffer at every store

instruction, and the trailing thread verifies the value and commits the executed instructions. This

inter-thread communication requires synchronization for correct operation, which causes significant

performance and power overheads. Subsequent work by Gupta et al. proposed compiler optimizations

to reduce the high synchronization overhead of RMT on GPUs [85]. Typically, software-based

instruction-level duplication does not incur the high synchronization overhead experienced by RMT.
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Moreover, programmer intervention is needed in RMT to modify the source code to ensure spare

hardware resources are available for the redundant threads.

Software Instruction Duplication: SInRG [19] implements instruction duplication at a

compiler level. Unlike our work, SInRG is not selective, as it does not employ heuristics to identify

instructions eligible for duplication. Instead, SInRG duplicates the same classes of instructions in

every application, regardless of their resiliency. This approach can cause unnecessary duplication

and verification overhead in applications. Since SInRG was implemented in NVIDIA’s proprietary

CUDA backend compiler, it provides tighter control over the SASS instructions generated in the final

binary. The authors proposed specialized ISA instructions to optimize the duplication and verification

processs in order to limit any extra performance overhead. SInRG and ArmorAll focus on optimizing

different aspects of redundancy through the compiler – SInRG optimizes the verification process,

whereas ArmorAll optimizes instruction selection. Therefore, integrating SInRG with ArmorAll’s

proposed techniques should further improve performance and paves a path for future work.

On the CPU front, SWIFT duplicates all computational instructions and no memory

instructions, thereby reducing memory pressure and improving performance [23]. It also proposes a

control flow checking (CFC) mechanism to detect control flow errors. Trident calculates the SDC

probability on a per-instruction basis using the values of the input operands and instruction opcodes,

only duplicating those instructions that have a high SDC probability [72]. In Shoestring [24], the

authors propose a compiler technique that combines symptom-based error detection with selective

instruction duplication. Their approach statically identifies Symptom Generating and High Value

instructions and duplicates all instructions that appear between Safe and High Value instructions.

In order to determine the probability of whether an instruction is safe, they use a distance metric,

which is the number of statically scheduled instructions between producer and consumer instructions.

However, the distance between instructions could vary, depending on the code scheduler, and is

therefore prone to inaccuracies.

Moreover, these CPU-based techniques are evaluated on single-threaded applications.

Applying these techniques directly on GPUs without modifying them would lead to a significant loss

in performance. This is because GPUs and CPUs are architecturally quite different. On a GPU, the

register usage can impact the number of concurrent threads that can be executed on the SM. CPUs

do not experience many of these constraints, and hence, these techniques must be optimized before

applying them to GPUs.

Data Flow analysis has been explored in test-suite reduction algorithms to identify a subset

of the test data that would maximize the error detection rate in software [86]. However, such analysis
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has not been explored in prior work for protecting hardware against transient faults. Therefore,

unlike previous studies, our work attempts to use information flow in order to make a more informed

decision about which instructions should be selected for duplication, without any additional hardware

support.

Hardware Redundancy Schemes: Error tolerance through hardware can be achieved by

using N-modular redundancy across computer nodes. The most popular forms of this redundancy

are Dual or Triple Modular Redundancy, as deployed in business-class systems such as the IBM Z

Series [87]. The main problem with DMR and TMR is that they incur prohibitive energy and area

overheads, which makes them unsuitable for deployment in many classes of systems. Hardware

mechanisms, such as RISE and Warped-DMR, take advantage of under-utilized resources on GPUs

for error detection. RISE includes techniques to predict and leverage idle SM cycles and compute

cores to execute redundant work [21]. Warped-DMR provides error detection capabilities within a

warp (Intra-warp DMR) and across warps (Inter-warp DMR) by exploiting underutilized resources

on the GPU [20]. Both RISE and Warped-DMR require complex hardware changes and are not

directly comparable with our approach.

Memory protection schemes: For protecting the contents of storage elements such as

the register file, caches, and main memory, ECC is applied to ensure error-free execution of the

program. Schemes such as ECC and parity can detect faults only after valid data is written to the

register file/memory and correction codes are properly generated (if applicable). In contrast, our

work focuses on error detection in the datapath of the instruction before the output is written back to

the register or memory.
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Vulnerability Characterization

Modern GPUs exploit data parallelism in application kernels to achieve high performance

and efficiency. However, there is a loss in efficiency due to redundant execution when the threads

perform the same operations on the same data. Researchers have reported that, on average, about 42%

of dynamic instructions in a warp are scalar (i.e., all active threads operate on the same data [88]). To

take advantage of these scalar instructions, AMD’s Graphics Core Next (GCN) architecture has a

scalar co-processor in each compute core, along with a separate scalar register file [89]. Lee et al.

proposed a scalarizing compiler that uses convergence and variance analysis to statically identify

scalar values and instructions [90]. Because there is no information about the input during compile

time, static analysis is only able to identify instructions that are strictly scalar or guaranteed to be

scalar during execution. While their compiler is able to identify two-thirds of the dynamic scalar

opportunities, more opportunities can be extracted dynamically. In this thesis, we use dynamic

analysis for identifying scalar opportunities in GPU kernels. The goal of this analysis is to understand

how error propagation differs when a transient fault occurs in a scalar instruction, versus vector.

In this Chapter, we will first characterize the workloads in terms of their scalar and vector

intensities. We will then perform fault injections using SASSIFI in scalar and vector instructions

to analyze their vulnerability. This analysis will provide insight into potential architectural support

required to improve the reliability of scalar instruction execution on GPUs. We will further expand

our set of characteristics which will allow us to build a more sophisticated learning-based framework

to predict the reliability of GPU applications. Finally, we will describe dependence analysis that

allows the compiler to identify a subset of instructions based on program characteristics and facilitate

selective fault protection in GPU apps.
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4.1 Analyzing the Vulnerability of Vector-Scalar Execution

Most GPU architectures today employ a Single Instruction Multiple Data (SIMD) model.

Prior work has shown that a significant portion of SIMD instructions demonstrate scalar characteris-

tics (i.e., all the active threads operate on the same data) [88, 90]. In other words, an instruction is

said to be scalar if all active threads in a warp operate on the same input data, otherwise it is vector.

Based on this differentiation, we implement an analysis pass in the SASSIFI profiler to identify

dynamically scalar SASS instructions. To achieve this, we check the value of all source operands and

the operation performed on those operands (opcode) for every SASS instruction. This check must be

done before every instruction because their values might change after the instruction has executed.

Algorithm 1 Pseudo-code for detecting scalar instructions in the kernel. All threads execute this

code concurrently before executing each SASS instruction.
1: Input: SASS instruction

2: Output: Instruction Scalar or Vector

3: int threadIdxInWarp = get laneid();

4: int firstActiveThread = ( ffs( ballot(1))-1); . leader

5: for all Source Registers Ri in an instruction do

6: GPRRegValue regVal = GetRegValue(Ri);

7: // shuffle the leader’s value across all threads

8: int leaderValue = shfl(regVal.asInt, firstActiveThread);

9: // true when all threads’ value equal to leaderValue

10: int allSame = (all(regVal.asInt == leaderValue) != 0);

11: // warp leader writes the results

12: if threadIdxInWarp == firstActiveThread then

13: is scalar &= allSame;

14: end if

15: end for

16: if is scalar == 1 then

17: atomicAdd(&CountersInstType[SCALAR], 1)

18: else

19: atomicAdd(&CountersInstType[VECTOR], 1)

20: end if
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As shown in Algorithm 1, we first select a leader thread by using two CUDA intrinsic

functions - ffs() and ballot(). Threads within a warp are also called lanes; the simplest way to

elect a leader is to use the active lane with the lowest number. ballot() returns the active mask (a 1

for an active lane and a 0 for an inactive lane). ffs() returns the 1-based index of the lowest set bit in

the active mask. Subtracting 1 gives us a 0-based index of the lowest active lane id, which is our

leader thread. Once we identify the leader, all threads first scan one source register used by the SASS

instruction. The value of this source register is shuffled across all threads in the warp. The SHFL

instruction allows a thread to read a register from another thread in the same warp, without using

shared memory. If the value of the source register is the same across all threads in the warp, then the

register is marked as scalar. This process is repeated for all source registers. If all source registers

used by the instruction are found to be scalar, the leader thread marks the instruction as scalar (S←
S ∩ S). Even if one of the operands is found to be vector, an instruction is marked as vector (V← V

∩ S, or V← V ∩ V)1. Atomic operations are, by default, marked as vector, whereas unconditional

control flow instructions are marked as scalar. This is done for all dynamic SASS instructions in the

program. We record scalar and vector instances of every opcode using appropriate counters.

Using these counters, we quantify the application’s scalar and vector intensities as follows:

Scalar Intensity =
# of dynamic scalar instructions
Total # of dynamic instructions

(4.1)

Vector Intensity =
# of dynamic vector instructions
Total # of dynamic instructions

(4.2)

= 1− Scalar Intensity (4.3)

If there are multiple executions of either the same kernel or different kernels within the

same application, the values of dynamic scalar, vector, and total instructions are averaged out across

the kernel runs. Given the nature of GPU applications, one of the challenges with multiple executions

is that an instruction, which is scalar during one instance, may not be scalar in the next instance. Our

algorithm is able to capture this dynamic behavior of every instruction.

