Automatically Generating and Tuning GPU Code
for Sparse Matrix-Vector Multiplication
from a High-Level Representation

Dominik Grewe

Institute for Computing Systems Architecture
School of Informatics
University of Edinburgh, UK

dominik.grewe@ed.ac.uk

ABSTRACT

We propose a system-independent representation of sparse
matrix formats that allows a compiler to generate efficient,
system-specific code for sparse matrix operations. To show
the viability of such a representation we have developed a
compiler that generates and tunes code for sparse matrix-
vector multiplication (SpMV) on GPUs. We evaluate our
framework on six state-of-the-art matrix formats and show
that the generated code performs similar to or better than
hand-optimized code.

Categories and Subject Descriptors

D.3.4 [Programming Languages]|: Processors— Code gen-
eration, Compilers, Optimization; C.1.2 [Processor Archi-
tectures]: Multiple Data Stream Architectures

General Terms

Experimentation, Languages, Performance

Keywords

Code generation, automatic tuning, GPGPU, OpenCL, CUDA,

SpMYV, sparse linear algebra

1. INTRODUCTION

Sparse matrices, i.e. matrices in which the majority of el-
ements are zeros, occur in many applications. A plethora
of storage formats have been proposed to efficiently perform
matrix operations involving matrices having specific struc-
ture (e.g. diagonal) or on specific hardware (e.g. GPUs). A
brief overview of common formats and formats recently pro-
posed for GPUs is given in section 2.

It is, however, rarely obvious which format is optimal for
a particular combination of the matrix operation, matrix

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GPGPU-4 Mar 05-05 2011, Newport Beach, CA, USA

Copyright 2011 ACM 978-1-4503-0569-3/11/03 ...$10.00.

Anton Lokhmotov

Media Processing Division
ARM
Cambridge, UK

anton.lokhmotov@arm.com

structure, and target hardware. Developing and maintaining
multiple code versions becomes infeasible in practice even for
a modest number of such combination.

We solve this problem by presenting a framework consist-
ing of three components:

1. a high-level representation for describing sparse matrix
formats;

2. a compiler for generating low-level code from the high-
level representation;

3. an automatic tuner for the generated low-level code.

The user describes data structures for holding the matrix
values and auxiliary data and a way of accessing the matrix
elements. Section 3 uses the Compressed Sparse Row (CSR)
format to illustrate the representation. The compiler gener-
ates either CUDA! or OpenCL? code which is then compiled
by the native compiler for execution on the GPU.

The compiler extracts information necessary for gener-
ating efficient code for basic linear algebra operations. In
this paper we focus on Sparse Matrix-Vector Multiplication
(SpMV), the most widely used sparse linear algebra opera-
tion [1]. Our compiler supports several compilation strate-
gies to provide optimal memory accesses to the sparse ma-
trix data structures. The compiler also supports generating
code using vector types for full efficiency on vector archi-
tectures. A detailed description of the code generation and
optimization for SpMV is given in section 4.

Whilst generated code often achieves similar performance
to hand-written code out-of-the-box, automatic tuning al-
lows us to find the optimal configuration for a given matrix
and hardware, such as the number of work-items working
on a matrix row in parallel, which often provides even bet-
ter performance than hand-written code. Sections 5 and
6 provide experimental evidence on the effectiveness of our
methodology on six state-of-the-art sparse matrix formats.

2. BACKGROUND

The coordinate (COO) format is a widely-used format for
representing sparse matrices (see figure 1b). Each non-zero
element and its row- and column indices are stored in arrays

"http://www.nvidia.com/cuda
*http://www.khronos.org/opencl

O O ot
Ut 00 =
OO wo

0
2
0
09 4

(a) Example matrix

values = [6 1 2 8 3 5 9 4]
colldx = [1 202321 2]
rowldx = [0 011123 3]

values = [6 1 2 8 3 59 4]
colldx = [1 202321 2]
rowPtr = [0 2 5 6 8]

(c) Compressed Sparse Row (CSR) format

5 1 = 1 2 =x
values = 2 83 colldx = 023
5 x % 2 x %
9 4 =x 1 2 %

(d) ELLPACK/ITPACK (ELL) format

Figure 1: Examples of the COO, CSR and ELL formats.

values, rowIdx and colldx, respectively. While this format
is simple and provides the basis for many portable matrix
formats it is rarely suitable for computation. Because of the
lack of structure (elements can be stored randomly) oper-
ations such as SpMV require costly synchronization when
performed in parallel.

