Caracal: Dynamic Translation of Runtime Environments for
GPUs

Rodrigo Dominguez
rdomingu@ece.neu.edu

Dana Schaa
dschaa@ece.neu.edu

David Kaeli
kaeli@ece.neu.edu

Department of Electrical and Computer Engineering
Northeastern University
Boston, MA

ABSTRACT

Graphics Processing Units (GPU) have become the platform
of choice for accelerating a large range of data parallel and
task parallel applications. Both AMD and NVIDIA have de-
veloped GPU implementations targeted at the high perfor-
mance computing market. The rapid adoption of GPU com-
puting has been greatly aided by the introduction of high-
level programming environments such as NVIDIA’s CUDA
C and Khronos’ OpenCL. Given the fact that CUDA C has
been on the market for a number of years, a large number of
applications have been developed in the HPC community.

In this paper we describe Caracal, our implementation of a
dynamic translation framework that allows CUDA C pro-
grams to run on alternative GPU platforms. Here we target
the AMD Evergreen family of GPUs. We discuss the chal-
lenges of compatibility and correctness faced by the trans-
lator using specific examples. We analyze the overhead of
the translator compared with the execution time of several
benchmarks. We also compare the quality of the code gen-
erated by our framework with that produced by the AMD
OpenCL library. Our dynamically translated code performs
comparably to the native OpenCL library, expands the op-
portunities for running CUDA C on new heterogeneous ar-
chitectures, and provides a vehicle for evaluating compiler
optimizations in the future.

Categories and Subject Descriptors

C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors); D.3.4 [Programming Lan-
guages]: Processors—retargetable compilers, runtime envi-
ronments

General Terms
Design, Languages, Performance

Keywords
CUDA, CAL, OpenCL, Caracal, GPGPU, PTX, IL

To appear in the Proceedings of the 4th Workshop on General Purpose Pro-
cessing on Graphics Processing Units, March 2011, Newport Beach, CA.

1. INTRODUCTION

GPUs have become the accelerator of choice in a number
of key high performance applications. GPUs can obtain
from 10x to 100x speedups in terms of execution time com-
pared to CPUs. In 2006, NVIDIA introduced the CUDA
C language[4] which lowered the threshold of entry to reap
the benefits of GPU computing. CUDA C provides a C-
like programming environment with simple extensions and
a runtime environment to allow developers to execute non-
graphics applications, called kernels, on the GPU. These
accelerators are designed to exploit the data-level and task-
level parallelism present in a wide range of applications.

As new architectures have emerged, the question of how
to program many-core processors has become more critical.
OpenCL[7] is an open standard maintained by the Khronos
group that promises portability across different GPUs, oper-
ating systems, and multicore vendors. However, the present
high performance programming environment is still under
development, forcing OpenCL developers to tune their ap-
plications specifically to the underlying architecture.

Given the reality of ever-changing hardware and evolving
language definitions, we need to move away from custom
optimizations and utilize a more portable approach to GPU
computing. To address this need, we focus on the inter-
action between the compiler and the underlying hardware.
Current compilers for GPUs (i.e., shader compilers) need to
be adapted to the new types of general purpose workloads,
while maintaining the level of performance expected for the
graphics pipeline.

In this paper we describe Caracal, an open-source framework
that dynamically translates CUDA C programs compiled
to the Parallel Thread Execution (PTX) virtual instruction
set[8] to AMD’s runtime environment for GPUs, called Com-
pute Abstraction Layer (CAL)[1]. The main contributions
of our work include:

e A framework that can be used by researchers to ex-
plore compiler optimizations and runtime techniques
that map a range of programs to different CPU/GPU
architectures.

e A comparison between two similar architectures and
runtime environments that can be used in the analysis
of GPU performance and programmability.

e A study of the challenges in dynamic translation and
code generation when moving between these two mas-
sively parallel platforms.

e A description of the characteristics of the intermediate
representations (IR) used by the compilation tools that
can influence future designs.

