
P4GPU:	Mapping	a	P4	Program	
onto	a	CPU-GPU	Heterogeneous	
Architecture	for	Acceleration	

Peilong Li	and	Yan	Luo
ACANETS	Lab	(http://acanets.uml.edu/)
University	of	Massachusetts	Lowell

2/3/16 University of Massachusetts Lowell 1

Background	&	Motivation

• P4	– Programming	Protocol-independent	Packet	Processor
• P4	enables	programmability	of	network	data	plane
• Software-based	routing	and	forwarding:
• Programmability	↑
• Line	rate	↓

• P4	hardware	targets:
• CPU,	NPU,	reconfigurable	switches,	iNICs, FPGA,	etc.
• GPGPU	potentiality?	– Hundreds/thousands	of	cores,	SIMD	architecture, high
memory bandwidth,mature parallel programming environment.	

2/3/16 University	of	Massachusetts	Lowell 2

Contributions

• P4-to-GPU:	provide	a	viable	way	to	map	a	portion	of	the	P4	code	onto	
GPU	target.
• Acceleration:	design	a	heterogeneous	framework	with	CPU	and	GPU	
to	accelerate	performance.
• Optimization:	optimize lookup and classification kernels on GPU and
explore load balancing on the CPU/GPU framework.

2/3/16 University	of	Massachusetts	Lowell 3

P4	to	GPU:	Overview

• Mapping	P4	to	GPU	difficulties & hints

2/3/16 University	of	Massachusetts	Lowell 4

Difficulties Hints
Lack of dedicated hardware (match+action) Take advantage ofmany cores
Inefficient kernel design leads to performance
disaster

Kernel requires optimization; auto-generated
kernel may not render good performance

Coprocessor has limitedmemory and low clock
frequency

Heterogeneous CPU/GPUarchitecture is
desired

GPU is good at high parallelism (table lookup,
matching…); bad at dependency and branching
(parsing, statemachine…)

Only offload parallelizable code to GPU.

P4	to	GPU:	Software	Stack

• Partially	mapping

2/3/16 University	of	Massachusetts	Lowell 5

P4	to	GPU:	Design

• Three	steps	of	mapping:

2/3/16 University	of	Massachusetts	Lowell 6

P4
Program

HLIR

P4 IR

Python
IR

Parser

LPM Lookup
Configuration

Classifier
Configuration

LPM Lookup
Engine

Classifier
Engine

Modularized
GPU Kernels

Step 1 Step 2 Step 3

Step	1:	P4	intermediate	representation	preparation
Step	2:	GPU kernel	configuration	generation
Step	3:	GPU kernel	initialization

P4	to	GPU:	Code	Diagram

• The	GPU kernel	
conf parser:
• Parse	h.p4_tables	
etc.	in	IR	to	obtain	
P4 table	conf
• Find	the	order	of	
tables	*	from	the	
control	flow.

2/3/16 University	of	Massachusetts	Lowell 7

*	Sequential tables for now

...

table ipv4_lpm {

 reads {

 ipv4.dstAddr: lpm;

 }

 actions {

 set_nhop;

 _drop;

 }

 size: 1024;

}

...

1.p4_:ables

__2pv4_lp4

 __4a:c1: lp4

 __s2ze: 1 24

__0orwar.

 __4a:c1: exac:

...

1.p4_ac:2o5s

...

P4 Program

P4 IR

Kernel Configuration
LPM Ker5el

{ s2ze: 1 24

 02el.: .s:A..r

 4a:c1: se:_51op

 5o:_4a:c1: _.rop

...... A

Class202er Ker5el

{ s2ze: 512

 02el.: 51op_2pv4

 4a:c1_:ype: exac:

 4a:c1: se:_4ac

 5o:_4a:c1: _.rop

...... A

Parser

LPM Kernel

__device__

lpm_lookup (...)

{...}

Initialize
HLIR

Classifier Kernel

__device__

classifier (...)