4.1.1 Evaluation Methodology

We inject 1000 random single bit flips in the destination register value (IOV) of each

Scalar and Vector instruction (a total of 2000 injections per application). Once a fault is injected,

the outcome of the program can fall into one of the three categories - Masked, DUE, or SDC, as
1S and V represent Scalar and Vector operands, respectively.
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Acronym Application
atomic add Integer Atomic Vector Addition

bfs Breadth-First Search
histo Saturating Histogram
lbm Lattice-Boltzmann Method Fluid Dynamics

mri-gridding Magnetic Resonance Imaging - Gridding
mri-q Magnetic Resonance Imaging - Q
sad Sum of Absolute Differences

sgemm Dense Matrix-Matrix Multiply
tpacf Two Point Angular Correlation Function

Table 4.1: Applications selected from Parboil used in our evaluation.

described in Chapter 1. For a fair comparison, we scale the number of outcomes for each instruction

type by their intensities. For example: error outcomes caused by 1000 scalar injections [Scalar

Masked, Scalar DUEs, Scalar SDCs] are multiplied by the factor of Scalar Intensity (from Equation

4.1) and error outcomes caused by 1000 vector injections [Vector Masked, Vector DUEs, Vector

SDCs] are multiplied by the factor of Vector Intensity (from Equation 4.2). Due to this scaling, our

total injections are reduced to 1000 random injections, which will be reflected in our results described

in the next Section. We use nine applications from Parboil benchmark suite for our evaluation [91],

as shown in Table 4.1.

4.1.2 Results

In this section, we first present the overall error profile resulting from scalar and vector

fault injections. To better understand the source of each outcome, we evaluate the correlation between

program opcodes (for the instructions where the faults are injected) and the error outcomes.

4.1.2.1 Overall Outcomes

Figure 4.1 shows the outcomes for the studied GPU applications, along with the scalar

intensity of each application. These outcomes (out of 1000) are calculated as follows:

Masked = Scalar Masked + Vector Masked

SDCs = Scalar SDCs + Vector SDCs

DUEs = Scalar DUEs + Vector DUEs

Overall Outcomes = Masked + SDCs + DUEs
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Figure 4.1: Fault outcome frequency for our GPU applications, along with their scalar intensities.

Scalar SDCs, Scalar DUEs, and Scalar Masked are SDCs, DUEs, and Masked outcomes that occur

due to faults in scalar instructions, respectively, whereas Vector SDCs, Vector DUEs, and Vector

Masked are the SDCs, DUEs and Masked outcomes that occur due to faults in vector instructions.

As mentioned earlier, the original number of outcomes are scaled by their associated intensity. When

the scalar intensity is high, the probability of a fault occurring in a scalar instruction is high. When

the scalar intensity is low, the probability is much higher that any particle strike will occur in a

vector instruction. From Figure 4.1, we observe that applications that have higher scalar intensity,

such as atomic add, mri-q, sgemm, and mri-gridding, experience a high number of SDCs and DUEs.

Applications such as histo and tpacf have relatively low scalar intensity, and show high masking

of errors. The probability of a particle strike occurring in a scalar instruction is low for these

applications.

We can quantify the relationship between different outcomes with scalar intensity by

measuring the correlation. We use Pearson’s Correlation Coefficient [92], r, to calculate the linear

correlation between two variables x and y, as follows:
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Figure 4.2: Correlation between scalar intensity and the overall SDCs.

rxy =

∑n
i=1 (xi − x) (yi − y)√∑n

i=1 (xi − x)2
∑n

i=1 (yi − y)2
(4.4)

The values for r range between -1 and 1, where 1 means a high positive correlation, 0

means no correlation, and -1 means a high negative correlation.

rxy =


Negative Correlation, if r = −1

No Correlation, if r = 0

Positive Correlation, if r = 1

The coefficient of correlation, r, between scalar intensity and total SDCs is found to be 0.37, as

shown in Figure 4.2. This indicates a low positive correlation. Furthermore, the value of r is 0.31

for scalar intensity and DUEs, and -0.5 for scalar intensity and Masked, as shown in Figures 4.3

and 4.4, respectively. This could signify that SDCs and DUEs are expected to increase as the scalar

intensity of the application increases, while the likelihood of masking is reduced with increased

scalar intensity.
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Figure 4.3: Correlation between scalar intensity and the overall DUEs.
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Figure 4.4: Correlation between scalar intensity and the overall Masked.
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Opcode Description
IADD Integer Add
ISETP Integer Set Predicate
MOV Data Movement

Table 4.2: Instruction opcodes from NVIDIA Kepler instruction set.

Scalar Opcode SDC DUE Masked
IADD -0.5464 0.393 0.401
ISETP -0.596 0.122 0.567
MOV -0.599 0.0656 0.596

Table 4.3: Correlation between scalar instances of the opcodes with overall SDCs, DUEs, and

Masked.

4.1.2.2 Correlation between outcomes and opcodes

Next, we select three commonly occurring opcodes among the set of chosen applications

(described in Table 4.1) and calculate their correlation with the outcomes. These opcodes are

described in Table 4.2. The ISETP instruction sets a predicate register, the value of which determines

whether an instruction will be executed (or not). As mentioned earlier, when an instruction executes

multiple times, it could be scalar on one instance and vector on another, depending on the nature of

application and the input operands. We capture the scalar and vector instances of these three opcodes

from the program and calculate their correlation with different outcomes. As shown in Figures 4.5

and 4.6, scalar instances of IADD present in our applications show low positive correlation with

DUEs, whereas vector instances of the same opcode show no or low negative correlation with DUEs.

This could mean that a fault in a scalar IADD instruction is more likely to crash versus a vector

IADD instruction. This prompts us to calculate the value of r for all other opcodes and outcomes to

verify whether a similar trend exists. We report these results in Tables 4.3 and 4.4.

We observe a similar trend with the scalar ISETP and MOV opcodes, which exhibit low

positive correlation with the DUEs, and vector instances show slightly higher masking. However, the

number of SDCs seem to be unaffected by the nature of the opcode. This could mean that a linear

correlation may not be sufficient to characterize the relationship between the opcodes and the SDCs,

and other non-linear correlation mechanisms must be explored.
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Figure 4.5: Correlation between scalar instances of IADD with overall DUEs.
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Figure 4.6: Correlation between vector instances of IADD with overall DUE.
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Vector Opcode SDC DUE Masked
IADD -0.526 -0.1085 0.592
ISETP -0.556 -0.0380 0.5934
MOV -0.578 -0.0208 0.610

Table 4.4: Correlation between vector instances of the opcodes with overall SDCs, DUEs, and

Masked outcomes.

4.2 Workload Characterization for Resilience Prediction

As we mentioned earlier, once injections are run on all applications, SASSIFI generates the

instruction and error profile for each application. In this section, we extend the type of instructions,

beyond scalar and vector instructions, to characterize the application behavior. These instructions

allow us to capture the overall workload stress on the underlying microarchitecture.

• Data Movement Instructions: are responsible for moving data between registers, such as MOV,

SHFL, etc.

• Integer Arithmetic Instructions: perform arithmetic instructions on integer data type.

• Floating Point Instructions: perform computation on floating point data types.

• Logic Instructions: comprised of logical operations, such as AND, OR, and shift operations.

• Load Instructions: load data from global, shared, constant, and texture memory.

• Store Instructions: store data into the global, shared or local memory.

• Control Flow instructions: branch and jump instructions that determine the control flow of the

program.

• Predicate Instructions: for example ISETP and FSETP, are instructions that write to predicate

registers.

• Kernel Register Usage: the number of general purpose registers used by the kernel.

Next, we derive metrics to quantify the kernel characteristics using the instruction mix and

their scalar/vector instances. Metrics such as Integer Arithmetic Intensity, Floating Point Intensity,

and Logic Intensity give us an insight into the usage of different functional units on the GPU. Control

Flow Intensity, as the name suggests, allows us to capture the control flow graph, which plays an
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Metric Kind Synopsis Example of
opcodes in-
cluded [93]

Control Flow Intensity Scalar Total # of dynamic Control Flow In-
structions/N

BRA, JMP, BRX,
JCAL

Data Movement Intensity Scalar,
Vector

Total # of dynamic Data Movement
Instructions/N

MOV, SHFL,
PRMT

Floating Point Intensity Scalar,
Vector

Total # of dynamic Floating Point
Instructions/N

FADD, FMUL,
FMAD

Integer Arithmetic Inten-
sity

Scalar,
Vector

Total # of dynamic Integer Arith-
metic Instructions/N

IADD, IMUL,
MAD

Logic Intensity Scalar,
Vector

Total # of dynamic Logic Instruc-
tions/N

LOP, SHL, SHR

Load Intensity Scalar,
Vector

Total # of dynamic Load Instruc-
tions/N

LD, LDS, LDC,
LDG

Predicate Intensity Scalar,
Vector

Total # of dynamic Predicate Instruc-
tions/N

ISETP, FSETP,
PSETP

Store Intensity Scalar,
Vector

Total # of dynamic Store Instruc-
tions/N

ST, STS, STL

Register Usage - # of General Purpose Registers used
by the kernel

All opcodes

Scalar Intensity Scalar Total # of dynamic scalar instruc-
tions/N

Scalar instances of
all opcodes

Vector Intensity Vector Total # of dynamic vector instruc-
tions/N

Vector Instances of
all opcodes

Total features 18

Table 4.5: Description of metrics derived using kernel characteristics. We use these metrics as

features in our model. N = Total number of dynamic instructions executed by the application.

important role in determining how an error propagates through the kernel. Information about thread

level resource utilization is retrieved using the kernel register usage metric. Memory type based

classification is captured using load and store intensities. These metrics are summarized in Table 4.5.

4.3 Workload Characterization for Fault Mitigation

In this section, we describe ‘dependence analysis’ that allows the compiler to identify a

subset of instructions based on program characteristics and facilitate selective fault protection in

GPU apps. Our redundancy schemes leverage dependence analysis, which generates constraints on

the execution order of instructions [94]. Dependences represent two different kinds of constraints on
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Figure 4.7: An example of Data Dependence and Control Dependence Evaluation.

program transformation – 1) data dependence and 2) control dependence. Data dependence arises

due to constraints designed to ensure that data is produced and consumed in the correct order. Control

dependence arises when an instruction’s execution depends on the outcome of a preceding instruction.

