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Main Goals
• Find data-parallel primitives and apply tuning techniques

– Adapts for portability across multiple target architectures
• E.g. Multi-cores, Clusters, and GPUs

– Adapts for performance
• E.g. optimal tile sizes, unroll factors, scheduling

– Enables productivity
• Programmer express data parallel operations
• Focus more on their algorithms

• To do this study, we need good representative applications
– Apply above to the domain of Tele-immersion
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Tele-Immersion
site 1

site 2

Photo courtesy of Prof. Ruzena Bajcsy.

site 3
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Tele-Immersive Environment
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Initial Strategy
• Profile existing code to find hotspots
• Restructure original code as a sequence of data parallel 

operations
• Express these operations using new data structures

– This enables targeting of multiple platforms
• Perform tuning on these newly restructured kernels
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Overall Flow of TI Code
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Compute MNCC
• MNCC = Modified Normalized Cross Correlation

– Computes correlation of feature points across different images
• Consists of two (consecutive) data parallel operations

– Computation of correlation values
– Maximum reduction

• Very little control flow (outside of maximum reduction)
– Good candidate for GPUs
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High-Level View of MNCC
Original Code

compute_mncc (data , Thread ID) {
int start = start edge for ID
int end = end edge for ID
for i=start , end {

x1= x_edge [i];
y1= y_edge [i];
for j=0, num_disp  {

// find corresponding edges in L and R cameras
x1_eL = ( float *)( C2LX + x1* num_disp );
y1_eL = ( float *)( C2LY + y1* num_disp );
...

}
...
maxcorr(i) =0;
for j=0, NUM_DISP {

...
corr1 = ...; corr2 = ….; corr3 = ….;
// find maximum correlation
corr [i* num_disp +j]= corr1 + corr2 + corr3 ;
if ( corr [i* num_disp +j]> maxcorr [i]) then

maxcorr [i] = corr [i* num_disp +j];
}

}
}

Restructured Code
compute_mncc (data , Thread ID) {

int start = start edge for ID
int end = end edge for ID
for i=start , end {

for j=0, NUM_DISP {
x1= x_edge [i];
y1= y_edge [i];
// find corresponding edges in L and R cameras
x1_eL = ( float *)& C2LX [x1* num_disp ];
y1_eL = ( float *)& C2LY [y1* num_disp ];
...
corr1 = ...; corr2 = ...;corr3 =...;
corr [i* num_disp +j]= corr1 + corr2 + corr3 ;

}
}

}

find_maximum (data , Thread ID) {
int start = start edge for ID
int end = end edge for ID
for i = start , end {

maxcorr [i] =0;
for j = 0, NUM_DISP {

if ( corr [i* num_disp +j]> maxcorr [i])
maxcorr [i] = corr [i* num_disp +j];

}
}

}
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MNCC Optimizations (GPU)
1. Start with naïve (restructured) data parallel operation

– Easy port of the code to use CUDA
– Only outer loop is parallelized
– Empirically search for best thread block size

2. Introduce multiple dimensions of parallelism
– No dependences across loops
– Empirically search for best 2D thread block size

3. Transpose the thread block structure (Loop Interchange)
– Take advantage of memory coalescing
– Empirically search the best transposed 2D thread block size

4. Utilize texture memory as a hardware cache
– Frequent 2D table lookups
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Compute Homogen
• Data Parallel routine
• Apply similar restructuring techniques as in MNCC
• Lots of control flow 

– Consists of many divergent branches
• Very input dependent

– Potentially bad candidate for GPU
– Good for CPUs using dynamic scheduling

• Load imbalance
• Overdecomposition will help here
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Homogen Optimizations (GPU)
1. Start with naïve data parallel implementation

– Same as MNCC
2. Utilize texture memory

– Same as MNCC
3. Compiler flags

– Nvcc compiler flag –maxregcount # 
– Beneficial impact on performance by forcing compiler to spill 

registers earlier
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Initial Results
• Test Platform 1:

