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Main Goals

 Find data-parallel primitives and apply tuning techniques
— Adapts for portability across multiple target architectures
e E.g. Multi-cores, Clusters, and GPUs

— Adapts for performance
 E.g. optimal tile sizes, unroll factors, scheduling

— Enables productivity
« Programmer express data parallel operations
 Focus more on their algorithms

 To do this study, we need good representative applications
— Apply above to the domain of Tele-immersion
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Tele-Immersion
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Initial Strategy

* Profile existing code to find hotspots

 Restructure original code as a sequence of data parallel
operations

« EXxpress these operations using new data structures
— This enables targeting of multiple platforms

 Perform tuning on these newly restructured kernels
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Compute MNCC

e MNCC = Modified Normalized Cross Correlation
— Computes correlation of feature points across different images

 Consists of two (consecutive) data parallel operations
— Computation of correlation values
— Maximum reduction

 Very little control flow (outside of maximum reduction)
— Good candidate for GPUs
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High-Level View of MNCC

Original Code

Restructured Code

compute_mncc (data, Thread ID) {
int start = start edge for ID
int end = end edge for ID
for i=start , end {
x1= x_edge [i];
yl=y_edge [i;
for j=0, num_disp {
/I find corresponding edges in L and R cameras
x1 el = (float *)( C2LX + x1* num_disp );
yl el = (float *)( C2LY + y1* num_disp );

maxcorr(i) =0;
for j=0, NUM_DISP {

corrl=..;cor2=....;corr3 = ....;

/l find maximum correlation

corr [i* num_disp +j]=corrl + corr2 + corr3 ;

if (corr [i* num_disp +j]> maxcorr [i]) then
maxcorr [i] = corr [i* num_disp +j];

compute_mncc (data, Thread ID) {

int start = start edge for ID

int end = end edge for ID

for i=start , end {

for j=0, NUM_DISP {

x1=x_edge [i];
yl=y_edge [if;
/I find corresponding edges in L and R cameras
x1 el = (float *)& C2LX [x1* num_disp ];
y1l el =(float *)& C2LY [y1* num_disp ];

corrl = ...; corr2 = ...;corr3 =...;
corr [i* num_disp +j]=corrl + corr2 + corr3;
}

}
}

find maximum (data , Thread ID) {

int start = start edge for 1D
int end = end edge for ID
for i =start, end {
maxcorr [i] =0;
for j =0, NUM_DISP {
if (corr [i* num_disp +j]> maxcorr [i])
maxcorr [i] = corr [i* num_disp +j];
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MNCC Optimizations (GPU)

1. Start with naive (restructured) data parallel operation
— Easy port of the code to use CUDA
—  Only outer loop Is parallelized
—  Empirically search for best thread block size

2. Introduce multiple dimensions of parallelism
— No dependences across loops
—  Empirically search for best 2D thread block size

3. Transpose the thread block structure (Loop Interchange)
— Take advantage of memory coalescing
—  Empirically search the best transposed 2D thread block size

4. Utilize texture memory as a hardware cache

—  Frequent 2D table lookups UP[!Hﬂ """Uis
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Compute Homogen

 Data Parallel routine
 Apply similar restructuring techniques as in MNCC

e Lots of control flow

— Consists of many divergent branches
* Very input dependent

— Potentially bad candidate for GPU

— Good for CPUs using dynamic scheduling
e Load imbalance
 Qverdecomposition will help here
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Homogen Optimizations (GPU)

1. Start with naive data parallel implementation
— Same as MNCC

2. Utilize texture memory
— Same as MNCC

3. Compiler flags
— Nvcc compiler flag —maxregcount #

— Beneficial impact on performance by forcing compiler to spill
registers earlier
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Initial Results

e Test Platform 1.
— Intel 4-Core Penryn 2.83ghz
— 4GB memory/6MB L2 cache
— Nvidia GTX280 (Cuda 2.0)
— Intel ICC 10.1 Compiler/MS Visual C++

e Test Platform 2:
— 4x6-Core Intel Dunnington Xeon 2.40ghz
— 48GB memory/12MB L3 cache
— Intel ICC 10.1
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Compiler Results (4-Core Intel)