The compressed storage row (CSR) format is a more struc-
tured format, because each row is stored in a contiguous
chunk of memory (see figure 1c). The column indices of the
non-zero elements need to be stored explicitly, but the row
indices are implicit in the position of the data value. To map
each row to its chunk of elements, the rowPtr array stores
the index of the first element in each row.

The ELLPACK/ITPACK [3] (ELL) format (see figure 1d)
is particularly suitable for vector architectures. Let n be the
maximum number of non-zero elements in a row. Then n
elements are stored for each row with rows with less than
n elements being padded with zeros. While this may add
storage overhead, it simplifies computation and eliminates
the need to store row indices as these can be computed from
the position in the data array. The values and colldx ar-
rays are stored in column-major order, hence adjacent values
belong to adjacent rows.

2.1 Related Work

SpMV on GPUs.

Sparse linear algebra is well researched [7, 8]. With the
rise of GPGPU, different formats for representing sparse
matrices have been proposed that are specifically suited for
GPUs.

Bell and Garland [1] provide an overview of some well-
known formats and also propose a new “hybrid” format: The
majority of the matrix elements are stored in the ELL format
while the remaining elements are stored in the coordinate
(COO) format. This can be beneficial when the number
of non-zero elements per row varies significantly, because it

reduces the number of explicitly stored zeros in the ELL
format.

Monakov et al. [5] introduce a modified version of ELL
where a matrix is divided into slices and each slice is sepa-
rately stored in ELL format. Combined with row reordering
to bring together rows of similar size, this can significantly
reduce the number of explicitly stored zeros. The size of the
slices, i.e. the number of rows per slice, is either fixed for
all slices or a heuristic is used to find a good size for each
slice individually. They use auto-tuning to find the optimal
configuration, e.g. the number of rows in a slice.

Choi et al. [2] propose another modification of ELL. They
divide the matrix into small, dense blocks and store each
block that contains non-zero elements contiguously. For ma-
trices with an inherent block structure this can reduce the
amount of storage and allows for some optimizations. Sim-
ilar to Monakov et al. [5] they also divide the matrix into
slices that are stored in a blocked version of the ELL format
and use row reordering to reduce storage. Choi et al. also
use auto-tuning to find, for example, the optimal block size.
Additionally they propose a model for analytically deriving
the optimal configuration.

Sparse linear algebra code generation.

We have been inspired by the work of Mateev et al. [4]
who proposed an approach for code generation of sparse lin-
ear algebra from a high-level representation. There are two
main differences between their approach and ours: First,
they used C++ classes and iterators to describe matrix for-
mats. We have also considered this approach, but found it
easier for both the compiler writer and the user to work with
a domain-specific abstract language. Second, they generated
sequential code rather than parallel code. Generating good
parallel code is fundamentally more difficult, since it requires
specific optimizations, especially when targeting GPUs.

3. EXAMPLE: REPRESENTATION OF COM-

PRESSED STORAGE ROW FORMAT

Figure 2 shows the specification of the CSR format (sec-
tion 2) in our representation language. Due to lack of space
we do not show the formal grammar of our language.

The parameters section describes basic parameters that
are needed to define data structures and how to access them.
These parameters are constant for each matrix instance.
They usually include the number of rows and columns in
the matrix as well as some format-specific parameters. In
the case of CSR, for example, the number of non-zero ele-
ments must be known.