We track both data and control dependence in the program, since maintaining these constraints is

essential in guaranteeing program correctness.

Data Dependence: Data Dependence is usually performed by tracking the data flow in the

CFG and constructing a data dependence graph (DDG). This Data Flow Analysis (DFA) can be done

either statically or dynamically. Unlike dynamic DFA, static DFA does not require the program to be

executed at all on a machine. Depending on the direction of the analysis, DFA can be performed as

forward analysis or backward analysis.

One of the auxiliary data structures constructed during DFA are Use-Def (UD) chains (and

their counterpart, Def-Use (DU) chains). We describe how to construct UD chains and DU chains

using the example shown in Figure 4.7. In the code provided, variable x is ‘defined’ at statement

S1 and S3, while it’s value is ‘used’ in statement S4. A DU chain links each definition of x to those

uses that a definition can reach. Therefore, they are generated through a forward traversal from S1

(the def of x) to S4 (the use of x), and similarly S3 to S4, given that no other definition of variable x

exists on the path between S1→S4 and S3→S4. Alternatively, UD chains link each use of variable x

to the definition which reaches that use. Therefore, they are generated through a backward traversal

from S4 (the use of x) to S1 and S3 (the def of x), given that no other definition of variable x exists

between S4→S1 and S4→S3.

38



CHAPTER 4. VULNERABILITY CHARACTERIZATION

LLVM uses Static Single Assignment (SSA) form as its primary code representation,

which ensures that each variable is written only once, and each use of a register is dominated by its

definition [30]. To maintain the SSA form, a phi (Φ) node is often used to select a value depending

on the predecessor of the current block. A Φ node is an IR instruction, which is not implemented in

the ISA for most architectures. The SSA property of LLVM simplifies the creation of UD chains,

which are a key component in our implementation.

Control Dependence: An instruction, x, is control dependent on another instruction, y,

if y controls whether or not x is executed. Such instructions include simple branching instructions

if icmpeq, if icmpne, if icmplt, if icmple, if icmpgt if icmpge, etc. Since these instructions can

control which instructions execute, they are the direct source of a control dependence. As shown in

Figure 4.7, S3 and S1 are control dependent on S0. However, S4 does not depend on S0 because S4 is

always executed irrespective of the outcome of S0. We ignore some sources of control dependences

mentioned such as unconditional branching instructions, eg: br label %bb label. LLVM adds an

unconditional branch instruction at the end of each basic block. These instructions are an artifact of

LLVM and do not appear in the final assembly code generated by the backend. Moreover, though

these instructions can change the flow of control for instruction execution, they are usually used with

conditional branching instructions, and hence, were left out of consideration.

The Use-Def Chains created using DFA and Control Dependence Analysis will be leveraged

by ArmorAll for fault mitigation, described in Chapter 6.

4.4 Summary of Workload Characteristics for Reliability

• We implement an analysis pass in the profiling phase of SASSIFI to identify scalar and vector

instructions.

• We find the correlation of three most commonly occurring scalar and vector opcodes with

different outcomes. We observe that while some scalar opcodes show positive correlation with

the outcomes, others do not.

• We then extend the set of workload characteristics, beyond scalar and vector, based on the

hardware resources they stress during execution to accurately capture their behavior. These

characteristics will be used to drive our prediction models described in the next chapter.

• We describe dependence analysis that allows the compiler to identify a subset of critical

instructions, based on the vulnerability behavior of the application.
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Chapter 5

Error Prediction Using PRISM

In this Chapter, we extend our analysis of scalar-vector vulnerability, from the previous

chapter, to develop a more sophisticated learning-based framework called PRISM. We will describe

the phases of PRISM in more detail. PRISM framework includes four different phases, as shown in

Figure 5.1.

5.1 Data Collection Using SASSIFI

The first step required to build any learning-based model is to collect the data. For our

study, we have selected a diverse set of 50 regular and irregular applications from a variety of

domains, as shown in Table 5.1. These workloads have been taken from the CUDA SDK, Lonestar,

NUPAR, Parboil, and Rodinia benchmark suites [91, 95, 96, 97, 98]. All of the applications that we

were able to support with the SASSIFI tool were included in this study. We modified the source code

for several applications because they were tuned for performance benchmarking. For example: some

applications had a warm-up pre-execution of the kernel to avoid cold start misses. Any error that

occurs in the warm-up kernel will never be captured, as the output is usually over-written by the

actual kernel execution. We, therefore, eliminated all warm-up kernel executions. For error checking,

Figure 5.1: The PRISM Framework. The ovals represent the processing nodes/phases, whereas the

rectangles represent input/output to/from the processing nodes.
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Domain Application
Linear Algebra Vector Addition (vadd), Single Precision Floating General Matrix

Multiplication (sgemm), Matrix Transpose,
Scalar Product (sProd), LU Decomposition (lud), Gaussian Elimi-
nation, Scan

Graph Traversal Breadth-First Search (bfs), Survey Propagation (sp), Pathfinder,
Minimum Spanning Tree (mst)

Image Processing Magnetic Resonance Imaging - Gridding (mri-g), Saturating His-
togram (histo), MRI-Q,
Sum of Absolute Differences (sad), Leukocyte, HeartWall, Speckle
Reducing Anisotropic Diffusion (srad)

Physics Simulation Hotspot
Thermodynamics Stencil
Fluid and Molecular Dynamics Lattice-Boltzmann Method (lbm), Computational Fluid Dynamics

(cfd), LavaMD
Signal Processing Infinite Impulse Response (IIR), Discrete Walsh Transform 1D &

2D (dwt1D&2D), Fast Walsh Transform (fwt)
Financial Computation BlackScholes (blkSch), Binomial Options (binOpt), SobolQRNG

(SQRNG)
Electromagnetics Finite-difference Time-domain (FDTD-3D)
Data reduction and Sorting Merge Sort (mSort), Radix Sort (rSort), Hyrbid Sort (hSort), Re-

duction
Data Mining and Pattern Recog-
nition

Kmeans, Nearest Neighbor (nn), Back-propagation (backprop)

Bioinformatics Needleman-Wunsch (nw)
Astrophysics Barnes Hut (bh), Two Point Angular Correlation Function (tpacf)

Table 5.1: Applications used in our training and test samples, along with their domains.

we compared the output of the kernel when the fault is injected with the golden output (without

any fault injection). We perform 1000 fault injections in each application to attain an error margin

of 3.1%, with a 95% confidence level [47]. For precision-based applications, we used the default

values of the L1 and L2-Norm provided in the benchmark, which were typically around 1e-6. We

instrument these application binaries with the SASSIFI handlers, as described in Chapter 4, to collect

the execution and error profiles of each application.

5.2 Feature Extraction

Once we have the data for all applications in the form of their execution and error profiles,

we process them to generate micro-architectural agnostic characteristics or features, as described
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in Table 4.5. These features characterize the GPU workloads based on the hardware resources they

stress during execution to accurately capture their behavior. We leverage these characteristics and

use them as our feature set.

5.3 Feature Selection

In this phase, we prune the above feature set by performing feature selection, with the

goal of selecting a subset of relevant features without incurring much loss in information. Feature

selection simplifies our model and makes it easier to comprehend by researchers/users. It also reduces

the training and data acquisition time. Fewer features increase the generality of the model and prevent

overfitting. There are different ways in which a user can minimize the number of features. One way

is to eliminate features that are of little or no interest to the user. For example, if the user does not

wish to distinguish between scalar and vector instances in their study, they can combine Scalar and

Vector Intensities for all features. Hence, Floating Point Intensity will now be the sum of Scalar

Floating Point Intensity and Vector Floating Point Intensity, Integer Arithmetic Intensity will be the

sum of Scalar Integer intensity and Vector Integer Intensity, and so forth.

In this thesis, we use a forward selection wrapper method to select a subset of relevant

features [99]. This method begins with no features in the model, and on every iteration, adds the

feature which best improves the performance of the model. This continues until adding a new feature

no longer improves the performance of the model. The advantage of using a wrapper method is

that it is able to detect possible interaction between features during feature selection. Other options

include filter methods, such as Normalized Mutual Information (NMI) and Pearson Correlation

Coefficient [92, 100]. Although filter methods are computationally less intensive than wrappers,

they have lower prediction performance than wrappers because they are not tuned for any specific

model [101]. Latent factor based dimensionality reduction techniques, such as Factor Analysis (FA)

and Principal Component Analysis (PCA), and supervised techniques, such as Partial Least Square

(PLS), could also be used. A caveat with using FA or PCA is that they do not take into account

the labels/error outcomes during feature reduction. They generate a single set of features for all

outcomes, which might work well in predicting one kind of outcome, but not for another. Since we

have three possible outcomes, a separate feature set for each outcome might provide better accuracy.

We describe the selected features after introducing the models in the next section.

42



CHAPTER 5. ERROR PREDICTION USING PRISM

Outcome Ridge (Coefficients) K-Nearest Neighbor
SDC Vector Predicate (-0.59) Vector Predicate

Scalar Float (-0.27) Vector Integer
Register Usage (-0.24) Register Usage

Vector Logic
DUE Vector Float (-0.42) Vector Float

Scalar Float (-0.28) Vector Store
Scalar Logic (0.26) Scalar Logic
Scalar Store (0.28) Vector Predicate

Masked Vector Float (0.47) Vector Float, Scalar Store,
Scalar Float (0.43) Scalar Load, Vector Predicate,

Vector Predicate (0.49) Vector Integer, Vector Load,
Scalar Float, Scalar Move

Table 5.2: Features selected using the forward selection wrapper method for both Ridge Linear

Regression and K-NN. The coefficient of the feature is provided in parentheses for the Ridge

Regression model. K-NN is a non-parametric model, hence does not require coefficients.

