An Approach to Automation of Fusion Using Specware

Hongge Gao
Electrical and Computer Engineering Department
Northeastern University

Boston, MA, U.S.A.
hgao@ece.neu.edu

Mieczyslaw M. Kokar

Electrical and Computer Engineering Department

Northeastern University
Boston, MA, U.S.A.
kokar@coe.neu.edu

Abstract This paper introduces an approach to
the automation of fusion using category theory
based formal method. Category theory has rich
and vigorous mathematical language to manipulate
complex systems via the relations between them.
Specware, a category theory based formal develop-
ment system, is used as platform. This approach
has the following advantages. First of all, fusion
systems designed using this approach are easy to
reuse, extend and maintain under evolulion. Sec-
ondly, it provides a formal support to represent and
state human knowledge explicitly. Finally, with the
support of Specware, we can refine the formal speci-
fication into final executable code by stepwise refine-
ment. Specware guarantees that the final executable
code is provably correct.

Keywords: information fusion, formal method,
category theory

1 Introduction

A number of information fusion architectures,
models and techniques have been proposed,
but there are few systematic approaches to rep-
resenting, implementing and maintaining fu-
sion systems. For instance, it is not possible to
guarantee that a system designed using specific
architecture actually implements the architec-
ture and its requirements. It is also hard to

Jerzy Weyman
Department of Mathematics
Northeastern University

Boston, MA, U.S.A
weyman@neu.edu

reuse, extend or evolve such systems.

To deal with these kinds of issues, we use
a formal method approach to the development
of fusion systems. In our approach, we follow
a software engineering paradigm, i.e., we first
specify requirements for a fusion system, and
then we develop code through progressive re-
finement of specifications. More specifically,
we use a category theory based formal method
for specifying and designing information fusion
systems. Our approach has the following ad-
vantages. First of all, fusion systems designed
using this approach are easy to reuse, expand
and manage under changes. Secondly, it en-
ables us to represent and state human knowl-
edge explicitly in the specification. Finally,
with the support of Specware, we can refine
the formal specification into final executable
code by stepwise refinement. Specware guar-
antee that the final executable code is provably
correct.

The main problem that we are addressing in
this paper is how to guide the process of fusion
of specifications into a final specification of the
system. In our approach, we use Specware, for-
mal method tool that is based on category the-
ory. Since category theory provides us with the
rigorous mathematical language and rich op-
erations to represent and manipulate complex
information structures, we can assemble fusion

system specifications modularly and incremen-
tally by using category theory operators, such
as colimit and interpretation, to the particular
basic specifications.

While Specware provides a formal specifica-
tion language, the specification developer has
to decide which specifications to combine and
how. Our goal is to automate this process.
Towards this goal, we investigated the Plan-
ware approach [2] to developing specifications.
Planware is a process developed at Kestrel for
the domain of scheduling. We are investigat-
ing a similar approach to developing fusion sys-
tems. Basically, our process is as follows:

First, we develop a library of formal specifi-
cations of various goals, sensor theories, back-
ground theories and fusion theories. The re-
lation between these theories and knowledge
bases are represented by specification mor-
phisms.

Second, we assemble an abstract specifica-
tion of a fusion system from the library devel-
oped in the first step. Fusion is then consid-
ered as an operation of combining those various
specifications into a specification of a fusion
system. In other words, fusion is an operation
on these specifications. This differs from other
views of fusion, where it is considered as an
operation on data or decisions.

Third, we refine the abstract specification
into a concrete specification using the informa-
tion provided by user. For any individual spec,
we refine it to more concrete spec via sequential
composition of interpretations. For structured
spec, we use parallel composition operator to
automatically construct the refinement of col-
imit object.

Finally, we generate code for the concrete
specification.

The rest of the paper will explain how to
implement the above procedure. Section 2
provides a brief introduction to category the-
ory and Specware. In Section 3, we describe
our approach to automation of fusion using
Specware. A specific multisensor fusion ex-
ample will be given in Section 4 followed by
summary in Section 5.

2 Background

Category theory was originally invented as an
abstract mathematical language to describe
the passage from one type of mathematical
structure to another. Specware, a category
theory based formal software development sys-
tem, supports the modular construction of for-
mal specifications. It also supports stepwise
and componentwise refinement of structured
specification into executable code.

2.1 Category Theory

Category theory is an abstract language for
describing external properties of objects. In
category theory, an object is described by its
interaction with all other objects via mor-
phisms. This unique feature of abstract, high-
level description makes category theory an
ideal mathematical tool for information fusion
problem. In information fusion, we need to
know the relations or interactions between dis-
parate sources (information) in order to com-
bine them together (fusion).

A good review of category theory related to
fusion can be found in [3]. Interested reader
can find more information about category the-
ory in [7, 5, 1].