The rest of this paper is organized as follows: Section 2
discusses related work and motivation behind Caracal; Sec-
tion 3 describes the two architectures considered in this
work; Section 4 presents the CUDA and CAL programming
environments and compilation tools; Section 5 discusses the
Ocelot framework used in Caracal and the extension we im-
plemented for the CAL backend; Section 6 presents per-
formance results and discusses the inherent challenges that
still need to be overcome to obtain native performance with
Caracal-translated binaries.

2. RELATED WORK

This section briefly discusses some of the previous work on
translations and transformations targeted at GPU environ-
ments. In MCUDA[15], Stratton et al. propose source-to-
source transformations to map CUDA C to multicore CPUs.
They describe an algorithm to wrap kernel statements inside
thread loops and perform loop fission to preserve the seman-
tics of synchronization barriers. Their results show that the
benefits of data locality and control structure expressed in
CUDA C are transferable to CPUs.

Similarly, the Ocelot project[6, 9, 10] is a translation frame-
work that can map CUDA C to x86 CPUs. Ocelot translates
PTX to LLVM’s IR[13] and then compiles it to run on the
CPU. Ocelot is an open source project that is intended
to provide a set of binary translation tools from PTX to
several many-core architectures. It currently includes an in-
ternal representation for PTX, a PTX parser, a set of PTX
to PTX transformation passes, a PTX emulator, and a dy-
namic compiler to many-core CPUs and NVIDIA GPUs.

The Twin Peaks project[11] presents an efficient implemen-
tation of the OpenCL standard for CPUs. In this work, the
authors use setjmp and longjmp to provide barrier semantics
on the CPU and discuss a mapping of the different address
spaces in OpenCL to the CPU memory system taking into
account cache locality.

To the best of our knowledge, Caracal is the first attempt to
map CUDA C to AMD’s GPUs and compare the two run-
time environments. Our goal is to remove some of the barri-
ers imposed when porting applications developed in CUDA
C to non-NVIDIA platforms. This can be a boost to both
the CUDA community, as well as to CPU and GPU vendors
that are not presently targeted by CUDA.

3. HARDWARE ARCHITECTURE

This section describes the two GPU architectures discussed
in the paper from the point of view of IR translation. Our
discussion is focused on the AMD HD 5000 (Evergreen) and
the NVIDIA GeForce 400 (Fermi) series. We start by identi-
fying the similarities between the two architectures and pro-
ceed to highlight their differences. For clarity, we only dis-
cuss the architectural details that are relevant to the scope of

~ ~)

(" SIMD Core)

[Block 1, Warp 1 J

[Shared Memory J

v

[Interconnect]

[Global Memory]

Figure 1: Hardware organization of a GPU.

this paper. Given that our framework is adaptable to other
targets, we hope that by discussing our work on translation
between the two most popular GPU platforms, others can
use this model as a reference when considering how best to
map CUDA C to their own architecture.

GPUs architectures are designed to exploit the data-level
parallelism available in a wide range of applications. GPUs
achieve massive acceleration by dedicating most of the real
estate on-chip to data processing (versus control flow and
caches). In contrast to CPUs, which rely on caches to hide
memory latency, GPUs have hundreds of threads that can be
scheduled to hide any memory latency. GPU architectures
are characterized by simple pipelines and in-order cores,
eliminating the branch prediction logic or speculative ex-
ecution capabilities typically found on most CPUs.

Figure 1 shows the hardware organization of a GPU. It con-
sists of a scalable array of SIMD cores with several memory
address spaces: (a) an off-chip memory connected via a high-
bandwidth network (called global memory), (b) an on-chip
software-managed scratchpad (called shared memory), and
(c) a register file for local storage that is shared among the
threads executing in the core.