5.4 Error Prediction

Statistical Regression Analysis is a set of techniques to estimate the relationship between a

single dependent variable and multiple independent variables. In this chapter, we explore two models:

Ridge Linear Regression and K-Nearest Neighbor [102, 103]. As mentioned earlier, the wrapper

method for feature selection is tuned for a particular model. Therefore, the set of features selected for

Linear Regression and K-NN are different. Out of the 50 CUDA samples studied, we randomly select

43 samples (85%) for training and 7 samples (15%) for testing our model. The wrapper executes only

on the training set and uses 5-fold cross-validation to select features having the highest correlation

with the error outcomes. We summarize the features for both models in Table 5.2.

5.4.1 Model 1: Linear Regression

Among the various forms of regression analysis, Linear Regression is most commonly

used due to its well-behaved and well-studied properties [104]. The model can be stated as follows:

y = b0 + b1x1 + b2x2 + ..... + bixi + ei (5.1)

The terms xi are the independent variables. Their changing values cause the dependent variable, y,

to vary as a response. The terms bi are the parameters or regression coefficients. ei represents error,

which is derived by comparing the predicted and observed values of y. This model is linear because
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Figure 5.2: Observed and Predicted values of Masked, DUE, and SDC outcomes using the Ridge

Regression Model. The accuracy of prediction for Masked errors is 90%. For DUEs, with the

exception of tpacf, our predicted values are close to the observed values.

no parameter appears as an exponent or is multiplied/divided by another parameter. The goal of the

regression is to accurately predict the values of the coefficients, bi, from the observed measurements

of xi and y. Given that the focus in this thesis has been GPU error modeling, y then represents error

outcomes, and xi are the kernel characteristics, such as Integer Arithmetic Intensity, Register Usage,

etc. Once a model and its coefficients are proposed, we use Normalized Root Mean Square Error

(NRMSE), a commonly-used statistical metric, for measuring the quality of the model [105].

Next, we apply Ridge Regression, a type of linear regression model, on our test samples

using the selected features, and report our results in Figure 5.2. For Masked, we observe that Ridge is

able to predict masking with a NRMSE as low as 10%, which means its prediction accuracy is 90%.

The coefficients for Scalar Float, Vector Predicate, and Vector Float were found to be 0.43, 0.49,

and 0.47, respectively. In the case of DUEs, the overall predicted values are close to the observed

values, except for tpacf, which is an outlier. The coefficients for DUEs were found to be -0.42, -0.28,

0.26 and 0.285 for Vector Float, Scalar Float, Scalar Logic, Scalar Store, respectively. For SDCs, the

model seems to be reasonably accurate for a few applications, but has a couple of outliers such as IIR

and cfd. The coefficients for the predictors were found to be -0.59, -0.27, -0.24 for Vector Predicate,

Scalar Float, and Register Usage, respectively. We summarize the key findings as follows:

Key findings:

• In Masked, the coefficients for the three selected features were found to be quite uniform. This

means all three features contribute almost equally towards Masking. Note that two out of

three features are floating-point intensive. This suggests that floating point intensity plays a

significant role in masking errors. The level of masking may vary, depending on the value
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Figure 5.3: Observed and Predicted values of Masked, DUE, and SDC outcomes using a K-Nearest

Neighbor Model. The value of K was found to be 4, 3, and 2, respectively.

of the L1 or L2 Norm selected by the user in the application. For floating point intensive

applications, the L1 or L2 Norm could be added as an additional feature, or a sensitivity

analysis could be done by varying their precision, but this is beyond the scope of this thesis.

• For DUEs, three out of four features were identified as Scalar, which means Scalar instructions

seem to be significant contributors to DUEs. Also, the coefficients for floating point features

were found to be negative. Lower floating point intensity could conversely imply higher integer

intensity. Hence, it could be said that faults in integer operations are more likely to result in a

DUE.

• Moreover, from our experimentation, we observed that most DUEs are generated when an

instruction tries to access an illegal memory location. This happens when the register used for

holding or computing a memory address gets corrupted. Therefore, identifying and replicating

instructions that feed into load/store instructions could assist in detecting sources of DUEs.

These instructions can be identified using static data-flow analysis, such as reaching definitions,

to create use-def chains [94].

• A linear model for SDCs does not perform as well as it does for predicting Masked errors. A

possible explanation for this could be that a linear relationship is insufficient to predict SDCs,

and there could be some underlying non-linearity that must be exploited. However, if the user

is interested in predicting the number of unmasked errors (SDC+DUE) for his/her application,

they could use (1000 - # of predicted Masked errors) as an indirect way to estimate Unmasked

errors, since a linear model predicts masking quite accurately.
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Figure 5.4: Demonstration of K-Nearest Neighbor (K = 3).

5.4.2 Model 2: K-Nearest Neighbor

Next, we apply a popular non-parametric model called K-Nearest Neighbor (K-NN). Our

hypothesis is that similar applications might show similar resiliency behavior. The rationale behind

choosing K-NN to explore similarity between applications is that it does not make any assumption

about the underlying distribution of the data, which makes it very robust.

Using K-NN, an application’s resilience can be predicted by using its K closest neighbors.

Here, ‘K’ represents the number of neighbors (here, training samples) closest to a test sample that will

be used to make a prediction for that test sample. The closeness between the test and training sample

is measured by using Euclidean distance metric. To illustrate this model, all samples correspond

to points in an n-dimensional feature space, as shown in Figure 5.4. For simplicity, we only use

two dimensions/features, X1 and X2. To make a prediction for a test sample, we first locate its

three nearest training samples (i.e., K=3). We predict the outcome for the test sample by using

an average of the values of its three nearest neighbors. The value of K is chosen through cross

validation. Figure 5.5 provides a visual representation of our intuition. We use Cosine similarity

on the feature set to generate this application similarity heatmap. In the figure, shades of red show

similarity between applications, whereas shades of blue represent dissimilarity. We try to leverage

this similarity information in our methodology.

We use the features selected by the forward selection wrapper for K-NN to compare

similarity between applications. The value of K was found to be 4, 3, and 2 for Masked, DUEs and
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Figure 5.5: Visualization of similarities between applications using a dendrogram at the top. In the

heatmap, Red represents similarity, whereas Blue represents dissimilarity. In the dendrogram, the

vertical distance is a measure of similarity. Shorter distance means more similarity.
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SDCs, respectively, through cross-validation. Figure 5.3 shows the accuracy of K-NN Model for all

three outcomes. One can notice that Ridge Regression clearly provides better prediction accuracy for

Masked than K-NN. For Masked, the value of K is 4, which means that every sample must find four

similar samples in its vicinity. If the four chosen samples are not similar, it may end up smoothing

things out too much and eliminating some important details in the distribution. Moreover, K-NN uses

8 selected features to check similarity for Masked outcomes. As the number of features/dimensions

increases, the sparseness of the training data in the n-dimensional feature space also increases. This

causes the distance metric to lose significance as it becomes difficult to accurately identify the

neighbors. This phenomenon is also known as the curse of dimensionality [106]. A combination of

the above two reasons might impact the prediction accuracy for Masked outcomes.

In case of DUEs, K-NN has accuracy comparable to Ridge. Besides the cfd and tpacf

applications, the model predicts the outcomes quite accurately. This suggests that these two outliers

were not able to find three similar neighbors. A solution to this problem is to increase the size of the

training data. While there are small clusters in the heatmap, having a large sample space might create

more concrete and dense clusters. This can eventually result in a better prediction for K-NN. A small

value of K is more susceptible to noise, as might be the case seen in SDC prediction. Finding the

right value of K is also a challenging research problem.

Key Takeways:

• Overall, we find that K-NN does not work as well as Ridge. This may be a side effect of

working with a small training sample space (43 CUDA applications), as K-NN has a tendency

to perform better with large data samples. In addition, if the number of selected features is large

as compared to the sample space, then K-NN might suffer from the curse of dimensionality, as

observed in the case of Masked outcomes.

• However, K-NN is a more robust model as it does not rely on the underlying distribution of

the data; unlike a Linear model which assumes a linear relationship between features and

outcomes. We anticipate that the results for K-NN would improve if we increased the number

of training samples. Hence, it might be worth revisiting K-NN by supporting more CUDA

applications on SASSIFI. The user must consider the above trade-offs and choose a model

which best suits their data.

• Both Ridge and K-NN select register usage as one of the features impacting SDCs. A negative

coefficient of Ridge could imply that increasing the number of registers could reduce the
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Figure 5.6: Spatial SIMT Architecture with a separate Scalar Unit.

number of observed SDCs. This could make for an interesting case to study the impact of

compiler optimizations, such as loop unrolling, on the resiliency of the application.

5.5 Support for Other Modern Architectures

Modern GPUs exploit data parallelism in application kernels to achieve high performance

and efficiency. However, there can be a loss in efficiency due to redundant execution whenever

threads perform the same operations on the same data. Scalar instructions reduce energy by elimi-

nating replicated work. Moreover, scalarization reduces overall register file capacity by eliminating

redundant operand storage, or additionally allows a register file of a given size to hold the context of

more threads. The execution of the scalar instructions is enabled by architectural and microarchi-

tectural support provided next to the parallel datapaths. For example: AMD’s Graphics Core Next

(GCN) architecture has a scalar co-processor in each compute core, along with a separate scalar

register file [89]. A warp (or wavefront, in OpenCL terminology), is mapped across the SIMD lanes

with one thread per SIMD [107]. In contrast, the scalar unit has a single lane with a scalar register

file to execute scalar instructions. To support a GCN-like architecture (as shown in Figure 5.6)

in PRISM, the count of scalar instructions must be recorded only once per warp, whereas the count

for vector instruction depends on the number of active threads in a warp executing that instruction.