The data section defines arrays storing the matrix val-
ues and other, auxiliary data. The array values, of type
DATA_TYPE, stores the actual data values of the non-zero
elements of the matrix. In CSR only the non-zero ele-
ments of the matrix are stored, hence the size of values is
num_nonzeros, specified in square brackets. The column in-
dices are stored in the colIdx array of the same size. Unlike
values, this array stores indices rather than matrix values,
as specified by its type. Another index array is rowPtr that
points to the beginning of each row within the values and
colldx arrays. The size of the array is num_rows + 1, with
the last element pointing behind the last matrix element.

To fully specify a matrix format, the programmer must
also describe a way of efficiently accessing the matrix el-

it HHH R R R R R
Hit# Compressed Storage Row (CSR) it
it H R R R

parameter description
parameters:

num_rows

num_cols

num_nonzeros

data storage description
data:

values [num_nonzeros] : DATA_TYPE
colldx [num_nonzeros] : INDEX_TYPE
rowPtr [num_rows + 1] : INDEX_TYPE

access description
access:
for _row in [O :
{
s = rowPtr [_row]
e = rowPtr [_row + 1]

num_rows-1]

for i in [s : e-1]
{
_col = colIdx[i]
_val = values[i]
}

}

Figure 2: Specification of the Compressed Storage Row (CSR) format.

ements. For CSR, the only efficient way of accessing the
matrix is to iterate over rows and in each row iterate over
the non-zero elements. This information is provided in the
final section of our matrix representation in figure 2. The
outer loop enumerates all row indices from 0 to num_rows-1
(inclusive) using the index variable _row. The underscore
(“”) indicates that this variable is a built-in variable that
must get assigned in any valid access description. The _row
variable identifies the row of the matrix element being ac-
cessed. Within each row, we iterate over all matrix elements
in the row identified by rowPtr. The column index _col and
the element value _val are set using the colIdx and values
arrays, respectively.

While CSR is a relatively simple format, more complex
formats have been specifically proposed for GPUs as de-
scribed in section 2.1. Our simple language can express all
these formats and more.?

4. GENERATING SPMYV CODE FOR GPUS

We have developed a compiler that takes a matrix format
description as input and generates code for sparse matrix-
vector multiplication (SpMV) on GPUs. The compiler uses
the flex and bison tools to parse the description and gener-
ate an abstract syntax tree (AST). Some transformations are
applied to the AST as described in this section before it is
passed to either the CUDA or the OpenCL backend for code
generation. While CUDA programs can only be executed on
NVIDIA GPUs, the OpenCL backend allows us to run the
code on devices from different vendors, e.g. NVIDIA and
AMD. But since most hand-written implementations are in
CUDA, we have also developed a CUDA backend to allow for
a fair comparison of our generated code to the hand-written
code. Even though our compiler has not been optimized for
performance, it only takes a few milliseconds to generate the
SpMV code.

In SpMV, a sparse matrix M is multiplied by a dense vec-
tor x to compute the resulting dense vector y, thus y = Mx.
This is done by computing the dot-product of each row in
M with x, which requires a reduction across each row of
M and hence some form of synchronization between com-

3All format specifications used in this paper can be found
at http://homepages.inf.ed.ac.uk/s0898672/spmv.

putations in a row. Because both OpenCL and CUDA only
support synchronization within a work-group,* there are ba-
sically two ways of efficiently implementing SpMV: we either
assign one work-item or multiple work-items from the same
work-group to process each row. If a single work-item works
on each row (“1IPR”), no synchronization is required. If
multiple work-items are assigned to the same row (“nIPR”),
a reduction needs to be performed across these work-items
(see section 4.4.1).

If a format does not allow for efficient random access
to rows (e.g. the coordinate format), we provide two al-
ternatives. The first only creates a single work-item and
accesses matrix elements sequentially (“SEQ”). The second
uses atomic functions to synchronize work-items assigned to
the same row (“ATOMIC”). Both options generally perform
poorly on GPUs, but may be useful for composite formats
where a matrix is divided into sub-matrices that are stored
differently, e.g. the hybrid format [1]. If only a small sub-
set of the matrix is processed inefficiently this may not hurt
performance significantly.