The threads runnning on the GPU are organized in a hier-
archical fashion, with different memory consistency models
presented at each level. The smallest schedulable unit is
called a warp (wavefront in AMD’s terminology) which is a
group of threads that share the program counter and, there-
fore, execute the same instruction in a lockstep fashion. The
memory model at this level is sequential consistency.

At the next level, a group of warps forms a block. Threads
belonging to the same block are guaranteed to execute on
the same SIMD core and can communicate through the on-
chip scratchpad for fast memory accesses. At this level, the
memory model changes to a relaxed consistency model re-

Table 1: Hardware Specifications

AMD NVIDIA
Card HD5870 | GTX480
SIMD Cores 20 15
PEs (per core) 16 32
Register File (KB) 256 128
Shared Memory (KB) 32 48
Global Memory (MB) 1024 1536
Memory Bandwidth (GB/s) 153 177
Core Clock (MHz) 850 1401
Peak,, (GFLOPS) 2720 1344
Peakq, (GFLOPS) 544 672

quiring explicit synchronization barriers.

Finally, a collection of blocks constitutes a grid whose threads
are executed across the entire array of SIMD cores in no
specific order and without synchronization. Threads from
different blocks can only communicate through the off-chip
memory using atomic instructions and memory fences. These
hierarchical levels and consistency models give the hardware
designers more flexibility and allow the architecture to scale
easily. Note that GPUs are basically designed to perform
graphics rendering, a highly data-parallel workload.

Each SIMD core is equipped with a number of Processing
Elements (PE) to execute the threads. In AMD, each PE
consists of a five-way VLIW pipeline and a branch execution
unit[3, 16]. Every PE executes the same VLIW bundle from
the current warp. Warps consist of 64 threads. Each PE can
execute five single-precision multiply-add (MAD) operations
per cycle and one double-precision MAD operation per cy-
cle. Also, one of the VLIW lanes can be used to execute
single-precision and double-precision transcendental opera-
tions. Efficient use of the AMD GPU relies on the hardware
scheduler and the compiler to do vector packing to fill all
five lanes of the pipeline.

Looking at the NVIDIA GPUs, each PE is a scalar pipeline
that can execute one single-precision MAD operation per
cycle and one double-precision MAD operation every two
cycles[4]. Some of the PEs are special units that can execute
single-precision transcendental functions. In contrast with
AMD, NVIDIA’s warp size is 32 threads.

The specifications for each GPU vary depending on the card.
Table 1 shows an example of two cards introduced in the
market around the same time and used in the experiments
of this paper.

4. PROGRAMMING ENVIRONMENT

This section presents the CUDA and CAL programming en-
vironments and associated compilation tools. NVIDIA in-
troduced CUDA C[4] to allow users to easily write code that
runs on their GPUs. CUDA C consists of a simple set of
extensions to C and a runtime library. Using CUDA C, de-
velopers can launch functions (referred to as kernels) to be
executed on the GPU.

The programmer must partition the problem as a grid of
blocks of threads when launching a kernel. Each thread can

Table 2: Address Spaces

CUDA CAL
Global Unordered Acess Views
(with pointers) (with resources)
Shared Local Data Share
Constant Constant Buffers
Parameter

use intrinsics to identify its thread number as well as other
launch configuration parameters. Figure 2a shows a kernel
that adds two arrays A and B of N floats and writes the result
to a third array C. Table 2 shows the address spaces exposed
by CUDA and CAL. We omit the local and texture address
spaces since they are outside of the scope of this paper.

Developers use the NVIDIA compiler nvcce to create an exe-
cutable that includes the kernel in IR form. The executable
calls the CUDA runtime (which in turn calls the driver) to
compile the kernel IR into machine code and launch the ap-
plication.

NVIDIA has defined an IR called PTX[8] that acts as a byte-
code and allows the hardware to evolve without having to
recompile legacy applications. This IR is just-in-time com-
piled by the driver, so only the driver needs to worry about
the actual architecture in the system. Similarly, AMD de-
fines an IR called Intermediate Language (IL)[2]. Figure 2b
and Figure 2c show the PTX and IL corresponding to the
vector addition example from Figure 2a.

