Optimization of Tele-Immersion Codes

Albert Sidelnik, 1-Jui Sung, Wanmin Wu,
Maria Garzaran, Wen-mei Hwu, Klara Nahrstedt,

David Padua, Sanjay Patel
University of Illinois at Urbana-Champaign

UPCAC Illinois

Universal Parallel Gomputing
1 Research Center

Agenda

High-level goals

Tele-Immersion

GPU specific optimizations applied
Results of the optimization effort
Future work

Conclusion

o o1 B w =

UPCAC Illinois

Universal Parallel Gomputing
Research Center

—/////Il I

Main Goals

 Find data-parallel primitives and apply tuning techniques
— Adapts for portability across multiple target architectures
e E.g. Multi-cores, Clusters, and GPUs

— Adapts for performance
 E.g. optimal tile sizes, unroll factors, scheduling

— Enables productivity
« Programmer express data parallel operations
 Focus more on their algorithms

 To do this study, we need good representative applications
— Apply above to the domain of Tele-immersion

UPCAC Illinois

Universal Parallel Computing
Research Center

—/////Il I

Tele-Immersion

UPCAC Illinois

Photo courtesy of Prof. Ruzena Bajcsy. Universal Parallel Gomputing
Research Center

—/////Il I

Tele-lImmersive Environment

1D Capturing Tier Multi-Dieplay

Rendering/Dieplaying Tier

UPCAC lllinois

Universal Parallel Gomputing
5 Research Center

e rrrsd 1

Initial Strategy

* Profile existing code to find hotspots

 Restructure original code as a sequence of data parallel
operations

« EXxpress these operations using new data structures
— This enables targeting of multiple platforms

 Perform tuning on these newly restructured kernels

UPCAC Illinois

Universal Parallel Computing
Research Center

—/////Il I

Overall Flow of Tl Code

Main Thread PDSt-
processing

GetImage Thread 0
(BW)

GetImage Thread 1

(BW)
Pre-

GetImage Thread 2 prOCGSSing
(BW)

GetImage Thread 3
(Color)

Compute Thread 0 Triangulation

Compute Thread 1

Homogen
MNCC

yidaqgioniysuoosay

Compute Thread N

Time (ms): 12.1 12.0 5.5 17.8 2 Tg’g'

llP[!Hﬂ lllinois

Universal Parallel Gomputing
Research Center

—/////Il I

Compute MNCC

e MNCC = Modified Normalized Cross Correlation
— Computes correlation of feature points across different images

 Consists of two (consecutive) data parallel operations
— Computation of correlation values
— Maximum reduction

 Very little control flow (outside of maximum reduction)
— Good candidate for GPUs

UPCAC Illinois

Universal Parallel Computing
Research Center

—/////Il I

High-Level View of MNCC

Original Code

Restructured Code

compute_mncc (data, Thread ID) {
int start = start edge for ID
int end = end edge for ID
for i=start , end {
x1= x_edge [i];
yl=y_edge [i;
for j=0, num_disp {
/I find corresponding edges in L and R cameras
x1 el = (float *)(C2LX + x1* num_disp);
yl el = (float *)(C2LY + y1* num_disp);

maxcorr(i) =0;
for j=0, NUM_DISP {

corrl=..;cor2=....;corr3 =;

/l find maximum correlation

corr [i* num_disp +j]=corrl + corr2 + corr3 ;

if (corr [i* num_disp +j]> maxcorr [i]) then
maxcorr [i] = corr [i* num_disp +j];

compute_mncc (data, Thread ID) {

int start = start edge for ID

int end = end edge for ID

for i=start , end {

for j=0, NUM_DISP {

x1=x_edge [i];
yl=y_edge [if;
/I find corresponding edges in L and R cameras
x1 el = (float *)& C2LX [x1* num_disp];
y1l el =(float *)& C2LY [y1* num_disp];

corrl = ...; corr2 = ...;corr3 =...;
corr [i* num_disp +j]=corrl + corr2 + corr3;
}

}
}

find maximum (data , Thread ID) {

int start = start edge for 1D
int end = end edge for ID
for i =start, end {
maxcorr [i] =0;
for j =0, NUM_DISP {
if (corr [i* num_disp +j]> maxcorr [i])
maxcorr [i] = corr [i* num_disp +j];

UPCRC llinois

Universal Parallel Gomputing
Research Center

—/////Il I

MNCC Optimizations (GPU)

1. Start with naive (restructured) data parallel operation
— Easy port of the code to use CUDA
— Only outer loop Is parallelized
— Empirically search for best thread block size

2. Introduce multiple dimensions of parallelism
— No dependences across loops
— Empirically search for best 2D thread block size