4.1 Optimizing memory bandwidth

Almost all sparse matrix formats proposed for SpMV on
GPUs allow accessing entire matrix rows individually. The
only exception is the hybrid format by Bell and Garland [1]
where parts of the matrix are stored in the coordinate for-
mat. Whether to use one (1IPR) or multiple work-items per
row (nIPR) depends on the memory layout of the format’s
data structures. On most GPUs it is important to “coalesce”
memory accesses, i.e. successive work-items should access
successive (and prefereably aligned) memory locations [6].
Choosing between 1IPR and nIPR follows naturally from
the data layout: For example, in CSR (see section 2.1),
the non-zero elements of a row are stored in a contiguous
chunk of memory, requiring nIPR to achieve coalescing; on
the other hand, in ELLPACK [1], the non-zero elements are
stored in column-major order, requiring 1IPR to achieve co-
alescing. Because the best compilation option follows from
the format’s data layout, we leave it to the user to make this
decision.

4An OpenCL work-group corresponds to a thread-block in
CUDA. We will use OpenCL terminology throughout this

paper.

Blocked formats, e.g. blocked ELLPACK [2], divide the
matrix in fixed-sized blocks. They also allow for accessing
rows individually, but it is more efficient to process rows in
batches of size equal to the block-height because of improved
memory accesses. Our compiler thus detects when rows are
accessed in fixed-sized blocks and generates code where a
single work-item (for 1TPR) or a set of work-items (for nIPR)
processes multiple rows.

4.2 Automatic vectorization

Because some GPUs, e.g. AMD’s Evergreen series, are
vector-based, vectorized code using OpenCL’s built-in vec-
tor data types generally improves performance on these ar-
chitectures. Depending on the number of work-items per
row, automatic vectorization works as follows:

For nIPR the compiler vectorizes the inner loop of the
computation for a single row. For the CSR format, for ex-
ample, the inner loop with iterator i will be vectorized (see
figure 2). Instead of accessing the colIdx and values arrays
one at a time, data is loaded in batches of n values where n
is the vector-width. Consequently, the loop count is reduced
by a factor of n. Our compiler refuses to vectorize code if it
cannot load the required values as a single block.

For 1IPR there are two alternatives: Vectorizing across
multiple rows or within a single row. In the former case,
instead of processing a single row, each work-item processes
one row per vector lane. However this often leads to slow-
downs over the scalar version, due to the reduced number
of work-items. We have therefore implemented the latter
case, vectorizing within a single row. Because most formats
that are compiled using 1IPR do not allow batch-access to
successive elements in a row, e.g. ELL, the memory layout
needs to be changed slightly. In the case of ELL, for exam-
ple, instead of storing one element of each row at a time, n
elements are stored together, where n is the vector-width.

4.3 Exploiting data reuse

GPUs are designed to hide memory latency by interleaving
execution of work-items. However, they also provide caches
that can be exploited to improve performance.

4.3.1 Storing the input vector as an image

A common optimization for SpMV on GPUs is to store
the input vector z as an image in texture memory, which
is cached on-chip and significantly reduces memory latency
and bandwidth when data is reused. Because elements of x
are potentially reused but the accesses are data-dependent,
using images improves overall performance. Our compiler
provides an option to specify whether the input vector should
be stored as an image or not. However, in our experiments
using images was always better.

4.3.2 Eliminating loads from the input vector

For blocked formats, the number of loads from the input
vector can be reduced, because elements in the same col-
umn of a block have to be multiplied by the same value.
Our compiler exploits this characteristic by only loading the
value once and then reusing it for all elements in a column.

Loads from the input vector can also be eliminated by
checking if the matrix value is zero. Some formats, e.g. ELL,
store some zero-elements explicitly. In these cases it may be
beneficial to check if a value is non-zero before loading the
corresponding element from the input vector. This trans-

| Card | SDK |

NVIDIA Tesla S1070 CUDA SDK 3.0/3.2
AMD Radeon HD 5970 Stream SDK 2.1

Table 1: Experimental setup. CUDA SDK 3.2 was only
used for SELL which did not compile with version 3.0. Due
to time-constraints we were not able to evaluate the other
formats with version 3.2.

formation constitutes a trade-off of additional control flow
and reduced fetches from memory. Depending on the matrix
and the format, it may or may not be a beneficial optimiza-
tion. We therefore include this compiler option in our search
space.