Both PTX and IL allow for an unlimited number of virtual
registers and defer the register allocation to the driver. This
way most of the kernels are compiled directly into a Static
Single Assignment (SSA) form making it easier for the driver
to perform back-end optimizations.

5. TRANSLATION FRAMEWORK

Caracal is based on the Ocelot translation framework for
heterogeneous systems[6, 9, 10]. Ocelot allows CUDA C
programs to run on NVIDIA GPUs and x86 CPUs. It im-
plements the CUDA Runtime API[5] as a library that CUDA
C programs can be linked to without any source modifica-
tions. It includes an internal representation for PTX, a PTX
parser, a set of PTX to PTX transformation passes, a PTX
emulator, and a dynamic compiler to many-core CPUs and
NVIDIA GPUs.

In our work, we use the Ocelot front-end and develop a new
IR targeted to AMD GPUs. This section describes the trans-
lation of the CUDA environment implemented in Caracal.
We present the differences in the memory system, the IR
formats, and the architectural details.

5.1 Global Memory

To implement global memory, we allocate a global buffer in
CAL that we use as the global memory space and access it
within the kernel using an Unordered Access View (UAV)[1].
We declare the UAV typeless (raw) in which case it is byte-
addressable and memory operations must be doubleword-
aligned. Additionally, we declare an Arena UAV for byte
and short memory accesses and we bind it to the same buffer.

.entry vecAdd (il s 20
.param .u64 A, del_raw_uav_id(0)
.param .u64 B, del_cb ¢b0[2]
-param .u64 C, del_cb cb1[4]
-param .s32 N) del_literal 10, 4, 4, 4, 4
{ mov 10, vThreadGrpld.x
mov.ul6 rhl, ctaid.x; ’
; mov rl, ¢b0[0].x
mov.ul6 rh2, ntid.x; il 2’ 0 11
mul.wide.ul6 rl, rhl, rh2; o r‘ T ,.r
cvt.u32.ul6 12, tid.x; .mov r3, ledInGrp.x
add.u32 r3, 12, rl; ladd rd, r3, 12
1d.param.s32 4, [N]; mov 15, cb13]
. setp.le.s32 pl, r4, r3; ige 16, r4, 15
~_global void vecAdd(@pl bra Label _1; if logicalz 16
float™ A, cvt.u64.s32 rdl, r3; mov r7, rd
float* B, mul.lo.u64 rd2, rdl, 4; imul 18, 17, 10
float* C, 1d.param.u64 rd3, [A]; mov 19, cb1[0]
int N) add.u64 rd4, rd3, rd2; iadd r10, 19, 18
{ ld.global £32 f1, [rd4+0]; uav_raw_load id(0) rll, r10
o . 1d.param.u64 rd5, [B]; movir12 ;1)1[1]7
int i = blockDim.x * blockIdx.x add.u6d +d6, rdb, rd2; ; ot
iadd r13, r12, r8
+ threadldx.x; 1d.global.f32 £2, [rd6--0]; ’ T .
add 32 Py uav_raw_load id(0) rl14, r13
if (i < N) 1d.param.u64 rd7, [C]; add r15, rll, rl4
) add.u64 rd8, rd7, rd2; 'Ingz 1‘1(;’, Cbl.[QI
. . .. st.global .32 |rd8+0], £3; fadd rl7, 116, r8
Cli] = Ali] + Blif; Label 1: uav_raw_store_id(0) rl7, r15
exit; endif
} } end
(a) CUDA C (b) PTX (c) IL

Figure 2: vectorAdd example.

Caracal handles dynamic global memory allocations (i.e. cu-
daMalloc) by managing the memory in the global buffer.
We use a straightforward memory management algorithm.
UAVs support atomic operations similar to the way they are
handled in PTX.

