2/3/16

PAGPU: Mapping a P4 Program
onto a CPU-GPU Heterogeneous
Architecture for Acceleration

PeilongLi and Yan Luo
ACANETS Lab (http://acanets.uml.edu/)

University of Massachusetts Lowell

(/2

UMASS

LOWELL

sssssssssssssssssssssssssssss

Background & Motivation

* P4 — Programming Protocol-independent Packet Processor
* P4 enables programmability of network data plane

e Software-based routing and forwarding:
* Programmability T
* Linerate ¢

* P4 hardware targets:
* CPU, NPU, reconfigurable switches, iNICs, FPGA, etc.

* GPGPU potentiality?— Hundreds/thousands of cores, SIMD architecture, high
memory bandwidth, mature parallel programming environment.

Contributions

* P4-to-GPU: provide a viable way to map a portion of the P4 code onto
GPU target.

* Acceleration:design a heterogeneous framework with CPU and GPU
to accelerate performance.

* Optimization: optimize lookup and classification kernels on GPU and
explore load balancing on the CPU/GPU framework.

P4 to GPU: Overview

* Mapping P4 to GPU difficulties & hints

Difficulties _ Hins

Lack of dedicated hardware (match+action) Take advantage of many cores

Inefficient kernel design leads to performance Kernel requires optimization; auto-generated
disaster kernel may not render good performance
Coprocessor has limited memory and low clock Heterogeneous CPU/GPU architectureis
frequency desired

GPU is good at high parallelism (table lookup, Only offload parallelizable code to GPU.

matching...); bad at dependency and branching
(parsing, state machine....)

2/3/16 University of Massachusetts Lowell 4

P4 to GPU: Software Stack

* Partially mapping

Raw 1 pg goftware Stack '

Packets |

e —————————— ——— — — —

_————‘——————-l

Match + Action
Mapping To GPU p
[|

Parallel
Match

2/3/16 University of Massachusetts Lowell 5

P4 to GPU: Design

* Three steps of mapping:

Step 1: P4 intermediate representation preparation
Step 2: GPU kernel configuration generation
Step 3: GPU kernel initialization

P4 IR LPM Lookup
® Configuration
P4 HLIR @ Python
— ¢ —> IR
Program Q;Q«O;QRO Parser
O-Q O Classifier

Configuration

2/3/16 University of Massachusetts Lowell

Modularized
GPU Kernels

LPM Lookup
Engine

Classifier
Engine

P4 to GPU: Code Diagram

P4 Program

table ipv4_lpm {
reads {
ipv4.dstAddr: lpm;
}
actions {
set_nhop;
_drop;
}
size: 1024;

3

2/3/16

Step 1
HLIR

P4 IR

Kernel Configuration

h.p4_tables

__ipv4_lpm
__match: Ipm
__size: 1024

__forward
__match: exact

h.p4_actions

Step 2

Parser
—P

LPM Kernel

{ size: 1024
field: dstAddr
match: set_nhop

not_match: _drop

Classifier Kernel

{ size: 512
field: nhop_ipv4
match_type: exact
match: set_mac

not_match: _drop

LPM Kernel

__device__
lpm_lookup (...)

S

Initialize

T~

__device__

classifier (...)

{..)

University of Massachusetts Lowell

Classifier Kernel

e The GPU kernel
conf parser:

* Parse h.p4 tables
etc. in IR to obtain
P4 table conf

* Find the order of
tables * from the
control flow.

* Sequential tables for now

P4 to GPU: GPU Kernel Design

e LPM |00kup kernel: fzft:.,,uhjl?{inary T Multibit Trie
» Used for “ipv4_Ipm” table S SR
* Designed for both IPv4 and IPv6 ‘i (}) S
* Baseline kernel: linear search e &

* Optimized kernel: binary trie and k-stride multibittrie

* Rule based classifier kernel:
* Used for “forward” and “send frame” table
* Designed for both exact and wildcard match
* Baseline kernel: linear search
* Optimized kernel: grid-of-tries

2/3/16 University of Massachusetts Lowell 8

P4 to GPU: GPU Kernel Design

 Latency hiding:

e Batch processing: reduce number of data copying

e 2D pipelining:

Stream 1

Stream 2

* Memory tweaking:
e Use texture memory for storinglookup tables
* Use mapped memory from host to device to reduce data movement overhead

* Data structure:

[H2D |

D2H | H2D |

D2H | H2D |

D2H |

Host| H2D

Device

Host

Kernel

Kernel

Kernel

| H2D

| H2D |

D2H | H2D |

D2H |

Kernel

Device

Kernel

Kernel

Kernel

e Hash tables/tries are not GPU-favored data structure
* Trie-to-array vectorization