3. Transpose the thread block structure (Loop Interchange)
— Take advantage of memory coalescing
— Empirically search the best transposed 2D thread block size

4. Utilize texture memory as a hardware cache

— Frequent 2D table lookups UP[!Hﬂ """Uis

Universal Parallel Computing
Research Center

—/////Il I

Compute Homogen

 Data Parallel routine
 Apply similar restructuring techniques as in MNCC

e Lots of control flow

— Consists of many divergent branches
* Very input dependent

— Potentially bad candidate for GPU

— Good for CPUs using dynamic scheduling
e Load imbalance
 Qverdecomposition will help here

UPCAC Illinois

Universal Parallel Computing
Research Center

—/////Il I

Homogen Optimizations (GPU)

1. Start with naive data parallel implementation
— Same as MNCC

2. Utilize texture memory
— Same as MNCC

3. Compiler flags
— Nvcc compiler flag —maxregcount #

— Beneficial impact on performance by forcing compiler to spill
registers earlier

UPCAC Illinois

Universal Parallel Gomputing
Research Center

—/////Il I

Initial Results

e Test Platform 1.
— Intel 4-Core Penryn 2.83ghz
— 4GB memory/6MB L2 cache
— Nvidia GTX280 (Cuda 2.0)
— Intel ICC 10.1 Compiler/MS Visual C++

e Test Platform 2:
— 4x6-Core Intel Dunnington Xeon 2.40ghz
— 48GB memory/12MB L3 cache
— Intel ICC 10.1

UPCAC Illinois

Universal Parallel Computing
Research Center

—/////Il I

Compiler Results (4-Core Intel)

 Original Code
— Microsoft Visual C++: 20fps
— Intel ICC 10.1: 31fps

 Up to 35% speedup just from switching compilers
— Mostly due to auto-vectorization

UPCAC Illinois

Universal Parallel Gomputing
Research Center

—/////Il I

MNCC GPU Optimization Trend

4.j /’
3.5 /
; /

2.5

2 e
1.5

N

Naive Multiple Loop Interchange Texture Memory

Jmesens UPCAC Illinois

Universal Parallel Gomputing
15 Research Center

Speedup

MNCC Results (CPU)

24-Core Intel

8
7
6
= 2
£
o 4 -
£
- 3 |
2 _
1 _ E
O _
8 Threads 16 Threads 24 Threads
M Original ™ Restructured upﬁnu "Imms
Universal Parallel Computing

16 | Research Center

=] =il =I5 e 2 /
> .
o - = 4
e i e =y A 4
s B i

Optimized MNCC Results

24-Core Intel vs Nvidia GTX280 GPU

2.5

QI
0 I

e “"" UPCRE llinois

Universal Parallel Gomputing
17 _ Research Center

=] =il =I5 e 2 /
> .
o - = 4
e i e =y A 4
s B i

N
(@)

Time (ms)

©
U1

Homogen GPU Optimization Trend

1.8
1.7 /
1.6
Q_15 /
=
8 1.4
Q. /
P13

» _
1 /

Naive Texture Memory CompilerFlag

UPCAC Illinois

Universal Parallel Gomputing
Research Benter

—/////Il -

Homogen Results (CPU)

24-Core Intel

9
8
7 _
— 6 |
Es |
E 4
- 3
2 _
1 _
0 _
8 24 64 128 256 512 1024
Number of Tiles
M Original ™ Restructured e AL
a
19 | Research Center

= =) A ,

Optimized Homogen Results

24-Core Intel vs Nvidia GTX280 GPU

12
10
_ 8
7))
£
o 6
E
|_
4
2
. | I
24 C CPU GPU ik
UPCRC Illinois
Universal Parallel Gomputing

20 | Research Center

== - 2 1 7 .
il e o A L
= ¥ 4 4y B

Overall Results (Modified)

Main Thread Post—_
processing
Get Image Thread O
(BW)
Get Image Thread 1
(BW)
Pre-processing
Get Image Thread 2
(BW)
Get Image Thread 3
(Color)
Compute Thread 0 Triangulation
D
8
Compute Thread 1 - =
wn
3 =
= = a
5 S o
O S
=
Compute Thread N
Time (ms): 12.1 1.03 6.4 112 05 1.8 Total:

22.95 (~44fps)

UPCAC Illinois

Universal Parallel Gomputing
Research Center

—/////Il I

Work Iin progress

 Port kernels to use new data structures (HTAS)
— HTA = Hierarchically Tiled Array
— Facilitates locality and parallelism
— Provides a “map” primitive

 Performs a user-defined operation on an element-by-element or tile-by-tile
granularity

— Encapsulate parallelism from programmer

— Target for multiple classes of parallel architectures
 E.g. multi-cores, clusters, GPUs

e Add GPU backend to HTAS
UPCRC lllinois

Universal Parallel Computing
Research Center

—/////Il I

Work Iin progress (cont.)