5.2 Shared Memory

Shared memory is byte-addressable in both environments.
However, PTX allows for shared memory accesses of dif-
ferent sizes: from one byte (e.g. 1d.shared.u8) up to four
doublewords (e.g. 1d.shared.v4.u32). In IL, shared mem-
ory accesses must be aligned to a four byte boundary and
the size must always be one doubleword.

Therefore, when translating a load operation from shared
memory of size less than a doubleword, we need to extract
the correct value from the result. The same applies for a
store operation to shared memory where we have to merge
the value with the contents in memory using the appropriate
mask. This incurs an overhead of 7 IL instructions for loads
and 13 IL instructions for stores. We plan to look at ways
to reduce this overhead in future work.

PTX also provides variable declarations in shared memory
(e.g. .shared varname). These variables can be used later
as pointers (e.g. mov rl, varname). In IL, variables are not
declared at all. In this case, the translator has to manage the
layout of variables targeted for IL’s shared memory space.

5.3 Constant Memory
Besides global and shared memory, PTX also defines a con-
stant memory with an on-chip cache. CAL exposes a similar

concept called Constant Buffers (CB)[1]. However, CBs are
accessed in a non-linear way with each address consisting of
4 components (x, y, z, and w). This made translation of
constant memory accesses non-trivial and for the initial im-
plementation we mapped it to global memory (UAV). The
downside of this approach is that we lose the cache capabil-
ities of constant memory in Caracal. This remains an area
of improvement in our framework.

5.4 IR Translation

In PTX, variables can be scalars or vectors of two or four
components. However, only some instructions (mov, 1d,
st, and tex) allow vectors as operands. For all other in-
structions, vectors have to be unpacked into scalar variables.

On the AMD side, IL treats all variables as vectors of four
components and all the instructions support vector operands.
IL instructions have a rich set of modifiers to their operands
including swizzles (e.g. mov r0, ril.xxyy).

Since we are translating from an environment that does not
directly support vectors (versus AMD that support vectors
operands for all instrucitons), this is not a problem. Our
translator implements a straightforward solution mapping
each PTX scalar variable to one of the components of an
IL variable. Another option would be to apply vectoriza-
tion techniques when translating the PTX scalar variables.
This is an area of improvement that we plan to explore in the
future. Note that since both PTX and IL allow for an unlim-
ited number of virtual registers, our translation framework
doesn’t have to worry about register allocation nor spilling
code.

One of the more challenging differences between PTX and
IL is the control flow instructions. As shown in Figure 2,
PTX is based on branch instructions and labels (e.g. @p1
bra label) while IL is based on structured constructs with-
out labels (e.g. iflogicalz-endif). In order to perform cor-
rect translation and preserve proper program control flow,
we need to identify the regions of the control flow graph
(CFG) that match the constructs available in IL. Our im-
plementation uses a technique called Structural Analysis[14,
12] which has been used before for data-flow analysis in op-
timizing compilers.

The goal of Structural Analysis is to build the control tree of
the program — a tree-shaped representation where the leaf
nodes are the individual basic blocks of the CFG and the
rest of the nodes represent the constructs recognized by the
target language. The algorithm works by doing a postorder
traversal of the depth-first spanning tree, identifying regions
that correspond to the structured constructs and reducing
them into abstract nodes to build the control tree in the
process. The algorithm stops when the abstract flowgraph
is reduced to one node and this becomes the root node of
the control tree. The translator can then iterate through
the control tree starting from the root node and recursively
process each one of the nodes.

It is possible that the algorithm will not match any regions in
the graph to the associated IL constructs. In some cases, we
can perform transformations (e.g. tail duplication) to turn
the CFG into a reducible graph. The case of short-circuit
evaluation of if statements in C/C++ is a good example.
We are looking into techniques such as the one described in
[17] to solve this kind of problem. Note that the amount of
tail duplication could increase rapidly with the complexity
of the graph. This also remains an open problem and an
opportunity for future work.

