
Optimization of Tele-Immersion Codes

Albert Sidelnik, I-Jui Sung, Wanmin Wu, 
María Garzarán, Wen-mei Hwu, Klara Nahrstedt, 

David Padua, Sanjay Patel
University of Illinois at Urbana-Champaign

1



Agenda
1. High-level goals
2. Tele-Immersion
3. GPU specific optimizations applied
4. Results of the optimization effort
5. Future work
6. Conclusion

2



Main Goals
• Find data-parallel primitives and apply tuning techniques

– Adapts for portability across multiple target architectures
• E.g. Multi-cores, Clusters, and GPUs

– Adapts for performance
• E.g. optimal tile sizes, unroll factors, scheduling

– Enables productivity
• Programmer express data parallel operations
• Focus more on their algorithms

• To do this study, we need good representative applications
– Apply above to the domain of Tele-immersion

3



Tele-Immersion
site 1

site 2

Photo courtesy of Prof. Ruzena Bajcsy.

site 3

4



Tele-Immersive Environment

5



Initial Strategy
• Profile existing code to find hotspots
• Restructure original code as a sequence of data parallel 

operations
• Express these operations using new data structures

– This enables targeting of multiple platforms
• Perform tuning on these newly restructured kernels

6



Overall Flow of TI Code

7



Compute MNCC
• MNCC = Modified Normalized Cross Correlation

– Computes correlation of feature points across different images
• Consists of two (consecutive) data parallel operations

– Computation of correlation values
– Maximum reduction

• Very little control flow (outside of maximum reduction)
– Good candidate for GPUs

8



High-Level View of MNCC
Original Code

compute_mncc (data , Thread ID) {
int start = start edge for ID
int end = end edge for ID
for i=start , end {

x1= x_edge [i];
y1= y_edge [i];
for j=0, num_disp  {

// find corresponding edges in L and R cameras
x1_eL = ( float *)( C2LX + x1* num_disp );
y1_eL = ( float *)( C2LY + y1* num_disp );
...

}
...
maxcorr(i) =0;
for j=0, NUM_DISP {

...
corr1 = ...; corr2 = ….; corr3 = ….;
// find maximum correlation
corr [i* num_disp +j]= corr1 + corr2 + corr3 ;
if ( corr [i* num_disp +j]> maxcorr [i]) then

maxcorr [i] = corr [i* num_disp +j];
}

}
}

Restructured Code
compute_mncc (data , Thread ID) {

int start = start edge for ID
int end = end edge for ID
for i=start , end {

for j=0, NUM_DISP {
x1= x_edge [i];
y1= y_edge [i];
// find corresponding edges in L and R cameras
x1_eL = ( float *)& C2LX [x1* num_disp ];
y1_eL = ( float *)& C2LY [y1* num_disp ];
...
corr1 = ...; corr2 = ...;corr3 =...;
corr [i* num_disp +j]= corr1 + corr2 + corr3 ;

}
}

}

find_maximum (data , Thread ID) {
int start = start edge for ID
int end = end edge for ID
for i = start , end {

maxcorr [i] =0;
for j = 0, NUM_DISP {

if ( corr [i* num_disp +j]> maxcorr [i])
maxcorr [i] = corr [i* num_disp +j];

}
}

}

9



MNCC Optimizations (GPU)
1. Start with naïve (restructured) data parallel operation

– Easy port of the code to use CUDA
– Only outer loop is parallelized
– Empirically search for best thread block size

2. Introduce multiple dimensions of parallelism
– No dependences across loops
– Empirically search for best 2D thread block size

3. Transpose the thread block structure (Loop Interchange)
– Take advantage of memory coalescing
– Empirically search the best transposed 2D thread block size

4. Utilize texture memory as a hardware cache
– Frequent 2D table lookups

10



Compute Homogen
• Data Parallel routine
• Apply similar restructuring techniques as in MNCC
• Lots of control flow 

– Consists of many divergent branches
• Very input dependent

– Potentially bad candidate for GPU
– Good for CPUs using dynamic scheduling

• Load imbalance
• Overdecomposition will help here

11



Homogen Optimizations (GPU)
1. Start with naïve data parallel implementation

– Same as MNCC
2. Utilize texture memory

– Same as MNCC
3. Compiler flags

– Nvcc compiler flag –maxregcount # 
– Beneficial impact on performance by forcing compiler to spill 

registers earlier

12



Initial Results
• Test Platform 1:

– Intel 4-Core Penryn 2.83ghz
– 4GB memory/6MB L2 cache
– Nvidia GTX280 (Cuda 2.0)
– Intel ICC 10.1 Compiler/MS Visual C++

• Test Platform 2:
– 4x6-Core Intel Dunnington Xeon 2.40ghz
– 48GB memory/12MB L3 cache
– Intel ICC 10.1 

13



Compiler Results (4-Core Intel)
• Original Code

– Microsoft Visual C++: 20fps
– Intel ICC 10.1: 31fps

• Up to 35% speedup just from switching compilers
– Mostly due to auto-vectorization

14



MNCC GPU Optimization Trend

15



MNCC Results (CPU)

16



Optimized MNCC Results

17



Homogen GPU Optimization Trend

18



Homogen Results (CPU)

19



Optimized Homogen Results

20



Overall Results (Modified)

21



Work in progress
• Port kernels to use new data structures (HTAs)

– HTA = Hierarchically Tiled Array
– Facilitates locality and parallelism
– Provides a “map” primitive

• Performs a user-defined operation on an element-by-element or tile-by-tile 
granularity

– Encapsulate parallelism from programmer
– Target for multiple classes of parallel architectures

• E.g. multi-cores, clusters, GPUs

• Add GPU backend to HTAs

22



Work in progress (cont.)
• Investigation of parallelization of Delaunay triangulation

– K. Pingali, et. al (Galois)
• Further GPU tuning of Homogen in progress
• Adding empirical auto-tuning framework

– Tune for performance on multi-cores and GPUs
• Look at future architectures such as Intel’s Larabee

23



Conclusions
• Good performance from restructuring and tuning the 

kernels
• Switching compilers leads to large performance 

improvements
• Good scalability

– For both large multi-cores and GPU platforms
– GPU implementation of MNCC is up to 2x faster than a 24-core

• New bottlenecks appear after original optimizations

24



Questions?

25



Backup Slides

26



Thread Block Size Impact on MNCC

27



Post-processing

28



Compute Kernels
• MNCC and Homogen are the two most computationally 

expensive sections of code (~68% total execution)
– MNCC ~34% of total execution time
– Compute Homogen ~34% of total execution time

• Delaunay Triangulation is purely sequential
– Parallel implementations exist (K. Pingali et. al)
– Becomes bottleneck as MNCC is improved

29



User Defined Operations
hmap( F(), X, Y)

X

F()

Y Y

F()

30



Compute MNCC (cont.)
• We need to restructure original MNCC code

– Allows for Hmap on element-by-element, or tile-by-tile
• This can exploit more parallelism

– Kernels are now simpler and easier to understand
– Simpler code can possibly enable more compiler optimizations

• Perform traditional compiler optimizations on the kernels
– Converting code to perfectly nested loops
– Changing pointer arithmetic to array subscripts

• Benefits readability, but might worsen performance
– Loop fusion
– Code movement
– Dead code elimination

31



Compute MNCC Restructuring

Original MNCC
compute_mncc(data, Thread ID) {

int start = start of range for ID

int end = end of range for ID
for I = start, end

…
for J = 0, NUM_DISP {

…
}

for J = 0, NUM_DISP {

…
corr_vals(I * NUM_DISP + J) = …

}
find maximum value and index

}

Restructured MNCC
compute_mncc(data, Thread ID) {

int start = start of range for ID

int end = end of range for ID
for I = start, end

for J = 0, NUM_DISP {
…

corr_vals(I * NUM_DISP + J) = …
}

}
find_maximum(data, Thread ID) {

int start = start of range for ID
int end = end of range for ID

for I = start, end
for J = 0,NUM_DISP {

..

}
find maximum value and index

}

32



Hmap conversion

Call hmap(ComputeMNCC(), DATA)

Call hmapReduce(MAX(), DATA)

33



Overall Results (Original)

34



Multicore

Locality

Distributed

HTA Data Structure

35