 Original Code
— Microsoft Visual C++: 20fps
— Intel ICC 10.1: 31fps

 Up to 35% speedup just from switching compilers
— Mostly due to auto-vectorization
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MNCC GPU Optimization Trend
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MNCC Results (CPU)
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Optimized MNCC Results

24-Core Intel vs Nvidia GTX280 GPU
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Homogen GPU Optimization Trend
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Homogen Results (CPU)
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Optimized Homogen Results

24-Core Intel vs Nvidia GTX280 GPU
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Overall Results (Modified)
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Work Iin progress

 Port kernels to use new data structures (HTAS)
— HTA = Hierarchically Tiled Array
— Facilitates locality and parallelism
— Provides a “map” primitive

 Performs a user-defined operation on an element-by-element or tile-by-tile
granularity

— Encapsulate parallelism from programmer

— Target for multiple classes of parallel architectures
 E.g. multi-cores, clusters, GPUs

e Add GPU backend to HTAS
UPCRC lllinois

Universal Parallel Computing
Research Center

—/////Il I



Work Iin progress (cont.)

* Investigation of parallelization of Delaunay triangulation
— K. Pingall, et. al (Galois)

 Further GPU tuning of Homogen in progress

 Adding empirical auto-tuning framework
— Tune for performance on multi-cores and GPUSs

e ook at future architectures such as Intel's Larabee
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Conclusions

 Good performance from restructuring and tuning the
kernels

 Switching compilers leads to large performance
Improvements

 Good scalability
— For both large multi-cores and GPU platforms
— GPU implementation of MNCC is up to 2x faster than a 24-core

* New bottlenecks appear after original optimizations
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Questions?
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Thread Block Size Impact on MNCC
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Compute Kernels

« MNCC and Homogen are the two most computationally
expensive sections of code (~68% total execution)

— MNCC - ~34% of total execution time
— Compute Homogen - ~34% of total execution time

» Delaunay Triangulation is purely sequential
— Parallel implementations exist (K. Pingali et. al)
— Becomes bottleneck as MNCC is improved
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User Defined Operations

hmap( F(), X, Y)
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Compute MNCC (cont.)

* We need to restructure original MNCC code

— Allows for Hmap on element-by-element, or tile-by-tile
e This can exploit more parallelism

— Kernels are now simpler and easier to understand
— Simpler code can possibly enable more compiler optimizations

 Perform traditional compiler optimizations on the kernels
— Converting code to perfectly nested loops

— Changing pointer arithmetic to array subscripts
 Benefits readability, but might worsen performance

— Loop fusion

— Code movement . -
o UPCRC lllinois
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Compute MNCC Restructuring

Original MNCC Restructured MNCC

compute_mncc(data, Thread 1D) { compute_mncc(data, Thread 1D) {
int start = start of range for ID int start = start of range for ID
int end = end of range for ID int end = end of range for ID
for 1 = start, end for 1 = start, end

for J = 0, NUM_DISP {
for J = 0, NUM_DISP {
corr_vals(l * NUM_DISP + J) = ..
by by

for J = 0, NUM_DISP { }
corr_vals(l * NUM_DISP + J) = .. find_maximum(data, Thread 1D) {
b int start = start of range for ID
find maximum value and index int end = end of range for ID
} for 1 = start, end

for J = O,NUM_DISP {

}

find maximum value and iIndex

UPCAC Illinois

Universal Parallel Gomputing
Research Center

- I




Hmap conversion

Call hmapReduce(MAX(), DATA)

Call hmap(ComputeMNCC(), DATA)
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Overall Results (Original)
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HTA Data Structure
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