In other cases, the graph could turn out to be irreducible.
In otherwords, there is no way to represent the CFG using
the constructs available in IL. In this case we are not able to
translate the program without modifications to the source
code.

5.5 Warp Size

Some applications are written to work with an specific warp
size in mind. The warp size is used explicitly in the code
to determine, for example, the dimensions of a data struc-
ture that is shared among the threads in the warp. We
consider the implications of translating between two archi-
tectures with different warp sizes.

A good example to illustrate the potential impact of these
differences is Histogram256 from the NVIDIA SDK. This
program provides an efficient implementation of a 256-bin
histogram. This application takes a set of values between 0
and 255 and finds the frequency of occurrence of each data
element. In order to achieve good performance, the CUDA
application divides the histogram into sub-histograms that
are stored in shared memory and later merged into one.

Histogram256 must resolve memory collisions from multiple
threads updating the same sub-histogram bin. However, this
application was implemented to run on GPUs that did not

have hardware support for shared memory atomics. Conse-
quently, it uses the following code to implement a software
version of an atomic operation in shared memory:

__device__ void addData256/(
volatile unsigned int *hist,
unsigned int val,
unsigned int tag)

{
unsigned int c;
do {
¢ = hist[val] & OxO7FFFFFFFU;
c=tag | (c + 1);
hist[val] = c;
} while(hist[val] '= c);
}

The application allocates a different sub-histogram to each
warp and tags the bin counters according to the last thread
that wrote to them. The parameters are a pointer to the
per-warp sub-histogram, the value from the input set, and
a tag that is unique to each thread in the warp.

A thread starts by reading the value of the counter and
masking off the tag of the previous thread. The counter
is incremented and the tag is replaced with the one from
the current thread. Then, each thread writes back the new
counter to the sub-histogram in shared memory.

In case of a collision between multiple threads from the same
warp, the hardware commits only one of the writes and re-
jects the others. After the write, each thread reads from the
same shared memory location. The threads that are able to
write the new counter exit the loop. The threads involved in
a collision whose writes are rejected execute the loop again.
The warp continues execution when all the threads exit the
loop.

It is important to allocate a different sub-histogram to each
warp so there are no race conditions. Consider the following
schedule involving two threads from different warps (indi-
cated by the numbers on the left):

Thread X
do { do {
¢ = hist[vall
c=tag | (c +1)
hist([val] = ¢
} while(hist[vall] != c)

Thread Y

¢ = hist[vall
c=tag | (c+ 1)
hist[val] = ¢

} while(hist[val] != c)

w0 W N~
~N O O

If the threads were sharing the same sub-histogram and they
were updating the same counter, this would lead to a race
condition (thread X would increment the counter twice).
Hence, it is necessary that threads from different warps do
not share sub-histograms.

We are translating from an architecture with a warp size of
32 to a target with a warp size of 64. Fortunately, since 64
is a multiple of 32, we end up with two sub-histograms per
warp, which is not a problem. However, it is worth noting

3.0
|

[] [] B Translation
O Execution
o | J—
o
o | -
o
m
g wn
[OR |
£
=
e
v
o
e
o
BIT CNV HST SCN TRN AVG

Figure 3: Translation vs Execution time.

that if we were translating from a larger to a smaller warp
size, this would have led to two warps sharing the same sub-
histogram and resulted in a race condition.

6. EXPERIMENTAL SETUP

This section presents the evaluation of the Caracal transla-
tion framework. Our test platform is a 64-bit Linux (Ubuntu
9.10) system running on an Intel Core i7-920 CPU and an
ATIT Radeon HD5870 GPU. We ran the experiments using
Ocelot (rev. 887), ATI Stream SDK 2.2, and the ATI Cat-
alyst 10.9 driver.