4.3.3 Caching matrix data

In many cases elements in data structures, e.g. matrix
values or column indices, are only accessed once. Caching
those values is thus not beneficial. However, there are some
exceptions. For example in the diagonal format, the “offset”
array stores the location of each diagonal in the matrix [1].
Because all work-items read the same value from the ar-
ray, caching can significantly improve memory performance.
We therefore introduced the __reuse keyword that allows
the user to specify arrays whose values will be reused. The
compiler will then generate code that stores the array as an
image rather than a standard buffer. Another possibility
would be to store these arrays in constant memory.

4.4 Further optimizations

4.4.1 Optimizing the reduction phase

The reduction needed for the nIPR option is implemented
as a parallel reduction, i.e. values are combined in a tree-like
fashion, taking care to avoid bank conflicts [6]. In general,
this requires a synchronization after each reduction step;
however, on some GPUs we can exploit the fact that a batch
of work-items perform in lock-step,® i.e. they execute the
same instruction at the same time. In this case, no synchro-
nization is required between such batches of work-items.

4.4.2 Loop unrolling

For small loops with a fixed iteration space loop unrolling
can improve performance. This is the case in blocked for-
mats, for example, where small loops are used to iterate over
a block. Currently our compiler always unrolls a loop if the
iteration space is statically known. However, loop unrolling
could be easily made optional to account for cases where it
is not beneficial.

S. EVALUATION METHODOLOGY

In this section we describe how we compare the generated
code to hand-written code. Furthermore, we compare vector
code to scalar code on a vector-unit based GPU, showing the
necessity for high-level descriptions to provide portability.
Table 1 shows the setup of our experimental evaluation.

5.1 Formats

We evaluated six different sparse matrix formats and com-
pared the performance of the generated code to hand-written

SNVIDIA call such a batch a “warp”, AMD a “wavefront”.

code: CSR, DIA, ELL and HYB from Bell and Garland [1],
sliced ELLPACK (SELL) from Monakov et al. [5] and blocked
ELLPACK (BELL) from Choi et al. [2]. These represent
state-of-the-art formats for hand-optimized SpMV on GPUs.
We re-evaluated the authors’ original code on our hardware
to enable a fair comparison to our generated code.

Because the hand-written code was implemented in CUDA,
we also generate CUDA code. We compare the code ver-
sions in two ways. First, we show how the performance of
the generated code compares to the hand-written code when
using the same configuration (e.g. the work-group size or the
block size for blocked formats). This shows to some extent
the “quality” of the generated code. Second, we use auto-
tuning to find the best configuration for our code, showing
the maximum available performance. While Bell and Gar-
land [1] use either fixed values or heuristics to find a good
configuration, both Monakov et al. [5] and Choi et al. [2]
also rely on auto-tuning to find the best configuration.

The time spent automatically tuning a format heavily de-
pends on the format itself. In some cases, e.g. ELL, only
very few parameters such as work-group sizes need to ex-
plored. However, for other formats, e.g. blocked formats,
the search space is significantly bigger and thus auto-tuning
is more expensive (up to one hour).

For most formats, the generated code is similar to the
hand-written code. There are two noteworthy exceptions,
however, which are described below.

The hybrid format proposed in [1] stores the majority of
the matrix in the ELL format and the remainder in the COO
format. Generally the COO format is unsuitable for GPUs,
but Bell and Garland use “segmented reduction” to speed
up the computation under the condition that the elements
stored in COO are ordered by row. We were unable to gen-
eralize this idea and thus did not use it in our compiler.
Because using both the SEQ and the ATOMIC compilation
option (section 4) did not provide good performance, we de-
cided to slightly change the hybrid format by using a mod-
ified version of CSR in conjunction with ELL: Rather than
storing each row, we only store those rows that contain non-
zero elements. Hence, when comparing the auto-generated
code of HYB to the hand-written code, note that the two
versions differ slightly.