This distinction must be accounted for while calculating scalar and vector instances, as described in

Algorithm 1.

In our study, we have used Kepler because the SASSIFI tool is optimized for the CUDA

v7.0 software stack and a compute capability of 3.5. To take full advantage of architectures supporting

a compute capability greater than 3.5 (e.g., Pascal and Volta), SASSIFI must first be optimized to run

on these newer architectures. Unlike Kepler, Pascal and Volta have an extended Instruction Set (ISA)
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with explicit support for half-precision floating point instructions. These additional opcodes must be

incorporated in the intensities, described in Table 4.5, for PRISM to provide better accuracy. Adding

half-precision FP instructions might impact the high masking effects of floating point instructions

that we observed in the Ridge Regression Model. This requires further investigation in order to

understand the contribution of half-precision floating point instructions to program correctness, which

we plan to explore in our future work.

5.6 Summary of PRISM

To our knowledge, this is the first work to predict resiliency of GPU applications using

statistical methods. We summarize the contributions and findings of this chapter as follows:

• We add new capability to the SASSIFI tool to inject faults randomly in any destination register

during application execution. We use this feature to generate error profiles of the applications.

• We identify interaction between features, and perform feature selection based on their contri-

butions to program correctness. We use this reduced feature set to drive our model.

• A key property of PRISM is its flexibility that allows users to plug in their choice of regression

model. In this chapter, we explore two prediction models - one based on Linear Regression

and the other based on similarity analysis (K-NN).

• Using Linear regression, PRISM is able to predict Masked and Unmasked errors with an

accuracy of 90% on our test applications. We also identify that Floating Point instructions

contribute significantly towards masking, whereas Integer Arithmetic and a set of Scalar

Instructions are the biggest contributors to Detected and Unrecoverable Errors (DUEs). We

also provide insights into potential architectural modifications and prospective research that

could be performed as a result of our analysis.
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Chapter 6

Fault Mitigation using ArmorAll

In this chapter, we will introduce three compiler-based redundancy schemes that constitute

ArmorAll [108]. All three schemes leverage dependence analysis and UD chains, covered in

Section 4.3, to create a sequence of instructions, which we refer to as a path. A path, for instance,

contains a sequence of instructions – {un, un−1, un−2, ....., u1, u0}, where:

• ui: use of the value vi, which is defined in ui−1, where i ∈ N or, ui: is an instruction which is

control dependent on ui−1, where i ∈ N.

• The last instruction in the path is u0: def of the value used in u1.

Since the path is generated through a backward walk, we use descending order to enumerate the

instructions.

A path always begins from the root instruction, un, and terminates when no more instruc-

tions can be traversed in that path. However, an application may contain multiple paths, depending

on the number of root instructions identified. It is possible for an instruction to be part of multiple

paths; in such cases, the instruction is only considered once. The two factors that distinguish the

three schemes we propose are: 1) their root instruction, and 2) the final worklist constructed. The

root varies depending on the entity that is being protected. The entity could be an address, a value, or

both. The worklist includes an unordered set of instructions that appear on the path being traversed,

starting from the root.

Once the final worklist is created, all instructions in the worklist (with a few exceptions)

are considered duplication-eligible and subsequently duplicated. The duplicate instruction reads

the same source operands as the original instruction, but writes to a new destination register. The

destination operands of the instruction are compared with their clones via additional verification
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instructions. If the verification fails, a mismatch warning is issued to the user. We also do not

duplicate Φ operations (if they appear in the worklist) and unconditional branch instructions, as these

instructions do not translate into actual instructions in the final binary, as mentioned in Chapter 4.

Next, we describe our three schemes, and how they protect these entities, in greater detail.

6.1 Address Armor

Key Idea: As the name suggests, Address Armor protects the addresses used by mem-

ory instructions. Illegal memory accesses and addressing exceptions can be caused by transient

faults [109]. They are often the result of an address being corrupted either due to bit flips in registers

that hold addresses, or the propagation of a fault into one of those registers. Therefore, the goal of

Address Armor (AA) is to track all instructions that participate in memory address computation.

Since both load and store instructions access memory, they naturally become the root for this scheme.

Address Armor does not protect the value loaded or stored by the instructions, only their addresses.

Implementation: In LLVM, the instruction getelementptr is typically used to compute

addresses for both load and store instructions. Therefore, the Address Armor first initializes a

worklist with all root/getelementptr instructions present in the program. For each getelementptr

instruction in the worklist, it tracks all instructions that appear in the data and control dependence

path and adds them to the worklist, if not previously added. This process continues until the path for

all getelementptr instructions is completely traversed, and no further instructions can be added to the

worklist. The final worklist, SAA is a set of instructions, expressed as the union of all paths
⋃
Pj ,

where Pj is the sequence of instructions traversed, starting from the root j ∈ N.

In Address Armor, we do not duplicate load and store instructions themselves. Since

the addresses of these instructions are protected by Address Armor, there is no need perform each

operation twice. One might argue that corruption in their value can still lead to an incorrect output.

However, protecting the value is not the objective of Address Armor. We relax the constraints by

assuming that when an application is protected using Address Armor, the likelihood of the values

getting corrupted is low.

Summary of Address Armor:

• Goal: To protect addresses used by load and store instructions.

• Root: Load and Store instructions.
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• Which instructions from the worklist are duplicated? ALU, Floating point, Compare, and

getelementptr instructions.

• Which instructions are not duplicated? Loads, Stores, Barriers, Phi, and Unconditional Branch

instructions.

6.2 Value Armor

Key Idea: This scheme, as its name suggests, protects the values written to memory by

store instructions. An incorrect output is often a result of corruption caused by either a bit flip in a

register that holds an output value, or propagation of a fault into one of those registers. Therefore,

the goal of Value Armor (VA) is to track all instructions that contribute to the computation of the

output value. Since the output value is written to memory using store instructions, they become the

root instruction for this scheme. Value Armor does not protect the addresses used by a store (or a

load) instruction, only the values.

Implementation: Value Armor first initializes a worklist with all the root instructions

(here, store instructions). For each root instruction in the worklist, it tracks all instructions that

appear in the data and control dependence path and adds them to the worklist. A path terminates

when it either encounters a load instruction, or if there are no further instructions that can be added

to the path. If Value Armor keeps tracking beyond load instructions (Syntax: %val = load i32*

%ptr), then its path will include instructions that compute the address of the load, which is contrary

to the goal of the Value Armor. Therefore, all instructions are added to the worklist until one of

the termination conditions (described above) is encountered. The final worklist, SV A is a set of

instructions, expressed as the union of all paths
⋃
Pk, where Pk is the sequence of instructions

traversed, starting from the root k ∈ N.

Since the value must be protected by Value Armor, we also duplicate the load instructions

that appear on the worklist, unlike Address Armor. In this case, we assume that when an application

is protected using Value Armor, the likelihood of the address being corrupted is low.

Summary of Value Armor:

• Goal: To protect values used by load and store instructions.

• Root: Store instructions.
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• Which instructions from the worklist are duplicated? ALU, Floating point, Compare, Load,

and getelementptr instructions.

• Which instructions are not duplicated? Stores, Phi, Barriers, and Unconditional Branch

instructions.

6.3 Hybrid Armor

Key Idea: This scheme, as its name suggests, protects both – the values and addresses of

load and store instructions. The goal of Hybrid Armor (HA) is to track all instructions that contribute

to the computation of the output value and addresses. Since the output value is written to memory

using store instructions, they are also the root for this scheme.

Implementation: The Hybrid Armor scheme first initializes a worklist with all of the root

instructions (i.e., store instructions). Similar to AA and VA, for each root instruction in the worklist,

Hybrid Armor tracks (using a backward traversal) all instructions that appear in the data and control

dependence path and adds them to the worklist. The major difference between Hybrid Armor and

Value Armor is that Hybrid Armor does not terminate at load instructions. The path for Hybrid

Armor must include instructions that compute the address of the load and store instructions, as well

as their values. This process continues until the path for all store instructions is completely traversed,

and no further instructions can be added to the worklist. The final worklist, SHA can be expressed as

the union of set of instructions in Address Armor and Value Armor, SAA ∪ SV A, where SAA and

SV A are the final worklists generated by Address Armor and Value Armor, respectively. Since both

the value and address of a store are protected by Hybrid Armor, there is no need to duplicate the store

instruction.

Summary of Hybrid Armor:

• Goal: To protect both – values and addresses used by load and store instructions.

• Root: Store instructions.

• Which instructions from the worklist are duplicated? ALU, Floating point, Compare, Load,

and getelementptr instructions.

• Which instructions are not duplicated? Stores, Phi, Barriers, and Unconditional Branch

instructions.

54



CHAPTER 6. FAULT MITIGATION USING ARMORALL

6.4 Evaluation Methodology

6.4.1 Fault Injection Framework:

In this chapter, we use an LLVM-based fault injection framework called LLFI-GPU [70].

The benefits of using LLVM are that it offers portability and modularity by isolating itself from the

high-level language, as well as from the ISA and other hardware-specific details. LLFI-GPU captures

the faults that are visible at the application level and are not masked by the hardware. Though we

use a NVIDIA Kepler K20 to perform our fault injection campaign, it is important to note that our

redundancy schemes are not tied to any specific GPU architecture. The choice of the Kepler is tied to

the LLFI-GPU toolset.

