GPU Acceleration of a Production Molecular Docking Code

Bharat Sukhwani Martin Herbordt

Computer Architecture and Automated Design Laboratory Department of Electrical and Computer Engineering Boston University <u>http://www.bu.edu/caadlab</u>

* This work supported, in part, by the U.S. NIH/NCRR

⁺ Thanks to Tom VanCourt (Altera) and Sandor Vajda and Dima Kozakov (BME at Boston University)

Why is Docking so important?

Problem: Combat the bird flu virus

Method: Inhibit its function by "gumming up" *Neuraminidase*, a surface protein, with an inhibitor

- Neuraminidase helps release progeny viruses from the cell.

Procedure*:

- Search protein surface for likely sites
- Find a molecule that binds there (and only there)

*Landon, et al. Chem. Biol. Drug Des 2008 #From New Scientist www.newscientist.com/channel/health/bird-flu 3/20/2009 GPGPU 2009, Washington DC

Overview of Molecular Docking

Docking = Modeling interactions between two molecules

Computational Task

- Finding the least energy 'pose'
 - Offset and rotation of one relative to the other
- e.g. Exhaustive search
- Usually performed in two steps
 Docking Exhaustive sampling of 3D space

 - Energy minimization

Types of Docking

Protein-Protein Docking

- Complex Structure prediction
- X-Ray method is difficult
- Typical grid size: 16³ to 128³

Protein-Ligand Docking

- Used for drug discovery
- Screening millions of drug candidates
- In-silico screening is faster and more cost effective
- Typical ligand grid size: 4³ to 16³

Modeling Rigid Docking

Rigid-body approximation Grid based computing Exhaustive 6D search

Pose score = 3D correlation sum

 $E(\alpha,\beta,\gamma) = \sum_{p} \sum_{i,j,k} R_{p}(i,j,k) \cdot L_{p}(i+\alpha,j+\beta,k+\gamma)$

FFT to speedup the correlation Reduces from $O(N^6)$ to $O(N^3 \log N)$

Image courtesy of Structural Bioinformatics Lab, BU

GPGPU 2009, Washington DC

Why Accelerate Docking?

Rigid docking

- Tens of thousands of rotations
- Each requires multiple FFTs/ IFFTs
- Typically: 10 sec per rotation
- Total runtime ~ 98 hrs!

Flexible docking adds another DoF

 Uses rigid docking as preprocessor or subroutine

Faster docking would aid in drug discovery

- Faster screening (of millions of potential drug candidates)
- Better discrimination

Computations in Rigid Docking

Rotation

Increments of 5 to 15 degrees

Grid assignment

• For each energy function

Pose score

- FFT, Modulation and IFFT
- For each energy function

Filtering top scores

• Selecting regional best scores

Overview of PIPER Docking Code

Based on rigid molecule docking

Also used as a subroutine in another program

• ClusPro docking and discrimination program

Uses several energy functions

• Most sophisticated used in this type of code

Core computation is 3D correlations (FFTs)

- For each energy function, for each rotation.
- Typical padded grid size = 128³

PIPER Energy Functions

Three energy functions

- Shape complementarity 2 terms
- Electrostatics 2 terms
- Pairwise Potential 'k' terms
 - k = 2 to 18 (usually 4)

Combined in weighted sum

'k' + 4 correlations per rotation

$$E_{shape} = E_{attr} + w_1 E_{repul}$$

$$E_{elec} = E_{born} + E_{coulomb}$$

$$E_{desol} = \sum_{k=0}^{P-1} E_{pairpot_k}$$

$$E = E_{shape} + w_2 E_{elec} + w_3 E_{desol}$$

Original PIPER Program Flow

Mapping PIPER to GPU

Correlation

- Direct correlation
- FFT Correlation
 - FFT
 - IFFT
 - Modulation

Accumulation of desolvation terms

Scoring and Filtering

Rotation and Grid assignment

• Latency hiding

Direct correlation on GPU

Replaces steps of FFT, Modulation and IFFT

• Shifting, Voxel-voxel interaction, grid summation

Each multiprocessor accesses both grids

Receptor grid Global memory

Ligand grid \implies Shared memory

Multiple correlations together

• For different energy functions

Direct correlation on GPU

Shared memory limits the ligand size

• With 4 pairwise term - 8 cubed ligand

For larger ligand grids

- Store on global memory and swap
- Degrades performance

For smaller grids - Multiple rotations

- For 4 cubed grid 8 rotations together
- Multiple computation per fetch
- 2.7x performance improvement