There are two variants of the SELL format. The slices
either have a fixed height or the height varies depending
on the structure of the input matrix. Both versions are
evaluated during auto-tuning and the best one is picked for
each matrix. Each slice is stored in the ELL format, thus
1IPR generally leads to memory coalescing. With variable-
height slices, however, slices may contain a small number of
rows. In that case it is beneficial to have more work-items
than there are rows working on a slice in column-major order
to achieve memory coalescing. We therefore use a slight
modification of 1IPR for SELL with variable-height slices.
We assign one work-group to each slice and limit the height
of a slice to the size of a work-group. If the number of
rows in a slice equals the number of work-items in a work-
group, exactly one work-item operates on a single row (just
like 1IPR). If the number of rows in a slice is smaller than
the size of the work-group, however, multiple work-items
operate per row in column-major order.

5.2 Matrices

We evaluated the code on 14 different matrices used in [1].

hand-written generated (tuned) m—

DIA generated (fixed) Emmm

25
o 20 g
o 15 | i
(@]
T 10} _
G | |

oL T

Dense FEM/Cantilever

Figure 3: Performance of the generated code compared to
the hand-written code for the DIA format. Only two of the
14 matrices are suitable for this format. The performance
of the auto-generated code is almost identical to the hand-
written code.

All previous work on SpMV on GPUs used this set of ma-
trices, because it represents a wide spectrum of sparse ma-
trices typically found in applications. For some matrices
the code by Bell and Garland [1] would not produce results
for the DIA or the ELL format, because these formats were
deemed unsuitable for these matrices. In these cases we
simply skipped the evaluation of the matrix for this format.

5.3 Vectorization

We also evaluated the performance of vectorized code over
scalar code on a vector-unit based AMD GPU as described
in table 1. Here we used the OpenCL backend, because
the target platform does not support CUDA. Currently our
compiler only supports vectorization for the nIPR (multiple
work-items per row) compilation strategy. We therefore only
show results for the CSR format. We have not evaluated the
vector code on a scalar GPU yet.

6. EVALUATION RESULTS

This section presents the performance results of the code
generated by our compiler. We compare the generated ver-
sions of various format to hand-written versions and show
the benefits of vectorized code on vector-based architectures.

6.1 Evaluating the Generated Scalar Code

Figures 3 to 8 compare the performance of generated code
to hand-written code for each of the six formats described in
section 5.1. The left columns show the performance of the
hand-written code versions using either fixed values (CSR,
DIA and ELL), a heuristic (HYB) or auto-tuning (SELL
and BELL) to find a good configuration. The performance
of the auto-generated code using the same configuration is
presented in the central columns. While this allows for a di-
rect comparison between the two code versions, note that the
versions may differ slightly (especially for the HYB format).
The right columns show the performance of the generated
code using auto-tuning.

When using auto-tuning the generated code for the CSR
format (figure 4) clearly outperforms the hand-written ver-
sion. Because the best configuration for the CSR format
strongly depends on the input matrix, a fixed configuration
rarely leads to good performance. The results not only show
the benefits of auto-tuning but also the quality of the code
generated by our compiler.

The DIA format is only suitable for very specific matrices,
thus figure 3 only shows results for these matrices. The auto-

CSR hand-written generated (fixed) === generated (tuned) —

20
® 15 |
o
9 10 ,
L
O] 5 |
0 0 P R, R, R, P pS <
% T S 8 B, Y, N K K % Y % %,
() Q Z< Z- (o4 7 Z< 7, % Z. (Z %
o 7 & (@) 2 6% 8. (O %, . 9. 73
'06@ Q/)/ (/é %% 6@ /b/o /O/ OOQ So
/b& % /)6)/ °. OQ/, /@/é
.