2.2 Specware

In this section, we will introduce Specware con-
cepts which we used to automate the fusion
process.

Specware is a system developed at Kestrel
which aims to provide a formal support for
specification and development of software [8].
The foundations of Specware are category the-
ory, sheaf theory, and algebraic specification
and general logics. Using Specware, one can
construct formal specifications modularly and
refine such specifications into executable code
through progressive refinement. The underly-
ing basic concepts of Specware are described
below.

A specification(spec or theory) is a collection
of sorts, operations and axioms that defines a

spec IMAGE is
sorts Image, E
op make-image : Nat, Nat, E — Image
op xsize : Image — Nat
definition of xsize is
axiom xsize(make-image(m,n,e)) = m
end-definition

other operations and axioms ...

end-spec

Figure 1: Image specification

theory via higher-order logic. An example of
specification of image is shown in Figure 1.

Specifications can be developed from scratch
or can be constructed from other specs via the
specification-constructing operations — import,
translate and colimit. Spec A has a copy of spec
B if A import B. Translate is similar to import
except some elements of the copy of spec B are
renamed according to the given renaming rules.
The colimit operation takes a specification di-
agram as input and produces a specification
called the colimit of the diagram.

A specification morphism is a mapping from
source specification S to target specification T
such that the signatures of the operations are
translated compatibly and theorems are pre-
served.

A specification diagram (or simply diagram)
is a directed multigraph whose nodes are la-
beled with specs and whose arcs are labeled
with morphisms. So a diagram shows the re-
lations between specifications. A diagram ex-
ample is shown in Figure 2. In this diagram,
both reflexive relation spec and transitive rela-
tion spec import binary relation spec. So the
morphisms are import-morphisms.

The definition of interpretation is as fol-
lows [9]: An interpretation p : A = B from
a specification A (called domain or source) to
a specification B (called codomain or target) is
a pair of morphisms A — A—as— B < B with

Binary
relation
Reflexive

relation

Transitive
relation

Figure 2: A specification diagram

common codomain A — as — B (called mediat-
ing specification or simply mediator), such that
the morphism from B to A — as — B is a defi-
nitional extension. Interpretation is also called
refinement.

A morphism S — T is a strict definitional
extension if it is injective and if every element
of T which is outside the image of the mor-
phism is either a defined sort or a defined op-
eration. A definitional extension is a strict def-
initional extension optionally composed with a
specification isomorphism.

Sequential (Vertical) composition of inter-
pretations allows us to connect interpretations
together so that we can refine a specification
progressively. If p; and ps are two interpreta-
tions such that p; : S = Rand po : R=T
then their sequential composition pq;p2 is an
interpretation from S to T. That is, p1;p2 :
S=T.

Parallel composition allows us to put
interpretations together like specification-
constructing operations allow us to put speci-
fications together. Suppose we have interpre-
tations for each of the specifications in a given
diagram, we can compose them to obtain an
interpretation whose domain is their colimit.
The codomain of the composed interpretation
will be the colimit of a diagram whose nodes
are codomain of the component specification
interpretations.

All the above concepts are expressed and im-
plemented in Slang, Specware language. The
specification example in Figure 1 is written us-
ing Slang.

Human

Figure 3: A multisensor fusion scenario

3 Automation of Fusion

In the last section, we reviewed the basic con-
cepts of Specware. Next, we are going to show
our approach to automation of information fu-
sion using Specware.

3.1 Information Fusion Problem

Basically, information fusion or fusion is a pro-
cess of integrating related information from dif-
ferent sources into one final, consistent repre-
sentation and making decisions, management
or assessment based on that representation. A
typical multisensor fusion scenario is depicted
in Figure 3. In the figure, N sensors observe the
region of interest, World, and send information
to the fusion system. Human sends queries or
goals to the fusion system. Based on the in-
formation received from sensors and queries or
goals from human, fusion system compute the
solution and returns answer to human(in the
situations such as detection, automatic target
recognition) or sends instructions to sensors(in
the situation sensor management).

Sensor 1 Sensor 2

| Abs-Prob-Thy 1 | | Abs-Prob-Thy 2 |

/

‘ Abs-Prob }—»‘ Comb-Thy ‘

Abs-Fusion
Theory

Abs-Req-Thy

Figure 4: Abstract Fusion Specification Struc-
ture

3.2 Abstract fusion specification

Based on the analysis of the fusion problem,
we represent the abstract fusion problem as a
structured specification as shown in Figure 4.
Without loss of generality, we use two sensors
as an example. Fusion systems with more than
two sensors have similar structures.