LLFI-GPU is hosted in the nvcc compiler stack, labeled as the ‘fault injector’ in Figure 2.5.

The LLVM IR is not directly exposed to the user; LLFI-GPU attaches a dynamic library to nvcc

which can intercept the call to the LLVM compilation module [71]. At this point, the passes of

LLFI-GPU are invoked to instrument the program. LLFI-GPU then returns the instrumented LLVM

IR to nvcc, which proceeds with the rest of the compilation process to transform it into PTX code.

Our compilation passes are implemented as the last step in the LLFI-GPU framework, in order to

leverage the existing LLVM optimizations and to ensure that no LLVM optimization can further

modify the code. We further analyzed the SASS code of all CUDA applications using the NVIDIA

tools, cuobjdump and nvdisasm, to ensure that our code was not optimized by the ptxas backend [93].

The output of the duplicate instructions are verified with the original instructions to notify the user

of a mismatch, and hence they are not treated as dead code by the backend. The fault model of

LLFI-GPU considers transient hardware faults that occur in the computational elements of the GPU,

including pipeline stages, flip-flops, arithmetic and logic units (ALUs), and the register file [70]. It

assumes GPU memory or cache, its control logic, and instruction encodings are protected with ECC.

6.4.2 Benchmarks Evaluation

We evaluate the error detection capability of ArmorAll by performing an extensive fault

injection campaign on a diverse set of CUDA applications from the CUDA SDK [97]. We target

a 95% confidence interval and a 3.1% error margin, which can be achieved by performing 1000

injections in each application [47]. In prior work, a 95% confidence level with <5% error margin

has been deemed accurate [27, 110]. We inject one fault per run of the application. When checking

for errors, we compared the output of the kernel when the fault is injected with the golden output
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Outcome Synopsis
Masked:undetected Fault was masked and no

mismatch was detected
Masked:detected Fault that would have potentially

been masked, but a mismatch
was detected by the Armor

SDC:undetected SDC that was not detected by the
Armor

SDC:detected SDC that was detected by the
Armor

DUE:undetected Crash/DUE that was not detected
by the Armor

DUE:detected Crash/DUE that was detected by
the Armor

Table 6.1: Possible error outcomes for ArmorAll redundancy schemes. We allow the program to

continue execution, even if a mismatch is detected. This enables us to evaluate the accuracy of the

detection scheme.

(without any fault injection). For precision-based applications, we used the default values of the L1

and L2-Norm provided in the benchmark, which typically ranged between 5e-4 to 1e-6. To gather

GPU performance and occupancy statistics, we used the nvprof tool and measured the application

runtime on a real Kepler K20.

6.4.3 Outcome Classification

Before we dive deeper into the error detection capabilities of each redundancy scheme, we

will describe the error outcomes that are plausible when a fault is injected. As mentioned earlier in

this chapter, the duplicate instruction reads the same source operands as the original instruction, but

writes to a new destination register. The destination operands of the instructions are verified (with

their clones) via additional verification instructions. If the verification fails, a mismatch warning

is issued to the user. However, we allow the program to continue execution, even if a mismatch is

detected. This enables us to evaluate the accuracy of the detection scheme, and if we were being too

conservative.

When a fault is injected in the program, one of the outcomes described in Table 6.1 is

possible. When a fault does not manifest into an error upon program completion, and no mismatch is

detected during its execution by ArmorAll, we categorize it as Masked:undetected. This is an ideal
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case that leverages the inherent resiliency of the application. However, since our redundancy schemes

duplicate the instructions and verify their output with the clones immediately, it does not provide

much opportunity for masking. Sometimes a fault occurring in a duplication-eligible instruction

could have been masked if it was allowed to propagate, but instead a mismatch was detected early on

due to the conservative nature of ArmorAll. Such a category is called Masked:detected.

When a faulty bit is read by the program and causes a wrong program output (i.e., a visible

error), an SDC is said to have occurred. If the propagation of the fault is detected by ArmorAll before

it corrupts the output of the program, it is considered an SDC:detected. The higher the number of

SDC:detected outcomes means better error protection. If the fault corrupts the output value and the

fault was not detected during its propagation, it is referred to as SDC:undetected.

Finally, DUEs occur when a system is able to detect an error, but is unable to recover from

the error. Our goal is to detect errors that can cause these DUEs before they occur, so that they

can be prevented. We refer to the errors that were detected by ArmorAll before the DUE occurred

as DUE:detected. If ArmorAll was unable to detect them and the system eventually crashed or

completed execution with any other undesirable behavior, it is called DUE:undetected.

While our focus in this work is Error Detection, our proposed redundancy schemes can

be augmented with any appropriate Error Recovery mechanism such as checkpointing, to allow

applications to rollback to the checkpoint and restart execution when a mismatch is detected [111].

Error correction techniques, such as instruction triplication, can also be used when a mismatch is

detected. Error recovery or correction are interesting avenues for future research, but are currently

beyond the scope of this work.

6.5 Results

Next, we will evaluate the detection coverage and the associated overhead of the three

redundancy schemes which constitute ArmorAll. We will also propose a set of heuristics that will

allow the compiler to choose the best redundancy scheme out of the three.

6.5.1 Instruction Duplication Overhead

Static: We first measure the instruction coverage as a fraction of the number of static

instructions in the program that are assumed to be protected via instruction duplication. As shown

in Figure 6.1, the range of static instructions duplicated for Address Armor varies from 8-54%,
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Figure 6.1: Percentage of static instructions duplicated for each Armor.

Armor Min Max Average
Address Armor 8.2% 53.3% 26.2%

Value Armor 7.4% 27.6% 19.2%
Hybrid Armor 9.2% 54.8% 27.5%

Table 6.2: Min, Max, and Average increases in the program binary size for ArmorAll redundancy

schemes, as compared to the baseline with no duplication. The program binary includes the non-

duplicated host code.

with an average coverage of 35.9%. Value Armor duplicates between 2%-42% the instructions,

with an average of 20.4% of the static instructions. Since Hybrid Armor protects both values and

addresses of load and store instructions, the duplication rate is higher than with Address Armor

and Value Armor. It’s coverage ranges between 38%-62%, with an average of 52.2% of the static

instructions duplicated. For each instruction duplicated, there is an additional verification instruction

to compare the outputs of the original instruction and the duplicated instruction. The average code

bloat (increase in the size of the program binary, including the unduplicated host code) for Address

Armor, Value Armor, and Hybrid Armor is 26.2%, 19.2%, and 27.5%, respectively. The baseline

used for comparison does not perform any instruction duplication. For all Armor types, the minimum

increase in binary size was observed in VECADD, whereas the maximum increase was observed in

TRNPOS applications, as shown in Table 6.2.
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Figure 6.2: Percentage increase in dynamic instruction count compared to the baseline.

Dynamic: Next, we evaluate how the static coverage translates into dynamic instruction

overhead. Figure 6.2 shows the percent increase in the dynamic instructions executed, as compared

to the baseline. The dynamic instructions executed in the Armors include the duplicated instructions,

verification instructions, as well the notification instructions. The baseline does not provide any

duplication. The percent increase in the dynamic instruction count varies across applications, with an

average increase of 60.7%, 42.8% and 90.1% for Address Armor, Value Armor, and Hybrid Armor,

respectively. As expected, Hybrid Armor protects both addresses and values, hence it adds more

duplication and verification to the kernel. The number of verification instructions can be reduced by

delaying the verification after a few instructions by using a signature register [19]. However, there is

a risk that an application may crash/hang before the delayed check is encountered. Therefore, Value

Armor might benefit more from delaying verification than Address Armor or Hybrid Armor as the

risk of DUEs is assumed to be lower in case of applications protected by Value Armor.

6.5.2 Error Detection Capability of ArmorAll

As mentioned earlier, we allow an application to continue execution even if a mismatch is

detected. This allows us to evaluate the accuracy of the detection, and know whether we were too

conservative. When a fault is injected, one of the outcomes listed in Table 6.1 is possible. We discuss

the detection capability of each Armor for DUEs, SDCs, and Masked, in this order.
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Figure 6.3: Fault injection results showing error detection capability of Address Armor. AA is able

to detect all DUEs and some SDCs.

6.5.2.1 Address Armor

In this section, we will focus on the error detection capability of Address Armor. The goal

of Address Armor is to protect the addresses used by load and store instructions. Typically, illegal

memory accesses can cause DUEs, which can be prevented if the instructions computing memory

addresses are protected. As shown in Figure 6.3, Address Armor is highly efficient and is able to

detect 100% of the DUEs (right-most bars), despite duplicating only 35.9% (on average) of the static

instructions (see Figure 6.1).

Interestingly, one of the unexpected behaviors in Address Armor is that it is also able to

detect SDCs (middle bars), along with DUEs. This is because Address Armor was able to prevent

threads from accessing incorrect (but not illegal) memory addresses and reading/writing wrong

values, which can eventually lead to an SDC. Therefore, Address Armor is able to protect more than

what it was originally designed for.

Due to the conservative nature of ArmorAll, we are able to detect some of the outcomes

which would have been masked if the error was allowed to propagate. However, Address Armor is

still able to provide some undetected error masking in all applications. We will discuss the masking

offered by ArmorAll in further detail in Section 6.6.
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Figure 6.4: Fault injection results demonstrarting the error detection capability of Value Armor. VA

can detect some SDCs, but no DUEs.

6.5.2.2 Value Armor

Figure 6.4 shows the error detection capability of Value Armor. The goal of Value Armor

is to protect the values used by load and store instructions.