The central bar

Figure 4: Performance of the generated code compared to the hand-written code for the CSR format.
auto-tuning, the

shows the performance of the generated code using the same configuration as the hand-written code. Using
generated code outperforms the hand-written version for all but one matrix.

ELL hand-written generated (fixed) === generated (tuned) m—
20
o 15 ,
o
9 10 g
e
0 5 ,
0 o) A &, &, &, &, S I ?
% % R Yy R B R S % R % %
2 %, %o Bn o, Ty O T, Y % z, % %
S W A %, Dy %, ey 1 %,
S % %, 8 © TS ®
8 (S 9 e B..
& Qfo,

Figure 5: Performance of the generated code compared to the hand-written code for the ELL format. The code by Bell and
Garland [1] refuses to benchmark the ELL format on some matrices it deems unsuitable for this format. The generated code

almost always outperforms the hand-written version.

HYB hand-written generated (fixed) === generated (tuned) m—
20
o 15 i
o
9 10 .
T
[©) 5 i
0 po) A A A A A Q < A <
e e, b S T N, R Ny %, S T % %, ©
Y) Z Z ge)
© %, 0, Ty A S O, oy T %y
. % % % O G, ®
8 S, (2 2 2. 8.,
8. %,

Figure 6: Performance of the generated code compared to the hand-written code for the HYB format. The central bar shows
the performance of the generated code using the heuristic in [1]. For most matrices, the generated code for our version of

HYB (see section 5.1) outperforms the hand-written one.

generated (tuned) —

BELL hand-written = generated (fixed) ===

GFLOP/s

Figure 7: Performance of the generated code compared to the hand-written code for the BELL format. The central bar shows
the performance of the generated code using the configuration found by auto-tuning in [2]. Both versions achieve comparable

performance.

hand-written generated (fixed) === generated (tuned) m—

SELL

GFLOP/s

Figure 8: Performance of the generated code compared to the hand-written code for the SELL format. The central bar shows
the performance of the generated code using the configuration found by auto-tuning in [5]. Both versions achieve comparable
performance. The only exception is the dense matrix, where using a fixed configuration for the generated code leads to poor

performance as explained in section 6.1.

CSR scalar (generated,tuned) m— vector (generated,tuned) ===
25
20 i
£
o L i
9 15
o 10 i
O]
5r i

Figure 9: Performance comparison of the generated OpenCL code for the CSR format using a scalar and a vector version. On
a vector-based GPU (AMD Radeon HD 5970) the vectorized version outperforms the scalar version by up to a factor of 4.

generated code shows comparable performance to the hand-
written version and automatic tuning is hardly beneficial.

Results for the ELL format displayed in figure 5 show that
the generated code slightly outperforms the hand-written
version. Some results for the hand-written version are miss-
ing because Bell and Garland [1] deploy a heuristic for de-
termining whether the ELL format is suitable for a given
matrix.

Figure 6 shows the results for the HYB format. It has
to be noted that rather than using the coordinate format to
store parts of the matrix, the generated code uses a variation
of CSR (as explained in section 5.1). For most matrices
the performance of the two versions is comparable, with the
generated code outperforming the hand-written version for
9 out of 14 matrices. Similarly, the performance of both
versions for the BELL format is roughly equal as presented
in figure 7.

The performance of the generated code for the SELL for-
mat often matches the performance of the hand-tuned ver-
sion, and sometimes even exceeds it. For the dense matrix
the code generated with a fixed configuration is significantly
worse than the hand-written version. This is due to a dif-
ference in the code for SELL with fixed-height slices. The
hand-written version uses potentially multiple work-items
per row, whereas the generated version always uses a sin-
gle work-item per row. Hence, the optimal configuration for
the hand-written version is a bad choice for the generated
code in this case. Auto-tuning can make up for this by find-
ing a configuration whose performance almost matches the
performance of the hand-written version.

6.2 Evaluating the Generated Vector Code

As explained in section 5.3, we compared a scalar version
of CSR to a vector version on a vector-based GPU. The per-
formance results on all 14 matrices are shown in figure 9.
For every single matrix the vector version clearly outper-
forms the scalar version, with speedups of up to a factor of
4. The average performance gains of vectorizing the code
are 1.6x (geometric mean). This shows that even though
SpMYV is a memory-bound operation, specializing the code
for a particular architecture can have significant benefits.