Basically, there are two diagrams in this
structure. The first diagram, COMB-SPECS-
DIAGRAM, consists of specs IMAGE, SENSOR,
SENSOR1, SENSOR2, ABS-PROB-THY 1 and
ABS-PROB-THY 2 where ABS-PROB-THY 1
and ABS-PROB-THY 2 represent fusion prob-
lems, such as detection, expressed in terms
of respective sensor theories. Specification
COMB-THY is the colimit of this diagram.
The second diagram, FUSION-DIAGRAM, con-
sists of specs ABS-PROB, ABS-FUSION-THY
and COMB-THY. ABS-REQ-THY, the abstract
requirement specification of the multisensor
fusion system, is the colimit of FUSION-
DIAGRAM. Here we use ABS-PROB to glue
ABS-FUSION-THY and COMB-THY together to
get the final ABS-REQ-THY.

The above structure provides us with follow-
ing advantages:

e Represent and state human knowledge
explicitly in the specification.
stance, sensor theories, fusion theories are
represented by specs SENSOR and ABS-
FUSION-THY. Other human knowledge,
from geometry to statistics, can also be
represented as specifications.

For in-

e Reuse, extend and maintain fusion system
easily. The structured specification gives
us a clear roadmap of the whole fusion
system. The relations between different
parts are clearly represented by specifica-
tion morphisms. Apparently, this fusion
system can be used repeatedly for a class
of problems. Also building a larger system
from this simple one is easy.

e Refine the formal specification into final
executable code by stepwise refinement
with the support of Specware. As we dis-
cussed in Section 2, Specware supports
both sequential and parallel compositions
of refinement. Once we have such a struc-
tured specification, we can refine it incre-
mentally into a sufficiently refined specifi-
cation using sequential and parallel com-
position. The sufficiently refined specifi-
cation is such a specification that every
sort and operation of it are represented by
built-in abstract target language (ATL) [6].
ATL describes the constructs of the target
language. Currently, Specware supports
two kinds of target language, C++ and
Lisp.

Some of the component specifications are
shown in Figure 5. Here we modeled the ab-
stract sensor as a function from sort (Nat, Nat)
to sort Image. Similarly, both problem
theories(ABS-PROB-THY1 and ABS-PROB-
THY2) are represented as functions. These
theories will be refined into the concrete prob-
lem theories later on via user’s selection. Fi-
nally, the fusion theory is represented as a func-
tion from outputs of two problem theories (@1

and Q2) to the final output Q. Notice we didn’t
specify Q1, Q2 and Q at this moment because
they could be Nat, Boolean or any other sort
in the refinement.

spec SENSOR is

import IMAGE

sort Sensor

op sense : Image, Sensor — Image
end-spec

spec ABS-PROB-THY1 is

import SENSOR1

sort Q1

op pl: Imagel, Sensorl — Q1
end-spec

spec ABS-PROB-THY?2 is

import SENSOR2

sort Q2

op p2: Image2, Sensor2 — Q2
end-spec

spec ABS-PROB is
sorts Imagel, Image2, Sensorl,
Sensor2, Q1, Q2
op pl : Imagel, Sensorl — Q1
op p2 : Image2, Sensor2 — ()2
end-spec

spec ABS-FUSION-THY is
import ABS-PROB
sort Q
op fuse : Q1, Q2 —» Q
end-spec

Figure 5: Fusion Specifications

3.3 Refining to a domain-specific
specification

The user can refine the abstract fusion specifi-
cation into a domain-specific specification by

choosing concrete domain theories from the
knowledge base. The basic procedure for re-
finement is as follows:

e First, choose two image sensors as SEN-
SOR1 and SENSOR2 from a library of

sensor theories.

e Second, choose a concrete fusion problem
from a hierarchy of fusion problems. We
will discuss details of this step in the next
section.

e Then, choose a corresponding fusion the-
ory.

e Finally, after refining each component the-
ory of abstract specification to its cor-
responding concrete theory, compute the
final domain-specific requirement theory
via parallel composition of interpretations.
The final domain-specific requirement the-
ory is the refinement of ABS-REQ-THY.

we have analyzed the information fusion
problem and introduced a Specware based ap-
proach to constructing fusion specification and
refining it into final code. We showed that a
formal system can be represented as a struc-
tured specification and one can develop such a
fusion system formally through sequential and
parallel composition of refinement.

4 A multisensor fusion exam-
ple

In this section, we will show how to apply the
refinement procedure described in last section
to a particular fusion problem.

4.1 subdomains of fusion problem

Goodman [4] described subdomains of data fu-
sion as follows:

e Sensor fusion. In this kind of fusion, evi-
dence from two or more sensors of similar
type is combined in order to get more pre-
cise information which can not be deduced
from each piece of evidence alone.

o Multisource integration. This type of fu-
sion includes Detection, Classification(or
Automatic target recognition), Tracking
and Correlation.

e Sensor management. This refers to the
process of adaptively allocating the dwells
of each re-allocatable member of a suite of
sensors.

e Situation/threat assessment. This is to
provide an overall picture of the military
significance of the data collected by the
previous two kinds of fusion.

e Response management. This is the pro-
cess of deciding upon courses of action
which are appropriate response to current
and evolving military situations.