As shown in the Figure 6.4, Value Armor is unable to detect any DUEs, which is an expected

behavior because protecting against DUEs is not the primary goal of Value Armor. Protecting output

values can help detect SDCs, as seen in many applications. In case of BLKSCH (BlackScholes)

and MATMUL (Matrix Multiplication), Value Armor is able to detect more than 95% SDCs, with

about 42% and 19% instruction coverage, respectively, for the two applications. Similar behavior can

be seen in the case of CFFT2D (ConvolutionFFT2D), FDTD3D (Finite Difference Time Domain),

HISTO (Histogram), SPROD (Scalar Product), SCAN (Scan), and SQRNG (Sobol Quasi Random

Number Generator), where Value Armor can detect over 70% the SDCs, with an average instruction

coverage of 26%.

For the DWT1D (Discrete Walsh Transform), TRNPOS (Matrix Transpose), and VECADD

(Vector Addition) workloads, Value Armor does not perform as well. This is because these appli-

cations are mainly address-bound (computing addresses). In TRNPOS, the kernel performs a large

number of matrix-based moves (loading from one location in the matrix and storing to a different

location). All other instructions in this kernel compute addresses. This behavior can also be observed
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in Figure 6.1 which shows that only 2% of the instructions are duplicated by Value Armor. Therefore,

TRNPOS does not benefit from Value Armor.

In the case of VECADD, the dominant operation is vector addition of two vectors A and

B, expressed as: C[i] = A[i] + B[i], where i = blockDim.x ∗ blockIdx.x + threadIdx.x. Here, i

holds the offset from the base address of each vector. The effective address is computed using the

LLVM getelementptr instruction, which returns a pointer to the value at (base address + offset). If a

fault corrupts the value of i, it changes the offset. Thus, a thread could end up reading the value from

another index belonging to another thread. On GPUs, all threads can access the global memory space

and nothing prohibits a thread from reading another global memory location. In addition, a fault in

the value of i can also cause DUEs if the effective address computed is beyond the legal memory

space assigned to the application. This is because bit flips in more significant (i.e., high order) bits

can cause larger deviation in the offset resulting in memory exceptions. Since Value Armor does not

protect addresses, it will be unable to capture this behavior.

Lastly, Value Armor shows high Masked:undetected for applications which are address-

bound, or have a mix of addresses and data values, such as MATMUL. This is because most of

the instructions in these applications are not duplicated using Value Armor, hence there is more

opportunity for Masking. Moreover, applications such as BLKSCH, SQRNG, and BINOPT are

floating-point applications. Therefore, any slight change in their values will be detected by Value

Armor, reducing the likelihood of Masking.

6.5.2.3 Hybrid Armor

Figure 6.4 shows the error detection capabilities of Value Armor. Hybrid Armor protects

both values and addresses used by load and store instructions.

Similar to Address Armor, Hybrid Armor is able to detect all DUEs. In terms of SDC

detection, Hybrid Armor provides the combined detection capability of Address Armor and Value

Armor, and can detect over 98% of the SDCs across all applications. However, Hybrid Armor

is more conservative than Address Armor and Value Armor, leaving little room for any potential

masking opportunity. This can be seen in the high percentage of Masked:detected outputs across all

applications. This overhead comes with high coverage requirements.
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Figure 6.5: Fault injection results, demonstrating error detection capability of Hybrid Armor. HA

can detect almost every error, but is also quite conservative (high percentage of Masked:detected

outcomes).

6.5.3 Performance Overhead

In this section, we analyze the performance overhead of our three schemes as compared to

a baseline that uses no instruction duplication. In addition to comparison with the baseline, we also

quantitatively compare our results with a prior state-of-the-art software-based approach that protects

all execution units using thread-level duplication (TLD) [17]. We recognize that TLD provides

additional coverage to the register file and local memory, which we assume is protected by ECC.

Figure 6.6 shows the execution time of applications run with ArmorAll and with TLD, relative to

the baseline (without any duplication). The average increase in runtime for Address Armor, Value

Armor, and Hybrid Armor versus the uninstrumented baseline is 1.7X, 1.39X, and 2X, respectively.

Compared to TLD, the average improvement in the runtime is 42.6%, 53.2% and 32.2% for AA, VA,

and HA, respectively. We discuss the sources of slowdown in both - TLD and ArmorAll.

State-of-the-art: 1. TLD creates a duplicate copy of each thread, identified as a leading

thread and a trailing thread. At every store instruction, the leading thread places the value in a global

buffer, and the trailing thread reads the value from the buffer and verifies it with its private copy

before committing the store instruction. This process requires explicit synchronization between the

leading and trailing thread to ensure that the values are written and read in the correct order. The
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Figure 6.6: Runtime of applications equipped with ArmorAll and with TLD, relative to the baseline

(no duplication). The average improvement in the runtime, as compared to TLD, is 42.6%, 53.2%

and 32.2% for AA, VA, and HA, respectively.

high overhead in TLD can mainly be attributed to inter-block communication and synchronization

between threads during store instructions.

2. Unlike ArmorAll, programmer intervention is needed in TLD to modify the source code to ensure

spare compute resources are available for the redundant threads. Workloads can benefit from TLD

if they have spare resources available (e.g., lower than 50% occupancy); however, many of the

GPU applications we studied have an occupancy greater than 50%, as shown in Figure 6.7. Despite

the availability of spare compute resources, the synchronization overhead with TLD can adversely

impact the performance of an application.

Our approach: For ArmorAll, there are three sources of slowdown across applications.

First, due to additional instructions added to the kernel (for duplication, verification and notification),

there are more dynamic instructions executed per thread, which increases the runtime. Second,

the addition of these new instructions can introduce new dependencies in the kernel and limit

opportunities to schedule and software pipeline instruction sequences. These added dependencies

can contribute significantly to the performance overhead.

Third, the duplicate instruction reads the same input operand and writes to a new destina-
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Figure 6.7: Occupancy of applications with and without ArmorAll

tion register. This may increase the overall register pressure, depending on the number of instructions

duplicated, and consequently, impact the warp occupancy of the application. From our experimenta-

tion, most of the applications did not show much change in their occupancy when executed with the

Armors as compared to the baseline. The only exceptions were BINOPT, BLKSCH, and MATMUL.

In the case of BINOPT and MATMUL, the reduction in occupancy had an adverse impact on the

execution performance. However, reduction in occupancy may not always reduce the execution

performance. This can be observed in BLKSCH where there is not much change in the runtime of the

application, despite a reduction in occupancy. Sometimes a reduction in occupancy can also improve

the performance of an application, although we did not observe this phenomenon in our applications.

Running fewer threads on the SM can reduce memory contention and improve the runtime of the

application. Therefore, low occupancy does not necessarily imply poor performance.

6.5.4 Choosing the Best Armor for an application

In this section, we propose heuristics to identify the redundancy scheme that is likely to

offer the best error protection to an application. We choose not use the commonly-used performance

metrics, such as memory intensity or compute intensity, for characterizing reliability, as they can

be misleading [112]. Our results have shown that faults in instructions that compute addresses for

load/store instructions can cause illegal memory accesses, and not just load and store instructions
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themselves. Therefore, solely focusing on the number of loads and stores in an application may not

provide the complete picture.

Instead, we measure the cardinality of the final worklist generated by each Armor as a

metric to choose the best Armor. As mentioned earlier, each Armor constructs a worklist, which

is a set of unique instructions that appear on the data and control dependence path, starting from

a root instruction. Mathematically, cardinality is defined as the number of elements present in a

given set. In this context, cardinality is the number of instructions in the final worklist constructed

by the Armor, after removing the duplication-ineligible instructions. The remaining instructions are

considered highly vulnerable and must be duplicated. We use the following notation to represent

cardinality:

|SAA| = Cardinality of the worklist generated by AA

|SV A| = Cardinality of the worklist generated by VA

|SHA| = Cardinality of the worklist generated by HA

If the cardinality of Address Armor is greater than the cardinality of Value Armor, it

implies that the application will be better protected if AA is chosen. The rationale behind this scheme

is that the longer the total path, the more opportunities there there will for the fault to propagate to

the output. Also, a larger number of instructions will have a higher probability of being targeted

by transient faults. As these instructions are considered highly vulnerable, the likelihood of an

application failing is higher if they are left unprotected. For example: if |SAA| = 80 and |SV A| = 10,

it would be more logical to guard the application using Address Armor rather than Value Armor, as

80 instructions are more likely to cause an error than 10 instructions. Similarly, if |SV A| � |SAA|, it

is better to invoke Value Armor. However, if the |SAA| ≈ |SV A|, then Hybrid Armor is expected to

provide better overall coverage.

We summarize the selection criteria as follows:

|SAA| � |SV A| → Address Armor

|SAA| � |SV A| → Value Armor

|SAA| ≈ |SV A| → Hybrid Armor

The cardinality of each application is reflected in Figure 6.1 as a fraction of the total

number of instructions in the application. In the case of BLKSCH, the cardinality of VA is clearly

much higher than for AA. The error detection results also reflect that AA is not able to protect against
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most of the SDCs, whereas VA can successfully overcome 90% of the errors. Therefore, choosing

VA will provide better error protection in the case of BLKSCH. For applications DWT1D, FDT3D,

HISTO, MATMUL, SQRNG, TRNSPOS, and VECADD, the cardinality for Address Armor is 2X

higher than the cardinality of Value Armor. This can be seen in Figure 6.3, showing Address Armor

can protect against more than 80% of the DUEs and SDCs in these applications, on average.

For BINOPT, CFFT2D, SPROD, and SCAN, the AA to VA cardinality ratio is close to 1.