7. CONCLUSION

In this paper we have introduced an abstract representa-
tion language for sparse matrix formats. Given a description
of the format a compiler can generate code for various matrix
operations. This was demonstrated by developing a com-
piler that takes a format description and automatically gen-
erates code for sparse matrix vector multiplication (SpMV)
on GPUs. The generated code provides similar and some-
times even better performance compared to hand-written
code. Our framework also allows for automatically tuning
the SpMV code, which often improves performance even fur-
ther. Additionally, the format description can be used to
automatically generate vectorized code to fully exploit the
capabilities of vector-architectures.

The results given in this paper demonstrate the benefits of
our approach: providing comparable performance to hand-
written code while eliminating the need for machine-specific
tuning. This ensures that format specifications are portable
across systems, because rewriting the code is not necessary.
Currently we have only implemented a compiler generating
SpMYV code, but we believe that our format representation

language is general enough to allow for other sparse matrix
operations such as matrix-matrix multiplication.

7.1 Future Work

Our framework provides an easy way for exploring new
sparse matrix formats. To evaluate a new format one sim-
ply writes an abstract representation of the format and the
compiler is responsible for the tuning that is required for
an appropriate comparison of the new format to existing
ones. This enables efficient experimentation with new for-
mats, e.g. new hybrid formats. To simplify such experimen-
tation, it would also be helpful to automatically generate
code for converting matrices to a specified format.

The automatic tuning of code by exhaustively evaluating
the configuration space can be prohibitively expensive. For
some formats, e.g. BELL, it can take up to an hour to find
the best configuration for a given matrix. As this process
is highly matrix-dependent it needs to be repeated for ev-
ery single matrix. In practice, this is often infeasible. We
are planning to investigate the use of machine learning tech-
niques to significantly shorten this process. Machine learn-
ing could be used to both predict the most appropriate for-
mat for a matrix and then predict the optimal configuration
for this format without the need of exhaustive experiments.

Acknowledgements

The authors thank the European Network of Excellence on
High Performance and Embedded Architectures and Com-
pilation (HiPEAC) for funding Dominik Grewe’s internship
at ARM.

8. REFERENCES

[1] Nathan Bell and Michael Garland. Implementing sparse
matrix-vector multiplication on throughput-oriented
processors. In SC,; 2009.

[2] Jee W. Choi, Amik Singh, and Richard W. Vuduc.
Model-driven autotuning of sparse matrix-vector
multiply on GPUs. In PPoPP, 2010.

[3] David R. Kincaid, John R. Respess, and David M.
Young. ITPACK 2.0 user’s guide. Technical Report
CNA-150, Center for Numerical Analysis, University of
Texas, Austin, Texas, 1979.

[4] Nikolay Mateev, Keshav Pingali, Paul Stodghill, and
Vladimir Kotlyar. Next-generation generic
programming and its application to sparse matrix
computations. In ICS, 2000.

[5] Alexander Monakov, Anton Lokhmotov, and Arutyun
Avetisyan. Automatically tuning sparse matrix-vector
multiplication for GPU architectures. In HiPEAC, 2010.

[6] Shane Ryoo, Christopher I. Rodrigues, Sara S.
Baghsorkhi, Sam S. Stone, David B. Kirk, and
Wen-mei W. Hwu. Optimization principles and
application performance evaluation of a multithreaded
GPU using CUDA. In PPoPP, 2008.

[7] Richard W. Vuduc. Automatic performance tuning of
sparse matriz kernels. PhD thesis, University of
California, Berkeley, CA, USA, 2004.

[8] Samuel Williams, Leonid Oliker, Richard W. Vuduc,
John Shalf, Katherine A. Yelick, and James Demmel.
Optimization of sparse matrix-vector multiplication on
emerging multicore platforms. Parallel Computing,
2009.