The benchmarks are the applications from the CUDA SDK
2.3 shown in Table 3. We ported the CUDA benchmarks to
OpenCL doing a one-to-one mapping of the language key-
words and built-in functions and preserving the same op-
timizations on both version. We verified 100% functional
correctness of our framework compared with CPU execu-
tion.

There are 3 major steps in launching a kernel in Caracal: the
IR translation, the compilation to machine code (performed
by the driver), and the actual execution of the application.
Figure 3 compares the translation time against the execution
time. The results show that, on average, the translation time
is less than 1ms, which corresponds to approximately 1/3 of
the execution time. Most of the translation time is spent
doing the structural analysis of the kernel and building the
control tree. Even though the translation is currently part
of the launching process, it would be possible to implement
an offline translator to avoid this overhead.

Figure 4 shows a comparison of the execution time of a
kernel in Caracal versus OpenCL. The time measurements
were taken using the gettimeofday system call in Linux
around the kernel launch API (calCtxRunProgramGrid in
Caracal and clEnqueueNDRangeKernel in OpenCL). Cara-
cal performs comparably to OpenCL with a small overhead

Overhead(Caracal/OpenCL)

N7 ‘ I I I
o - I
BIT CNV HST SCN TRN AVG

Figure 4: Performance evaluation of a kernel execu-
tion in Caracal versus OpenCL.

Table 4: Register Usage

Benchmark | Caracal | OpenCL
BIT 9 10
CNV 24 24
HST 14 14
SCN 7 6
TRN 4 4

of 2.5x%.

The biggest overhead comes from Convolution (4.5x). This
benchmark implements a separable convolution between a
2D image and a gaussian filter. The gaussian filter is de-
clared in constant memory and is accessed by each thread
inside a loop over the width of the filter. We credit the over-
head to the fact that Caracal maps constant memory to a
UAV (instead of a Constant Buffer) and, therefore, the fil-
ter does not get cached. In the future, we will evaluate the
benefits of mapping constant memory to Constant Buffers
in CAL.

As another metric of identifying code quality, Table 4 shows
the per-thread register usage for both the native OpenCL
kernels and the translated CUDA kernels. We collected the
register usage from the AMD Stream Profile 1.4. All the
kernels translated by Caracal have a register usage similar
to that of the OpenCL library.

Convolution is the benchmark with the highest register us-
age. Given the level of register pressure, Convolution is lim-
ited by the number of thread blocks that can run on each
SIMD core. This makes the application especially sensitive
to memory delays since it lacks enough threads to hide the
latency. This ratifies the performance overhead results pre-
sented in Figure 4.

Table 3: Benchmarks from the CUDA SDK 2.3

Benchmark Description Working Set

BIT | Bitonic Sort Sorting network of O(nlog®n) comparators. Performs | 256-integer array
best when sorting a small number of elements.

CNV | Convolution Separable convolution filter between a 2D image and a | 3072 x 3072 image
Gaussian blur filter.

HST | Histogram256 | 256-bin histogram calculation of an arbitrary-sized 8-bit | 100M-element array
data array.

SCN | Scan Scan algorithm with O(logn) steps and O(n) adds. 512-element array,
Uses a balanced tree type algorithm (scan_best). 10K blocks

TRN | Transpose Matrix transpose optimized to coalesce accesses to | 256 x 4096 matrix
shared memory and avoid bank conflicts.

7. CONCLUSIONS

In this paper we have presented the design of Caracal, an
IR-level translation system based on Ocelot. We discussed
many of the challenges faced when translating between the
NVIDIA and AMD GPU runtime environments. We ad-
dressed issues of both compatibility and correctness encoun-
tered, and presented a prototype implementation that is
functionally correct and performs comparably to the AMD
OpenCL library with a small overhead of 2.5x evaluated over
a set of benchmarks taken from the CUDA SDK. This frame-
work can be used as a vehicle by other researchers to explore
compiler optimization targeted to AMD GPUs.