Based on the above information, we can
draw a hierarchy of fusion problems(see Fig-
ure 6).

next, we will show how to refine a abstract
fusion specification to a concrete specification
based on this hierarchy.

ABSTROBTHY
L N\

Sensor| (Multisource, |Sensor \ Situation/Threat
Fusion| | Integration| Managemen \Assessmem

‘Detection‘ \Classiﬁcation Response

Management
Tracking

Figure 6: Hierarchy of fusion problems

4.2 Refining to a detection problem

To particularize the abstract fusion specifica-
tion, the user has to select a concrete fusion
problem from the hierarchy of fusion problem.

spec DETECTION-THY is
import LABELING
op target? : Image, Sensor — Boolean
definition of target? is
axiom target?(img,s) <
geq(max-lab(img,s), zero)
end-definition
end-spec

Figure 7: Detection Theory

The (composed) arrow from ABS-PROB-THY
to the selected problem theory is the arrow
used for refinement.

Suppose the user has chosen a detection the-
ory(Figure 7). It imports LABELING theory
which contains operation maz-lab. The max-
lab returns the maximum number of label of
the image being detected.

Then part of the refinement arrow is:

Q1 — Boolean

pl — target?
Sensorl — Sensor

Next, the user has to choose a correspond-
ing fusion theory. In this case, the user should
select DETECTION-FUSION-THY (see Fig-
ure 8).

So the refinement arrow is:

pl —dl

p2 — d2
Q1 — Boolean
Q2 — Boolean
Q@ — Boolean
fuse = final — decision

After having refined each component of the
abstract fusion specification, the multisensor
detection specification can be computed as de-
scribed in the last section.

spec DETECTION-FUSION-THY is
sorts Imagel, Image2, Sensorl, Sensor2
const confidencel : Nat
const confidence2 : Nat
op d1 : Imagel, Sensorl — Boolean
op d2 : Image2, Sensor2 — Boolean
op final-decision :

Imagel, Image2, Sensorl, Sensor2 — Boolean

definition of final-decision is
axiom d1(il,s1) = d2(i2,s2) =
final-decision(il,i2,s1,s2) = d1(il,sl)
axiom not(d1(il,sl) = d2(i2,s2) A
gt(confidencel, confidence2) =
final-decision(il,i2,s1,s2) = d1(il,sl)

end-definition
end-spec

Figure 8: Detection Fusion Theory

This section has shown how to refine the ab-
stract fusion specification to a particular fusion
problem theory. We have chosen a simple ex-
ample and artificial theories to make the pro-
cess clear. It needs careful, hard work to de-
velop specifications for real applications.

5 Summary

We have shown in this paper a semi-automatic
approach to automation of information fusion
using category thoery based formal method.
Specifically, we discussed the construction
and refinement of fusion specificaitons using
Specware. This approach enables us to rep-
resent human knowledge explicitly so that we
can utilize this knowldege repeatedly and ex-
pand and manage them with ease in a changing
environment. This formal approach also pro-
vides a way to produce provably-correct code
throught stepwise refinement.

References

[1]

M. Barr and C. Wells. Category The-
ory for Computing Science. Prentice-Hall,
1990.

L. Blaine, et. al. Planware - Domain-
Specific Synthesis of High-Performance
Schedulers. Proceedings of the Thir-
teenth IEEE International Automated
Software Engineering Conference, pp. 270-
279, Homolulu, Hawaii, October 13-16,
1998.

S. A. DeLoach and M. M. Kokar. Category
Theory Approach to Fusion fo Wavelet-
Based Features. To appear in this con-
ference.

I. R. Goodman, R. P. S. Mahler and H.
T. Nguyen. Mathematics of Data Fusion.
Kluwer Academic Publishers, 1997.

D. Rydeheard and R. M. Burstall. Com-
putational Category Theory. Prentice-
Hall, 1988.

Kestrel Institute. SPECWARE LAN-
GUAGE MANUAL. Specware 2.0.3,
March 1998.

Y. V. Srinivas. Category Theory Defini-
tions and Examples. Techical Report, De-
partment of Information and Computer

Science, University of California, Irvine,
February 1990. TR-90-14.

Y. V. Srinivas and J. L. McDonald. The
Architecture of SPECWARE, o Formal
Software Development System. Technical
report, Kestrel Institute, 1996.

Y. V. Srinivas and R.
Jilllig. SPECWARE: Formal Support for
Composing Software. Proc. of Conference
on Mathematics of Program Construction,
Kloster Irsee, Germany, July 1995.