Direct correlation on GPU

Distribution of work among threads

- 2D Plane to thread block
- Part of the plane to thread block
- Yield similar results

FFT Correlation on GPU

Direct correlation is not attractive for large grids

Multiple FFTs in serial order

- Using NVIDIA CUFFT library
- Minimize host >> device data transfer
- Perform as many steps on GPU as possible

GPGPU 2009, Washington DC

FFT Correlation on GPU

Direct Correlation v/s FFT

Direct Correlation

Good for small ligand grids

Multiple rotations per iteration

Limits number of energy terms

Runtime $\propto~$ ligand size

Provides implicit filtering

FFT Correlation

Good for large ligands

Any number of energy terms

Runtime ∞ padded grid size

Explicit filtering required

PIPER Scoring and Filtering

Critical for overall performance

Scoring

• Multiple sets of weights

$$E = E_{shape} + w_2 E_{elec} + w_3 E_{desol}$$

Filtering

Regional Best

		X	X	X					
		X	0	X					
		X	×	X					
					X	X	X		
					X	0	X		
×	X	X			X	X	X		
×	0	X							
X	X	X							

Scoring and Filtering on GPU

Weight-sets distributed on different multiprocessors

- Weights stored in constant cache
- Multiprocessors underutilized

Naïve scheme

Negative speedup

Second scheme

- Threads store scores in shared memory
- · Serialization at the end
 - Thread 0 finds best of best
 - Also performs flagging of cells

Other schemes possible

Scoring and Filtering on GPU

0

1

1

0

(N3 entries)

0

Flagging the neighboring cells

- Serial PIPER:
- Does not fit in GPU shared memory

Solution 1 – Exclusion index array

2-3x slowdown w.r.t. host filtering

Solution 2 – Bit array on GPU global memory

- One array for each set of weights
- Achieves speedup over host filtering

(IN3 entries each)							
1	1	0	0	0	•••	1	0
0	0	0	1	1	•••	0	0

1

(100 entries)

28

45

16

5

• • •

	•	^		X	×	×
×	0	×				
X	X	X				

Speedup for different phase

	Phase	CPU Time (ms)	GPU Time (ms)	Speedup
	Forward FFT	205	9.3	22
Once per rotation, per energy grid	Modulation	10	0.01	1000
	Inverse FFT	205	11.8	17
Once per retation	Accumulation of desolvation terms	240	0.09	2667
Once per rotation	Scoring and Filtering	230	39.5	6
For 22 grids	Total runtime per rotation	9980	556	18

Correlation only Speedup: FFT v/s Direct correlation

* Baseline: FFT Correlation on single core

* Baseline: Best Correlation on single core

* Baseline: PIPER running on single core

Thank You

Actual runtimes

Correlation only runtimes – 8 correlations

Ligand grid size	Serial	GPU	FPGA
4 cubed	3600 ms	13.5 ms	2.5 ms
8 cubed	3600 ms	170 ms	20 ms
16 cubed	3600 ms	170 ms	160 ms

PIPER runtimes for 10,000 rotations – 22 correlations

Ligand grid size	Serial	GPU	FPGA
4 cubed	28 hrs.	52 min	46 min
8 cubed	28 hrs.	94 min	46 min
16 cubed	28 hrs.	94 min	87 min

Direct correlation on GPU – 8 correlations

Runtimes for different grid and block sizes

Ligand grid size	Grid Size	Block Size	Runtime
	16*16	8*8*8	245 ms
8 cubed	8*8	8*8*8	435 ms
	16*16	4*4*4	461 ms
	16*16	8*8*8	1650 ms
16 cubed	8*8	8*8*8	3120 ms
	32*32	4*4*4	2205 ms