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Background	&	Motivation

• P4	– Programming	Protocol-independent	Packet	Processor
• P4	enables	programmability	of	network	data	plane
• Software-based	routing	and	forwarding:
• Programmability	↑
• Line	rate	↓

• P4	hardware	targets:
• CPU,	NPU,	reconfigurable	switches,	iNICs, FPGA,	etc.
• GPGPU	potentiality?	– Hundreds/thousands	of	cores,	SIMD	architecture, high
memory bandwidth,mature parallel programming environment.	
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Contributions

• P4-to-GPU:	provide	a	viable	way	to	map	a	portion	of	the	P4	code	onto	
GPU	target.
• Acceleration:	design	a	heterogeneous	framework	with	CPU	and	GPU	
to	accelerate	performance.
• Optimization:	optimize lookup and classification kernels on GPU and
explore load balancing on the CPU/GPU framework.
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P4	to	GPU:	Overview

• Mapping	P4	to	GPU	difficulties & hints
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Difficulties Hints
Lack of dedicated hardware (match+action) Take advantage ofmany cores
Inefficient kernel design leads to performance
disaster

Kernel requires optimization; auto-generated
kernel may not render good performance

Coprocessor has limitedmemory and low clock
frequency

Heterogeneous CPU/GPUarchitecture is
desired

GPU is good at high parallelism (table lookup,
matching…); bad at dependency and branching
(parsing, statemachine…)

Only offload parallelizable code to GPU.



P4	to	GPU:	Software	Stack

• Partially	mapping
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P4	to	GPU:	Design

• Three	steps	of	mapping:
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Step	1:	P4	intermediate	representation	preparation
Step	2:	GPU kernel	configuration	generation
Step	3:	GPU kernel	initialization



P4	to	GPU:	Code	Diagram

• The	GPU kernel	
conf parser:
• Parse	h.p4_tables	
etc.	in	IR	to	obtain	
P4 table	conf
• Find	the	order	of	
tables	*	from	the	
control	flow.
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*	Sequential tables for now

...

table ipv4_lpm {

  reads {

    ipv4.dstAddr: lpm;

  }

  actions {

    set_nhop;

    _drop;

  }

  size: 1024;

}

...

1.p4_:ables

\__2pv4_lp4

   \__4a:c1: lp4

   \__s2ze: 1 24

\__0orwar.

   \__4a:c1: exac:

...

1.p4_ac:2o5s

...

P4 Program

P4 IR

Kernel Configuration
LPM Ker5el

{ s2ze: 1 24

  02el.: .s:A..r

  4a:c1: se:_51op

  5o:_4a:c1: _.rop

...... A

Class202er Ker5el

{ s2ze: 512

  02el.: 51op_2pv4

  4a:c1_:ype: exac:

  4a:c1: se:_4ac

  5o:_4a:c1: _.rop

...... A

Parser

LPM Kernel

__device__ 

lpm_lookup (...)

{...}

Initialize
HLIR

Classifier Kernel

__device__ 

classifier (...)

{...}

Step 1 Step 2
Step 3



P4 to GPU: GPU Kernel Design

• LPM	lookup	kernel:
• Used	for	“ipv4_lpm”	table
• Designed	for	both	IPv4	and	IPv6
• Baseline	kernel:	linear	search
• Optimized	kernel:	binary	trie and	k-stride	multibit trie

• Rule	based	classifier	kernel:
• Used	for	“forward”	and	“send_frame”	 table
• Designed	for	both	exact	and	wildcard	match
• Baseline	kernel:	linear	search
• Optimized	kernel:	grid-of-tries

2/3/16 University	of	Massachusetts	Lowell 8

Binary Trie Multibit Trie

Grid-of-trie



P4	to	GPU:	GPU	Kernel	Design

• Latency	hiding:
• Batch	processing:	reduce	number	of	data	copying
• 2D	pipelining:	

• Memory	tweaking:
• Use	texture	memory	for	storing	lookup	tables
• Use	mapped	memory	from	host	to	device	to	reduce	data	movement	overhead

• Data	structure:
• Hash	tables/tries	are	not	GPU-favored	data	structure
• Trie-to-array	vectorization
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Architectural Design

• Components:	CPU,	main	memory,	GPU
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Step	1:	receiving
Step	2:	batching
Step	3:	load-balancing	and	
offloading
Step	4:	results buffering
Step	5:	forwardingactions



Evaluation:	Setup

• Experiment	platform:

• Dataset:
• RouteView(Jan	2015)	IPv4	(550,000	entries),	IPv6	(20,000	entries)
• ClassBench:	a	set	of	filters,	e.g.	FW	and	ACL

• Traffic	generation:
• Random	generator:	assumes no packet IO overhead
• Click	Modular	Router:	emulated packet sending/receiving(socket-based)
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Platform 1 Platform	2
CPU Intel	Quad Core	i7-3610	QM Intel	Xeon	ES-2643	– 6	cores
Main	Memory 8	GB 16	GB
GPU NVidia	GT	650	M	/	384	cores Telsa K40m	/	2880	cores



Evaluation:	Results

• Lookup	Kernel
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• Classifier	Kernel



Evaluation:	Results

• Throughput	and	Latency	on	a	Low-end	GPU	(GT	650M)

2/3/16 University	of	Massachusetts	Lowell 13



Evaluation:	Results
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• Throughput	Comparison	between	Different	GPUs
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Conclusion	&	Future	Work

• P4GPU	tool	provides	a	viable	way	to	map	P4	code	onto	GPU	target.
• GPU	is	a	promising	target	for	P4	to	achieve	high	throughput	and	low	
latency	forwarding.
• Integrate	P4	table	dependency	to	P4GPU	tool
• Study	the	possibility	of	optimized	GPU	kernel	auto	generation.	
• Implement	GPU	kernels	for	more	functionalities,	e.g.	OpenFlow.
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That’s	All
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