8. ACKNOWLEDGMENTS

The authors would like to thank the members of the Ocelot
mailing list, especially Gregory F. Diamos and Andrew R.
Kerr, for their helpful discussions and their comments on our
work. The work presented in this paper was supported in
part by the NSF through an EEC Innovation Award (EEC-
0946463), by AMD through the AMD Strategic Academic
Partners Program, by NVIDIA through the NVIDIA CUDA
Research Centers Program, and by support by the Vice
Provost’s Office of Research at Northeastern University.

9. REFERENCES

[1] ATI Compute Abstraction Layer (CAL) Programming
Guide. http://developer.amd.com/gpu/
ATIStreamSDK/pages/Documentation.aspx.

[2] ATI Intermediate Language (IL) Specification.
http://developer.amd.com/gpu/ATIStreamSDK/
pages/Documentation.aspx.

[3] ATI Stream SDK - OpenCL Programming Guide.
http://developer.amd.com/gpu/ATIStreamSDK/
pages/Documentation.aspx.

[4] CUDA C Programming Guide.
http://www.nvidia.com/object/cuda_get.html.

[5] CUDA Reference Manual.
http://www.nvidia.com/object/cuda_get.html.

[6] Ocelot website.
http://code.google.com/p/gpuocelot/.

[7] OpenCL - The open standard for parallel
programming of heterogeneous systems.
http://www.khronos.org/opencl/.

[8] PTX: Parallel Thread Execution ISA.
http://wuw.nvidia.com/object/cuda_get.html.

[9] G. F. Diamos, A. R. Kerr, S. Yalamanchili, and
N. Clark. Ocelot: a dynamic optimization framework

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

for bulk-synchronous applications in heterogeneous
systems. In Proceedings of the 19th international
conference on Parallel architectures and compilation
techniques, PACT ’10, pages 353-364, New York, NY,
USA, 2010. ACM.

N. Farooqui, A. Kerr, G. Diamos, S. Yalamanchili,
and K. Schwan. A framework for dynamically
instrumenting gpu compute applications within gpu
ocelot. In Proceedings of the 4th Workshop on General
Purpose Processing on Graphics Processing Units,
2011. To appear.

J. Gummaraju, L. Morichetti, M. Houston, B. Sander,
B. R. Gaster, and B. Zheng. Twin peaks: a software
platform for heterogeneous computing on
general-purpose and graphics processors. In
Proceedings of the 19th international conference on
Parallel architectures and compilation techniques,
PACT ’10, pages 205-216, New York, NY, USA, 2010.
ACM.

R. Johnson, D. Pearson, and K. Pingali. The program
structure tree: computing control regions in linear
time. In PLDI °94: Proceedings of the ACM SIGPLAN
1994 conference on Programming language design and
implementation, pages 171-185, New York, NY, USA,
1994. ACM.

C. Lattner and V. Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis &
Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization:
Feedback-Directed and Runtime Optimization, CGO
'04, pages 75—, Washington, DC, USA, 2004. IEEE
Computer Society.

S. Muchnick. Advanced Compiler Design and
Implementation, chapter 7.7. Morgan Kaufmann, 1997.
J. A. Stratton, S. S. Stone, and W. mei W. Hwu.
MCUDA: An Efficient Implementation of CUDA
Kernels for Multi-core CPUs. In LCPC, pages 16-30,
2008.

J. Yang. AMD IHV Talk - Hardware and
Optimizations. http:
//sa09.idav.ucdavis.edu/docs/SAO9_AMD_IHV.pdf,
Dec 2009. ACM SIGGRAPH ASTIA 2009 Courses -
OpenCL: Parallel Programming for Computing
Graphics.

F. Zhang and E. H. D’Hollander. Using hammock
graphs to structure programs. IEEE Trans. Softw.
Eng., 30(4):231-245, 2004.