– Intel 4-Core Penryn 2.83ghz
– 4GB memory/6MB L2 cache
– Nvidia GTX280 (Cuda 2.0)
– Intel ICC 10.1 Compiler/MS Visual C++

• Test Platform 2:
– 4x6-Core Intel Dunnington Xeon 2.40ghz
– 48GB memory/12MB L3 cache
– Intel ICC 10.1 
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Compiler Results (4-Core Intel)
• Original Code

– Microsoft Visual C++: 20fps
– Intel ICC 10.1: 31fps

• Up to 35% speedup just from switching compilers
– Mostly due to auto-vectorization
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MNCC GPU Optimization Trend

15



MNCC Results (CPU)
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Optimized MNCC Results
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Homogen GPU Optimization Trend
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Homogen Results (CPU)
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Optimized Homogen Results
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Overall Results (Modified)
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Work in progress
• Port kernels to use new data structures (HTAs)

– HTA = Hierarchically Tiled Array
– Facilitates locality and parallelism
– Provides a “map” primitive

• Performs a user-defined operation on an element-by-element or tile-by-tile 
granularity

– Encapsulate parallelism from programmer
– Target for multiple classes of parallel architectures

• E.g. multi-cores, clusters, GPUs

• Add GPU backend to HTAs
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Work in progress (cont.)
• Investigation of parallelization of Delaunay triangulation

– K. Pingali, et. al (Galois)
• Further GPU tuning of Homogen in progress
• Adding empirical auto-tuning framework

– Tune for performance on multi-cores and GPUs
• Look at future architectures such as Intel’s Larabee
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Conclusions
• Good performance from restructuring and tuning the 

kernels
• Switching compilers leads to large performance 

improvements
• Good scalability

– For both large multi-cores and GPU platforms
– GPU implementation of MNCC is up to 2x faster than a 24-core

• New bottlenecks appear after original optimizations
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Questions?
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Backup Slides
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Thread Block Size Impact on MNCC
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Post-processing
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Compute Kernels
• MNCC and Homogen are the two most computationally 

expensive sections of code (~68% total execution)
– MNCC ~34% of total execution time
– Compute Homogen ~34% of total execution time

• Delaunay Triangulation is purely sequential
– Parallel implementations exist (K. Pingali et. al)
– Becomes bottleneck as MNCC is improved
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User Defined Operations
hmap( F(), X, Y)

X

F()

Y Y

F()
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Compute MNCC (cont.)
• We need to restructure original MNCC code

– Allows for Hmap on element-by-element, or tile-by-tile
• This can exploit more parallelism

– Kernels are now simpler and easier to understand
– Simpler code can possibly enable more compiler optimizations

• Perform traditional compiler optimizations on the kernels
– Converting code to perfectly nested loops
– Changing pointer arithmetic to array subscripts

• Benefits readability, but might worsen performance
– Loop fusion
– Code movement
– Dead code elimination
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Compute MNCC Restructuring

Original MNCC
compute_mncc(data, Thread ID) {

int start = start of range for ID

int end = end of range for ID
for I = start, end

…
for J = 0, NUM_DISP {

…
}

for J = 0, NUM_DISP {

…
corr_vals(I * NUM_DISP + J) = …

}
find maximum value and index

}

Restructured MNCC
compute_mncc(data, Thread ID) {

int start = start of range for ID

int end = end of range for ID
for I = start, end

for J = 0, NUM_DISP {
…

corr_vals(I * NUM_DISP + J) = …
}

}
find_maximum(data, Thread ID) {

int start = start of range for ID
int end = end of range for ID

for I = start, end
for J = 0,NUM_DISP {

..

}
find maximum value and index

}
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Hmap conversion

Call hmap(ComputeMNCC(), DATA)

Call hmapReduce(MAX(), DATA)
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Overall Results (Original)
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Multicore

Locality

Distributed

HTA Data Structure
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