Therefore, Hybrid Armor is expected to provide better coverage for these applications. However, in

the case of SPROD, Hybrid Armor can be too conservative as Address Armor can protect against

most of the errors. Overall, our heuristic has been able to choose the Armor correctly for 11 out of 12

of the applications (91.7% accuracy), with SPROD being the only exception. We observe an average

improvement of 64.5% in runtime versus TLD when employing the best redundancy scheme chosen

using the proposed selection criteria.

In our approach, the cardinality is measured using the number of static instructions in

the worklist. It does not take into account the execution frequency of these instructions. However,

for the applications we studied, the trend of static and dynamic instructions has remained the same

for most applications, as seen in Figures 6.1 and 6.2. Using the dynamic instruction count is

an alternative, however, it will not improve the overall prediction accuracy for the current set of

applications. Moreover, making a decision at compile-time further saves the overhead of re-executing

an application on the GPU. By calculating the cardinality of AA, VA and HA statically, the compiler

can choose the most appropriate Armor without relying on dynamic profiling information. The

selection criteria can be extended in the future to include the weights of the instructions in the

worklist as more applications are added to the suite.

6.6 Approximate Error Detection

The error detection results show that Hybrid Armor is quite conservative, as it detects most

of the errors that could have potentially been masked. The drawback of being conservative is that

when ArmorAll is augmented with any error recovery scheme (e.g. check-pointing), the application

must roll back to a checkpoint and restart from there whenever a mismatch is detected. This can

cause significant execution overhead. The more conservative an approach is, the more the application

may suffer from rollback-restart overhead; and this may be unnecessary many times.

In this section, we try to relax the detection constraints in ArmorAll. One of the opportu-

nities to relax and improve ArmorAll’s detection capabilities is during execution of floating-point

67



CHAPTER 6. FAULT MITIGATION USING ARMORALL

BIN
OP
T

BL
KS
CH

FD
TD
3d

SP
RO
D

SQ
RN
G

VE
CA
DD

  0%

 20%

 40%

 60%

 80%

100%

%
 O

ut
co

m
es

Masked:detected
Masked:undetected

SDC:detected
SDC:undetected

DUE:detected
DUE:undetected

Figure 6.8: Fault injection results by using approximate error detection in Hybrid Armor. The

detection precision used here is 0.1. Relaxing error detection increases the percentage of

Masked:undetected outcomes in floating point applications, making HA less conservative.

applications/operations. We observed that in floating point operations, detecting a small perturbation

in a value may not always impact the final program output. This prompted us to experiment with

different detection precisions, starting with a difference of 0.1, as shown in Figure 6.8. In this

case, we only report a mismatch when the difference in the output of the original and duplicated

(floating point) instruction is greater than 0.1. In other words, we allow any difference less than

0.1 to propagate, and observe its impact on the output of the application, as well as the behavior of

ArmorAll. We do not modify the default L1 or L2-Norm used to compare the final value(s) with the

golden output in these applications. The value of 0.1 was selected experimentally and is used to test

the potential of approximate detection. We also experimented with a precision of 0.001, but did not

observe any significant change in the results. For the sake of brevity, we only show the results for a

detection precision of 0.1. In future work, we plan to leverage Algorithmic Differentiation to help

identify the best precision value to use for error detection [113].

To demonstrate the results for approximate detection, we only chose a subset of the

applications, focusing on those that use floating point operations. Most applications show an increase

in Masked:undetected outcomes, as intended, while BINOPT and BLKSCH show the largest increase.

SQRNG primarily uses integer operations and eventually converts those values to floating point,
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hence not leaving much room for approximate detection. Some applications, such as BLKSCH,

FDTD3D, and VECADD also show a slight increase in the number of undetected SDCs. This side

effect is because some of the deviations under 0.1, which were not detected, did not get masked and

eventually propagate to the output. In practice, it may not be possible to assure apriori that we can

eliminate all causes of unreliability. Therefore, the goal of fault tolerance is to reduce the system

failure rate, increasing availability to an acceptable level [1].

6.7 Summary of ArmorAll

• In this chapter, we propose three novel reliability-aware compiler-based redundancy schemes

that can provide adjustable levels of fault coverage to individual GPU applications.

• The redundancy schemes are designed with the goal of providing selective coverage to appli-

cations by protecting one or both of these entities – address and/or values used by load/store

instructions.

• Our evaluation shows that, depending on the redundancy scheme chosen, ArmorAll can achieve

an average reduction of 100% of Detected Uncorrectable Errors (DUEs) or 98% Silent Data

Corruptions (SDCs) or both, while only requiring to cover 60.7%, 42.8%, or 90.1% of the

dynamic instructions, respectively.

• In comparison to a state-of-the-art scheme, the performance overhead of our redundancy

schemes shows an average improvement of 64.5% when using the best redundancy scheme

across the studied applications.
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Chapter 7

Conclusions and Future Work

7.1 Dissertation Summary

Reliability is one of the major challenges faced in exascale supercomputing and safety-

critical applications today. While leveraging the inherent parallelism offered by Graphics Processing

Units is crucial to accelerate the applications, it is equally important to ensure that applications can

overcome data corruption caused by transient or permanent faults. It is therefore necessary to find

ways to improve the reliability of execution, with limited execution overhead.

There are several challenges to overcome in order to address the above problems. Existing

techniques are not able to predict the resilience of GPU applications without performing time-

consuming fault injection campaigns. As a result, the same level of protection is applied to all

applications regardless of their resilience. This results in conservative execution and unnecessary

overhead since not every application requires the same level of protection. A thorough understanding

of application behavior is required before employing expensive techniques to protect an application.

In this thesis, we achieve this goal by performing a detailed characterization of the application and

creating a statistical model that can predict device reliability. We also develop a set of compiler-based

redundancy schemes that can adapt the level of protection provided to an application. Since hardware

techniques are inflexible, adding support for reliability in the software (compiler) allows the user to

turn on or turn off the optimization depending on the application’s behavior and requirement.

In Chapter 4, we implemented an analysis pass in the profiling phase of SASSIFI to identify

scalar and vector instructions. This study aims to understand how error propagation differs when

a transient fault occurs in a scalar instruction, versus vector. We measured the scalar and vector

intensities of the applications and identified linear correlations present between scalarness and the
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fault outcomes. We learned that applications that have higher scalar intensity, such as atomic add,

bfs, sgemm, and mri-gridding, experience a high number of SDCs and DUEs, while applications

such as histo and tpacf have relatively low scalar intensity, show high masking of errors. Since scalar

instructions are executed once per warp, faults in these instructions potentially have a higher impact

on the application vulnerability. Therefore, applications that have higher scalar intensity should have

more protection than applications with higher vector intensity.

We further extended our implementation to extract a set of workload characteristics, beyond

scalar and vector, based on the hardware resources they stress during execution to accurately capture

their behavior. In Chapter 5, we identified interaction between these program characteristics/features,

and perform feature selection based on their contributions to program correctness. We used this

reduced feature set to drive our machine learning models. For this work, we explored two models-

Linear Regression and K-NN and evaluated their accuracy on randomly selected test data. We

observed that Linear model predicts masking probability with 90% accuracy, whereas K-NN suffers

from the curse of dimensionality. We learned that floating point intensity plays a significant role in

masking while faults in integer and scalar instructions lead to higher DUEs. Even though K-NN

did not provide favorable results, we anticipate that expanding the training suite will improve its

accuracy.

To provide adaptable fault coverage to applications, in Chapter 6, we leveraged dependence

analysis to implement three redundancy schemes - Address Armor, Value Armor, and Hybrid Armor,

in LLFI-GPU and evaluated their error detection capability on applications from CUDA SDK. We

analyzed the performance overheads of the redundancy schemes in ArmorAll against state-of-the-art

and evaluated the instruction duplication overhead (both Static and Dynamic), increase in the program

binary size, execution time, change in register pressure and occupancy. We observed that Address

Armor is highly efficient and is able to detect 100% of the DUEs, despite duplicating only 35.9%

of the static instructions. In addition to protecting addresses which can cause DUEs in the event

of a fault, Address Armor is also able to detect SDCs. This is because Address Armor is able to

prevent threads from accessing incorrect (but not illegal) memory addresses and reading/writing

wrong values, which can eventually lead to an SDC. Similar to Address Armor, Hybrid Armor is

able to detect all DUEs. In terms of SDC detection, Hybrid Armor provides the combined detection

capability of Address Armor and Value Armor, and can detect over 98% of the SDCs across all

applications. However, Hybrid Armor is more conservative than Address Armor and Value Armor,

leaving little room for any potential masking opportunity. We also developed heuristics that allows the

compiler to select the redundancy scheme that provides the highest fault coverage to an application
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without executing it on the GPU. We measure the cardinality of the final worklist generated by each

Armor as a metric to choose the best Armor achieving an accuracy of 91.7%.

7.2 Future Research Challenges

As part of our PRISM work, we mainly focused on program characteristics that ensure

our statistical models are independent of the underlying micro-architecture. The current feature set

can be expanded to include algorithm-based features as well. This is because the algorithm also has

an impact on how the error propagates to the output. In addition to Linear Regression and K-NN

regression models, other models such as Tree-based Regression can also be explored. Once there

are sufficient workloads supported on SASSIFI to collect the raw data, neural networks can also be

explored.

In the case of ArmorAll, a deferred verification technique (proposed by Gupta et al. [85])

could further improve its performance. Moreover, ArmorAll’s toolset can also be integrated with

checkpoint-recovery mechanisms. For floating point applications, we used the same detection

precision throughout the application. This can increase the number of Masked:detected outcomes and

potentially increase the rollback-recovery overhead. To avoid this, techniques such as algorithmic

differentiation can be exploited to find the detection precision to be used for different instructions in

a floating point application.
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