D2H

Architectural Design

* Components: CPU, main memory, GPU

P;ncilgts u u u u L 2o

Memory | Step 2

Packots e e Ll L L%

GPU

2/3/16

Result
Buffers

Texture Memory
for tables

Global Memory
for packets

University of Massachusetts Lowell

Step 1: receiving

Step 2: batching

Step 3: load-balancingand
offloading

Step 4: results buffering
Step 5: forwardingactions

10

Evaluation: Setup

* Experiment platform:

CPU Intel Quad Core i7-3610 QM Intel Xeon ES-2643 — 6 cores

Main Memory 8 GB 16 GB

GPU NVidia GT 650 M / 384 cores Telsa K40m / 2880 cores
 Dataset:

* RouteView (Jan 2015) IPv4 (550,000 entries), IPv6 (20,000 entries)
* ClassBench: a set of filters, e.g. FW and ACL

* Traffic generation:
 Random generator: assumes no packet IO overhead
 Click Modular Router: emulated packet sending/receiving (socket-based)

2/3/16 University of Massachusetts Lowell

11

Evaluation: Results

* Look | f |
Lookup Kerne * Classifier Kerne
Lookup Speed Packet Classification Speed
421
450 393 - 100 g4 87

__ 400 361 & 90 79
(%]
9 350 309 S 80 70 71 3
2 300 5 70 s
o) 235 228 o 60
g 250 197 &
] 50
S 150 ®
2 3 30
§ 100 “é 20

50 5 10

0 0
Binary TrieBinary Trie Multibit Multibit Multibit Multibit Multibit Multibit Linear Linear Linear Linear Grid of Trie Grid of Trie Grid of Trie Grid of Trie
IPv4 IPv6 Trie (k=2) Trie (k=2) Trie (k=3) Trie (k=3) Trie (k=4) Trie (k=4) Search Search Search Search fw1-500 fwl-1k fwl-2k fwl-4k
IPv4 IPv6 IPv4 IPv6 IPv4 IPv6 fw1-500 fwl-1k fwl-2k fwi-4k
Kernels Kernels

2/3/16 University of Massachusetts Lowell 12

Throughput (Gbps)

50.00

5.00

~-#-Throughput with ideal |0 IPv4
500.00 —A&Throughput with Socket IPv4

-@-Throughput with Socket IPv6

10

Evaluation: Results

* Throughputand Latency on a Low-end GPU (GT 650M)

GPU Lookup Throughput Comparison with Different Batch Sizes

503.4
390.98 446.22

315.15
Throughput with Ideal 10 IPv6

265.45 258.42 289.04 302.77

21.24

19.82 1827

1735 - 12.75

10.87 11.03

100 1000
Batch Size (Number of Packets)

10000

2/3/16

1 520.09 543.16

358.46 381.82

582.16

390.54

11.36

100000

Average Latency (ms)

10.000

1.000

0.100

0.010

0.001

10

University of Massachusetts Lowell

GPU Lookup Latency Comparison with Different Batch Sizes

2841 3634 620

1.793
0.918 4.936
0.536

—*—Average Latency IPv4
0.013

0.020 Average Latency IPv6
0.011

100 1000 10000 100000
Batch Size

13

Evaluation: Results

* Throughput Comparison between Different GPUs

Throught Comparison Between Different GPUs

100.00
33.13
26.69 5410

2122 21.24 2076 ,/29.71 : 23.16 22.84 22.18 21.05
— 18.50
A 1980 &8 21‘;'952 22.86 21.75
o . .) : 20.07 19.36

17.35 19.19 16.04 14,52 13.76 18.64
= 15.92 18.27 12,70 11,78 11.36
3 10.00 8.28 15.38 13.51 12.75
& 10.87 10.4
= 8.09 2.64 9.02
= 4.42
= Throughput with Socket |0 IPv4 GT 650m

510 4.21 Throughput with Socket 10 IPv4 K40m
Throughput with Socket IO IPv6 GT 650m
2.05
Throughput with Socket |0 IPv6 K40m
1.00
10 100 1000 10000 100000

Batch Size

Conclusion & Future Work

* PAGPU tool provides a viable way to map P4 code onto GPU target.

* GPU is a promising target for P4 to achieve high throughput and low
latency forwarding.

* Integrate P4 table dependency to PAGPU tool
 Study the possibility of optimized GPU kernel auto generation.
* Implement GPU kernels for more functionalities, e.g. OpenFlow.

That’s All

2/3/16

University of Massachusetts Lowell

16