* Investigation of parallelization of Delaunay triangulation
— K. Pingall, et. al (Galois)

 Further GPU tuning of Homogen in progress

 Adding empirical auto-tuning framework
— Tune for performance on multi-cores and GPUSs

e ook at future architectures such as Intel's Larabee

UPCAC Illinois

Universal Parallel Computing
Research Center

—/////Il I

Conclusions

 Good performance from restructuring and tuning the
kernels

 Switching compilers leads to large performance
Improvements

 Good scalability
— For both large multi-cores and GPU platforms
— GPU implementation of MNCC is up to 2x faster than a 24-core

* New bottlenecks appear after original optimizations

UPCAC Illinois

Universal Parallel Computing
Research Center

—/////Il I

Questions?

UPCAC Illinois

Universal Parallel Gomputing
25 Research Benter

Backup Slides

UPCAC Illinois

Universal Parallel Gomputing
26 Research Benter

Thread Block Size Impact on MNCC

—-2D Thread Block —=Loop Interchange Texture Memory

= 2500 //,

=

0 2000 -l
i:

——
1500
1000
500
0

160 320 480
Thread Block Size ..
UPCRC llinois
Universal Parallel Computing
Research Center

—M/Il -

| Preprocessing |

Compute Backgmund Edge
—_— T = 2/
Compute Delaunay
MNCC Triangulation
Image
Compute
Homogen
Post-processing

Transmit Compress Color Reconstruct

Data P Lnnkup Depth

————————————————— UPCRE Ilfinois

Universal Parallel Gomputing
28 Research Benter

I
I
I
I

Compute Kernels

« MNCC and Homogen are the two most computationally
expensive sections of code (~68% total execution)

— MNCC - ~34% of total execution time
— Compute Homogen - ~34% of total execution time

» Delaunay Triangulation is purely sequential
— Parallel implementations exist (K. Pingali et. al)
— Becomes bottleneck as MNCC is improved

UPCAC Illinois

Universal Parallel Computing
Research Center

—/////Il I

User Defined Operations

hmap(F(), X, Y)

| JPORQ [Ifinois

Universal Parallel Computing

2 Research Center E

Compute MNCC (cont.)

* We need to restructure original MNCC code

— Allows for Hmap on element-by-element, or tile-by-tile
e This can exploit more parallelism

— Kernels are now simpler and easier to understand
— Simpler code can possibly enable more compiler optimizations

 Perform traditional compiler optimizations on the kernels
— Converting code to perfectly nested loops

— Changing pointer arithmetic to array subscripts
 Benefits readability, but might worsen performance

— Loop fusion

— Code movement . -
o UPCRC lllinois

— Dead code elimination Universal Parallel Computing

Research Center

- I

Compute MNCC Restructuring

Original MNCC Restructured MNCC

compute_mncc(data, Thread 1D) { compute_mncc(data, Thread 1D) {
int start = start of range for ID int start = start of range for ID
int end = end of range for ID int end = end of range for ID
for 1 = start, end for 1 = start, end

for J = 0, NUM_DISP {
for J = 0, NUM_DISP {
corr_vals(l * NUM_DISP + J) = ..
by by

for J = 0, NUM_DISP { }
corr_vals(l * NUM_DISP + J) = .. find_maximum(data, Thread 1D) {
b int start = start of range for ID
find maximum value and index int end = end of range for ID
} for 1 = start, end

for J = O,NUM_DISP {

}

find maximum value and iIndex

UPCAC Illinois

Universal Parallel Gomputing
Research Center

- I

Hmap conversion

Call hmapReduce(MAX(), DATA)

Call hmap(ComputeMNCC(), DATA)

UPCAC Illinois

Universal Parallel Gomputing
33 Research Benter

Overall Results (Original)

Main Thread

Get Image Thread O
(BW)

Get Image Thread 1
(BW)

Get Image Thread 2
(BW)

Get Image Thread 3
(Color)

Compute Thread 0

Compute Thread 1

Compute Thread 7

Time (ms):

- I

Pre-
processing

12.1

Post-
processing

Triangulation

B

Homogen =

MNCC &
12.0 55 17.8 2 UBED

51.8 (~19.3fps)

llP[!Hﬂ lllinois

Universal Parallel Computing
Research Center

HTA Data Structure

Distributed

Multicore

Locality

’ UPCAC Illinois

Universal Parallel Gomputing
Research Center

- I