{...}

Step 1 Step 2
Step 3

P4 to GPU: GPU Kernel Design

• LPM	lookup	kernel:
• Used	for	“ipv4_lpm”	table
• Designed	for	both	IPv4	and	IPv6
• Baseline	kernel:	linear	search
• Optimized	kernel:	binary	trie and	k-stride	multibit trie

• Rule	based	classifier	kernel:
• Used	for	“forward”	and	“send_frame”	 table
• Designed	for	both	exact	and	wildcard	match
• Baseline	kernel:	linear	search
• Optimized	kernel:	grid-of-tries

2/3/16 University	of	Massachusetts	Lowell 8

Binary Trie Multibit Trie

Grid-of-trie

P4	to	GPU:	GPU	Kernel	Design

• Latency	hiding:
• Batch	processing:	reduce	number	of	data	copying
• 2D	pipelining:	

• Memory	tweaking:
• Use	texture	memory	for	storing	lookup	tables
• Use	mapped	memory	from	host	to	device	to	reduce	data	movement	overhead

• Data	structure:
• Hash	tables/tries	are	not	GPU-favored	data	structure
• Trie-to-array	vectorization

2/3/16 University	of	Massachusetts	Lowell 9

H2D D2H
Kernel

H2D D2H
Kernel

H2D
Kernel

D2H

H2D D2H
Kernel

H2D D2H
Kernel

H2D
Kernel

D2H

Host
Device Kernel

H2D

Device
Host

Stream 1

Stream 2

Architectural Design

• Components:	CPU,	main	memory,	GPU

2/3/16 University	of	Massachusetts	Lowell 10

Step 1

Memory

Texture Memory
for tables GPU

Step 2

Step 3
Step 4

Step 4

Step 5

Load Balancer CPU

Packet
Buffers

Step 3

Result
Buffers

Mapped
Memory

Input
Packets

Global Memory
for packets

Output
Packets

Step	1:	receiving
Step	2:	batching
Step	3:	load-balancing	and	
offloading
Step	4:	results buffering
Step	5:	forwardingactions

Evaluation:	Setup

• Experiment	platform:

• Dataset:
• RouteView(Jan	2015)	IPv4	(550,000	entries),	IPv6	(20,000	entries)
• ClassBench:	a	set	of	filters,	e.g.	FW	and	ACL

• Traffic	generation:
• Random	generator:	assumes no packet IO overhead
• Click	Modular	Router:	emulated packet sending/receiving(socket-based)

2/3/16 University	of	Massachusetts	Lowell 11

Platform 1 Platform	2
CPU Intel	Quad Core	i7-3610	QM Intel	Xeon	ES-2643	– 6	cores
Main	Memory 8	GB 16	GB
GPU NVidia	GT	650	M	/	384	cores Telsa K40m	/	2880	cores

Evaluation:	Results

• Lookup	Kernel

2/3/16 University	of	Massachusetts	Lowell 12

• Classifier	Kernel

Evaluation:	Results

• Throughput	and	Latency	on	a	Low-end	GPU	(GT	650M)

2/3/16 University	of	Massachusetts	Lowell 13

Evaluation:	Results

2/3/16 University	of	Massachusetts	Lowell 14

• Throughput	Comparison	between	Different	GPUs

18.50 21.22 21.24 20.76
18.89

15.56 14.52 13.76 12.70 11.78 11.36

2.10

4.42

8.28

16.04

33.13
26.69 24.10 23.16 22.84 22.18 21.05

15.92 17.35 19.19
19.82

18.27
13.51 12.75

10.87 10.4 9.64 9.02

2.05

4.21

8.09

15.38

29.71
24.92 22.86 21.75 20.07 19.36 18.64

1.00

10.00

100.00

10 100 1000 10000 100000

Th
ro
ug
hp
ut
	(G

bp
s)

Batch	Size

Throught	Comparison	Between	Different	GPUs

Throughput	with	Socket	IO	IPv4	GT	650m

Throughput	with	Socket	IO	IPv4	K40m

Throughput	with	Socket	IO	IPv6	GT	650m

Throughput	with	Socket	IO	IPv6	K40m

Conclusion	&	Future	Work

• P4GPU	tool	provides	a	viable	way	to	map	P4	code	onto	GPU	target.
• GPU	is	a	promising	target	for	P4	to	achieve	high	throughput	and	low	
latency	forwarding.
• Integrate	P4	table	dependency	to	P4GPU	tool
• Study	the	possibility	of	optimized	GPU	kernel	auto	generation.	
• Implement	GPU	kernels	for	more	functionalities,	e.g.	OpenFlow.

2/3/16 University	of	Massachusetts	Lowell 15

That’s	All

2/3/16 University	of	Massachusetts	Lowell 16

