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Background & Motivation

* P4 — Programming Protocol-independent Packet Processor
* P4 enables programmability of network data plane

e Software-based routing and forwarding:
* Programmability T
* Linerate ¢

* P4 hardware targets:
* CPU, NPU, reconfigurable switches, iNICs, FPGA, etc.

* GPGPU potentiality?— Hundreds/thousands of cores, SIMD architecture, high
memory bandwidth, mature parallel programming environment.



Contributions

* P4-to-GPU: provide a viable way to map a portion of the P4 code onto
GPU target.

* Acceleration:design a heterogeneous framework with CPU and GPU
to accelerate performance.

* Optimization: optimize lookup and classification kernels on GPU and
explore load balancing on the CPU/GPU framework.



P4 to GPU: Overview

* Mapping P4 to GPU difficulties & hints

Difficulties _ Hins

Lack of dedicated hardware (match+action) Take advantage of many cores

Inefficient kernel design leads to performance Kernel requires optimization; auto-generated
disaster kernel may not render good performance
Coprocessor has limited memory and low clock Heterogeneous CPU/GPU architectureis
frequency desired

GPU is good at high parallelism (table lookup, Only offload parallelizable code to GPU.

matching...); bad at dependency and branching
(parsing, state machine....)

2/3/16 University of Massachusetts Lowell 4



P4 to GPU: Software Stack

* Partially mapping

Raw 1 pg goftware Stack '

Packets |

e —————————— ——— — — —

_————‘——————-l

Match + Action
Mapping To GPU p
[ |

Parallel
Match
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P4 to GPU: Design

* Three steps of mapping:

Step 1: P4 intermediate representation preparation
Step 2: GPU kernel configuration generation
Step 3: GPU kernel initialization

P4 IR LPM Lookup
® Configuration
P4 HLIR @ Python
— ¢ —> IR
Program Q;Q«O;QRO Parser
O-Q O Classifier

Configuration
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Modularized
GPU Kernels

LPM Lookup
Engine

Classifier
Engine




P4 to GPU: Code Diagram

P4 Program

table ipv4_lpm {
reads {
ipv4.dstAddr: lpm;
}
actions {
set_nhop;
_drop;
}
size: 1024;
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Step 1
HLIR

P4 IR

Kernel Configuration

h.p4_tables

\__ipv4_lpm
\__match: Ipm
\__size: 1024

\__forward
\__match: exact

h.p4_actions

Step 2

Parser
—P

LPM Kernel

{ size: 1024
field: dstAddr
match: set_nhop

not_match: _drop

Classifier Kernel

{ size: 512
field: nhop_ipv4
match_type: exact
match: set_mac

not_match: _drop

LPM Kernel

__device__
lpm_lookup (...)

S

Initialize

T~

__device__

classifier (...)

{..)
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Classifier Kernel

e The GPU kernel
conf parser:

* Parse h.p4 tables
etc. in IR to obtain
P4 table conf

* Find the order of
tables * from the
control flow.

* Sequential tables for now



P4 to GPU: GPU Kernel Design

e LPM |00kup kernel: fzft:.,,uhjl?{inary T Multibit Trie
» Used for “ipv4_Ipm” table S SR
* Designed for both IPv4 and IPv6 ‘i (}) S
* Baseline kernel: linear search e &

* Optimized kernel: binary trie and k-stride multibittrie

* Rule based classifier kernel:
* Used for “forward” and “send frame” table
* Designed for both exact and wildcard match
* Baseline kernel: linear search
* Optimized kernel: grid-of-tries
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P4 to GPU: GPU Kernel Design

 Latency hiding:

e Batch processing: reduce number of data copying

e 2D pipelining:

Stream 1

Stream 2

* Memory tweaking:
e Use texture memory for storinglookup tables
* Use mapped memory from host to device to reduce data movement overhead

* Data structure:

[ H2D |

D2H | H2D |

D2H | H2D |

D2H |

Host| H2D

Device

Host

Kernel

Kernel

Kernel

| H2D

| H2D |

D2H | H2D |

D2H |

Kernel

Device

Kernel

Kernel

Kernel

e Hash tables/tries are not GPU-favored data structure
* Trie-to-array vectorization

D2H



Architectural Design

* Components: CPU, main memory, GPU

P;ncilgts u u u u L 2o

Memory | Step 2

Packots e e Ll L L%

GPU
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Result
Buffers

Texture Memory
for tables

Global Memory
for packets
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Step 1: receiving

Step 2: batching

Step 3: load-balancingand
offloading

Step 4: results buffering
Step 5: forwardingactions
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Evaluation: Setup

* Experiment platform:

CPU Intel Quad Core i7-3610 QM  Intel Xeon ES-2643 — 6 cores

Main Memory 8 GB 16 GB

GPU NVidia GT 650 M / 384 cores Telsa K40m / 2880 cores
 Dataset:

* RouteView (Jan 2015) IPv4 (550,000 entries), IPv6 (20,000 entries)
* ClassBench: a set of filters, e.g. FW and ACL

* Traffic generation:
 Random generator: assumes no packet IO overhead
 Click Modular Router: emulated packet sending/receiving (socket-based)
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Evaluation: Results

* Look | f |
Lookup Kerne * Classifier Kerne
Lookup Speed Packet Classification Speed
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Throughput (Gbps)

50.00
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~-#-Throughput with ideal |0 IPv4
500.00 —A&Throughput with Socket IPv4

-@-Throughput with Socket IPv6
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Evaluation: Results

* Throughputand Latency on a Low-end GPU (GT 650M)

GPU Lookup Throughput Comparison with Different Batch Sizes
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GPU Lookup Latency Comparison with Different Batch Sizes
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Evaluation: Results

* Throughput Comparison between Different GPUs

Throught Comparison Between Different GPUs
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Conclusion & Future Work

* PAGPU tool provides a viable way to map P4 code onto GPU target.

* GPU is a promising target for P4 to achieve high throughput and low
latency forwarding.

* Integrate P4 table dependency to PAGPU tool
 Study the possibility of optimized GPU kernel auto generation.
* Implement GPU kernels for more functionalities, e.g. OpenFlow.



That’s All
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